
High Performance Genetic Programming on GPU

Denis Robilliard
Université Lille Nord de France
LIL, 50 rue Ferdinand Buisson
BP 719, 62228 Calais, France
robillia@lil.univ-littoral.fr

Virginie Marion
Université Lille Nord de France
LIL, 50 rue Ferdinand Buisson
BP 719, 62228 Calais, France

poty@lil.univ-littoral.fr

Cyril Fonlupt
Université Lille Nord de France
LIL, 50 rue Ferdinand Buisson
BP 719, 62228 Calais, France
fonlupt@lil.univ-littoral.fr

ABSTRACT

The availability of low cost powerful parallel graphics cards
has stimulated the port of Genetic Programming (GP) on
Graphics Processing Units (GPUs). Our work focuses on
the possibilities offered by Nvidia G80 GPUs when pro-
grammed in the CUDA language. We compare two par-
allelization schemes that evaluate several GP programs in
parallel. We show that the fine grain distribution of compu-
tations over the elementary processors greatly impacts per-
formances. We also present memory and representation op-
timizations that further enhance computation speed, up to
2.8 billion GP operations per second. The code has been
developed with the well known ECJ library.

Categories and Subject Descriptors

I.2 [Automatic Programming]: Program modification

General Terms

Algorithms

Keywords

genetic algorithms, genetic programming, graphics process-
ing units, parallel processing

1. INTRODUCTION
It is well known that the most time consuming part of a

Genetic Programming (GP) run is the evaluation process.
When dealing with complex real world problems like those
addressed by Koza et al. in their last book [17], millions of
programs need to be evaluated at each generation. Even
if the training set is small, this huge population number
makes GP runs impractical on common systems. A common
strategy to tackle this problem is to parallelize or distribute
the GP computations, e.g. [24, 13, 7, 4]. Newly introduced
graphics processing units (GPUs) provide fast parallel hard-
ware for a fraction of the cost of a traditional parallel system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BADS’09, June 19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-584-0/09/06 ...$5.00.

GPUs are designed to efficiently compute graphics primitives
in parallel to produce pixels of the video screen. Driven by
ever increasing requirements from the video game industry,
recent GPUs are very powerful and flexible processors, while
their price remains in the range of mass consumer market.
They now offer floating-point calculation much faster than
today’s CPU and, beyond graphics applications, they are
able to address general problems that can be expressed as
data-parallel computations.

Several general purpose high-level languages for GPUs
have become available such as Brook, RapidMind, Accelera-
tor from Microsoft Research, PeakStream or OpenCL. Thus
developers do not need any more to master the extra com-
plexity of graphics programming APIs when they design non
graphics applications on GPUs (see http://www.gpgpu.org

for a survey). With the G80 family GPUs, NVidia proposes
the CUDA development kit (Compute Unified Device Archi-
tecture) that is based on a C-like general purpose language,
allowing fine control over the hardware capabilities.

Evolutionary computation concepts were born in the 60s,
inspired by Darwinian adaptation. They became popular
with John Holland and David Goldberg’s pioneering work
on Genetic Algorithms (GA) [12, 8]. GAs have been success-
fully applied to a wide spectrum of problems ranging from
combinatorial optimization (routing, assignment, schedul-
ing,...) to game playing or robot control [6]. A derived
scheme, Genetic Programming (GP) was introduced in 1992
by Koza [15]. In GP, programs are usually represented as
trees. Leaves nodes are taken from a terminal set, usually
composed of pseudo-variables storing the program inputs
and random constants. The internal nodes are functions
symbols operating on their subtrees. A GP run simulates
the evolution of a population of programs by repeatedly eval-
uating programs quality, selecting the fitter programs, and
then breeding (i.e. combining) them to produce hopefully
better new programs. The evaluation phase is typically done
in a supervised learning framework, running a program on
a set of training (or fitness) cases and comparing the com-
puted outputs versus the expected ones. Selection is usually
stochastic with a bias towards best individuals. Breeding
is done by applying operators that mimic the two main ge-
netic transformations: cross-over and mutation. In the case
of tree-coded programs, cross-over is performed by selecting
two programs and exchanging sub-trees between them, and
a typical mutation consists in randomly choosing a branch of
an individual, deleting it and replacing it with a new random
branch. The new generation replaces the previous one, and
the overall process is iterated until some termination crite-

85

rion is satisfied (e.g. exhaustion of computation time or a
satisfying solution found). GP has known a growing interest
since its introduction and has been used to solve numerous
problems including classification, robotics, and electrical en-
gineering (see [2] for a survey).

Exploiting the power of GPUs within the framework of
evolutionary computation has been done first for genetic al-
gorithms, e.g. [25, 26, 22, 14]. Then implementation schemes
of Genetic Programming on GPU have been recently re-
leased, based either on dynamic compilation of GP individ-
uals [11, 10, 5] or on interpretation of the GP programs [19,
23]. Some GP application papers that take advantage of
GPU power have already been issued [20, 9, 1] (see also
the General Purpose Genetic Programming on GPU site
(http://www.gpgpgpu.org).

In a previous work [23], we proposed a parallelization
scheme based on interpretation rather than compilation of
GP programs. The interpreter allows to evaluate simultane-
ously several different GP individuals in parallel, delivering
speedups even for small training sets and as a consequence
more computational power is available to increase the popu-
lation size. A similar approach was proposed independently
by Langdon and Banzhaf in [19].

In this paper we show that high performance GP on GPU
requires access to fine grain details of the architecture, and
thus may dictate the choice of the programming language
and development kit. To illustrate this fact, we first compare
two parallelization schemes that only differ by the way they
dispatch evaluation of GP programs on elementary threads,
and then we turn to the impact of memory optimizations.
Depending on these low level implementation choices, per-
formances are subject to important variations. Such critical
points may be concealed to the developer using a too high
level GPU development kit, thus limiting the gains offered
by new GPUs.

All our experiments are done with the popular ECJ evo-
lutionary library [21] and the CUDA language, i.e. only
the evaluation of fitness cases is performed on the GPU and
programmed in CUDA, while the rest of the evolutionary
process is done by ECJ on the CPU. We need to transfer
GP solutions and fitness cases from Java to CUDA, which
is done via the Java Native Interface (JNI). Note that even
if this paper is primarily targeted for Nvidia G80 and G90
GPUs, some of the concepts developed here are portable
onto ATI graphic hardware, since both ATI and Nvidia new
graphic cards share quite similar architectures. For instance,
in the case of the R600 graphics processing unit from ATI,
each SIMD array of 80 stream processors has its own se-
quencer and arbiter and so is close to the multiprocessor
concept implemented by Nvidia.

The rest of the paper is organized in the following way:
next section presents the basic traits of the G80 GPU family
and the CUDA programming language. In Sect. 3 we present
two different parallelization schemes in CUDA, managing
computations either at the level of elementary processors or
at the level of multiprocessors. In Sect. 4 we present our ex-
perimental setup and compare the performance of the two
parallel schemes. Section 5 discusses memory and repre-
sentation optimizations, and Section 6 unveils final perfor-
mances and discusses future issues.

2. G80 GPU AND CUDA LANGUAGE
The graphics card we consider is an NVidia GeForce 8800

GTX based on the G80 GPU. It is natively limited to sin-
gle precision floating point (32-bit data precision), although
double precision can be used through a software library.

This hardware is based on a unified architecture managed
as a pool of 16 so-called multiprocessors. A multiprocessor
contains 8 elementary stream processors that operate at 1.35
Ghz clock rate, giving a total number of 128 stream proces-
sors on the graphics card. A multiprocessor also owns 16 kb
of fast memory that can be shared by its 8 stream proces-
sors, 8 kb of texture and constant cache and an independent
program counter.

Multiprocessors are SIMD devices, meaning their inner 8
stream processors execute the same instruction at every time
step. However alternative and loop structures are available:
if a stream processor should not perform a given instruction
because e.g. the conditional expression of a while structure
results as false when computed on its own data, then this
stream processor is simply put into idle mode during the
remaining loops performed by the others. This is called
divergence, and of course it implies some waste of computing
power.

At the level of multiprocessors the G80 GPU works in
SPMD mode (Single Program, Multiple Data) : every mul-
tiprocessor must run the same program, but they do not
need to execute the same instruction at the same time step
(as opposed to their internal stream processors), because
each of them owns its private program counter.

The execution model supported by the architecture (and
also by the CUDA language) relies on 2 main concepts:
threads and blocks. Threads can be roughly viewed as the
smallest elementary computation processes on the parallel
device. Their order of execution is not known in advance,
this scheduling being used notably to amortize memory ac-
cess delays. A block is a set of threads being executed on
a given multiprocessor. If there are enough multiprocessors
all the blocks are executed in parallel, otherwise a scheduler
manages them and their order of execution is not known
in advance. A block cannot access the fast memory bank or
registers of another block. The number of threads in a block
must be a multiple of 32 on the G80, thus there are always
more threads than stream processors in a multiprocessor.

The CUDA language is an extension of the C language,
it is free software although proprietary of Nvidia and sev-
eral general purpose libraries are available (such as linear
algebra, FFT, ...)1. Its main drawback is that it runs only
on Nvidia hardware from the G80 and up, but it offers fine
grain access to the architecture. As usual for GPU software
toolkits, programs are divided in two parts, one runs on the
host CPU and the other on the GPU device, this part of code
being called kernel in the CUDA jargon. The host code is
generally responsible for transferring data and loading the
kernel code to the graphics card memory, performing input
and output (with the obvious exception of graphics display),
and calling the kernel code.

Contrary to high-level GPU programming toolkits, such
as RapidMind, that create and dispatch automatically threads
over the underlying elementary processors without user con-
trol, the CUDA toolkit allows the programmer to request the
block and thread identifiers at run time. Thus the program-

1see http://www.nvidia.com/object/cuda home.html

86

mer can choose to associate particular tasks to given blocks
or threads. In doing so we do not control on which multi-
processor or elementary processor the task will run, but we
can e.g. insure that different tasks will not be computed in
parallel on the same multiprocessor. That would not be im-
portant on a pure SIMD computing device, but this allows
to take full advantage of the SPMD mode offered by recent
GPUs, as explained in the next section.

3. POPULATION PARALLEL MODELS
First we discuss GP program compilation versus inter-

pretation issues, then we present two parallel models where
several individuals from a given generation are interpreted
simultaneously.

3.1 Compilation versus interpretation
Harding et al. and Chitty’s works [11, 10, 5] were based

on the same approach: at any given time there is only one
compiled GP individual being evaluated (i.e. executed) and
its evaluation is done in parallel on the fitness cases. This
process is iterated on every individual, until the whole pop-
ulation has been evaluated.

Of course, as the G80 is an SPMD device we cannot per-
form the direct execution of several different GP programs in
parallel. Anyway emulating MIMD tasks can be done in the
form on an interpreter that considers the set of programs
as data. This solution was chosen by Juillé and Pollack
when they parallelized GP on the MASPAR machine [13].
We showed in [23] that it yields speedups even for a small
number of fitness cases and short programs and it was also
successfully used by Langdon and Banzhaf in [19].

There is clearly a trade-off choice: the cost of iterating
interpreted code on the training cases is to be balanced
against the compilation overhead and reduced cost of iter-
ating compiled instructions. If there are few training cases,
meaning few iterations, then the interpreter is a sensible so-
lution anyway. Moreover if we execute one GP program at
a time (either compiled or interpreted), then we parallelize
only the training data, and we might well have not enough
data to fill all the ALU pipelines of the elementary stream
processors. This would leave the GPU under-exploited, es-
pecially since new generation GPUs have several hundreds
elementary processors. On the contrary interpreting several
programs in parallel increases the computation load. We
choose this interpreter approach here.

3.2 BlockGP scheme
In [23] we proposed a parallel model where, at any time,

each multiprocessor interprets only one GP tree. That is,
GP trees are parallelized at the level of multiprocessors, thus
giving up to 16 GP programs interpreted in parallel on the
G80. The fitness computation of a given tree is in turn
parallelized on the 32 threads running on one multiprocessor,
that are scheduled on its 8 stream processors. This scheme is
illustrated in Figure 1. So every stream processor evaluates
around 1/8th of the training cases (variations may occur
due to scheduling). We deem the 1/8th factor leaves enough
data to fill the ALU pipelines in most cases, even with small
training sets.

To highlight the main characteristics of the BlockGP scheme:

• every GP program is interpreted by all threads running
on a given multiprocessor;

Figure 1: BlockGP parallelization scheme: each
multiprocessor evaluates a different program. Each
thread manages a software instruction pointer for
interpretation of the program and evaluates a part
of the fitness cases. Depending on the function set,
threads may diverge and interpret different instruc-
tions as illustrated here.

• the fitness cases are processed in parallel on the 8
stream processors, so the computational intensity is
higher than in a compiled scheme where they would
be dispatched on 128 stream processors;

• divergence can occur between stream processors on the
same multiprocessor, when e.g. an if structure resolves
into execution of different branches within the set of
fitness cases that are processed in parallel. However,
there is no divergence due to differences between GP
programs, since they are interpreted on independent
multiprocessors, thus we take advantage of the SPMD
architecture.

3.3 ThreadGP scheme
In the case of GPUs, we did not cover in our previous

paper another and perhaps more natural way of paralleliz-
ing GP programs. This alternative scheme consists in each
thread interpreting its own GP program. In this case, the
total number of threads on the GPU is the population size
and each thread evaluates its program on every fitness cases,
so even with few fitness cases, the arithmetic intensity will
be high. For the G80, threads are evenly spread in blocks re-
specting the execution model constraints (we use 32 threads
per block), and blocks are automatically scheduled on the
multiprocessors, as illustrated in Figure 2.

This scheme can be seen as a straight SIMD implementa-
tion, in the sense that we do not care about the existence of
multiprocessors having their independent program counter.
It is possible that development kits that do not give access
to detailed management of threads, are indeed using this
scheme when doing automatic dispatch of evaluation on the
stream processors. For the sake of simplicity, we refer to this
scheme as ThreadGP.

To highlight the main characteristics of ThreadGP:

87

• every GP program is interpreted by its own thread;

• this scheme is more computationally intensive than
BlockGP for small training sets;

• as several threads interpreting different programs are
run on each multiprocessor, the level of divergence
could be a problem.

Figure 2: ThreadGP parallelization scheme on the
G80: each thread is in charge of one GP program,
and manages a software instruction pointer for its
interpretation, processing all fitness cases.

In Section 4 we compare the efficiency of these two parallel
schemes on several benchmarks.

4. EXPERIMENTS
Before examining performance timings, we describe our

experimental framework.

4.1 Setup
Our test machine is equipped with a graphics card ded-

icated to the display, while the 8800GTX card is reserved
for the computations and thus not attached to an X server.
This dual cards setting allows to get cleaner timings (no in-
terference with the display). Note that it is possible to use
the 8800GTX for both display and GP evolution, although
with constraints: during intensive computation, the user in-
teraction with the X desktop is suspended; moreover any
given call to the GPU (i.e. executing the interpreter in our
case) cannot last more than 5 seconds, otherwise the process
is killed by the X server watchdog process.

We assess the performance of our parallel schemes for
three standard benchmarks taken from [16, 15]: sextic sym-
bolic regression x6 − 2x4 + x2, boolean 6- and 11- multi-
plexers, and intertwined spirals classification (see Table 1
and [23]). We do not focus on GP ability to solve these
standard benchmarks — this has been amply covered in the
GP literature — but rather on computing time performance.
Running times have been obtained through the monitoring
utilities of the ECJ library. In order to obtain significant fig-
ures, 30 independent evolutionary runs have been executed
for each problem and the running times have been averaged.

4.2 Parallel schemes comparison
In this part we compare the performance of the two par-

allelization schemes presented in Section 3, BlockGP and
ThreadGP, on the benchmark problems defined above. Se-
lection and breeding phases are not impacted by our paral-
lelization, so time comparisons are done only on the evalua-
tion phase.

The results of BlockGP and ThreadGP are summed up
in Tab. 2 and Tab. 3. The speedup is the ratio of mean
ThreadGP running time over mean BlockGP running time,
and is illustrated in Fig. 3 and 4: notice that it is always
greater than 1, i.e. BlockGP is always faster than ThreadGP.

Speedup BlockGP vs ThreadGP models
 Sextic regression Problem

population size

s
p
e
e
d
u
p
 f
a
c
to

r

500 2500 12500

0
5

1
0

1
5

speedup=1(i.e. no speedup)

64 training cases

256 training cases

1024 training cases

Figure 3: BlockGP versus ThreadGP speedup for
the evaluation phase on sextic polynomial regression
problem.

These results show that BlockGP outperforms ThreadGP,
whatever the benchmark, the population size and the num-
ber of fitness cases. It obviously pays to limit divergence by
dispatching similar computations on the same blocks (i.e.
multiprocessors). In particular, in the case of the sextic
polynomial, running the same program in parallel on sev-
eral fitness cases onto a single block yields no divergence at
all, thus the larger gains for BlockGP versus ThreadGP.

In the other problems (multiplexers and spirals), part of
the function set is implemented as short-cut operators: e.g.
an if operator evaluates either its then or else subtrees de-
pending on the value of its condition subtree. Thus the func-
tion set creates divergence even in the case of the BlockGP
scheme. Nonetheless BlockGP is at least roughly twice faster
as it does not suffer from extra divergence due to execution
of different programs on the same blocks.

Notice that in the ThreadGP scheme you need to interpret
at least 512 programs (32 threads times 16 multiprocessors)
in order to have all threads contributing. This may explain
part of the degraded performance of ThreadGP for a popu-
lation of only 500 individuals.

These results question the way how several GPU program-
ming toolkits do their automatic parallelization.

88

Table 1: Presentation of benchmark problems.

sextic regression 6-multiplexer 11-multiplexer intertwined spirals
fitness cases {64, 256, 1024} 64 2048 194

Terminals {X, ERCs} {A0-A1,D0-D3} {A0-A2, D0-D7 } {X, Y, ERCs}
Operators {+,-,*,/,sin, cos, exp, log} { And, Or, Not, If } {+, -, *, /, sin, cos, Iflte}
pop. size {500, 2500, 12500}

generations 50

Table 2: Sextic polynomial regression x6 − 2x4 + x2. Comparison of evaluation time between runs with one
individual per block and runs with one individual per thread. Times are given in seconds and averaged for
30 runs.

Pop. size Training set size
64 256 1024

Block Thread Block Thread Block Thread
500 0.53 1.52 0.64 4.35 1.08 16.49

2500 2.53 3.27 3.03 8.14 5.35 31.31
12500 16.05 20.31 16.65 42.28 27.55 131.09

Table 3: 6-multiplexer, 11-multiplexer and intertwined spirals. Comparison of evaluation time between runs
with one individual per block and runs with one individual per thread. Times are given in seconds and
averaged for 30 runs.

Pop. size 6-multiplexer 11-multiplexer Intert. Spirals
Training set size Training set size Training set size

64 2048 194
Block Thread Block Thread Block Thread

500 0.77 3.68 1.94 11.43 1.97 7.92
2500 3.89 7.46 7.56 16.32 8.63 15.32

12500 13.66 30.67 33.78 69.77 42.96 74.87

89

Speedup BlockGP vs ThreadGP models
 Multiplexer and Spirals

population size

s
p
e
e
d
u
p
 f
a
c
to

r

500 2500 12500

0
1

2
3

4
5

6

speedup=1(i.e. no speedup)

Multiplexer−6

Multiplexer−11

Intertwined Spirals

Figure 4: BlockGP versus ThreadGP speedup
for the evaluation phase on 6-multiplexer, 11-
multiplexer and intertwined spirals (64, 2048 and 194
training cases respectively).

5. CODE OPTIMIZATIONS
We now focuss on the faster BlockGP scheme.

Removing tree to postfixed translation. In our previous
work [23], we used the standard ECJ tree representation.
We needed a translation phase to convert trees to postfixed
notation for interpretation of GP programs on the GPU,
since it would have been very impractical to transfer pointer-
based trees from CPU memory to GPU memory.

The breeding phase duration is usually unimportant since
it is heavily dominated by the evaluation phase in GP runs.
However the BlockGP evaluation speedup on non-diverging
problems is such that breeding phase may become the bot-
tleneck, as illustrated on Figure 5.

One obvious improvement to this situation is to modify
the ECJ evolution engine in order to directly evolve linear
postfixed trees (also denoted RPN for Reversed Polish No-
tation) in order to skip the translation phase and be able to
perform a direct copy of the population onto the graphics
card memory. This RPN evolution code is based along the
lines proposed by W. B. Langdon in [18], that is:

• an individual is stored as a byte array, each byte coding
an operator or an operand;

• we use a set of fixed ERCs (either random or predefined
depending on the problem). Each ERC is associated
to a given byte-code. A similar representation was also
used for linear genetic programming by Brameier and
Banzhaf [3];

• this representation leads to define a maximum length
for individuals, or else the insertion of mutated in-
ner subtrees would imply to shift arbitrary large array
slices and thus would downgrade performances.

This scheme creates some incompatibilities with the rest of
ECJ code, nonetheless it uses the standard breeding pipeline
and evolutionary framework. It has the advantage of needing

GPU evaluation with CPU breeding time.

population size

ti
m

e
 i
n
 s

e
c
s

100 500 2500 12500

0
5

1
0

1
5 evaluation

evaluation + breeding

Figure 5: Mean evaluation and breeding time for the
GPU runs on the x6 − 2x4 + x2 regression problem,
with 1024 cases. As breeding is kept on the CPU, it
becomes the bottleneck when processing large pop-
ulations.

Table 4: Comparison of breeding time between stan-
dard ECJ tree representation and RPN representa-
tion for 11-multiplexer problem, with 768 instruc-
tions length individuals. Times are given in seconds
and averaged for 30 runs. Both schemes are exe-
cuted on the CPU.

Population Size
100 500 2500 12500

std tree 0.18 0.98 7.29 57.71
RPN 0.13 0.33 1.34 8.04

far fewer allocations than in the standard ECJ representa-
tion, and since memory management is costly in Java, this
yields a reduced breeding time.

As breeding is quite independent of the problem (for sim-
ilar sizes of evolved trees), we illustrate results only for the
11-multiplexer, as an example of what can be expected in
general. In Tab. 4 and Fig. 6, we show breeding times and
speedups for both representations, standard ECJ trees and
RPN “flat” trees: improvements are striking and the larger
the population, the bigger the speedup.

Part of the gain is due to the much reduced number of ob-
ject creations and deletions, so such reductions in breeding
time are of course not guaranteed in other languages, such
as C++, where object management or pointed tree trans-
formations may be cheaper.

Memory access optimization. Memory management is an-
other quite critical point to handle. Since program instruc-
tions will be accessed repeatedly for every fitness case, they
qualify as a priority target for memory optimization. We
choose to use shared memory, which is on-chip and is ac-
cessed significantly faster than the graphics card global mem-
ory. As we interpret only one program per multiprocessor
in the BlockGP scheme, this means up to 16Kb are avail-
able per program. It seems more than enough for running a

90

Breeding time speedup with
 RPN implementation

population size

s
p
e
e
d
u
p
 f

a
c
to

r

100 500 2500 12500

0
1

2
3

4
5

6
7

speedup=1(i.e. no speedup)

Figure 6: RPN representation versus standard ECJ
trees speedup for breeding phase on 11-multiplexer,
with 768 instructions length individuals. Both
schemes are executed on the CPU.

GPU evaluation phase speedup
using shared memory

population size

s
p
e
e
d
u
p
 f
a
c
to

r

100 500 2500 12500

0
.5

1
.0

1
.5

2
.0

2
.5

speedup=1(i.e. no speedup)

64 training cases

256 training cases

1024 training cases

Figure 7: Evaluation time speedup on GPU using
shared memory versus using global memory. Ex-
periments are done on sextic polynomial regression,
with 256 instructions length individuals.

majority of the GP experiments from the literature.
We can expect the efficiency of such a cache technique

to be roughly independent of the problem, up to the size
of evolved trees, and we present results for the sextic poly-
nomial regression in Tab. 5 to illustrate its potential, with
speedup plots in Fig. 7. All runs show improvement up to
roughly three times faster. The bigger the fitness cases set,
the more loops over the same cached programs, the better
the improvement as expected. Notice that the speedup also
increases with the population size: this is due to memory
transfer overheads that becomes negligible against the com-
puting time with more individuals.

Again, we see that having access to architecture details
can greatly enhance the performance of algorithms, and thus
can influence the choice of the GPU programming toolkit.

6. CONCLUSIONS
In Table 6, we report the final performances of our opti-

mized BlockGP scheme (i.e. with RPN representation and
cached individuals). To our three previous benchmarks, we

add the MackeyGlass regression problem as defined by Lang-
don et al. in [19], in order to allow comparison with their
implementation based on the RapidMind high-level toolkit.
Following a suggestion from [19], we state the performance
in terms of the number of GP operations per second, denoted
GPop/s, that measures how many GP nodes have been com-
puted per second. To clarify this notation, let us suppose
a run duration of 1 second for 5 generations with a popu-
lation of 2 trees, each of 10 nodes, evaluated on 12 fitness
cases. This hypothetic run would exhibit a performance of:
(5×2×10×12)/1 = 1200 GPop/s. We also give the speedup
versus CPU, i.e. how many times the GPU version is faster
than the original ECJ code running on a 2.6Ghz processor.

Among our benchmarks, the top performance was achieved
on the sextic polynomial regression, for 1024 fitness cases
and 12500 individuals, with a value of 2.8E + 9 GPop/s.
For the multiplexer and spirals problems, one can see that
the number of evaluated nodes is much smaller than the
raw size of programs due to the short-cut operators. The
resulting divergence lowers the performance in comparison
with the non diverging sextic experiment, although it re-
mains an order of magnitude faster than the original CPU
version. We notice a more than 70% increase in performance
on the MackeyGlass versus the experiments reported in [19]
that were implemented in Rapidmind, a toolkit that does
not allow a fine control of the underlying architecture. This
benchmark could not be run with standard ECJ trees due
to memory limitation with this population size.

From our experiments, we can draw some lessons for op-
timizing GP on GPU:

• speedup depends on the problem and more particularly
on the presence of operators that create divergence be-
tween stream processors (e.g. if operator);

• for non diverging operators GPU speed tends to move
away the evolutionary bottleneck from evaluation to
breeding;

• dispatching one GP program per multiprocessor limits
the divergence and thus it is superior to the scheme
that simply associates one program to each thread,
even for problems that implement operators with un-
avoidable divergence;

• optimizing the allocation of data on specific high speed
memory yields significant benefits.

These two last points question the way high-level GPU
toolkits do their automatic parallelization of computations.
Explicit management of the multiprocessors could become
part a standard API since GPU makers rely on a similar
architecture for their most powerful chipsets.

SPMD architectures like the G80, built around a set of
SIMD cores, exhibit a lower complexity than true multi-core
systems, and are currently very competitive in term of price.
Since they offer a significant gain in computing power versus
current CPU, we think that GPU processing is to be taken
into account by artificial evolution practitioner, at least in
the mid-term future. Working towards implementing a full
GP algorithm on GPU is also a current objective.

7. REFERENCES
[1] D. T. Anderson, R. H. Luke, and J. M. Keller.

Speedup of fuzzy clustering through stream processing

91

Table 5: Comparison of evaluation times on GPU with and without caching instructions in shared mem-
ory. Timings are given in seconds and averaged for 30 runs on the sextic polynomial regression, with 256
instructions length individuals.

Population size Training set size
64 256 1024

Without With Cache Without With Cache Without With Cache
100 0.12 0.11 0.16 0.16 0.35 0.25
500 0.18 0.16 0.35 0.24 1.21 0.76

2500 0.54 0.46 1.43 0.91 5.48 2.36
12500 2.73 1.68 8.21 3.58 29.58 11.32

Table 6: Full run benchmarks — Measured speed in million of GPops−1. Columns are respectively : terminals
set size + number of ERCs, non terminal function set size, population size, average program size, average
evaluated nodes, number of fitness cases, speed, speedup versus CPU.

Experiment |T|+ERCs |F| pop prog. size eval. nodes cases speed (×106 GPops−1) speedup

Sextic 1+10 8 12500 67.22 67.22 1024 2797 144
Mult-11 11+0 4 12500 156.24 24 2048 501 10.4
Inter. Spir. 2+10 7 12500 163.68 82.95 194 212 13.7
MackeyGlass 8+128 4 204800 10.22 10.22 1200 1720 –

on graphics processing units. In J. Wang, editor, 2008
IEEE World Congress on Computational Intelligence,
pages 1101 – 1106, Hong Kong, 2008. IEEE Press.

[2] W. Banzhaf, P. Nordin, R. Keller, and F. Francone.
Genetic Programming An Introduction. Morgan
Kaufmann, 1999.

[3] M. Brameier and W. Banzhaf. Linear Genetic
Programming. Number XVI in Genetic and
Evolutionary Computation. Springer, 2007.

[4] S. M. Cheang, K. S. Leung, and K. H. Lee. Genetic
parallel programming: Design and implementation.
Evolutionary Computation, 14(2):129–156, Summer
2006.

[5] D. M. Chitty. A data parallel approach to genetic
programming using programmable graphics hardware.
In Proceedings of the 2007 Genetic and Evolutionary
Computing Conference (GECCO’07), pages
1566–1573, London, UK, July 2007. ACM Press.

[6] L. Davis, editor. Handbook of Genetic Algorithms. Van
Nostrand Reinhold, 1991.

[7] F. Fernandez, M. Tomassini, and L. Vanneschi. An
empirical study of multipopulation genetic
programming. Genetic Programming and Evolvable
Machines, 4(1):21–51, Mar. 2003.

[8] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley,
1989.

[9] S. Harding. Evolution of image filters on graphics
processor units using cartesian genetic programming.
In J. Wang., editor, 2008 IEEE World Congress on
Computational Intelligence, Hong Kong, 1-6 June
2008. IEEE Computational Intelligence Society, IEEE
Press.

[10] S. Harding and W. Banzhaf. Fast genetic
programming and artificial developmental systems on
GPUs. In proceedings of the 2007 High Performance

Computing and Simulation (HPCS’07) Conference,
page 2. IEEE Computer Society, 2007.

[11] S. Harding and W. Banzhaf. Fast genetic
programming on GPUs. In proceedings of the 10th
European Conference on Genetic Programming,
EuroGP 2007, volume 4445 of Lecture Notes in
Computer Science, pages 90–101. Springer, 2007.

[12] J. H. Holland. Adaptation in Natural and Artificial
Systems. Michigan Press University, 1975.

[13] H. Juillé and J. B. Pollack. Massively parallel genetic
programming. In Advances in Genetic Programming 2,
chapter 17, pages 339–358. MIT Press, 1996.

[14] K. Kaul and C.-A. Bohn. A genetic texture packing
algorithm on a graphical processing unit. In
Proceedings of the 9th International Conference on
Computer Graphics and Artificial Intelligence, 2006.

[15] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. The MIT
Press, 1992.

[16] J. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. The MIT Press, 1994.

[17] J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu,
and G. Lanza. Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers, 2003.

[18] W. B. Langdon. Evolving programs on graphics cards
— C++ code. Available at
http://www.cs.ucl.ac.uk/external/W.Langdon/ftp/gp-
code/gpu gp 1.tar.gz,
2008.

[19] W. B. Langdon and W. Banzhaf. A SIMD interpreter
for genetic programming on GPU graphics cards. In
M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia
Alcazar, I. De Falco, A. Della Cioppa, and
E. Tarantino, editors, Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008,
volume 4971 of Lecture Notes in Computer Science,
pages 73–85, Naples, 26-28 Mar. 2008. Springer.

92

[20] W. B. Langdon and A. P. Harrison. GP on SPMD
parallel graphics hardware for mega bioinformatics
data mining. Soft Computing, 2008. Special Issue. On
line first.

[21] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki,
E. Popovici, K. Sullivan, J. Harrison, J. Bassett,
R. Hubley, and A. Chircop. ECJ 18 — a Java-based
evolutionary computation research system. Available
at http://cs.gmu.edu/˜eclab/projects/ecj/, 2008.

[22] Z. Luo and H. Liu. Cellular genetic algorithms and
local search for 3-sat problem on graphic hardware. In
IEEE Congress on Evolutionary Computation — CEC
2006., pages 988–2992, 2006.

[23] D. Robilliard, V. Marion-Poty, and C. Fonlupt.
Population parallel GP on the G80 GPU. In
M. O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia
Alcazar, I. De Falco, A. Della Cioppa, and
E. Tarantino, editors, Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008,
volume 4971 of Lecture Notes in Computer Science,
pages 98–109, Naples, 26-28 Mar. 2008. Springer.

[24] P. Tufts. Parallel case evaluation for genetic
programming. In 1993 Lectures in Complex Systems,
volume VI of Santa Fe Institute Studies in the Science
of Complexity, pages 591–596. Addison-Wesley, 1995.

[25] M. L. Wong, T. T. Wong, and K. L. Fok. Parallel
evolutionary algorithms on graphics processing unit.
In Proceedings of IEEE Congress on Evolutionary
Computation 2005 (CEC 2005), volume 3, pages
2286–2293, Edinburgh, UK, 2005. IEEE.

[26] Q. Yu, C. Chen, and Z. Pan. Parallel genetic
algorithms on programmable graphics hardware. In
Advances in Natural Computation, volume 3162 of
LNCS, pages 1051–1059. Springer, 2005.

93

