
17Massively Parallel Genetic ProgrammingHugues Juill�e and Jordan B. PollackAs the �eld of Genetic Programming (GP) matures and its breadth of application increases,the need for parallel implementations becomes absolutely necessary. The transputer-basedsystem presented in the chapter by Koza and Andre ([11]) is one of the rare such parallelimplementations. Until today, no implementation has been proposed for parallel GP usinga SIMD architecture, except for a data-parallel approach ([20]), although others haveexploited workstation farms and pipelined supercomputers. One reason is certainly theapparent di�culty of dealing with the parallel evaluation of di�erent S-expressions whenonly a single instruction can be executed at the same time on every processor. The aim ofthis chapter is to present such an implementation of parallel GP on a SIMD system, whereeach processor can e�ciently evaluate a di�erent S-expression. We have implemented thisapproach on a MasPar MP-2 computer, and will present some timing results. To theextent that SIMD machines, like the MasPar are available to o�er cost-e�ective cycles forscienti�c experimentation, this is a useful approach.17.1 IntroductionThe idea of simulating a MIMD machine using a SIMD architecture is not new([8, 15]). One of the original ideas for the Connection Machine ([8]) was that itcould simulate other parallel architectures. Indeed, in the extreme, each processoron a SIMD architecture can simulate a universal Turing machine (TM). With di�er-ent turing machine speci�cations stored in each local memory, each processor wouldsimply have its own tape, tape head, state table and state pointer, and the simula-tion would be performed by repeating the basic TM operations simultaneously. Ofcourse, such a simulation would be very ine�cient, and di�cult to program, butwould have the advantage of being really MIMD, where no SIMD processor wouldbe in idle state, until its simulated machine halts.Now let us consider an alternative idea, that each SIMD processor would simulatean individual stored program computer using a simple instruction set. For eachstep of the simulation, the SIMD system would sequentially execute each possibleinstruction on the subset of processors whose next instruction match it. For atypical assembly language, even with a reduced instruction set, most processorswould be idle most of the time.However, if the set of instructions implemented on the virtual processor is very small,this approach can be fruitful. In the case of Genetic Programming, the \instructionset" is composed of the speci�ed set of functions designed for the task. We willshow below that with a precompilation step, simply adding a push, a conditional,and unconditional branching and a stop instruction, we can get a very e�ectiveMIMD simulation running.This chapter reports such an implementation of GP on a MasPar MP-2 parallelcomputer. The con�guration of our system is composed of 4K processor elements1

(PEs). This system has a peak performance of 17; 000 Mips or 1; 600 M
ops. Inthe maximal con�guration, with 16K PEs, the speed quadruples. As an example,using a population of 4096 members, we achieved more than 30 generations/minuteson the trigonometric identities problem, and up to 5 matches per second for eachindividual for the co-evolution of Tic-Tac-Toe players.Section 2 describes the implementation of the kernel of our current GP, whichdeals with the evaluation of S-expressions. Then, the implementation of di�erentmodels for �tness evaluation and interactions among individuals of the populationare presented in section 3. Results and performance are presented in section 4.17.2 Description of the implementation17.2.1 The Virtual ProcessorThe individual structures that undergo adaptation in GP are represented by expres-sion trees composed from a set of primitive functions and a set of terminals (eithervariables or functions of no argument). Usually, the number of functions is small,and the size of the expression trees are restricted, in order to restrict the size of thesearch space.In our implementation, each PE simulates a virtual processor. This virtual processoris a Stack Machine which is composed of the following elements:� a memory block where the program is stored,� a memory block where constants and variables are stored,� a stack where intermediate results are stored.� a set of registers: the Instruction Pointer (IP), the Stack Pointer (SP) andgeneral purpose registers: A0, A1, : : : , An.Figure 1 presents the memory mapping and registers of the virtual processor.To be able to evaluate a GP expression, the following instructions are supported bythe abstract machine:� one instruction for each primitive function of the function set. At executiontime, arguments for these instructions are popped from the stack into generalpurpose registers, the function is computed, and the result is pushed on thetop of the stack.� a PUSH instruction which pushes on the top of the stack the value of a terminal,� a IFGOTO and a GOTO instruction which are necessary for branching if condi-tional functions are used, 2

Registers

Program

Variables

Constants

Stack

SP

IP

A0
A1
A2

An

Figure 1: Memory mapping and registers of the virtual processor.3

S-expression: (- 1 (* (* (SIN X) (SIN X)) 2))Corresponding program: PUSH ID_CONST_`1'PUSH ID_VAR_`X'SINPUSH ID_VAR_`X'SIN*PUSH ID_CONST_`2'*-STOPFigure 2: An S-expression and its post�x program.� a STOP instruction which indicates the end of the program.As we will argue in the next section, it is more e�ective to precompile pre�x GPexpressions into an equivalent post�x program which can be interpreted by the vir-tual machine. This post�x program is generated by traversing the tree representingthe S-expression. Two program examples resulting from such a precompilation areprovided in �gures 2 and 3. The IFGOTO instruction jumps to the label if the resultof the test is FALSE, otherwise, the execution of the program continues with thenext instruction (the �rst instruction of the Then statement).To reiterate, in our implementation, each parallel element is running a di�erentgenetic program. The parallel interpreter of the SIMD machine reads the currentpost�x instruction for each virtual processor and sequentially multiplexes each in-struction, i.e, all processors for which the current instruction is a PUSH becomeactive and the instruction is performed; other processors are inactive (idle state).Then, the same operation is performed for each of the other instructions in theinstruction set in turn. Once a STOP instruction is executed for a processor, thatprocessor becomes idle, leaving the result of its evaluation on the top of the stack.When all processors have reached their STOP instruction, the parallel evaluation ofthe entire population is complete.Perkis ([16]) has already shown that the stack-based approach for Genetic Program-ming can be very e�cient. However, in his approach, recombination can generateincorrect programs in the sense that it is unknown whether there are enough ele-ments in the stack to satisfy the arity of a function at execution time. A constraint4

S-expression: (IF (< X 1) 1 (* X X))Corresponding program: PUSH ID_VAR_`X'PUSH ID_CONST_`1'<IFGOTO Label_1PUSH ID_CONST_`1'GOTO Label_2Label_1: PUSH ID_VAR_`X'PUSH ID_VAR_`X'*Label_2: STOPFigure 3: An S-expression and its post�x program. If the test returns FALSE, theInstruction Pointer jumps to Label 1 and the Else statement is executed.was implemented to protect the stack from under
ow.In our implementation, since the post�x program is the precompilation of a S-expression, it is always correct and one doesn't have to deal with stack under-
ow. Moreover, the stack is protected from over
ow by restricting the depth ofS-expressions resulting from recombination, as described in [11].17.2.2 Parallel Precompiler and InterpreterFor many GP problems the �tness of an expression is computed by evaluating itacross a variety of inputs. For example, in curve-�tting, or decision tasks, or sort-ing networks, the expression must be evaluted multiple times on di�erent data inorder to be judged as to its �tness. This leads to the idea of using a data-parallelapproach where the same expression is simply evaluated with di�erent data in par-allel ([20]). Another approach to take advantage of this feature is to precompileS-expressions from pre�x to post�x. This operation can be executed once, and thenthe post�x program is evaluated multiple times, amortizing the small cost of theprecompilation.The tree traversal algorithm which is the main component of precompilation can beperformed e�ciently in parallel by simulating on each processor a similar abstractstack machine. In memory, a S-expression is represented by the list of its atoms,without the parentheses. As long as we use a �xed arity (number of arguments)5

for each primitive, and the S-expressions are syntactically valid, this string containsenough information to fully represent the given tree. In the current implementation,each atom is coded on 1 byte. The most signi�cant bit indicates whether theatom is an operator or a terminal and the remaining 7 bits represent its ID. Forterminals (variables or constants), the ID is an index in the variables/constantsarea of the memory mapping. The preorder tree traversal is performed simply byreading sequentially the list where the S-expression is stored. Then, using a stack,the post�x program is generated by the algorithm presented in �gure 4.In order to be readable, this algorithm doesn't present the processing of the IFoperator. To process this operator, another stack is required to store the locationof labels whose address calculation is delayed. When the instruction at the topof the stack is a IF, the end of the Then statement is tested in order to insert aGOTO instruction and to jump after the Else statement. The label of the IFGOTOinstruction is calculated at the end of the Then statement and the label of the GOTOinstruction is calculated at the end of the Else statement. The result is a programlike the one presented in �gure 3.17.2.3 Principal Sources of OverheadThere are three main sources of overhead in our parallel model for GP. The �rst oneis intrinsic to the SIMD architecture itself: di�erent instructions cannot be executedat the same time on di�erent processors. In our model, this overhead is directlyrelated to the size of the instruction set interpreted by the virtual processor, whichis a few instructions more than the primitive function set for a given task. Thesecond source of overhead comes from the range of S-expression sizes across thepopulation. The third one comes from duplicated operation from one generation tothe next one (e.g., the re-evaluation of an unchanged individual with the same testcases).For the �rst source of overhead, due to the SIMD simulation, it is possible to usesimultaneous table lookup operations to reduce the actual size of the instructionset. For example, if the domain of the primitives for the problem is �nite and small,e.g. bits or bytes, all arithmetic and logical operations with the same arity can beperformed at the same time, without multiplexing. Figure 5 presents a programthat evaluates a boolean expression using several di�erent functions (And, Or, XOR,: : :) but only 2 actual instructions: TBL_LK_1D and TBL_LK_2D, which pop 1 and2 arguments from the stack, respectively, execute the table lookup in the tablewhose ID is provided as a parameter, and push the result on the top of the stack.Without the table lookup feature, many more problem speci�c instructions wouldhave been required. Besides simple boolean functions, we expect that simultaneoustable lookup will have applications in other symbolic problems.For the second source, variance in program size, several techniques apply. The6

program precompile (in: s expression,out: postfix prog);begindo begin(1) read next atom a of s expression;(2) if a is an operator then begin(3) stack item.op = a;(4) stack item.counter = 0;(5) push(stack item);endelse begin(6) output(post�x prog, \PUSH");(7) output(post�x prog, a);do begin(8) pop(stack item);(9) stack item.counter = stack item.counter + 1;(10) if arity(stack item.op) = stack item.counter then begin(11) output(post�x prog, stack item.op);endelse begin(12) push(stack item);end;(13) until (arity(stack item.op)<> stack item.counter) or stack is empty;end;(14) until stack is empty;end; Figure 4: Precompiler algorithm.7

S-expression: (AND (OR X Y) (NOT (XOR X Y)))Corresponding program: PUSH ID_VAR_`X'PUSH ID_VAR_`Y'TBL_LK_2D ID_TBL_ORPUSH ID_VAR_`X'PUSH ID_VAR_`Y'TBL_LK_2D ID_TBL_XORTBL_LK_1D ID_TBL_NOTTBL_LK_2D ID_TBL_ANDSTOPFigure 5: An S-expression and its post�x program, using the table lookup feature.simplest method involves the management of a sub-population by each processor,with some form of load-balancing. We could also implement a cuto� ([18]) wherethe largest and slowest population members are simply expunged. Finally, we coulduse a \generation gap" or generational mixing, where whenever, say, 50% of thepopulation were idle, we could apply reproduction to that subset of the population,crossed with its parents. We would continue to evaluate the larger programs whilebeginning to evaluate the new members.The third source, duplication of e�ort, can be minimized by using an appropriatestrategy to manage the evolution of the population, using ideas from steady-stateGA's and caching �tness. Such a technique is proposed in section 17.3.3 where the�tness is evaluated only for new individuals.17.2.4 Population EvolutionThe previous subsections presented the kernel of our parallel GP implementation.The main part is the parallel evaluation of di�erent S-expressions. The evolution ofthe population is then managed according to the classical GA framework sketchedby the algorithm in �gure 6.In the current implementation, recombination operations are performed on in�x S-expressions and not on the post�x. Obviously, crossover can be performed directlyon two post�x representations, but is not clear yet how to do this e�ectively inSIMD style, especially with changing branch labels and distances.8

begin in parallel/* Generate initial population*/random generate(s expression);doprecompile(s expression, postfix prog);evaluate fitness(postf ix prog);selection();recombination();until stop condition is achieved;end in parallel;Figure 6: Population evolution.17.3 Models for Fitness Evaluation, Selection and Recombi-nationThe MasPar MP-2 is a 2-dimensional wrap-around mesh architecture. In our im-plementation, the population has been modeled according to this architecture: anindividual or a sub-population is assigned to each node of the mesh and, therefore,has 4 neighbors. This architecture allows us to implement di�erent models for �t-ness evaluation, selection and recombination, using the kernel of the parallel GPdescribed in the previous subsections.We have used 3 di�erent approaches. First, we discuss an approximation of thecanonical GP, then a tournament style of co-evolution, and �nally, a model of sub-population evolution and migration.17.3.1 Implementation of Canonical GPTaking �tness de�nition from [11], the raw �tness, the standardized �tness andthe adjusted �tness can be computed independently by each processor. Then, thecomputation of the normalized �tness requires a reduce step to sum over all theindividuals the adjusted �tness and a broadcast step to provide the result of thisglobal sum to each processor. These two parallel operations require O(log n) time,where n is the number of processors.Using normalized �tness, we implemented both an asexual and a sexual reproduc-tion system, where each member reproduces on average according to its �tness.Given an asexual reproduction rate, say 0:2, 20% of the individuals will replacethemselves with an individual selected using �tness-proportionate probability froma speci�ed local neighborhood. We chose this local neighborhood, including self, ofsize Nloc = 15�15 = 225 as a compromise between getting a correct approximation9

of the roulette wheel method and the memory and communication cost of the SIMDmachine.The sexual reproduction, or crossover operation for GP, described in detail in [11],which involves cutting and splicing between two S-expressions, is performed in thefollowing way in our implementation:� the 80% of individuals which have not been asexually replaced select twoindividuals in their local neighborhood (including self), according to �tness-proportionate probability (the same rule as for asexual reproduction).� Crossover is performed for these two parents.� One of the two o�springs is arbitrarily chosen to replace this individual.This last operation is di�erent from the basic GP which keeps both o�springs.However, our approach is more SIMD oriented, yet doesn't introduce any bias inthe search since the new o�springs are still produced accordingly to the distributionof the �tness among individuals of the population. Moreover, this slight di�erencecan be eliminated if each processor is in charge of a sub-population of individuals.The time complexity of the crossover and asexual reproduction system is O(Nloc)and its space complexity is O(pNloc) for each processor. The crossover operation isperformed on a string representation of the S-expressions in parallel using anothervariant of our stack machine.17.3.2 Tournament FitnessOur second approach to �tness follows the co-evolution paradigm, e.g. Angelineand Pollack ([4]). There is no absolute �tness measurement for an individual, �t-ness is determined by competition in tournament with the other individuals in thepopulation at the current generation. As the individuals in the population improve,survival gets more di�cult.To evaluate the �tness of each individual in the population, a tournament has beenorganized in the following way:� First, we did not use single-elimination because it is not an e�ective use ofSIMD. In order to keep using all the processors to re�ne our relative �tnessestimate, winners at a round will meet in the same pool at the next roundand losers will compete in another pool.� At the end of the tournament, each individual's �tness is calculated from itstotal number of wins and draws across matches.For each round of the tournament, all the processors are paired according to thedivide-and-conquer communication pattern (such a pattern is presented in �gure 7,in the case of 8 processors) and perform the following operations:10

7

1:

2:

3:

0 1 2 3 4 5 6

Figure 7: Divide-and-conquer communication pattern.� the program of the other paired processor is copied into their own memory,� a match is played for which the local program is the �rst to move. As a result,each individual plays two matches: it is the �rst to move for one of them andit is the second to move for the other match.� the result of the two matches is analyzed by one processor from each pair.The program that gets the larger score is assigned to the left processor andthe second one is assigned to the right one (randomly in case of draw). Thisway, using divide and conquer, winners will meet each other in the next round,and more information will be gathered for strategy evaluation, while the samelog n number of tournament steps are performed.At the end of the tournament, it is straightforward to collect total score (or �tness)for each individual.17.3.3 Sub Populations with MigrationThe idea of this implementation is to study a model of sub-populations that interactlocally one with each other, similar to the model presented by Ackley and Littmanin [1] and [2].In our experiments, each processor manages a sub-population of 16 individuals. Atable in which is stored the result of the competition between all possible pairs ofindividuals in the sub-population is maintained by each processor. At each genera-tion, 2 successive operations are performed by each processor:� a selection/reproduction round: 2 parents in the sub-population are selectedaccording to a �tness-proportionate probability and are crossed. The result-ing o�spring replaces one of the less �t individuals (using an inverse �tness-proportionate probability rule). 11

Table 1: Results and time performance.Problems: Discovery of Trigonometric Symbolic IntegrationIdentities (section 10.5 from [11])(section 10.1 from [11])Objective function cos(2x) cosx+ 2x+ 1Number of runs 10 10Number of 5 to 29 gen. 4 to 7 gen.Generations (average: 17.5) (average: 5.6)Execution time 7.24 to 50.13 seconds 23.09 to 40.38 seconds(for one run) (average: 30.48 sec.) (average: 32.31 sec.)Average execution 1.75 sec. 5.75 sec.time for 1 generation� a migration round: an individual is selected uniformly randomly in each sub-population and all those individuals migrate in the same direction to one ofthe neighboring sub-population.Therefore, only the results of matches against the 2 new individuals have to beupdated in the table.17.4 Results and PerformanceWe have explored the use of MPGP on a few problems to date, Symbolic integration,Tic-tac-toe, and the Intertwined Spirals problem.17.4.1 Canonical GPWe performed our �rst canonical GP experiments with a population of 4096 in-dividuals, one per processor. The two problems are from Chapter 10 of [11], andinvolve repetitive testing of expression against a range of data. Table 1 presentsresults and performance, using the same primitives and parameter speci�cations(except for the population size) as Koza. We were able to achieve the evaluation ofabout 2; 350 S-expressions in 1 second (on average) for the discovery of trigonomet-ric identities and the evaluation of about 710 S-expressions in 1 second (on average)for the symbolic integration problem. 12

17.4.2 Tic-Tac-ToeWe have replicated Angeline and Pollack's (1993) model of the co-evolution of Tic-Tac-Toe players, although we have not yet implemented Modular subroutines. No\expert" player was used to evaluate the �tness of the di�erent individuals, butmore and more e�ective strategies appeared as a result of this relative �tness co-evolution, and the resultant player (after 200 generations) was stronger than playersevolved using absolute �tness optimal and heuristic strategies.In their experiments, Angeline and Pollack used a population of 1000 individualsand each run was about 200 generations in single-elimination. In ours, we used4096 players in a tournament as described above, for 200 generations, in which eachplayer plays 12 pairs of games. In each game, 2 points are assigned for a win, 1point for a draw and 0 for a defeat, and the sum over the 24 games is its �tness.In our �rst experiments, we observed the similar results and dynamics as Angelineand Pollack, and didn't achieve a "perfect" player. In these timings, the size ofS-expressions was limited either to 256, 512 or 1024 atoms, and a maximal depth of50. Table 2 presents the execution time for one generation in the case of the \globaltournament" model, once the size of the largest S-expressions reached the upperlimit. We were able to achieve up to 8; 192 games in one second (with a maximumof 256 atoms) on our 4K processors MasPar. This performance has been achievedusing the table look-up feature presented in section 17.2.3.Ultimately, one should expect the emergence of a perfect player (a player that couldonly win or draw). We fully tested the best of each generation o�-line, and havenot yet achieved a \perfect" GP TTT player. Such a result has been achieved in3 million games by Rosin and Belew ([17]), where TTT strategies were representedas a table lookup, and only legal moves were considered. In our more general GPrepresentation, individuals have to learn the game rules, i.e., they have to evolvea strategy that prevent them from playing in a position which is already occupied(for example), and how to play and block e�ectively. As a result, the size of thesearch space is considerably larger.In order to see if it is a matter of scale, we used our sub-population model with 16individuals on each processor, for a population size of 64K. For the sub-populationmodel, time performance and results are similar to the ones we got with the tour-nament model. Furthermore, for a very long run (more than 3; 000 generations), wegenerated an individual player that cannot lose when playing �rst. This let us thinkthat the emergence of a perfect TTT player using the GP approach and coevolutionshould be possible.17.4.3 Intertwined SpiralsAs another benchmark, we also performed some experiments comparing canoni-cal GP evolution vs co-evolution for the intertwined spiral problem. This learning13

Table 2: Time performance for one generation for the co-evolution of Tic-Tac-Toeplayers. Maximum number 256 512 1024of atomsExecution timefor one generation 6 sec. 10 sec. 18 sec.(on average)Total number ofgames per second 8192 4915 2730(on average)problem, originated by Alexis Wieland, perhaps based on the cover of Perceptrons,has been a challenge for pattern classi�cation algorithms, and has been the subjectof much work in the Neural Network �eld (e.g. [14, 7, 6]). It consists of classify-ing points into two classes according to two intertwined spirals. The data set iscomposed of two sets of of 97 points, on the plane between -7 and +7.Koza ([11]) and Angeline's chapter ([5]) also investigate this problem using theGenetic Programming paradigm. Basically, we used the same form as them to de�nethe problem and to perform our experiments. That is, the function set is composedof: f+;�; �;%; iflte; sin; cosg, and the terminal set is composed of: fx; y;<g, where< is the ephemeral random constant. Because we are using byte-coded instructions,our ephemeral constants are selected from a �nite set.With a population of 4096 individuals, we tried two di�erent approaches to tacklethis problem. In the �rst experiment, following Koza and Angeline, the �tnessfunction was de�ned as the number of hits out of 194.In the second experiment, the �tness was de�ned as the result of a tournamentcompetition among the individuals. We ignored the fact that we really know theabsolute �tness function, and set up a "game" in which only relative �tness wasused as the basis for reproduction. In a classi�cation game between two players,the score was the number of unique hits (those which the other player didn't alsoget). The �nal �tness of each individual is the sum of all its scores during the com-petition. In order to make each individual meet a signi�cant number of opponent,8 successive tournaments were performed at each generation. Thus, each individualmet 96 opponents (there are 12 rounds in a tournament with a population size of4096). Each tournament was organized according to the divide-and-conquer com-munication pattern described in section 17.3.2. Moreover, since one doesn't needto determine a winner at each round of the tournament (only the individuals' scoreis used), a winner was selected randomly, enabling a di�erent individual pairing for14

120125130135140145150155160165170175180185190195
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300Numberof Hits Generation

Absolute �tness 3
333

33Co-evolution +
+++

++
Figure 8: Absolute �tness versus co-evolution for the intertwined spiral problem.the next tournaments.For the two classes of experiments, we performed 25 runs and each run was stoppedafter 300 generations. Because of the use of
oating point, each generation tookabout a minute.Our hypothesis is that the co-evolution would work better because it would promotemore diversity in the population, and allow subpopulations which covered di�erentsubproblems to emerge. As copies of individuals which perform well on parts ofthe spiral spread through the population, they will start to meet themselves incompetition, and get a score of 0. This allows other individuals who may have lesstotal hits, but cover other parts of the spiral to survive. Our preliminary resultsconcerning performance, shown in �gure 8, illustrate that co-evolution seems tooutperform the absolute �tness approach. However, the large number of parametersthat control the dynamics of the system doesn't allow us to conclude.Only one run provided us with a perfect solution for the intertwined spiral problem.This was one of the co-evolution runs. We harvested some of the perfect classi�ca-tion solutions; One of the shortest of these S-expressions has 52 atoms and is shownin �gure 9.Because of the relatively small size of this result we were able to analyze it andsimplify it mathematically, by collapsing constant calculations, removing insigni�-15

(sin (% (iflte (- (- (- (* _A _A)(sin (% (iflte -0.52381_B(sin -0.33333)-0.33333)-0.33333)))(* _B _B))(% _A (% -0.33333 _A)))-0.80952_B(sin (% (% _A(- (cos (sin (* (cos (sin -0.52381))(% _B(% _A(- (cos -0.33333)0.04762))))))0.04762))(sin (sin -0.33333)))))-0.33333))Figure 9: A 52-atom S-expression scoring 194 for the intertwined spiral problem.If (4 � x2 � y2) < 0:0 thenreturn (sin(�3:0 � y));else return �sin(0:3214�x0:04762�cos(sin(yx�0:7874)))�;endifFigure 10: Interpretation of the solution for the intertwined spiral problem.16

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6Figure 11: 4x2 � y2 < 0, used to divide the plane into two domains.cant digits, algebraic simpli�cation, and elimination of redundant "introns". Thisanalysis resulted in the conditional function presented in �gure 10.Basically, this solution splits the geometric plane into two domains and a di�erentfunction is used for each domain. Figure 11 displays the 4x2 � y2 function whichmultiplexes the two other functions to create the spiral, shown in �gure 12.The resulting function is shown in �gure 13, which plots the function (above/below0) along with the training data on the range -10 to 10. Although it does not form aperfect spiral, it does continue to simulate a spiral way outside the original trainingrange. Furthermore, we believe that compared to neural network solutions, whichare often the composition of hundreds of clusters or decision boundaries, and someof the GP solutions shown by Koza, ours is the most perspicacious to date. The factthat the spiral is composed of a synergy of two functions which cover separate partsof the data supports the hypothesis that the relative �tness co-evolution strategymay be more e�ective than an absolute �tness function.Finally, a few remarks could be made about the di�culty of this problem and thelimitations of our massively parallel implementation in this case. In his experiments,Koza used a population of 10,000 individuals and the over-selection mechanism. Inour case, the population size is 4096 and e�cient implementation of over-selectionis not really compatible with the geographical distribution of processors in themesh architecture. Indeed, we believe that to get an optimal solution, one needs a\good" individual in the earliest generations that will be an interesting \seed" forthe following generations. According to our canonical GP experiments on the spiralproblem, the convergence takes about 100 generations and the best individual is thenvery di�cult to improve. In fact, for some experiments that led to worst solutions,the population even converged only after 50 generations. A large population and17

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6Figure 12: sin(�3y) and the other function which are selectively added to make aspiral.
194 hits

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10Figure 13: Perfect score generalizing classi�cation of the two intertwined spirals.18

over-selection may have helped Koza to remedy this problem.17.5 ConclusionThis chapter described an implementation of parallel Genetic Programming on aSIMD computer and showed its e�ciency on a few representative problems. Despitethe fact that there is overhead in multiplexing basic operations, and in precompilingpre�x expressions to post�x programs, we were able to achieve quite an e�cientparallel GP engine.The initial goal of this project was to exploit the huge peak performance of our SIMDcomputer (17 Gips for a 4K processor MP-2) for evolutionary learning researchapplications. With 4k processors, even utilitizing 1/10th of the capacity of thismachine would be more productive than running over a small group of workstations.We were surprised that our �rst experimental results showed that this goal couldbe easily achieved at the condition that the virtual processor's instruction set canbe kept small, the performance being directly (linearly) related to the size of thisset. We have also seen that while expression evaluation involves a lot of overhead,reproduction and crossover have e�ective massively parallel models ([9, 10, 19]).This technique has also a few drawbacks: In particular, implementation of high-levelfeatures like modular subprograms or automatically de�ned functions ([3, 12]) arenot as easy to implement as on a
exible MIMD architecture. We believe a simpleaddition like a CALL instruction in conjunction with a return stack might work formodular form.We believe that this technique is very promising and even more impressive resultscan be achieved for problems in which the function set can be speci�ed in the sameinstruction set as our overall model. Indeed, in that case, it may be possible tooverlap execution of the primitive functions using table look-up techniques.There is still a lot of work to do, but we have shown that our SIMD approach tomassively parallel Genetic Programming is both plausible and e�cient.References[1] David H. Ackley and Michael L. Littman. A Case for Lamarckian Evolution. InArti�cial Life III, Ed. Christopher G. Langton, Addison-Wesley, 1994.[2] David H. Ackley and Michael L. Littman. Altruism in the Evolution of Com-munication. In Arti�cial Life IV, Brooks and Maes, Eds. MIT Press, 1994, pp.40-48. 19

[3] Peter J. Angeline and Jordan B. Pollack. The Evolutionary Induction of Sub-routines. In The Fourteenth Annual Conference of the Cognitive Science Society,Bloomington Indiana, 1992.[4] Peter J. Angeline and Jordan B. Pollack. Competitive Environments EvolveBetter Solutions for Complex Tasks. In The Fifth International Conference onGenetic Algorithms, Morgan Kaufmann Publishers, 1993, pp. 264-270.[5] Peter J. Angeline. Two Self-Adaptive Crossover Operations for Genetic Pro-gramming. In this book.[6] Gail Carpenter, Stephen Grossberg, Natalya Markuzon, John Reynolds, andDavid Rosen. Fuzzy ARTMAP: A Neural Network Architecture for IncrementalSupervised Learning of Analog Multidimensional Maps. In IEEE Transactionson Neural Networks, Vol. 3, No. 5, 1992, pp. 698-713.[7] Scott E. Fahlman and Christian Lebiere. The Cascade-Correlation Learning Ar-chitecture. In Advances in Neural Information Processing Systems 2, Touretzky,Ed. Morgan Kau�man, 1990.[8] W. Daniel Hillis and Guy L. Steele Jr. Data Parallel Algorithms. In IEEE Com-puters, 29, 1986, pp.1170-1183.[9] W. Daniel Hillis. Co-Evolving Parasites Improve Simulated Evolution as an Op-timization Procedure. In Arti�cial Life II, Langton, et al, Eds. Addison Wesley,1992, pp. 313-324.[10] David Je�erson, Robert Collins, Claus Cooper, Michael Dyer, Margot Flowers,Richard Korf, Charles Taylor, and AlanWang. Evolution as a Theme in Arti�cialLife: The Genesys/Tracker System. In Arti�cial Life II, Langton, et al, Eds.Addison Wesley, 1992, pp. 549-578.[11] John R. Koza. Genetic Programming: On the Programming of Computers byMeans of Natural Selection. MIT Press, 1992.[12] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-grams. MIT Press, 1994.[13] John R. Koza and David Andr�e. Parallel Genetic Programming on a Networkof Transputers. This Volume.[14] Kevin J. Lang and Michael J. Witbrock. Learning to tell two spirals apart. InProceedings of the 1988 Connectionist Summer Schools, Morgan Kaufmann.[15] Michael S. Littman and Christopher D. Metcalf. An Exploration of Asyn-chronous Data-Parallelism. Personal communication. 1990.20

[16] Timothy Perkis. Stack-Based Genetic Programming. In Proceedings of the 1994IEEE World Congress on Computational Intelligence. IEEE Press.[17] Christopher D. Rosin and Richard K. Belew. Methods for Competitive Co-evolution: Finding Opponents Worth Beating. In Proceedings of the Sixth In-ternational Conference on Genetic Algorithms, 1995, pp. 373-380.[18] Karl Sims. Evolving 3DMorphology and Behavior by Competition. In Arti�cialLife IV, Brooks and Maes, Eds. MIT Press, 1994, pp. 28-39.[19] Reiko Tanese. Distributed Genetic Algorithms. In Proceedings of the ThirdInternational Conference on Genetic Algorithms, 1989, pp. 434-439.[20] Patrick Tufts. Parallel Case Evaluation for Genetic Programming. In 1993 Lec-tures in Complex Systems, Eds. L. Nadel and D. Stein, SFI Studies in the Sci-ences of Complexity, Lec. Vol. VI, Addison-Wesley, 1995, pp.591-596.

21

