
© Kenneth M. Anderson, 2012

Start with a Feature

• Feature: Cash Withdrawal

• Scenario: Successful withdrawal from an account in credit

• Given I have deposited $100 in my account

• When I request $20

• Then $20 should be dispensed

• Use this feature to drive the development of a domain model for the ATM

• We can then build services and a UI on top of the domain model

• While letting cucumber drive the whole process

4

© Kenneth M. Anderson, 2012

What Next?

• Ask cucumber!

• Reports 1 undefined scenario and 3 undefined steps

• Suggests the following step definitions; let’s place these in steps.rb

Given /^I have deposited \$(\d+) in my account$/ do |arg1|
 pending
end

When /^I request \$(\d+)$/ do |arg1|
 pending
end

Then /^\$(\d+) should be dispensed$/ do |arg1|
 pending
end

5

© Kenneth M. Anderson, 2012

Developing the First Step

• In order to make progress, we will need an Account class

• Based on TDD principles, we try to access the class before we create it

• Background

• To create a new instance of a Ruby class, you invoke new() on it

• Also, to convert a string into an integer in Ruby, you use the to_i() method

• In Ruby, parentheses for method calls are mainly optional

• With that, we make the body of our first step definition, the following

• Account.new(amount.to_i)

• amount is the argument being passed into the step definition

6

© Kenneth M. Anderson, 2012

The Result? Failure!

• We invoke cucumber to see the test fail

• In particular, ruby says:

• uninitialized constant Account (NameError)

• This just means that Ruby has no idea what we mean by “Account”, since
the class has not been created yet

• We can solve this problem by creating the class right inside steps.rb

• This will just get us started, eventually we will move Account to a better
place

7

© Kenneth M. Anderson, 2012

The class

• Creating a class in Ruby is easy;

• class Account

• def initialize(amount)

• end

• end

• And, because we are practicing TDD/BDD, we do not try to get the Account
to do anything, we just define it

• Note: in Ruby, initialize() is the constructor. It will be called during the
process that is triggered by a call to new()

• Now what happens?

8

© Kenneth M. Anderson, 2012

Step passed

• Ruby is more than happy to create an instance of a class that is not captured
by any variable

• As a result, no exception is thrown and the step is marked as passed

• The second step is marked as pending

• The third step is then skipped

• However, even though cucumber is happy, we’re not happy

• The account that is created doesn’t stick around

• It doesn’t know it’s balance

• It can’t be used in subsequent steps

• So, we have work to do!

9

© Kenneth M. Anderson, 2012

Semantic Sense Needed

• The concerns on the previous slide are just logistical

• We also have semantic concerns

• Our code does not honor the language of the step

• The step talks about depositing funds into my account

• but the code passes the funds to the Account class’s constructor

• nothing is being deposited anywhere; no customer either

• Having to convert the amount to an integer is less than ideal

• We know from the regular expression that amount represents a number

• It would be nice to have that conversion done for us

10

© Kenneth M. Anderson, 2012

Fix the Class

• To ensure that we honor the semantics of the step

• First, we fix the class

• Get rid of the constructor (we’ll use the default constructor for now)

• Add a method called deposit (that does nothing; TDD keeps it simple!)

• Second, we update the step definition to reflect these changes

• my_account = Account.new

• my_account.deposit(amount.to_i)

• If we run cucumber again, the step will pass and the internal semantics of the
code are better aligned with the step

11

© Kenneth M. Anderson, 2012

When do we add code?

• In TDD, we never add code until there’s a test case that’s failing

• To do that in this context

• let’s add an assertion to the end of our step definition

• We have deposited funds, let’s check the Account’s balance

• The book uses RSpec

• my_account.balance.should eq(amount.to_i),

• "Expected the balance to be #{amount} but it was #{my_account.balance}"

• Background

• Recall, parens are optional; balance is a method, so is should

• In strings, #{var}, is string interpolation; it injects the value of var into the string

12

© Kenneth M. Anderson, 2012

Failing Test Case; Time to Add Code

• First the assertion fails because Account does not have a balance() method

• We add an empty implementation of one

• The test still fails but now its due to the assertion failing

• Expected the balance to be 100 but it was
(RSpec::Expectations::ExpectationNotMetError)

• Now, we can FINALLY do something more than create method skeletons

• In deposit(): @balance = amount

• In balance(): @balance

• Note: @var is an instance variable

• Note: methods automatically return value of last evaluated expression

13

© Kenneth M. Anderson, 2012

Transforms

• Last semantic concern: having to convert strings captured by regular
expressions to integers

• It leads to lots of code duplication: to_i() calls everywhere

• To fix this, Cucumber provides a method called Transform that allows us to
define how certain regular expression patterns will be handled

• In particular, whenever a step is matched to a step definition

• Cucumber checks to see if any Transforms match the step’s captured
arguments

• If so, the captured string, is passed to the transform

• Then whatever value comes back from the transform is passed to the
step

14

© Kenneth M. Anderson, 2012

Example

• Transforms go into your step definition file

• they will be evaluated along with the rest of your step definitions

• We need a transform that detects numbers and converts them automatically

• Transform /^\d+$/ do |number|

• number.to_i

• end

• The regular expression above matches strings consisting only of one or more
digits

• with the transform in place, we can remove the multiple to_i() calls in our
step definition

15

© Kenneth M. Anderson, 2012

Interesting Potential

• Transforms have interesting potential at making our step definitions more
focused and expressive

• Image you have phrases like “User Ken” in your step definitions

• You can capture them and then find the associated User object
automatically

• Transform /^User ([a-zA-Z]+)$/ do |name|

• Users.find(name)

• end

• Now each step definition that captures “User Ken” will automatically have the
User object whose name is “Ken” passed to it

16

© Kenneth M. Anderson, 2012

New Source of Duplication

• However, Transforms introduce a new form of duplication

• The regular expression that appears in the Transform statement is the
same as the regular expression that appears in the step definition

• This duplication can lead to maintenance headaches

• because we can change one regular expression

• and forget to change the other

• especially problematic if the expression is used by multiple step
definitions

• To solve this, the call to Transform returns its regular expression

• This can be captured and used in the step definitions instead

17

© Kenneth M. Anderson, 2012

Examples

• CAPTURE_A_NUMBER = Transform /^\d+$/ do |number|

• number.to_i

• end

• Given /^I have deposited \$(#{CAPTURE_A_NUMBER}) in ...

• CAPTURE_CASH_AMOUNT = Transform /^\$(\d+)$/ do |digits|

• digits.to_i

• end

• Given /^I have deposited (#{CAPTURE_CASH_AMOUNT}) in ...

• The regular expression pattern of the call to Transform is captured as a string and
then injected into the regular expression of the step definition via interpolation

18

© Kenneth M. Anderson, 2012

On to Step 2

• We can of course upgrade our step definition for step 2 to make use of our
transform

• When /^I request (#{CAPTURE_CASH_AMOUNT})$/ do |amount|

• We can also sketch out some code to handle this step

• teller = Teller.new

• teller.withdraw_from(my_account, amount)

• In the step, we say “request” but in the code (and our feature) we say
“withdraw”. Let’s just change the step and its step definition

• When I withdraw $20

• When /^I withdraw (#{CAPTURE_CASH_AMOUNT})$/ do |amount|

19

© Kenneth M. Anderson, 2012

Create the Teller class

• Cucumber now tells us that the step is failing because Teller does not exist

• class Teller

• def withdraw_from(account, amount)

• end

• end

• Now, cucumber complains that “my_account” is undefined

• We created a my_account instance in the first step definition

• but that was a local variable that has no scope outside of that definition

20

© Kenneth M. Anderson, 2012

Use Instance Variables

• We saw the solution to this problem in our previous lectures

• Rather than creating my_account as a local variable

• my_account

• we need to create it as an instance variable

• @my_account

• If we update steps.rb to use instance variables, then everything works

• DEMO

• BUT...

21

© Kenneth M. Anderson, 2012

Instance Variables Considered Harmful

• The problem with using instance variables to communicate state across step
definitions is that it can lead to fragile steps (and other problems)

• Remember, step definitions are shared across ALL scenarios

• If you have step definition A create an instance variable used by step
definition B, then you have to guarantee that step A always appears
before step B

• We can solve this problem by using Cucumber’s World object to make sure
that for any particular scenario all variables are created as needed

• We do this by creating helper methods on the World object

22

© Kenneth M. Anderson, 2012

The World (I)

• In previous lectures, I discussed how the instance variables created in one
step definition were accessible in other step definitions

• At the time, I said “Cucumber must be creating an object that provides
context across step definitions;

• these instance variables are being created on that object

• I was right!

• Cucumber creates an object called World at the start of each scenario

• The step definitions execute as if they were methods on this object

• When they create instance variables, they are creating instance variables
on this object

23

© Kenneth M. Anderson, 2012

The World (II)

• To solve the problems associated with instance variables not being created
correctly, we can create helper methods and store them on the World object

• We do this using a mechanism in Ruby called modules

• Our module will define one or more methods

• We then “mix in” the module into the World object

• the methods of our module then become directly available

24

© Kenneth M. Anderson, 2012

Ruby Idiom Explained (I)

• In our module, we are going to use a statement like this

• @my_account ||= Account.new

• This is a ruby idiom to make sure that an instance variable is created once
and only once

• To understand the line of code, consider this example

• a += 10

• This is equivalent to “a = a + 10”

• The line above then is short for

• @my_account = @my_account || Account.new

25

© Kenneth M. Anderson, 2012

Ruby Idiom Explained (II)

• The or operator (||) in Ruby is a short-circuit operator

• The statement

• @my_account = @my_account || Account.new

• is equivalent to the following pseudocode

• Does @my_account exist?

• If yes then @my_account = @my_account

• If no, then @my_account = Account.new

• The Account.new statement will only execute once

26

© Kenneth M. Anderson, 2012

Back to the Example

• To ensure that my_account is always created and available, we will create the
following module

• module AccountUtils

• def my_account

• @my_account ||= Account.new

• end

• end

• We then add this module to the World object by calling

• World(AccountUtils)

27

© Kenneth M. Anderson, 2012

Update Step Definitions

• With the previous code in place, we have now ensured that the World knows
about a method called my_account

• When called, that method returns a single instance of the Account class

• Our step definitions can now be updated to the following

• In the first step definition

• my_account.deposit(amount)

• In the second step definition

• teller.withdraw_from(my_account, amount)

• Very important: my_account in the above two lines is a METHOD CALL not
an instance variable or a temporary variable

28

© Kenneth M. Anderson, 2012

On to Step 3

• The first two steps are passing

• Note: the code does not do anything yet

• but we will not fix that problem until we have a clearly failing test case

• In step 3, we need an object that can be used to check if the ATM dispenses
the requested cash

• We will call this the cash slot

• The step definition for step 3 will have code that looks like this

• cash_slot.contents.should == amount

• This means that cucumber will not know about the method cash_slot

29

© Kenneth M. Anderson, 2012

Making Step 3 Work (I)

• We will update our module to have a helper method that will create a
cash_slot;

• We’ll create a cash slot class and have it raise an exception

• class CashSlot

• def contents

• raise("I'm empty!")

• end

• end

• We now have a failing test case

• DEMO

30

© Kenneth M. Anderson, 2012

Making Step 3 Work (II)

• Remembering Where We Are

• In Step 1, we create an account and ensure it has the correct balance

• In Step 2, we create a teller and have it perform the withdrawal

• In Step 3, we check a cash slot to see if it has the correct amount

• This fails right now because we have no code to make this happen

• We need to update the Teller class to

• point at the cash slot

• and put the correct amount of money in the cash slot during a
withdrawal

31

© Kenneth M. Anderson, 2012

Making Step 3 Work (III)

• The teller class will now look like this

• class Teller

• def initialize(cash_slot)

• @cash_slot = cash_slot

• end

• def withdraw_from(account, amount)

• @cash_slot.dispense(amount)

• end

• end

32

© Kenneth M. Anderson, 2012

Making Step 3 Work (IV)

• I now need to update the code that creates the Teller to pass it a cash_slot

• That’s when I notice that Teller is now the only object being created in a
step definition

• Let’s create a helper method to manage its creation

• And update the relevant step definitions to reflect these changes

• We then need to add a method to CashSlot called dispense() and ensure that
the existing method called contents is linked to it

• DEMO

33

© Kenneth M. Anderson, 2012

Time to Refactor

• All three steps of the scenario pass BUT

• our code is in horrible shape

• we have multiple types of code mixed together in a single file (steps.rb)

• cucumber specific code, domain code, and test code

• Let’s refactor

• The domain code should leave in the root level of our project inside of a lib
directory

• Create the lib directory and put all three classes in nice_bank.rb

• Change steps.rb to have the following line at the top

• require File.join(File.dirname(__FILE__), '..', '..', 'lib', 'nice_bank')

34

© Kenneth M. Anderson, 2012

Refactoring (I)

• The domain code should leave in the root level of our project inside of a lib
directory

• Create the lib directory and put all three classes in nice_bank.rb

• Change steps.rb to have the following line at the top

• require File.join(File.dirname(__FILE__), '..', '..', 'lib', 'nice_bank')

• This is Ruby code

• to create a file reference to ../../lib/nice_bank.rb

• and then load its code (require its use)

• Run cucumber to make sure everything still works

35

© Kenneth M. Anderson, 2012

Refactoring (II)

• Cucumber has a folder that is meant to contain code that supports the step
definitions

• It is called features/support

• The code in this directory is loaded in an undefined manner EXCEPT that a file
called env.rb is always executed first if it is present

• A fundamental concern of booting our testing environment is loading the
application under test

• Therefore

• create the features/support directory

• create the env.rb file within it and move the require statement to it

• Run cucumber to verify that everything still works

36

© Kenneth M. Anderson, 2012

Refactoring (III)

• We now have a place for our cucumber-specific support code

• Our Transform method can be moved to features/support/transforms.rb

• Plus our DomainUtils module and the call to World() can be moved to the
support directory in a file called world_extensions.rb

• These names are solely to help us as developers

• We can call them “foo.rb” and “bar.rb” and everything will still function
correctly

37

© Kenneth M. Anderson, 2012

Refactoring (IV)

• The final refactoring is perhaps not necessary at this stage

• but the book recommends organizing step definitions according to the
primary domain entity they operate on

• So, they recommend moving our three step definitions into

• account_steps.rb

• teller_steps.rb

• cash_slot_steps.rb

• Doing this at this stage, however, may impose some pain if our domain model
is still in flux (which it likely is at this point)

38

© Kenneth M. Anderson, 2012

One More Thing: Teller.withdraw_from()

• Our scenario passed but there’s a problem with Teller.withdraw_from()

• Here’s the code

• def withdraw_from(account, amount)

• @cash_slot.dispense(amount)

• end

• What’s the problem?

39

© Kenneth M. Anderson, 2012

The Case of the Unused Parameter

• The account parameter is not being used

• We are not actually withdrawing the money from the account!!

• Our system, in its current state, can be used to dispense any amount of
money from the bank

• How did we miss this?!

• Our scenario didn’t check for it!

40

© Kenneth M. Anderson, 2012

New Scenario

• Feature: Cash Withdrawal

• Scenario: Successful withdrawal from an account in credit

• Given I have deposited $100 in my account

• When I withdraw $20

• Then $20 should be dispensed

• And the balance of my account should be $80

• No one is to blame for this; it can be an easy thing to miss

• It would have surfaced eventually but the unused parameter was enough
to point the way

41

© Kenneth M. Anderson, 2012

Cucumber Guides the Way

• Running cucumber we are back to the scenario being undefined

• Take its suggestion for the step definition and add it to account_steps.rb

• Update it to use our Transform

• And copy the assertion from the first step definition into it

• It already does what we need, checking the amount with the balance

• We will need to fix the duplication of the assertion later

• Running cucumber again provides us with a failing scenario

• Time to fix the code!

42

© Kenneth M. Anderson, 2012

Fixing the Code

• First, we head to our teller class

• He needs to debit the amount of the withdrawal from the account

• Second, we head to our account class to add a debit() method to it

• The result?

• Test passed!

• DEMO

• Are we done?

43

© Kenneth M. Anderson, 2012

Not Quite!

• After we make a change to our system, we should check to see if there are
opportunities for refactoring

• especially when we are making a change to make a failing test case pass

• often times we are in a hurry to fix the failing test case

• when we are rushed, we can make changes that do not fit with the
existing design of our system

• Looking at our Account class, for example, we can see that we have a method
called deposit() and another method called debit()

• The opposite of debit is credit, but we don’t have that method

• And deposit doesn’t really deposit funds, it initializes the account

• It is a prime target for refactoring!

44

Note: we won’t fix this second
problem until chapter 9

© Kenneth M. Anderson, 2012

Refactoring Account (I)

• Let’s change the name of the deposit() method to credit()

• We have test cases, so let’s just run cucumber to see what breaks

• The very first step definition breaks

• because Account.deposit() no longer exists

• Since all we did was change the name of the method, we change it here and

• everything works again

• However, the step and the step definition are no longer in sync

• We talk about depositing in the step but we are crediting in the def

• This issue goes back to ubiquitous language; we want consistent terms

45

© Kenneth M. Anderson, 2012

Refactoring Account (II)

• We need to change the step from

• Given I have deposited $100 in my account

• to

• Given my account has been credited with $100

• And, once we do that, we must change the step definition to match

• While we are there, we can also take care of the duplicate assertion

• We will simply credit the account and let some other step take care of
checking the balance

• which is already in place, since realizing this other step was missing is
what got this refactoring started in the first place!

46

© Kenneth M. Anderson, 2012

All Done

• With this refactoring, we are back to our scenario passing and we’re
confident that our system is as simple and as organized as we can make it

• To make the system evolve, we just need to add additional scenarios

• The book provides some criteria to try to assess whether we are at a good
state given the tests we have. These criteria were created by Kent Beck and
specify what it takes to achieve a simple design; A software system’s
design is simple if

• It passes all tests

• It reveals our intentions

• It contains no duplication

• It uses the fewest number of classes and methods

47

© Kenneth M. Anderson, 2012

Summary

• Learned more about how to use Cucumber with a more extensive example

• Transforms are a useful way to remove repetitive code from step
definitions

• We can assign names to transforms and use those names in the regular
expressions of our step definitions

• This allows us to avoid a second type of duplication

• Step definitions share state via the customizable World object

• features/support is used to store code that wires step definitions with the
underlying system; support/env.b is used to boot up the testing process

• The next part of the example will add a user interface to the application and
will help us test it as well

48

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 18: Review of Midterm

• Lecture 19: Software Transactional Memory

49

