
A SIMD Interpreter for Genetic Programming

on GPU Graphics Cards

W.B. Langdon and Wolfgang Banzhaf

Mathematical and Biological Sciences University of Essex, UK

Computer Science, Memorial University of Newfoundland, Canada

Abstract. Mackey-Glass chaotic time series prediction and nuclear pro-
tein classification show the feasibility of evaluating genetic programming
populations directly on parallel consumer gaming graphics processing
units. Using a Linux KDE computer equipped with an nVidia GeForce
8800 GTX graphics processing unit card the C++ SPMD interpretter
evolves programs at Giga GP operations per second (895 million GPops).
We use the RapidMind general processing on GPU (GPGPU) framework
to evaluate an entire population of a quarter of a million individual pro-
grams on a non-trivial problem in 4 seconds. An efficient reverse polish
notation (RPN) tree based GP is given.

1 Introduction

Whilst modern computer graphics cards deliver extremely high floating point
performance for personal computer gaming, the same low cost consumer elec-
tronics hardware can be used for desktop (and even laptop) scientific appli-
cations [Owens et al., 2007]. However today’s GPUs are optimised for a single
program multiple data (usually abbreviated Single Instruction Multiple Data
SIMD) mode of operation. GPU also place severe limits on data flow. Port-
ing existing applications is non-trivial. Nevertheless [Fok et al., 2007] were able
to show speed ups from 0.62 to 5.02 when they ported evolutionary program-
ming to a GPU. They ran EP mutation, selection and fitness calculation on
their GPU. Each stage being done by fixed specially hand written GPU pro-
grams. [Harding and Banzhaf, 2007] were able to show far higher (peak) speed
ups when they ran the fitness evaluation of cartesian genetic programming on a
GPU. [Chitty, 2007] used Cg to precompile tree GP programs on the host CPU
before transferring them one at a time to a GPU for fitness evaluation. Both
groups obtained impressive speed ups by running many test cases in parallel.
We demonstrate a SIMD interpreter which runs 204 800 programs simultane-
ously on the GPU on one or more test cases.

A decade ago [Juille and Pollack, 1996] demonstrated a SIMD GP system for
a Maspar MP-2 super computer on a number of problems. The MP-2 was a
general purpose supercomputer, costing in the region of $105 in the mid 1990s.
Its peak theoretical performance came from its many thousands of processing

M. O’Neill et al. (Eds.): EuroGP 2008, LNCS 4971, pp. 73–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

74 W.B. Langdon and W. Banzhaf

No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 1. The SIMD interpreter loops continuously through the whole genetic program-
ming terminal and function sets for everyone in the population. GP individuals select
which operations they want as they go past and apply them to their own data and
their own stacks.

elements (PE) and the rapid bidirectional 2D data mesh interconnecting them.
Jullie’s coevolutionary problems were able to exploit the rapid transfer between
neighbouring PEs. Less than 200 MP-2 were sold whereas a successful GPU
typically has up to 128 independent processors and can be found in literally
millions of homes. Even a top of the range GPU can be had for about £350.

In GPUs data describing scenes are imagined to flow into the processors,
which transform them and transmit them onto the next processing stage (or
to the user’s screen). Typically recursion is not used. Part of the GPUs speed
comes from specialising this data stream and avoiding the possibility of expen-
sive side-to-side interaction. This restriction enables the GPU to schedule work
freely without user intervention between the available processors. Indeed adding
more processors can improve performance immediately without redesigning the
application. However it makes it difficult to do some operations. The GPU should
not be regarded as a “general purpose” computer. Instead it appears to be best
to leave some (low overhead) operations to the CPU of the host computer.

Previously the parallelism of GPUs has been exploited by evaluating an indi-
vidual’s fitness by running it simultaneously on multiple training examples. Here
we evaluate the entire GP population in parallel. Multiple training examples are
not needed. How is this possible on a Single Instruction Multiple Data com-
puter? Essentially the trick is to use one interpreter as the “single instruction”

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 75

stream and treat the programs it interprets as “multiple data” items. Figure 1
shows the essential inner loop of the SIMD interpreter. The loop runs on every
computing element in the GPU. One complete cycle around the loop is used to
evaluate each leaf and function in the GP tree. E.g. five instructions (push +−×
and ÷) are needed for each primitive. In the SIMD interpreter, the role of the
interpreted data item is to select which of the five is used. (The results of other
four are discarded.) Effectively each GP individual acts as a sieve saying which
operation it wants performed next. Whilst this introduces a new overhead, use
of cond instructions to skip the four unwanted instructions and the speed of the
GPU makes our approach viable. The SIMD interpreter can support more than
four functions, but, in principle, the overhead increases with the size of the func-
tion set. While multi-ops, conditionals, loops, jumps, subroutines and recursion
are possible, they are not included in these benchmarks.

The next section discusses some other previous parallel GP systems. The sec-
tion following it discusses possible implementation avenues and why we chose
RapidMind. This is followed by descriptions of our two benchmarks (Sections 4
and 5). Whilst Section 6 describes the performance of the interpreter in prac-
tise and relates it to other work. This is followed by a discussion, future work
(Section 7) and our conclusions (Section 8).

2 Parallel Genetic Programming

While most GP work is conducted on sequential computers, the algorithm typi-
cally shares with other evolutionary computation techniques at least three com-
putationally intensive features, which make it well suited to parallel hardware.
1) Individuals are run on multiple independent training examples. 2) The fit-
ness of each individual could be calculated on independent hardware in parallel.
3) Lastly sometimes experimenters wish to assign statistical confidence to the
stochastic element of their results. This typically requires multiple independent
runs of the GP. The, comparative, ease with which EC can exploit parallel ar-
chitectures has lead to the expression “embarrassingly parallel”.

Early work includes Ian Turton’s use of a GP written in Fortran running on
a Cray super computer [Turton et al., 1996]. Koza popularised the use of Be-
owulf workstation clusters where the population is split into separately evolving
demes with limited emigration between compute nodes [Andre and Koza, 1996;
Bennett III et al., 1999] or workstations [Page et al., 1999]. Indeed as
[Chong and Langdon, 1999; Gross et al., 2002] showed by using Java and the In-
ternet, the GP population can be literally spread globally. Alternatively JavaScript
can be used to move interactive fitness evaluation to the user’s own home but
retain elements of a centralised population [Langdon, 2004].

Others have used special purpose hardware. For example, while [Eklund, 2003]
used a simulator, he was able to show how a linear machine code GP might be
run very quickly on a field programmable gate array using VHDL to model sun
spot data. However his FPGA architecture is distant from a GPU.

76 W.B. Langdon and W. Banzhaf

512x400 floats

Population Fitness

Population

2048x2048 texture

2048 texture

error (204800 copies)

stack (204800 copies)

k, J, i, PC (204800)

Interpreter

Run 204800

Population

512x400 (16byte per program)

programs

time series
128+1200 floats

zeros

Fig. 2. Major data structures for Mackey-Glass. At the start of the run the interpreter
is compiled on the CPU (left hand side). It and the training data are loaded onto
the GPU (righthand side). Every generation the whole population is transfered to the
GPU. Each individual is interpreted using its own stack and local variables (k, J, i,
PC) and its RMS error is calculated. The error is is used as the programs’ fitness. All
transfers are made automatically by RapidMind.

In summary GP can and has been parallelised in multiple ways to take ad-
vantage both of different types of parallel hardware and of different features
of particular problem domains. We propose a new way to exploit the inherent
parallelism available in modern low cost mass market graphics hardware. Towit
a GP SIMD interpreter for GPUs.

3 Programming Graphics Cards

Perhaps unsurprisingly the first uses of graphics processing units (GPUs) with
genetic programming were for image generation [Ebner et al., 2005] & its refs.

[Harding and Banzhaf, 2007, Section 3] described the various major high level
language tools for programming GPUs (Sh, Brook, PyGPU and microsoft Ac-
celerator). nVidia has two additional tools: CUDA and Cg (C for graphics
[Fernando and Kilgard, 2003]). CUDA is specific to nVidia’s GPUs. While Sh
[McCool and Du Toit, 2004] is still available from SourceForge, its development
is effectively frozen at Sh 0.8.0 and McCool recommends using its replacement
from RapidMind. Unlike Sh, RapidMind is not free, however www.rapidmind.net
issues licences, code, tutorials and documentation to developers. They host a de-
velopers’ forum and offer prompt and effective support. Like Sh, RapidMind is
available for both microsoft directX and unix OpenGL worlds and is not tied to
a particular manufacturer’s GPU hardware. Indeed recently they started to sup-
port parallel programming on the cell processor. However C++ code written for
RapidMind’s libraries is not portable to other systems. Another nice feature of

http://libsh.org/
http://graphics.stanford.edu/projects/brookgpu/

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 77

RapidMind is that it frees the C++ programmer from the need to learn graphics
jargon and conceals many hardware limitations.

4 Mackey-Glass

TheMackey-Glass chaotic time series isdescribed in [Langdon and Banzhaf, 2005b;
Langdon and Banzhaf, -]. Briefly the GP is given historical data from a series of
1200 points one time step apart and asked to predict the next value. It is allowed
to see data up to 128 time steps in the past. Figure 2 and Table 1 describe our im-
plementation.

Table 1. GPU GP Parameters for Mackey-Glass time series prediction

Function set: ADD SUB MUL DIV operating on floats
Terminal set: Registers are initialised with historical values of time series. D128 128

time steps ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally D1
with the previous value. Time points before the start of the series are set
to zero (cf. zeros top of Figure 2). Constants 0, 0.01, 0.02, ... 1.27

Fitness: RMS error
Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-

ulation size 512 × 400
Initial pop: ramped half-and-half 1:3 (depth 1 to 3. 50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 15, Max tree depth 4.
Termination: 50 generations

N
W O

S
X

Fig. 3. The GP population is spread one per grid square in two dimensions. If North
is better than Origin, it is copied over it. But if Origin is better, O is copied over N.
(No change if equally fit.) After selection, crossover may occur between O and X. To
promote mixing, 50% of crossovers swap which parent supplies the root node, so a child
produced by crossover is equally likely to inherit its root from either parent. Also the
neighbourhood pairing rotates 90◦ every generation. E.g. next generation, crossover
will be between O and S.

4.1 Fine Grained Diffusion Model of Overlapping Demes

While it is not needed for operation with GPU, we used a fine grained diffusion
model of overlapping demes [Langdon, 1998], see Figure 3. This allows a low
selection pressure and ready visualisation, cf. Figure 4.

78 W.B. Langdon and W. Banzhaf

Fig. 4. Screen shot of 512 × 400 GP population after 100 generations. Colour
indicates fitness (left) and syntax (right). Below are two histograms (log scale)
showing distribution of population by fitness and genotypic distance from the
first optimal solution. (Colour scales below each histograms.) Crossover is produc-
ing large numbers of unfit leafs (vertical lines at 540 and 600) [Poli et al., 2007].
Local convergence and the production of species is visible (esp. right). See
http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2 movie.html and Google videos for ani-
mation and more explanation.

4.2 Subtree Crossover and Mutation

In these experiments, the crossover and mutation rates were chosen so that all
of the next population are produced either by crossover or mutation (but not
both). This ensures almost all children are different from their parents.

Koza’s [Koza, 1992] crossover was implemented for linearised reverse polish
notation. However there is no bias towards using functions rather than terminals
as crossover points. If a pair of crossover points would cause either offspring to
be too big or too deep, both are rejected and a new pair chosen again.

One of three types of mutation are used: subtree mutation, point mutation
and constant creep mutation. In subtree mutation a subtree is chosen uniformly
at random and replaced with a subtree created by the ramped half-and-half
(depth 0:1, i.e. leaf or 1 function+2 leafs) algorithm used to create the initial
population. If the mutation point is already at the maximum depth, then the
subtree is replaced by a randomly chose leaf. If the mutant tree is too big it is
rejected and the mutation process restarted with a newly chosen mutation point.

Point mutation does not change the size or shape of the parent tree. A muta-
tion point is uniformly chosen and replaced by a function or leaf with the same
arity using the same random selection technique as was used in the initial pop-
ulation. Repeated mutations are applied until, the mutated tree is syntactically
different from its parent.

http://www.cs.ucl.ac.uk/staff/W.Langdon/pi2_movie.html

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 79

Table 2. Mackey-Glass prediction error after 50 generations in ten runs (multiplied
by 128 as was used in [Langdon and Banzhaf, 2005a])

Mean
RMS error×128 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69
Solution size 9 11 9 9 13 9 9 9 9 9 9.6
Run time secs 167.3 168.0 167.5 167.5 167.3 167.4 167.5 167.5 167.5 167.6 167.5

In constant creep mutation, one of the constant leafs in the tree is chosen
at random. (If there are no constants, point mutation is used instead.) It is
changed by just enough to give the next constant’s value. (I.e. by ±0.01 in the
Mackey-Glass experiments).

4.3 Mackey-Glass Model Accuracy

The results of ten independent GP runs on the GPU are summarised in Table 2.
The tight limit on tree size (15) and depth (4) lead to similar but smaller solu-
tions than those reported for tree GP [Langdon and Banzhaf, 2005a, , Table 2].
In 4 of 10 cases the results are better than the ten FXO (i.e. the smallest and
fastest) subtree runs. The GPU GP runs are faster than all but two CPU runs
despite having a population more than 400 times as big and performing full
floating point calculations rather than 8 bit integer ones.

Table 3. GPU SIMD GP Parameters for protein localisation

Function set: ADD SUB MUL DIV operating on floats
Terminal set: Number (integer) of each of the 20 amino acids in the protein. (Codes

B and Z are ambiguous. Counts for code B were split evenly between
aspartic acid D and asparagine N. Those for Z, between glutamic acid E
and glutamine Q.) 128 unique constants chosen from tangent distribution
(50% between -10.0 and 10.0)

Fitness: 1
2True Positive rate + 1

2True Negative rate [Langdon and Barrett, 2004]

Selection: fine grained binary tournament demes [Langdon, 1998], non elitist, Pop-
ulation size 1024 × 1024

Initial pop: ramped half-and-half 2:5 (50% of terminals are constants)
Parameters: 50% subtree crossover. 50% mutation (point 22.5%, constants 22.5%, sub-

tree 5%). Max tree size 63, Max tree depth 8.
Termination: 1000 generations

5 Evolving a Million Individuals for 1000 Generations
Protein Location Prediction

The system was expanded to cope with: 1) a population of a million pro-
grams. 2) bigger trees. 3) deeper trees. 4) Randomised sub-selection of train-
ing cases. (See Table 3.) The task chosen was to predict the location of proteins
within the cell given only their amino acid composition [Langdon and Banzhaf, -;

80 W.B. Langdon and W. Banzhaf

Harding and Banzhaf, 2007]. A 1024 by 1024 population of programs of up to 63
tree elements and maximum depth of 8 was run on 200 of 1213 randomly chosen
proteins selected for training. Compared to [Langdon and Banzhaf, -, , Table 5],
in terms of predictive accuracy on unseen proteins (cf. Figure 5) this run pro-
duced better results than one technique (FXO) and the same accuracy but a
smaller solution than the other technique (two point crossover, 2XO). However
the main point is a graphics card can readily evolve millions of GP programs
over thousands of generations.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

12
00

 T
es

t e
xa

m
pl

es

 200 Training examples (gen 1000)

Mean TP and TN

Fig. 5. Fitness on 200 randomly chosen training cases in generation 1000, versus fitness
on 1200 unseen proteins. The strong correlations shows GP has learnt for random
samples and (better yet) GP models have avoided over fitting.

6 Performance of SIMD Interpreter

6.1 Overhead of Opcode Selection

The interpreter’s performance is summarised in Table 4.
We wished to estimate the overhead of the SIMD loop scheduling all of the

primitives and then discarding the results of all but the 20% that are needed.
To do this we selected a typical evolved Mackey-Glass program and timed how
long it took the interpreter to run it. Secondly we hand build an version of the
interpreter specific for this program, where every operation is needed and no

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 81

Table 4. Speed (millions GP operations/sec) of GPU interpreter on an nVidia GeForce
8800 GTX. Terminal sets T include inputs and 128 constants

Experiment |T | |F| Population program size test cases Speed (M GPops−1)

Mackey-Glass 8+128 4 204 800 11.0 1200 895
Mackey-Glass 8+128 4 204 800 13.0 1200 1056
Protein 20+128 4 1 048 576 56.9 200 504
Lasera 3+128 4 18 225 55.4 151 360 656
Laserb 9+128 8 5 000 49.6 376 640 190

results are discarded. Rather than the expected five to one ratio, the standard
SIMD interpreter is only 2.89 times slower than the specialised one.

A plausible explaination is that: on the GPU floating point operations such as
addition and multiplication, which form the GP function set, are extremely fast. It
is the GP terminals (which make up 54% of the program) which take longer since
they collect thedata.The functions onlymanipulatedata alreadyon the stack.This
asymmetry in the costs of items in the SIMD dispatch loop means the addition of
a few very fast operations has proportionately less impact than was expected.

Potentially this means we could expand the function set to include trigonom-
etry, log, exponentiation, etc. Many of these are directly implemented by the
GPU. While increasing the function set would not be free, the additional over-
head should be small.

6.2 GPU Speed Up

The Mackey-Glass interpreter was recoded with minimum changes to run on the
CPU. A 2211MHz AMD Athlon 64 Processor 3500+ CPU evolved 50 gens of a
population of 204 800 trees in 1129.59 seconds. I.e. 7 times longer than the GPU.

7 Discussion

In previous work [Harding and Banzhaf, 2007] used the GPU exclusively for run-
ning training cases for cartesian genetic programming and showed impressive
speed up in some cases but that improvement was highly variable. Indeed using
the GPU was slower than the CPU in a few cases. GP program size and number
of training examples per fitness evaluation appear to be critical. We have shown
a way of actually executing a traditional tree GP population on the GPU card. It
replaces the cost of compiling each member of the population on the CPU by the
overhead of running an interpreter on the GPU. Harding’s results mostly show
that the GPU gives a big performance gain where the compiled GP program is
run many times and the programs are large. However if programs are run few
times the cost of the compiler and transfer to the GPU may not be repaid. There
appears to be a nonlinearity (perhaps in the cost of starting the compiler) so
that the relatively small cost of running short programs appears large compared
to the cost of compiling them and transferring them to the GPU. With our more

82 W.B. Langdon and W. Banzhaf

traditional interpreter approach, the population is transfered without compila-
tion overhead to the GPU and the speedup from running in parallel on the GPU
appears to be more consistent. We obtain a speed up of more than an order of
magnitude for very small programs.

7.1 Implementation Issues

We found that the GPU would give good performance if it was given reasonable
chunks of work to do. Say between 1 and 10 seconds. Then the time to transfer
the population and the training data into the GPU and fitness vector out is ok.

RapidMind on a Linux platform uses the GNU C++ compiler GCC and GDB
debugger. Unfortunately GCC’s error reporting can be hard to interpret since
RapidMind (like Sh) makes heavy use of templates. RapidMind’s cross compiler
for the GPU worked seamlessly.

In Sections 4 and 5 the interpreter explicitly loops through all the fitness cases.
The GPU can also vectorise computation across cases. We did this recently for
a small population and executed 50 000 cases×pop size in parallel. However, we
anticipate it usually remains better to loop through the test cases and so reduce
data communication and concentrate computation in fewer threads.

7.2 No Protected Division: Closure

Special cases, like divide by zero, are handled by non data values nan and inf.
The interpreter does not check for divide by zero. Undoubtedly this makes it
faster. In effect, the GPU’s floating point hardware supplies closure for us.

However we still need to be wary. Potentially large numbers of randomly gener-
ated programs, or even offspring of evolved individuals, may have invalid fitness.
Filling the population with them may inhibit or even prevent GP successfully
evolving.

7.3 Reverse Polish Notation Expression Stack Depth

The GPU does not allow arbitrary write access to large arrays. Indeed forcing
the data flow out of the GPU to be streamlined is required to enable tasks to
be easily shared between the 128 processors and so is partly responsible for the
GPUs speed. However it does make it difficult to implement a stack. Therefore
it was necessary to simulate a stack using joins. ([Ernst et al., 2004] suggest
a somewhat complicated way to implement a GPU stack. It requires at least
two passes. [Lefohn et al., 2006] use Cg to efficiently implement a stack. Neither
approach is feasible in RapidMind 2.0.1.) Joins work fine for small stacks. Indeed
with a stack depth of 4 the interpreter flew at more than a billion GP primitives
per second (speed up of more than 12). When the depth was doubled to 8 (for
the Mackey-Glass and protein prediction experiments) it imposed about a 30%
performance penalty. It appears that a stack limit of 12 or 16 would be feasible.
While this may seem restrictive, it is worth remembering that all the original
GP experiments [Koza, 1992] were conducted in Lisp with a depth limit of 17.

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 83

7.4 Non-tree GP, GP without a Stack

If the compilation overhead is too heavy, our interpreter approach may be attrac-
tive. It could be readily applied to cartesian GP [Harding and Banzhaf, 2007] and
to linear GP. Typically both approaches use a small number of registers and do
not require the use of a stack. Hence a linear genetic program could be interpreted
directly on a GPU without incurring the stack overhead or consequent depth limit.

We have deliberately limited ourselves to demonstrating a traditional tree GP
actually running on the GPU. We have been prepared to pay the overhead of
the instruction loop scheduling one thing at a time. However evolution can often
take advantage of muddled situations. We could imagine an evolutionary system
in which the program did not wait for exactly the next required instruction
to come around. But instead the program could say I will take the result of
several instructions, whichever is scheduled first. This might be implemented by
the interpreter looking for any bit in a bit mask being set, or an opcode lying in
some range, or some other form of fuzzy match between what the program wants
and what the interpreter is doing now. Of course the order of the actions of the
interpreter might also be evolved. While this form of coevolution is unlikely to
yield immediate speed ups on today’s problems, it might be a route to meta
evolution on more interesting problems in future.

7.5 Possible Extensions

We have shown reliable speed ups can be obtained using a SIMD interpreter
to execute a GP population on the GPU. [Fok et al., 2007] have already shown
(albeit for EP) that a GPU can implement mutation and selection. Although
genetic programming mutation is more complex, we anticipate it too could be
implemented on the GPU. Indeed, although [Fok et al., 2007] shied away from
crossover, We expect GP crossover could also be performed by the GPU. As
GPUs continue to improve, the whole GP may be run by them.

8 Conclusions

By using a postfix (RPN) rather than a prefix (Lisp) representation, we have
replaced recursive calls by an explicit stack. Avoiding recursion and using cond
to select opcodes enabled us to run tree genetic programming with mega pop-
ulations actually on the GPU. Speed up depends on terminal set, training set
size, etc. but parallel operation can yield a speed up of 7–12. Typically a mod-
ern GPU interprets hundreds of millions of GP operations per second. Indeed
in one case, we exceeded a billion GP ops per second. This is about 0.1 peta
GP opcodes per day for $500.

The SIMD interpreter could be readily adapted to linear GP. Indeed a linear
GP system would avoid the overheads associated with simulating a stack. It
might be possible to extended it to other types of GP.
C++ code available ftp://cs.ucl.ac.uk/genetic/gp-code/gpu gp 1.tar.gz

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_1.tar.gz

84 W.B. Langdon and W. Banzhaf

Acknowledgements

We would like to thank Simon Harding, Nolan White, Paul Price (MUN) and
Joanna Armbruster and Nick Holby. Experiments run at Memorial University.

References

[Andre and Koza, 1996] A parallel implementation of genetic programming that
achieves super-linear performance. In: Arabnia, H.R. (ed.) Proc. of Int. Conf. on
Parallel and Distributed Processing Techniques and Apps. CSREA, pp. 1163–1174
(1996)

[Bennett III et al., 1999] Building a parallel computer system for $18,000 that per-
forms a half peta-flop per day. In: Banzhaf, et al. (eds.) GECCO 1999, pp. 1484–
1490 (1999)

[Chitty, 2007] A data parallel approach to genetic programming using programmable
graphics hardware. In: Thierens, D., et al. (eds.) GECCO 2007, pp. 1566–1573.
ACM, New York (2007)

[Chong and Langdon, 1999] Java based distributed genetic programming on the inter-
net. In: Banzhaf, et al. (eds.) GECCO 1999, p. 1229 (1999), Full text in CSRP-99-7

[Ebner et al., 2005] Evolution of Vertex and Pixel Shaders. In: Keijzer, M., Tetta-
manzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005.
LNCS, vol. 3447, pp. 261–270. Springer, Heidelberg (2005)

[Eklund, 2003] Time series forecasting using massively parallel genetic programming.
In: Proc. of Parallel and Distributed Processing Int. Symposium, pp. 143–147
(2003)

[Ernst et al., 2004] Stack implementation on programmable graphics hardware. In:
Girod, B., et al. (eds.) Proc. Vision, Modeling, and Visualization Conference,
pp. 255–262 (2003)

[Fernando and Kilgard, 2003] The Cg Tutorial. Addison-Wesley, Reading (2003)
[Fok et al., 2007] Evolutionary computing on consumer graphics hardware. IEEE In-

telligent Systems 22(2), 69–78 (2007)
[Gross et al., 2002] Evolving chess playing programs. In: Langdon, W.B., et al. (eds.)

GECCO 2002, pp. 740–747 (2002)
[Harding and Banzhaf, 2007] Fast Genetic Programming on GPUs. In: Ebner, M.,

O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007.
LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)

[Juille and Pollack, 1996] Massively parallel genetic programming. In: Angeline, P.J.,
Kinnear Jr., K.E. (eds.) Advances in GP, vol. 2, pp. 339–358. MIT Press, Cam-
bridge (1996)

[Koza, 1992] Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

[Langdon and Banzhaf, 2005a] Repeated Patterns in Tree Genetic Programming. In:
Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.)
EuroGP 2005. LNCS, vol. 3447, pp. 190–202. Springer, Heidelberg (2005)

[Langdon and Banzhaf, 2005b] Repeated sequences in linear genetic programming
genomes. Complex Systems 15(4), 285–306 (2005)

[Langdon and Banzhaf, -] Repeated patterns in genetic programming. In: Natural
Computation (2005), doi:10.1007/s11047-007-9038-8

A SIMD Interpreter for Genetic Programming on GPU Graphics Cards 85

[Langdon and Barrett, 2004] Genetic programming in data mining for drug discovery.
In: Ghosh, A., Jain, L.C. (eds.) Evolutionary Computing in Data Mining, pp.
211–235 (2004)

[Langdon, 1998] Genetic Programming and Data Structures. Kluwer, Dordrecht (1998)
[Langdon, 2004] Global Distributed Evolution of L-Systems Fractals. In: Keijzer, M.,

O’Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS,
vol. 3003, pp. 349–358. Springer, Heidelberg (2004)

[Lefohn et al., 2006] Glift: Generic, efficient, random-access GPU data structures.
ACM Transactions on Graphics 25(1), 60–99 (January 2006)

[McCool and Du Toit, 2004] Metaprogramming GPUs with Sh. AK Peters (2004)
[Owens et al., 2007] A survey of general-purpose computation on graphics hardware.

Computer Graphics Forum 26(1), 80–113 (2007)
[Page et al., 1999] Smooth Uniform Crossover with Smooth Point Mutation in Genetic

Programming: A Preliminary Study. In: Langdon, W.B., Fogarty, T.C., Nordin,
P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, Springer, Heidelberg (1999)

[Poli et al., 2007] On the Limiting Distribution of Program Sizes in Tree-Based Genetic
Programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-
Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 193–204. Springer, Hei-
delberg (2007)

[Turton et al., 1996] Some geographic applications of genetic programming on the
Cray T3D supercomputer. In: Jesshope, C., Shafarenko, A. (eds.) UK Parallel
1996, Springer, Heidelberg (1996)

