
LITERATURE REVIEW: Accelerating Stock Trading Rule

Creation Using Genetic Programming on a GPU Device

Dave McKenney
School of Computer Science

Carleton University
Ottawa, Canada K1S 5B6

dmckenne@connect.carleton.ca

October 17, 2010

1 Introduction

The introduction of general purpose computing on GPU devices has revolutionized the
parallel computing field. Now, anybody with a small amount of initial investment can have
the computing power of a small cluster contained inside their regular desktop computer.
In fact, many people with powerful home computers already have this power sitting inside
their boxes, without even knowing its there.

The problem of genetic programming lends itself particularly well to parallelization.
Generally, nearly all computing time throughout a genetic programming run is taken by the
evaluation of different individuals of the population. This step is extremely computational
due to two factors: the number of individuals to evaluate and the number of fitness cases
that must be evaluated for each individual. Using a parallel approach, these evaluations
can be spread across many processors, resulting in massive speed increases. This speedup
allows for more individuals or more fitness cases to be evaluated in the same amount of
time, which should result in better results.

This project aims to apply the benefits offered by a GPU device to the problem of
genetic programming. Specifically, it aims to use genetic programming (parallelized on a
GPU device) to generate stock trading rules. This parallelization will be done by modifying
the evaluation method of an already existing genetic programming package. With the eval-
uations being executed on the GPU device, several different work distribution approaches
will be tested against each other, so see which results in the best performance gains.

2 Literature Review

Due to the relatively new advances of general purpose computing on GPU devices, there
is little previous work completed on massively parallel GP on GPU devices. Also due to
this fact, there is absolutely no published work on generating stock trading rules using this
approach. For these reasons, previous work on stock trading rule generation will be breifly
presented, followed by a summary of the work on massively parallel GP on GPU devices.

[1] outlined many applications of evolutionary computation in the financial field. Among
this work, there are several sections on trading rule generation and algorithmic trading itself

1



(including a background on how techinical analysis can be used to generate trading rules).
While there are no practical results presented, this work is a great starting point when
delvign into the field of evolutionary computational finance.

Using a genetic algorithm approach, [7] generated stock trading strategies using two
different approaches. Using a direct encoding (where parameter values for functions are
encoded within the genome of an individual), this work realized a total profit of 1628
Japanese yen (JPY) throughout experimental trading. With a direct encoding however,
the search space is extremely large. Each parameter value can range anywhere from the
minimum value to the maximum value. For this reason, [7] proposed the use of indirect
encoding, where parameter values are selected from a short list of possibilities (e.g. 5, 10, 15,
25, 50, and 100). This drastically cuts down on the search space (since now each parameter
can have only 6 possible values, instead of 1000), and a profit of 2370 JPY was realized.

The main problem with the use of a genetic algorithm for stock trading rule generation
is that the program maintains a fixed length. Genetic programming however, allows pro-
grams to be smaller/larger. Also, using genetic programming, any combination of technical
indicators can be used together to generate trading rules (which is not seen in a genetic al-
gorithm approach). [10] used genetic programming to generate trading rules to be tested on
four foreign exchange markets (CAD/USD, EUR/USD, GBP/USD, and JPY/USD). After
trading on the exchange markets for a total of 365 days, the profitability of the generated
rules were compared to the profitability of a buy-and-hold strategy (buying the currency
at day 1 and holding it until the end). Several different fitness approaches were tested,
with the best approach resulting in an average of 5% higher return than the buy-and-hold
approach. This approach also had a higher return than the buy-and-hold approach in 3 of
the 4 markets, with a maximum of 13.14% higher return.

One of the first and most often cited works on massively parallel genetic programming
was completed by [4]. This work was implemented on a MasPar MP-2 machine which used
a single intstruction multiple data (SIMD) architecture. However, a MIMD architecture
was simulated using a stack based interpreter which accepts genetic program individuals as
data. This way, single instruction architecture is met because each process core is execut-
ing the same step of the interpreter, using the individual programs as data inputs. Using
this approach, many different individuals within the genetic programming population can
be evaluated at the same time (in this specific case, 4096 individuals at a time). While
the speedup of this approach when compared to a tradional CPU approach was not pre-
sented, the benchmark tests were capable of evaluating thousands of individual programs
in approximately 1 second.

One of the original works involving genetic programming on a GPU device was com-
pleted in [2], and used a data parallel approach to GP. Instead of implementing a stack-based
interpreter (as above), only one individual was evaluated at a time on the GPU. The paral-
lelization was achieved by evaluating fitness cases for the current individual in parallel. The
implementation was tested on several GP problems (including the classic symbolic regres-
sion and 11-way multiplexer problems), with varying number of fitness cases. The length
of time required for evaluation on the GPU was compared to the time needed to evaluate
all individuals on a sequential CPU approach. In the case of 100 fitness cases, the CPU
approach ran more than twice as quickly as the GPU approach. With 150 fitness cases
however, evaluation time was nearly equal. When the number of fitness cases increased
further, to 400, the GPU approach completed nearly ten times faster. This speedup was
further realized by increasing the number of fitness cases to 2048, where the CPU took
nearly 30 times as long as the GPU to evaluate all individuals. The main conclusion here

2



is that the performance of a data parallel GPU approach (when compared to a sequential
CPU implementation) achieves greater speedup with a higher number of fitness cases. This
is because a low number of fitness cases does not allow the computing power of the GPU
to be optimally used. In fact, with a small enough number of fitness cases, the overhead of
GPU evaluation results in the CPU implementation being faster.

Another data parallel GP approach was implemented on a GPU device in [3]. This
time, both the number of fitness cases and the maximum program length were varied,
with performance being compared to that of a CPU implementation. For each test, GP
individuals were randomly generated and evaluated (no genetic operations were peformed,
as the emphasis was on evaluation performance). It was found in all tests that speedup
factors increased with both maximum program length and number of fitness cases. Speedup
is seen with increasing number of fitness cases because fitness cases are evaluated in parallel
on the GPU and sequentially on the CPU. Speedup is realized with increasing program
length because the GPU needs to parse the individual tree only once (with all fitness cases
evaluated in parallel), while the CPU implementation must parse the large individual trees
for each fitness case. The first test involved individuals consisting of floation point operations
(+, -, *, /) and terminals. Speedup factors (when compared to the CPU implementation)
ranged from 0.04 (for program length of 10 and 64 fitness cases), to 7351.06 (program length
of 10000 and 65536 fitness cases). Similar results were also found when testing on the real
GP problem of symbolic regression. Speedup factors in this case ranged for 0.02 for program
length of 10 and 10 fitness cases, to 95.37 for program length of 10000 with 2000 fitness
cases.

In [8] and [9] a population parallel approach to GP on GPU devices is implemented
using the CUDA development kit from NVIDIA (similar approaches can also be found in
[6] and [5]). As in [4], individuals are evaluated in parallel using a stack-based interpreter
which accepts individual programs as implemented. Within this work, two aprroaches to
evaluation distribution are presented. In the ThreadGP approach, each thread within the
GPU is assigned to evaluate one individual, with each fitness case being evaluated on the
thread. The BlockGP method takes advantage of the newer architecture of NVIDIA GPU
devices, which operate using a single-program-multiple-data (SPMD) architecture instead
of SIMD. Within the newer GPU devices, there are a number of multiprocessors (MPs),
each of which maintains its own instruction pointer. With this architecture, each MP
is capable of being at a different point in the program than the others. The BlockGP
approach then evaluates each individual on a single MP, with all theads within the MP
being used to evaluate different fitness cases in parallel. Divergence is avoided using the
BlockMP approach, since the multiprocessors are capable of executing different instructions
of the single interpreter program. Divergence is a major source of inefficiency when using
an approach such as ThreadGP, as many threads will not be executing at a given time
because all must be at the same inscruction within the interpreter. This inefficiency is
what caused the BlockGP approach to perform faster evaluation over all tests carrierd out.
Tests were completed using a symbolic regression problem with different population size and
number of fitness cases. The highest speedup of BlockGP was found for the combination of
smallest number of individuals (512) and highest number of fitness cases (1024). ThreadGP
performs poorly in this case becase 512 is the minimum number of threads that can be
running on the GPU device at a time, so the GPU scheduler cannot swap out threads that
are waiting for threads that are not. BlockGP on the other hand invovled 512 blocks, each
with 32 threads. When one block is waiting, it can be substituted out for a block that
is ready to perform computations, resulting in speedup when compared to the ThreadGP

3



approach. Furthermore, since BlockGP spreads fitness evaluations of an individual across
32 threads, a higher number of fitness cases allows the block to use all of its computational
resources. With less than 32 fitness cases, it is impossible to fill all of a block’s threads,
which results in poor performance. This work also found that once population increases
beyond 2500 individuals, speedup remains approximately the same. This is because with
2500 individuals, ThreadGP will have 5 blocks operating per MP, which allows the scheudler
to substitute waiting threads efficiently. BlockGP still performs faster due to the lack of
divergence however.

References

[1] Anthony Brabazon, Michael ONeill, and Ian Dempsey. An introduction to evolutionary
computation in finance. IEEE Computational Intelligence Magazine, 2008.

[2] Darren M. Chitty. A data parallel approach to genetic programming using pro-
grammable graphics hardware. In GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pages 1566–1573, New York, NY,
USA, 2007. ACM.

[3] Simon Harding and Wolfgang Banzhaf. Fast genetic programming on gpus. In Eu-
roGP’07: Proceedings of the 10th European conference on Genetic programming, pages
90–101, Berlin, Heidelberg, 2007. Springer-Verlag.

[4] Hugues Juillé and Jordan B. Pollack. Massively parallel genetic programming. Advances
in Genetic Programming, 2:339–357, 1996.

[5] W. Langdon. A many threaded cuda interpreter for genetic programming. In Genetic
Programming, volume 6021 of Lecture Notes in Computer Science, pages 146–158.
Springer Berlin / Heidelberg, 2010.

[6] W. Langdon and Wolfgang Banzhaf. A simd interpreter for genetic programming ong-
pugraphicscards. In Genetic Programming, volume 4971 of Lecture Notes in Computer
Science, pages 73–85. Springer Berlin / Heidelberg, 2008.

[7] Kazuhiro Matsui and Haruo Sato. A comparison of genotype representations to acquire
stock trading strategy using genetic algorithms. Artificial Intelligence Systems, IEEE
International Conference on, pages 129–134, 2009.

[8] Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt. Population parallel gp on
the g80 gpu. In EuroGP’08: Proceedings of the 11th European conference on Genetic
programming, pages 98–109, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt. Genetic programming on
graphics processing units. Genetic Programming and Evolvable Machines, 10(4):447–
471, 2009.

[10] Garnett Wilson and Wolfgang Banzhaf. Interday foreign exchange trading using linear
genetic programming. In GECCO ’10: Proceedings of the 12th annual conference on
Genetic and evolutionary computation, pages 1139–1146, New York, NY, USA, 2010.
ACM.

4


