ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/273328605
An approach to prioritize code smells for refactoring

Article in Automated Software Engineering - December 2014

DOI: 10.1007/510515-014-0175-x

CITATIONS READS
7 2,110
3 authors:
y Santiago Vidal Claudia A. Marcos
$ National Scientific and Technical Research Council National University of the Center of the Buenos Aires Province
26 PUBLICATIONS 214 CITATIONS 82 PUBLICATIONS 419 CITATIONS
SEE PROFILE SEE PROFILE

‘ Andres Diaz-Pace
I National University of the Center of the Buenos Aires Province
94 PUBLICATIONS 650 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject  ReCArC - Recommending Architecture-relevant Code Anomalies View project

roect  PUMAS - Personalised MAS View project

All content following this page was uploaded by Santiago Vidal on 11 May 2015.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/273328605_An_approach_to_prioritize_code_smells_for_refactoring?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/273328605_An_approach_to_prioritize_code_smells_for_refactoring?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/RecArC-Recommending-Architecture-relevant-Code-Anomalies?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PUMAS-Personalised-MAS?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Santiago-Vidal?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Santiago-Vidal?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Scientific_and_Technical_Research_Council?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Santiago-Vidal?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudia-Marcos?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudia-Marcos?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_the_Center_of_the_Buenos_Aires_Province?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudia-Marcos?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andres-Diaz-Pace?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andres-Diaz-Pace?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_the_Center_of_the_Buenos_Aires_Province?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andres-Diaz-Pace?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Santiago-Vidal?enrichId=rgreq-d369990f34ffbf9f1de91de939b7ee67-XXX&enrichSource=Y292ZXJQYWdlOzI3MzMyODYwNTtBUzoyMjc5MjYzOTg0NjgwOTdAMTQzMTM1MzI5NjY1OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Noname manuscript No.
(will be inserted by the editor)

An Approach to Prioritize Code Smells for Refactoring

Santiago A. Vidal - Claudia Marcos - J.
Andrés Diaz-Pace

Received: date / Accepted: date

Abstract Code smells are a popular mechanism to find structural design
problems in software systems. Consequently, several tools have emerged to
support the detection of code smells. However, the number of smells returned
by current tools usually exceeds the amount of problems that the developer
can deal with, particularly when the effort available for performing refactorings
is limited. Moreover, not all the code smells are equally relevant to the goals
of the system or its health. This article presents a semi-automated approach
that helps developers focus on the most critical problems of the system. We
have developed a tool that suggests a ranking of code smells, based on a com-
bination of three criteria, namely: past component modifications, important
modifiability scenarios for the system, and relevance of the kind of smell. These
criteria are complementary and enable our approach to assess the smells from
different perspectives. Our approach has been evaluated in two case-studies,
and the results show that the suggested code smells are useful to developers.

Keywords Code smells; Refactoring; Software evolution; Design problems

1 Introduction

Software evolution and maintenance involve high costs in the development
process (April and Abran 2008; Seacord et al 2003; Erlikh 2000), particularly

Santiago A. Vidal
ISISTAN, UNICEN, Argentina and CONICET
E-mail: svidal@exa.unicen.edu.ar

Claudia Marcos
ISISTAN, UNICEN, Argentina and CIC
E-mail: cmarcos@exa.unicen.edu.ar

J. Andrés Diaz-Pace
ISISTAN, UNICEN, Argentina and CONICET
E-mail: adiaz@exa.unicen.edu.ar



2 Santiago A. Vidal et al.

as systems become larger and complex. A usual concern that makes system
maintenance and evolution difficult is the existence of structural design prob-
lems, which were not sufficiently taken care of in early development stages.
These design problems are often described as code smells (Fowler 1999). A
code smell is a symptom in the source code that helps to identify a design
problem. In this way, code smells allow developers to detect fragments of code
that should be re-structured, in order to improve the quality of the system. A
technique commonly used to fix code smells is refactoring (Fowler 1999; Kim
et al 2012).

Different semi-automated tools have been proposed (Moha et al 2010;
Lanza and Marinescu 2006) for identifying code smells in a system. However,
a major limitation of existing tools is that they usually find numerous code
smells. This is a challenging problem for the developer, for a number of reasons.
First, she can get overwhelmed by the amount of information to be analyzed.
Second, the efforts needed to fix all the smells usually exceeds the budget that
the developer has available for refactoring. Third, in practice, not all smells
are equally important for the goals of the system or its health (Demeyer et al
2003). For example, some long classes, such as those that implement a parser,
are not necessarily a design problem. Therefore, the developer has to manually
peruse the list of smells and select a set of smells that will be fixed. In this
context, the provision of tool support for assisting the developer to quickly
identify high-priority code smells becomes essential.

In this work, we propose a semi-automated approach called SpIRIT (Smart
Identification of Refactoring opportunITies) that prioritizes the code smells
of a system according to their criticality. We define the critical problems as
those smells that compromise the architecture of the system. In particular, we
use modifiability scenarios (Clements and Kazman 2003) to capture goals (or
desired properties) of the system with respect to evolution and architecture
design. A scenario specifies a type of change that the system must accommo-
date. For example, a scenario can specify changes to a GUI feature wanted by
a customer, which might affect several components (if the feature is not prop-
erly encapsulated). Normally, developers seek to confine the effects of changes
specified by scenarios to narrow system areas in order to avoid the change
propagation across the system. From this perspective, code smells are obsta-
cles to satisfy the modifiability scenarios of the system. Modifiability problems
can also be spotted by analyzing change patterns across system versions (Girba
et al 2004).

Given an object-oriented system with a number of code smells, SpIRIT as-
sists the developer in the prioritization of the smells. The identification of the
smells relies on existing catalogs (Fowler 1999; Lanza and Marinescu 2006).
The novel aspect of our approach is that the prioritization of smells is based
on assessing their relationships with modifiability issues. Our assessment of a
code smell instance is determined by three factors: (i) the stability of the com-
ponents that participate in a smell, (ii) the impact of a smell on modifiability
scenarios, and (iii) the relevance of the kind of code smell. The relevance is
a subjective value that a developer can assign to each kind of smell to indi-



An Approach to Prioritize Code Smells for Refactoring 3

cate how harmful she considers it. This value might vary from developer to
developer, or might also be system-specific (Mkaouer et al 2014).

The contribution of this article is two-fold. First, we develop a prioritiza-
tion strategy for code smells that combines different criteria, which account
for code-level, evolution and design-level information. Second, we propose a
novel scenario-based criterion (Kazman et al 1996) to drive the prioritization,
incorporating design knowledge about modifiability.

We have evaluated our approach by means of two case-studies. In these
studies, SpIRIT was applied to Java applications of different sizes. We com-
pared the rankings of smells generated by SpIRIT with the smells ranked by
expert developers. The results show that SpIRIT ranks first the most critical
smells.

The rest of this article is structured as follows. Section 2 discusses the
main problems of fixing code smells. Section 3 describes the SpIRIT approach.
Section 4 presents the case-studies and their main results. Section 5 discusses
related work. Finally, Section 6 presents the conclusions and outlines future
work.

2 Improving Design with Code Smells Detection

Code smells are useful to identify structural problems of a system that re-
late to modifiability problems. In this way, a smell acts as an anti-pattern
indicating code that should be improved (Fowler 1999). Each smell can af-
fect several components (e.g. packages, classes, methods) of a system. Some of
the symptoms used by code smells include: duplicated code, very large meth-
ods or classes, long lists of parameters or violations in the encapsulation of a
class, among others. A popular catalog of code smells is the one proposed by
Fowler (Fowler 1999). Usually, in the catalogs, for each smell a refactoring (or
a group of them) is proposed to solve the problem. For example, the smell God
Class identifies the situation in which a class centralizes the intelligence of the
system (or a subsystem). In this case, the suggested refactoring is to extract
groups of related methods into new classes by using the Move Method and
Move Field refactorings (Fowler 1999). To help developers to find smells in
systems, several tools such as PMD,! FindBugs? and iPlasma® are available.
A problem of existing tools is that they usually produce a large number of
smells. For example, after analyzing 9 kinds of code smells in SweetHome3D,*
a 84K LOC open source application, 787 smells were found (Table 1). Refactor-
ing of these smells would be ideal but also time-consuming. In these situations,
the developer might end up overwhelmed by the analysis of all the smells. Fur-
thermore, the refactorization of some smells might not be urgent. For example,

http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
http://loose.upt.ro/reengineering/research/iplasma

W N e

http://www.sweethome3d.com



4 Santiago A. Vidal et al.

Table 1: Code smells found in SweetHome3D

Code smell # instances

Brain Class 6
Brain Method 127

Data Class 1
Dispersed Coupling 210
Feature Envy 114
God Class 38
Intensive Coupling 89
Refuse Parent Bequest 12
Shotgun Surgery 190
Total 787

the refactoring of code smells in a class with no change since its initial im-
plementation (and not expected to be modified in the future) may have low
priority when compared to a code smell in a class that received modifications
in the last 10 most significant revisions. That is, fixing some code smells can be
more urgent than fixing others. Regarding the priority of the components to
be refactored, some researchers have suggested that those components whose
code suffered many changes in the past, are more likely to be modified in the
future than those that did not changed (Girba et al 2004; Mens and Demeyer
2001). For example, in SweetHome3D 85% of the detected smells were mod-
ified only in one or two versions of the last 25 versions. For this reason, the
refactoring effort should probably be focused on the remaining 15% of code
smells.

Moreover, we argue that the impact of the code smells on key modifiability
scenarios of the system should be taken into account, in order to determine
the priority of fixing a given smell. That is, if a given smell is touching a
code area that is sensitive to one or more key modifiability scenarios, the
developer should pay close attention to fixing that smell, in order to improve
the satisfaction of the scenarios. Conversely, less attention should be paid to
smells that do not directly affect key scenarios. For example, the God Class
HomeComponent3D of SweetHome3D is directly involved in the realization
of a scenario that allows developers to change the 3D visualization engine
of the application. The visualization engine is critical in the architecture of
SweetHome3D, because it involves one of its main features. By capturing the
scenario above, it is meant that the engine should be easy to change, or that the
effects of the change should be as localized as possible in the design. Therefore,
it is important to fix the involved God Class, as it can negatively affect the
satisfaction of the scenario.

We think that the developer should not only be assisted in the detection
of code smells, as several tools currently do, but she should be assisted in the
prioritization of the detected smells as well.



An Approach to Prioritize Code Smells for Refactoring 5

( SpIRIT Y,
Ve . N L —»

Prioritizing

Code smells

0. 000 00 Developer

Suggesting 00 Refactored
System

00 System Identifying

; Code ; refactorings
Smells strategies

Modifiability Code smell
ERE 3

Code smells ranking

AR

Fig. 1: The SpIRIT approach.

3 SpIRIT Approach

We propose a semi-automated approach that helps developers to achieve the
refactoring of an object-oriented system by focusing on the most critical code
smells of the system. We call this approach SpIRIT: Smart Identification of
Refactoring opportunITies.

We envision the use of the SpIRIT approach (Fig. 1) in the following
situation. Let us assume a developer that is working in a project within an
iterative and incremental development process. The developer only has a cou-
ple of hours per week to refactor the system because she has to spend most
of the time developing user-oriented features. Given a large list of smells to
be refactored, the developer will have to pick the smells that are top-priority
considering different criteria: the relation of the smells with the architecture,
the importance of the kind of smell; and the analysis of how likely is that the
source code related to the smell will be modified in future versions. We argue
that the use of multiple criteria helps to examine the smells from different
perspectives and, in this way, to discover if the smell is a critical problem. In
this context, the developer will use SpIRIT to analyze components of the sys-
tem (such as packages, classes or methods) that have potential modifiability
problems. Then, the smells will be ranked by SpIRIT based on their impor-
tance, which is determined by the aforementioned criteria. Once the developer
chooses a smell to be fixed, SpIRIT is expected to suggest different refactoring
alternatives for it. However, the assistance with refactorings is out of the scope
of this article.

The proposed approach is implemented as a tool®. SpIRIT is built using
Moose,b a platform for software analysis. To analyze a system in SpIRIT, the
system must be loaded using a MSE file. MSE is a generic file format, similar
to XML, used by Moose to describe models of systems. A MSE file saves all the

5 The latest version of SpIRIT is available from
http://sites.google.com/site/santiagoavidal/projects/spirit
6 http://moosetechnology.org/



6 Santiago A. Vidal et al.

Table 2: Code smells supported by SpIRIT

[ Code smell [ Short description
Brain Class Complex class that accumulates intelligence by brain
methods
Brain Method Long and complex method that centralizes the intelligence
of a class
Data Class Class that contains data but not behavior related to the
data
Disperse Coupling Method that calls one or few methods of several classes
Feature Envy Method that calls more methods of single external class
that their own
God Class Long and complex class that centralizes the intelligence of
the system
Intensive Coupling Method that calls several methods that are implemented in
one or few classes
Refused Parent Bequest Subclass that does not use the protected methods of its
superclass
Shotgun Surgery Method called by many methods that are implemented in
different classes
Tradition Breaker Subclass that does not specialize the superclass

information related to a system such as packages, classes, methods, attributes
as well as the relationships between them (e.g. invocations and inheritance).
There are several applications available to generate MSE files from source
code, such as VerveineJ” and inFamix®.

In the next sections, we provide details of the techniques used by the ap-

proach.

3.1 Identifying Code Smells

The SpIRIT approach begins by identifying the code smells of an applica-
tion. Currently, SpIRIT supports the identification of 10 smells (Table 2)
following the detection strategies presented in the catalog of Lanza and Mari-
nescu (Lanza and Marinescu 2006). In this detection strategy, each smell is
expressed as a rule combining different metrics, which have to reach prede-
termined thresholds. For example, the rule to identify a God Class combines
three metrics: Weighted Method Count (WMC) to measure the complexity
of the class, Access To Foreign Data (ATFD) to measure the coupling with
external, and Tight Class Cohesion (TCC) to measure the internal cohesion
of the class. In this way, a God Class is determined by the rule:

GodClass = (WMC > VERYHIGH)and(ATFD > FEW )and(TCC < LOW)

The threshold values, such as, FEW, LOW or VERY HIGH are also the
ones proposed by Lanza and Marinescu. Although these detection strategies

7 https://gforge.inria.fr/projects/verveinej/
8 http://www.intooitus.com /products/infamix



An Approach to Prioritize Code Smells for Refactoring 7

are predefined in the SpIRIT tool, they are not per se a part of our approach,
they are just a pluggable module in the tool.

Once the model of a system is generated and loaded into SpIRIT through
a MSE file, the tool automatically detects the possible code smells. For each
smell, SpIRIT shows the elements that compose the smell. We distinguish
two kinds of constitutive elements: the class or method in which the smell is
mainly implemented (we call this class/method the main class/method of the
code smell) and the affected components. For example, in the case of the God
Class HomeComponent3D presented in Section 2, SpIRIT shows the main
class (HomeComponent3D) and all the external methods invoked by the class
and also the external methods that are invoking the class.

3.2 Prioritizing Code Smells

Once the smells are discovered they should be ranked according to their im-
portance. We argue that a code smell is important if it compromises the archi-
tecture of the system. This aspect was analyzed by some works showing that
by refactoring the smells related to architectural problems the degradation of
the architecture could be stopped (Macia et al 2012b,a; Arcoverde 2012). Ad-
ditionally, since not all kinds of smells are equally relevant to the architecture,
the kind of code smell should also be taken into account to determine the
importance of a smell. Finally, since refactoring is generally more beneficial
in changing environments (Tsantalis and Chatzigeorgiou 2011b), the smells
found in classes or packages that are more likely to change should be more
important. We argue that the combination of these aspects should be used to
determine a ranking of smells. Along this line, we apply the following three
criteria:

1. Stability of Related Components (SRC): this criterion checks if the com-
ponent in which a smell is found has undergone many changes over the
history of the application.

2. Relevance of a Code Smell (RCS): the developer can choose the kinds of
smells that are more important using an ordinal scale (e.g. 1 to 5 where 5
means that the smell is very important).

3. Related Modifiability Scenarios (RMS): this criterion helps to focus on
those smells that affect modifiability scenarios of the system.

We chose these criteria because they take into account: the stability of the
component in which the smell was found, the assessment that the developer
makes of each kind of smell, and furthermore, they allow the developer to
focus in those parts of the system that affects the quality of the architec-
ture through the analysis of modifiability-specific requirements that should be
satisfied. The importance of using different criteria is because they are com-
plementary. For example, if only the relevance of the smell were used, smells
that are not architecturally relevant or that have not changed since their im-
plementation could be ranked first. Moreover, if only the criterion of history



8 Santiago A. Vidal et al.

were used, unimportant smells for the developer and the architecture could
be prioritized first. Similarly, if just the criterion of scenarios were used, while
the prioritized smells would still be architecturally relevant, there could be
smells that have not changed for a long time or kinds of smells that are not
relevant for the developer. That is to say, by using the three criteria the smells
are analyzed from multiple perspectives with the goal of determining the most
critical smells.

In the following sections, each criteria is explained in detail as well as the
calculation of the overall ranking.

3.2.1 Stability of Related Components (SRC)

The stability determines how often the class in which the code smell is mainly
implemented (main class) was modified during the lifetime of the system. By
determining the stability of the main class of the smell, we want to find if the
smell is implemented in a part of the system that is usually modified. Our
assumption is that the smells appearing in classes that changed often should
be fixed first. For instance, a God Class that has not been modified since it
was implemented might not represent a real problem (Demeyer et al 2003).

Previous works have analyzed the history of systems to determine the
classes that will change in the future based on those classes that change often
(Girba et al 2004; Wong et al 2011; Tsantalis and Chatzigeorgiou 2011b). We
follow this same hypothesis to detect the unstable classes of the system.

To measure the stability of a class we use a Beta analysis (3). Beta is a
financial indicator that measures the volatility of a given asset relative to the
volatility of the market (Levy 2002). We have adapted Beta to use it in our
context. An asset represents a class and the market represents the system in
which the class is defined. That is, Beta allows us to know how important
the changes are in the class with respect to the changes in the system. By
important we mean a large addition or modification of methods. For example,
a high value of Beta will indicate that when many methods are changed in the
system (comparing to the total number methods of the system), many methods
are also changed in the class (comparing to the total number of methods of
the class). We define the Beta of a class as:

~ Cou(re,rs)
Be = Var(rs)

where r. measures the rate of return of the class, r, measures the rate of return
of the system, Cov(r.,rs) is the covariance between the rates of return, and
Var(rs) is the variance of the rate of return of the system. The rate of return
of a class for version ¢ is calculated based on the metric LENON which is one
of the underlying metrics used by Girba et al (2004) to predict class changes.
This metric identifies the classes that experienced most changes in the last
versions of the system. In LENON, the classes that most frequently changed
are identified by weighting the change in the number of methods (NOM) of a
class between two adjacent versions. More formally:



An Approach to Prioritize Code Smells for Refactoring 9

Table 3: Rate of return example

[ [NOMvI [ NOMv2 | NOMv3 [ NOMv4d [ NOMv5 |
[ Foo [ 3 [ 4 [ 6 [ 6 [ 5 ]
[ Rate of return [ - [ 1273 =0.125 [ 2%272=05 [ 02 1=0 [ 1 ]
k
LENOM; x(C) = Y | NOM;(C) — NOM;_1(C) | x2"~*
i=j+1

where 1 < j < k < n being j the first version of the system analyzed, k£ the
last version analyzed and n the total number of versions of the system.

We have found that our combination of Beta with LENON has in average
a better predictive precision than using only LENON (Hurtado et al 2013).
The rate of return using LENON for version i of a class c¢ is calculated as
follows:

e, = | NOM;(C) — NOM;_{(C) | #2"~™

where n is the total number of versions of the system and NOM;(C) is the
number of method of class C in version i. In this way, in our context, the rate
of return is the gain or loss of number of method in a class or system over a
specified period which are weighted benefiting the latest changes in history.
For example, Table 3 shows the variation of the NOM in a class Foo for 5
different versions of a system. The rate of return of a class is calculated for
each version taking into account the previous version. For instance, the rate
of return for version 2 is calculated as rroo, =| 4 — 3 | ¥2275 = 0.125. Note
that while the change of NOM is the same in version 2 as in version 5, the r,
of version 5 is higher than the one of version 2 since 5 is the latest version.

The 7y is calculated in the same way that r. but NOM is the sum of all the
NOM of the system classes for a specific version. The Var(rs) and Cov(r.,rs)
are calculated using the rate of return values of all the versions.

While SpIRIT calculates the rate of return using NOM, this metric can be
easily configured by the user to other metric such as cyclomatic complexity
or LOC, among others. A discussion of the use of LENOM with other metrics
can be found in Vidal (2013).

Regarding the meanings of different values of 3, if a class has a positive
Beta it means that the NOM of the class tends to increase when the NOM of
the system increases, and conversely, the class NOM tends to decrease when
the system NOM decreases. In contrast, if a class has a negative Beta, it
means that the class NOM generally moves opposite to the system NOM. A
Beta value of zero indicates no correlation between the class and the system.
Beta=1 means that the class is exactly correlated with the system and if
Beta>1 means that the class is correlated with the system but the class is
more volatile than the system (i.e. the class changes often and at a greater
rate than the system).



10 Santiago A. Vidal et al.

Class affected
by code smell

B

<<GodClass>> D

SRC=0.95
RCS=5

Fig. 2: Example of God Class impact.

Finally, to compare the Beta values of classes among them, we normalize
all the beta values to the highest value of Beta. In this way, the class with the
highest Beta will have a normalized value of 1. For example, Fig. 2 shows that
class B is a God Class and that it affects classes C, D, and F. The main class
of the smell is class B and its § (or SRC) is 0.95. We here interpret that the
class is unstable because it changed almost in each system version. For this
reason, the criterion is highlighted in the figure.

The SpIRIT tool allows to load the history of a system as a set of versions,
and each version is loaded by using its own MSE file. Once the history is
loaded, SpIRIT calculates automatically the SRC value for each class affected
by a code smell.

3.2.2 Relevance of a Code Smell (RCS)

This second criterion specifies how relevant a kind of smell is for the developer.
SpIRIT allows the developer to choose a [1..5] ordinal scale for each kind of
smell. In this context, 1 means that the code smell is not relevant for the
system and 5 means that it is very relevant. In the example of Fig. 2, the RCS
value chosen for God classes is the maximum: 5.

This criterion allows SpIRIT to adapt the recommendation of code smells
to the preferences of the developer. By selecting the relevance of a kind of
code smell, the developer can select the smells that she believes are the most
important to the system or the kind of smells she is most familiar with. Addi-
tionally, the developer can indirectly select which problems to deal with such
as coupling, cohesion, or complexity. For example, if the developer wants to
improve the coupling of the system, she would select Intensive Coupling, Dis-
persed Coupling or Shotgun Surgery (Fowler 1999) as most relevant by giving
them values close to 5. Conversely, if the developer wants to improve the co-
hesion, she would select God Class, Brain Method, or Intensive Coupling as
most relevant. Notice that some smells can influence positively or negatively



An Approach to Prioritize Code Smells for Refactoring 11

Modify scenario
Scenario Name

Change 3D visualization engine

Scenario Description

A developer wish to change the visualization engine That generates the 3D view. This cha

Features Classes Packages Importance
Link classes with the scenario

Initial list Selection

AbstractDecoratedAction in com::eteka
AbstractModeChangeState in com::et:
AbstractModelPreviewComponent in ¢
AbstractRoomState in com::eteks::sw

Component3DManager in com::eteks::s\
HomeComponent3D in com::eteks::swe
HomeController3D in com::eteks::sweel
ModelManager in com::eteks::sweethom

AbstractWallState in com::eteks::swe:
ActionAdapter in com::eteks::sweethc Classes
AddedFurnitureSelector in com::eteks mapped to

AlignedPieceOfFurniture in com::eteks
AlignmentAction in com::eteks::sweet
AppletApplication in com::eteks::swee
AppletBasicService in com::eteks:swi

the scenario

Classes of AppletContentManager in com::eteks:
AppletUserPreferences in com::eteks
the system AttributesPreviewComponent in com::

AutoCommitSpinner in com::eteks::sw
AutoCompleteDocument in com::etek:
AutoCompleteTextField in com::eteks
AutoRecoveryManager in com::eteks::
AutoRepeatButton in com::eteks::swe
Backgroundimage in com::eteks:iswet
BackgroundimageUndoableEdit in com
BackgroundimageWizardController in «
BackgroundimageWizardStepState in

BackgroundimageWizardStepsPanel inv
< > < >

Select items with a Smalltalk condition

select: [ :each | '* match: each 1 Validate

Cancel Finish

Fig. 3: Scenario wizard in SpIRIT tool.

more than one aspect of design. For example, the refactoring of an Intensive
Coupling smell can reduce the coupling between classes but it can raise the
complexity of the provider class.

3.2.3 Related Modifiability Scenarios (RMS)

The third criterion analyzes the relation of smells with modifiability scenarios.
By using these scenarios, SpIRIT includes architectural information in the
prioritization of smells. We use modifiability scenarios because they can ex-
press the main goals and constraints of the evolution of a system using natural
language (Ozkaya et al 2010). A scenario briefly describes some anticipated or
desired use of a system (Kazman et al 1996). For example, a modifiability sce-
nario that describes the change of a 3D visualization engine could be as follow:
“A developer wish to change the visualization engine that generates the 3D
view. This change will be made to the code at design time” (Fig. 3). In order to
define the scenarios, it is desirable to have a software architecture model of the
system, so that the architects and developers can refer their scenarios to that
design model. In practice, architects generally know (e.g., via interactions with



12 Santiago A. Vidal et al.

Scenario
| Class affected

by code smell
Class mapped

Importance=0.6,

T s ----> ;
/ from scenario
Y4 ! N
A 1 C
]
]
|
R AN
B S~o .
<<GodClass>> D Scenario
SRC=0.95 < - I
RCS=5 — Importance=0.8
z°
F E Scenario
< ------ 1
— —_— Importance=1

Fig. 4: Example of scenario.

the stakeholders, or just by their own experience) the parts of the system that
need to be modifiable. This perspective assumes that the architecture should
be designed in such way it somehow addresses the constraints imposed by each
scenario. Although scenarios clearly involve architectural aspects, they are also
dependent on code-level aspects of the architecture (Woods 2012). This is the
main reason for us to link scenarios to code smells. Along this line, developers
can normally identify the system features implied by each scenario, and map
them to the detailed design of the system (e.g., packages, classes, or methods).

An interesting benefit of using modifiability scenarios is that this infor-
mation is available since early stages of development. That is, developer can
describe the changes that the system must support since the architecture starts
to be materialized. For this reason, scenarios complement the analysis of his-
torical changes, which is more useful in late development stages.

Each system scenario can be mapped to one or more components or features
of the system that make it possible to realize the scenario. A feature is useful
to define a specific requirement that is implemented by a group of classes or
packages. For each scenario, the developer should specify the features, packages
and/or classes that compose it. For example, scenario I in Fig. 4 is mapped to
classes A, B, and C. Also, to distinguish the importance of each scenario, the
developer could select from a ordinal scale from 0 to 1 the importance of each
scenario, being 1 the most important one. In this example, scenario I has an
importance of 0.6.

The SpIRIT tool presents a simple interface to load scenarios (Fig. 3).
Specifically, the developer must define the name of the scenario and provide
a brief description of it. Additionally, the developer must select the classes,
packages, and /or features of the system that compose the scenario by choosing
from different lists given by SpIRIT (the features can be defined by using



An Approach to Prioritize Code Smells for Refactoring 13

other wizard provided by the tool). For example, Fig. 3 shows the definition
of a scenario called “Change 3D visualization engine”. The left part of the
wizard lists all the classes of the system under analysis. The right part shows
the classes that belong to the scenario.

A scenario is mapped to certain components that are key for fulfilling
the scenario. For this reason, our intuition behind the use of modifiability
scenarios is that fixing first the smells whose components compose the scenarios
will make easier the satisfaction of the scenarios. Thus, if the modifiability
scenarios are satisfied, the impact of future changes should be narrow. Along
this line, using related modifiability scenarios (RMS) we perform a change
impact analysis of the smells vis-a-vis with the scenarios. That is, we determine
which classes affected by a smell are also mapped by a scenario. The classes
affected by a smell are determined for each kind of code smell taking into
account the classes that should be refactored to fix the smell (the worst case
is supposed). For example, the affected classes for a God Class are the main
class in which the scenario is implemented and also the classes that invoke and
are invoked by the God Class.

SpIRIT shows this kind of change impact analysis by means of the so-called
heat maps (D’Ambros and Lanza 2009). In Fig. 5, SpIRIT shows a heat map
of the distribution of the affected packages by the smells of the system. The
packages in color are the ones in which the largest amount of classes affected
by the smells of the system under analysis were found. By means of this kind
of visual inspection of the scenarios, SpIRIT helps developers to focus on the
change impact that the refactoring of a smell (or a group of them) will have
in the scenarios.

The RMS value for a code smell is computed on the basis of the number of
components that belong to the scenarios that are affected by the smell. First,
we sum up the RCS value multiplied by the importance of the scenario that
includes the affected class if the class in which the smell is implemented is
mapped to at least one scenario. Then, for each class affected by the smell
that is mapped to at least one scenario, we sum the RCS value multiplied
by the importance of the scenario and this value is divided by the number of
classes that are mapped by at least one scenario. In those cases in which more
than one scenario maps to a class, the scenario with the highest importance
is used. More formally:

> RCS * importanceScenarios
allClassesAf fected ByScenarios

RMS = RCS * importanceScenarios +

The intuition behind this calculation is to give more importance to those
code smells whose main classes and affected classes are both directly involved
in scenarios.

For example, consider the situation presented in Fig. 4. Three scenarios
are defined in the system. Scenario I is mapped to classes A, B, and C and
has an importance of 0.6. Scenario II is mapped to classes C, D, and F and
has an importance of 0.8. Finally, scenario III is mapped to class F and has
an importance of 1. To calculate the RMS value, the main class of the smell is



14 Santiago A. Vidal et al.

analyzed. Since class B is mapped by scenario I, the importance of scenario I
(0.6) is multiplied by the RCS of the God Class (5). Then, the classes affected
by the smell must be analyzed. The class C is mapped by scenarios I and
II. Since scenario II has a higher importance than I, the importance of the
scenario II is used and 5*0.8 is summed. The class D is only mapped by the
scenario II thus 5*0.8 is summed again. Since no scenario defines class F), it is
not used in the RMS calculation. The resulting RMS for this example is:

5*0.8—|—5*0.8_

RMS =5%0.6+ 5

4.6

Note that in order to draw conclusions from this RMS value, such as
whether it is a high or low value, it would be necessary to compare it with the
RMS values of other smells. For instance, if there is a code smell in class C
(Fig. 4) whose RCS is 4 but it affects classes A, D, and E, its RMS value will
be higher than the one presented before:

45064408+ 4%0.
RMS = 4%0.8 4 2¥00+ *508+ *08 _ 406

3.2.4 Ranking Calculation

The ranking is calculated by aggregating SRC, RCS, and RMS. Specifically, a
ranking value is determined for each code smell as follows:

Ranking = ax (SRC * RCS)+ (1 — a) * RMS

where 0 < a < 1. As it is shown, the values of SRC and RMS are increased
according to the value of RCS (note that RCS is also used to calculated RMS).
Then the increased values are combined to create the ranking. The first part of
the equation, the one that involves SRC, determines the severity of the smell
taking into account the stability of the component in which the smell is defined.
Moreover, the second part, the one involving the use of RMS, determines the
impact of the smell from the perspective of scenarios. The « value allows the
developer to weight the contribution of a particular part of the equation to
the final ranking. For instance, using the example of Fig. 4 and o = 0.5 the
ranking is calculated as:

Ranking = 0.5 % (0.95 % 5) + 0.5 * 4.6 = 4.675

To create the ranking, SpIRIT allows the developer to use all the defined
scenarios or only a subset of them. Fig. 5 shows a snapshot of a ranking
generated by the SpIRIT tool. On the left of the figure, the modifiability
scenarios are listed. On the right, the resulting ranking is shown. The ranking
has four columns: (1) the kind of code smell and the name of the system
element in which the smell is mainly implemented, (2) the ranking value for the
smell, (3) the weight of the history in the ranking value (i.e. ax(SRC* RCS)),
and (4) the weight of the scenarios in the ranking value (i.e. (1 — a) * RMS).



An Approach to Prioritize Code Smells for Refactoring 15

Scenarios

+ v [Zoom out| Show/Hide Dependencies| Code Smells Ranking

Scenarios = Code Smells Code smell Ranking score History Scenarios
God Class -> DefaultSimulationDatabase 5.07 25 257

God Class -> Simulation 5.05 25 2.55

@ Show all

O Modify sim God Class -> EarlyWeaning 3.56 0.95 26
God Class -> Cow 3.54 25 1.04
O Add produc God Class -> Animal 353 25 1.03
o God Class -> Weaning 3.09 049 26
CIEE At s Brain Method -> simulationStep 3.04 15 154
O Add ne Brain Method -> simulationStep 3.04 15 1.54
Brain Method -> simulationStep 3.03 15 1.53
O Add co Brain Method -> insertStep 3.03 15 1.53
O Addmodify outy Brain Method -> simulationStarting 3.03 15 1.53
/ ! Data Class/> SimulationState 3/02 1/5 l-i
Modifiability Scenarios Heat map diagram Code smells ranked Ranking a*(SRC*RCS) (1-a)*RMS

value

Fig. 5: Ranking of code smells with a = 0.5 in the SpIRIT tool

4 Case-studies

In order to evaluate our approach, we conducted two empirical studies, guided
by the following questions:

1. Does SpIRIT ranks first the most critical code smells of a system?
2. Are the smells ranked first by SpIRIT relevant to the developer?
3. What value (or values) of o ranks first the most critical smells?

Questions 1 and 3 are answered in the study presented in Section 4.1 in which
a Java application of 8.5K lines of code with 47 smells is analyzed. In this
case-study, the full ranks of smells generated by SpIRIT with different values
of av are compared against a rank created by an application expert. The goal
is to empirically test how the smells of SpIRIT are ranked when compared to
a baseline made by the application expert.

Question 3 is also analyzed in Section 4.2 along with question 2. In this
study, a middle-size Java application of 38K lines of code was analyzed. The
last version of this application reported a total of 523 smells. Since the analysis
of each smell by an expert was impractical, we analyzed if the top-10 smells
ranked by SpIRIT, with different values of «, were relevant to the expert.

The scope of both case-studies involves the identification and prioritization
of smells whose refactoring could contribute positively to the evolution of the
system. However, we do not consider the refactoring step of SpIRIT in which
the smells are actually fixed. Also, in both case-studies SpIRIT is tested in
smalls team settings where developers work collocated.

4.1 Case-study #1: Subscribers DB Application

The target application is a Java sub-system of a publishing house®. This ap-
plication manages data related to the subscribers of its publications and it

9 For confidentiality reasons, we can not publish details about the company or the source
code of the application



16 Santiago A. Vidal et al.

Table 4: Scenarios mapping.

Scenario name Short description # of Importance
mapped
classes
Add personal A developer wish to add new personal 12 1
data information to be stored in the db
Modify labels A developer wish to change the 2 0.4

information that is printed in the
postal labels

Add search A developer wish to add a new kind 2 0.6
criterion of search to be accessible by the users

supports different queries on the data. Also, the application manages a print-
ing service for the postal labels that go with the publications when they are
periodically distributed to subscribers. The application has more than 15 re-
leases. Its latest version has around 8.5K lines of code and 193 classes. The
main subject in our study was the lead application developer, who has expe-
rience in software design and code smells. The analysis of the latest version of
the application reported 47 smells.

Since the lead developer is requested to give explicit feedback on each
smell, we chose an application with a low number of smells. An application
with numerous smells would do this experiment impractical.

4.1.1 Hypotheses and Operation

In this study we analyze how similar the ranking given by SpIRIT is regarding
the ranking given by the lead developer of the application under analysis (the
comparison is made position by position). Our hypothesis is that a strong
correlation should exist between both rankings (i.e. they are very similar). We
test this hypothesis by generating SpIRIT rankings with different values of «.

This study involved an interview with the application developer. During the
interview the developer was asked to define the main modifiability scenarios of
the application. The developer defined three scenarios that map to 16 classes
of the application (8.3% of the total number of classes). The developer spent
60 minutes to define the scenarios of the application. Table 4 describes the
scenarios and the importance given by the developer.

Also, during the interview, the developer was asked to select the relevance
of different kinds of code smells by using the ordinal scale of SpIRIT. The
developer selected as the most important smells those kinds of smells whose
main entity is a class (i.e. God Class, Brain Class and Data Class).

Finally, after defining the scenarios and smell relevances, the list of smells
of the latest application version was presented to the developer and she was
asked to rank all the smells according to their importance. During this pro-
cess, the developer analyzed the source code of each smell to have a deeper
understanding of the problem.



An Approach to Prioritize Code Smells for Refactoring 17

Table 5: Smells marked to be refactored by the developer.

[ #Ranking | Kind [ Main entity
1 God Class SearchResults
2 Brain Method SearchResults.printLabelsClicked()
3 Brain Method SearchCriteriaForLabel.filterList OfPersons(List)
4 God Class Person
5 Intensive Coupling SearchResults.printLabelsClicked()
6 Shotgun Surgery Label.get AssociatedFields()
7 Intensive Coupling DatabaseManager.updatePerson(Person)
7 Intensive Coupling AddPersonFrame.acceptButtonClicked()
8 Dispersed Coupling | SearchCriteriaForDonation.filterList OfPersons(List)
8 Dispersed Coupling SearchCriteriaForLabel.toString()
9 Dispersed Coupling Person.compare(Person, Person)
9 Dispersed Coupling AddLabel.okButtonClicked()
9 Dispersed Coupling AddEvent.okButtonClicked()
9 Dispersed Coupling AddPersonToEvent.btnAddCurrentDateClicked ()
9 Dispersed Coupling AddPersonFrame.loadDistributors()
9 Dispersed Coupling AddDonation.saveButtonClicked ()
9 Dispersed Coupling EditLabelsForPerson.okButtonClicked()

4.1.2 Analysis and Interpretation

While no indications were given to the developer on how to prioritize the
smells, she decided to mainly rank them using the kind of code smell as the
criterion. However, the developer also used other criteria such as the impor-
tance of the class in which the smell was implemented, the frequency of class
modifications, and the relationship with scenarios. Also, she ranked the smells
taking into account if she considered that the smell should be refactored in
the short term (this information is shown in Table 5). The developer gave us
several reasons for not refactoring a smell, namely: it was implemented in a
class that is not usually modified, the problem is not really important (e.g.
an intensive coupling that is coupled with an UT class), the smell is a false
positive (e.g. a shotgun surgery method that gets the instance of a singleton
(Gamma et al 1995) class), among others. From a total of 47 smells, the devel-
oper indicated 17 smells to be refactored. These 17 smells were, logically, the
first ones in the ranking (Table 5). In some ranking positions the developer
indicated ties.

After analyzing the ranking we found that the developer ranked first many
smells that are related to the modifiability scenarios she previously had defined.
A total of 14 smells out of 47 are related to these scenarios. The developer
ranked 8 of these 14 smells to be refactored. The smells related to modifiability
scenarios are those highlighted in gray in Table 5.

Once the interview was finished, the modifiability scenarios and the smell
relevances defined by the developer where loaded into SpIRIT along with the
history of the application (15 releases). We were interested in the influences of
the code history and the modifiability scenarios on the ranking. As discussed
in Section 3, this influence is weighted by parameter . For this reason, after



18 Santiago A. Vidal et al.

Code Smells Ranking Code Smells Ranking
Code smell Ranking score History  Scenarios Code smell 'Ranking score History | Scenarios
Brain f 415 0.0 415 3.75 2.5 1.25
3.18 0.0 3.18 d 3.0 2.0 1.0
2.5 0.0 25 Inte printL; ced  2.25 1.5 0.75
2.09 0.0 2.09 Intensive Coupling -> updateTable 2.15 1.5 0.65
2.07 0.0 2.07 i -> filterListOfPersons 2.07 0.0 2.07
2.0 0.0 2.0 1.98 039 159
ons 2.0 0.0 2.0 pdatePerson 1.55 1.5 0.05
S ds 1.98 0.0 1.98 Shotgun Surgery -> getinstance 1.5 15 0.0
Shotgun Surgery -> getName 1.87 0.0 1.87 Shotgun Surgery -> getName 1.47 0.42 1.04
Shotgun Surgery -> getFamilyName 1.87 0.0 1.87 Dispersed Coupling -> deletePerson 1.43 1.0 0.43
Intensive Coupling -> printLabelsClicked 1.5 0.0 15 Dispersed Coupling -> getindexOfPerson 1.43 1.0 0.43
Intensive Coupling -> updateTable 1.31 0.0 1.31 Shotgun Surgery -> getAssociatedFields 1.42 0.42 0.99
Dispersed Coupling -> deletePerson 0.87 0.0 0.87 Shotgun Surgery -> getName 117 023 093
Dispersed Coupling -> getindexOfPerson 0.87 0.0 0.87 Shotgun Surgery -> getFamilyName 117 023 0.3
Dispersed Coupling -> searchButtonClicke 0.42 0.0 0.42 D lir pare 1.07 1.0 0.07
-> btnEliminarCriterio( 0.37 0.0 0.37 Disp g 1.03 0.0 1.03
Distributors  0.15 0.0 0.15 Dispersed Coupling -> btnEliminarEtiqueta 1.02 0.94  0.07
(a)a:ﬂ (b)a:05

Code Smells Ranking

Code smell Ranking score History Scenarios
5.0 5.0 0.0
4.0 4.0 0.0
> d 3.0 3.0 0.0
Shotgun Surgery -> getinstance 3.0 3.0 0.0
Intensive Coupling -> updatePerson 3.0 3.0 0.0
Intensive Coupling -> updateTable 3.0 3.0 0.0
Dispersed Coupling -> getindexOfPerson 2.0 2.0 0.0
Dispersed Coupling -> deletePerson 2.0 2.0 0.0
Feature Envy -> eventHasInstanceDate 2.0 2.0 0.0
Dispersed Coupling -> compare 2.0 2.0 0.0
Dispersed Coupling -> createAssociatedFi1.89 1.89 0.0
Dispersed Coupling -> comboBoxChange 1.89 1.89 0.0
Dispersed Coupling -> addLabelButtonClic 1.89 1.89 0.0
Dispersed Coupling -> okButtonClicked 1.89 1.89 0.0
Dispersed Coupling -> loadLabels 1.89 1.89 0.0
Dispersed Coupling -> btnEliminarEtiqueta 1.89 1.89 0.0
Sho ns -> getA: dFields 0.85 0.85 0.0

(c)a=1

Fig. 6: Comparison of top ranked smells.

loading the scenarios and relevances, the SpIRIT ranking was obtained using
different configurations of « in the range 0 < a < 1.

For example, Fig. 6 shows the first 17 positions of the rankings of SpIRIT
for three reference values of «: no influence of the system history (o = 0), equal
influence of both history and scenarios (o = 0.5), no influence of the scenarios
(a = 1). The smells highlighted are those smells that are also present in the
top-17 smells suggested by the developer. Note that the rankings generated
with @ = 0 and o = 0.5 contain 9 out of the 17 most critical smells in their first
17 positions. Regarding the ranking of o = 1, it contains 7 smells. As expected,
the ranking generated with o = 0 contains in the first positions the 8 smells
related to scenarios marked to be refactored by the developer. However, these
8 smells are also top-ranked with a = 0.5, meaning that most of these smells
are not only influenced by scenarios but also by history (although in a smaller
percentage).

Regarding the positions of the smells, Table 6 compares the positions sug-
gested by the developer for the smells marked to be refactored with their
counterparts after running SpIRIT. The cells highlighted in gray indicate the
positions of the SpIRIT ranking that are less than two positions away from the
positions proposed by the developer. For example, the God Class SearchRe-



An Approach to Prioritize Code Smells for Refactoring 19

Table 6: Comparison of positions of smells marked to be refactored.

Rankin
Code smell Developer | a=0 | i =05 a=1
God Class - SearchResults 1 3 1 1
Brain Method - 2 6.5 2
SearchResults.printLabelsClicked()
Brain Method - SearchCriteriaForLa- 3 1 5 40
bel filterListOfPersons(List)
God Class - Person 4 2 6 21
Intensive Coupling - 5 11 3 4.5
SearchResults.printLabelsClicked ()
Shotgun Surgery - 6 8 12 17.5
Label.get AssociatedFields()
Intensive Coupling - 7 25 7 4.5
DatabaseManager.updatePerson(Person)
Intensive Coupling - 7 25 33.5 29
AddPersonFrame.acceptButtonClicked()
Dispersed Coupling - SearchCriteriaForDona- 8 6.5 20.5 40
tion.filterListOfPersons(List)
Dispersed Coupling - 8 5 16 40
SearchCriteriaForLabel.toString()
Dispersed Coupling - Person.compare(Person, 9 19.5 15 8.5
Person)
Dispersed Coupling - 9 30 37 40
AddLabel.okButtonClicked()
Dispersed Coupling - 9 40.5 43 40
AddEvent.okButtonClicked()
Dispersed Coupling - AddPersonTo- 9 40.5 28 19.5
Event.btnAddCurrentDateClicked()
Dispersed Coupling - 9 19.5 35 32
AddPersonFrame.loadDistributors()
Dispersed Coupling - 9 40.5 43 25
AddDonation.saveButtonClicked()
Dispersed Coupling - 9 19.5 18 13.5
EditLabelsForPerson.okButtonClicked()

sults ranked first by the developer was also in the first position in the SpIRIT
ranking for a = 1. Note that the ranking generated with @ = 0.5 is the most
accurate when the ten first positions are compared. In this case, 6 of the first
7 smells are ranked less than two positions away from the positions proposed
by the developer. This fact is important because it shows that the first smells
ranked by SpIRIT are not only those indicated as the most critical ones by
the developer but also that they are the ones marked to be refactored.

While the analysis above provides evidence that SpIRIT ranks in the first
positions the majority of the critical smells, it is important to analyze how
accurate these positions are. Given the ranking proposed by the developer, we
need to determine how close SpIRIT comes to the proposed ranking. Since the
developer’s ranking preferences are known, we apply the Spearman’s correla-
tion coefficient (p) (Ricci et al 2011). This coefficient measures the strength
of association between the developer’s and SpIRIT rankings. Since the devel-



20 Santiago A. Vidal et al.

e All smells

£ 0,3 Refactorizable smells

00102030405060,70,809 1
o

Fig. 7: Spearman’s correlation results.

oper’s and SpIRIT rankings contain ties (i.e. more than one smell have the
same ranking position) we use the following method to calculate the Spear-
man’s correlation:
i@ )i —y)

\/Zz(mz —2)? )i (yi — )

where z; and y; are the ranking positions for the same code smell instance
in the developer’s and SpIRIT rankings respectively. Regarding Z and g, they
are the means of the ranking values of each ranking. In the case of tied smells,
their ranking value should be the average of the ranking position. For example,
if the smells in positions 1, 2 and 3 of the SpIRIT ranking have the same
ranking score, the ranking value assigned to each of them must be # =2
The coefficient can take values between 1 and -1. If p=1, it indicates a perfect
association between both rankings. If p=0, it indicates no correlation between
the rankings. If p=-1 indicates a negative association between the rankings.

Fig. 7 shows the variations of the p coefficient for different values of «.
When all the smells ranked were analyzed, we found that the coefficient varied
between 0.58 < p < 0.62 for a values between 0 and 0.5. The highest value
of p was found after generating the ranking with a = 0.2. The Spearman’s
correlation value sharply decreased for a « value higher than 0.6. This means
that the rankings proposed by SpIRIT, when the modifiability scenarios are
taken (to some extent) into account, are very close to the ranking proposed by
the developer. A similar behavior is observed when only the smells marked to
be refactored are taken into account to calculate the correlation. In this case,
the values of p are higher than those for the cases in which all the smells were
considered. The highest values of p ranges 0.8 < p < 0.88 for « values between
0.1 and 0.6. In this case, the highest value of p was found for a = 0.4. Such
high values of p, when only the smells marked to be refactored are taken into

p




An Approach to Prioritize Code Smells for Refactoring 21

account, means that this subset of smells is ranked by SpIRIT in almost the
same positions as the ones proposed by the developer.

Results Overall, we found that SpIRIT ranks first the most critical smells
of an application. The analysis of all the smells versus the ones marked to be
refactored by the developer shows that a combination of scenarios and history
is appropriate to generate the SpIRIT ranking. This is because the highest
values of p where found for values of « close to 0.5.

4.1.8 Threats to Validity

Next, we analyze threats to four types of validity for this study.

Conclusion validity This threat concerns the statistical analysis of the results.
In this case, the main concern is that the study was made over one single appli-
cation with one developer. This could reduce the ability to draw correct results.
For this reason, we think that further experiments with other applications are
necessary in order to generalize our results.

Internal validity This threat concerns causes that can affect the indepen-
dent variable of the experiment without the researcher’s knowledge. The main
threat in this case is that we did not have a “second opinion” to contrast the
scenarios and ranking given by the developer. For example, other developers
could have defined more scenarios or made different mappings leading to dif-
ferent results. Also, it is unknown if other developers could have prioritized
first those smells related to modifiability scenarios. However, we argue that
the developer prioritized first the smells related to scenarios because they are
related with classes that are the main sources of problems. The person that
defined the scenarios and the ranking was the application developer, who had
a deep understanding of the application and of the kind of changes that could
typically occur. For this reason, the internal validity is not considered to be
critical. Anyway, the intervention of a second developer to contrast the defini-
tion of the ranking and the scenarios should be considered in future works to
mitigate this threat.

Construct validity It is concerned with the design of the experiment and the
behavior of the subjects. Our main concern if that the developer’s ranking
could have been influenced by the relevances of the smells and the descrip-
tion of the scenarios made at the beginning of the experiment. That is, the
developer could have followed a different approach to rank the smells if the
definition of the smell relevances and the scenarios have been done after cre-
ating the ranking. However, it was emphasized during the interview that the
ranking did not necessarily depend on the relevances and scenarios.



22 Santiago A. Vidal et al.

External validity 1t is concerned with having a subject that is not represen-
tative of the population. The main treat is that the application analyzed was
small with a reduced amount of code smells. However, the same analysis in
larger applications is not always viable because a developer must manually
analyze each smell and suggest its ranking. Also, another threat is that the
experiment was conducted in a small team setting with all developers col-
located. Although scenario-based techniques have been regarded as useful in
the literature, the definition of a comprehensive set of scenarios can be an
expensive process in industrial contexts, particularly because it requires both
architects’ expertise and stakeholders’ commitment. This adoption barrier has
been discussed in (Bashroush et al 2004; Woods 2012). In our approach, the
value of the modifiability scenarios stems from their ability to focus archi-
tects, stakeholders and developers on important system areas. In addition to
the scenario definition (at the architectural level), a related threat has to do
with relationships between the scenarios and the code. In this experiment, hav-
ing a small team of developers working collocated helped them to reason and
discuss about the system. Nonetheless, in larger or geographically-distributed
teams, reasoning about the internal system details and their effects on code
smells can be harder.

4.2 Case-study #2: Beef-Cattle Farm Simulator

We conducted an empirical study on a non-trivial Java application. The target
application is a Beef-Cattle Farm Simulator (BCFS) (Mangudo et al 2012;
Marcos et al 2011) developed by a local software factory, and currently being
used by several agro-livestock companies. This application has been developed
for 5 years so far following an iterative, agile process. BCFS has around 38K
lines of Java code and 425 classes. The case-study involved the analysis of the
latest version of this application. The main subject in our study was the lead
architect of BCFS, who has vast experience in the design and implementation
of this kind of systems. A first run of Sp/RIT on BCFS reported 523 smells.
Fig. 8 shows the distribution of the different kinds of smells. While three
kinds of smells represents the 70% of the smells found, this does not mean
that these types of smells are the most relevant ones. It is in this situation
that the prioritization of SpIRIT becomes helpful.

4.2.1 Hypotheses and Operation

SpIRIT is assumed to rank first the most important smells of the system.
Our goal was to empirically evaluate this hypothesis, from the perspective of
a domain and development expert. Unlike case-study #1, it is not possible
to ask the developer to rank all the possible smells of the system, mainly
because the number of smells is very large. For this reason, in this case study
we analyze the relevance for the developer of the SpIRIT top-ranked smells.



An Approach to Prioritize Code Smells for Refactoring 23

Brain Class, 3, Brain Method,
0,57% 61, 11,66%
Refuse
Parent Data Class, 19,
B ¢ Shotgun 3,63%
equest, Surgery, 104,
3,0,57%

19,89%
Intensive
Coupling, 39,
7,46%

God Class,
28,5,35%

Fig. 8: Code smells of BCFS

As in case-study #1, three reference values of o were used (0, 0.5 and and,
respectively).

Hypotheses In this study, we consider that SpIRIT will rank first the most
important smells if at least 7 smells of the first 10 ranked are judged as im-
portant by the developer (i.e. more than 60% of the top-10 smells must be
important). Along this line, we formulated the following null hypotheses:

— H1y number of important code smells < 60% of the first 10 smells ranked
with a configuration of a = 0.

— H?2( number of important code smells < 60% of the first 10 smells ranked
with a configuration of a = 0.5.

— H3y number of important code smells < 60% of the first 10 smells ranked
with a configuration of @ = 1.

Also, we formulated the following alternative hypotheses:

— H1; number of important code smells > 60% of the first 10 smells ranked
with a configuration of o = 0.

— H?2; number of important code smells > 60% of the first 10 smells ranked
with a configuration of o = 0.5.

— H3; number of important code smells > 60% of the first 10 smells ranked
with a configuration of oo = 1.

As for the variables selection in the study, the independent variables are those
involved in the configuration of SpIRIT, namely: the parameter «, the rele-
vance of each kind of smell, and the modifiability scenarios inputted into the

tool. The main dependent variable in our analysis is the ranking proposed by
the tool.

Operation The evaluation process involved two rounds of interviews with the
lead developer of BCFS. While the developer had previous knowledge of code



24 Santiago A. Vidal et al.

Table 7: Developer’s ranking of most problematic classes.

[ Class ]

Farm
Animal
FeedIntake
GrowAnimals
FeedIntakeCalf
GrowCalf
MobExcelExportDecorator
FarmExcelExportDecorator
Cow
OrganizeMobs

smells and modifiability scenarios, she was given an introduction to the topic.
However, the developer was not aware of our hypotheses for the tool. In the
first interview, we tried to capture the main structural problems of BCFS. To
this end, the developer provided us with a list of the 10 classes that she believed
were the most problematic ones for the current system version. Then, we asked
the developer to define a set of modifiability scenarios that she considered as
key for the current system goals. She assigned a priority to every scenario,
mapping each one to a group of related classes. As a separate activity, she also
defined the relevance of each kind of code smell, in the context of BCFS.

After this first interview, we fed the modifiability scenarios and the rele-
vances of the smells into SpIRIT. Also, we loaded into SpIRIT the previous
versions of the application to take its history into account. Based on the three
a configurations above (0, 0.5, and 1), we executed the tool and obtained
three corresponding rankings of smells. Then, we came back to the lead devel-
oper for a second interview. We presented the first 10 smells of each ranking
to the developer in a random order, and asked her to grade the importance
of the smells for BCFS using a five-level ordinal scale (not at all important,
somewhat unimportant, neutral, somewhat important, and very important).
In particular, for every smell of the rankings, he was required to answer the
question: how important do you think code smell X is?

4.2.2 Analysis and Interpretation

In this section the interviews with the developer are described and the results
of them are analyzed.

Analysis of the First Interview During the first interview, the developer ranked
the 10 classes that he believed were the most problematic ones of the applica-
tion (Table 7). In addition, the developer defined 6 modifiability scenarios for
BCEFS. These scenarios mapped to 64 different classes, which represents the
15% of the application classes. The developer spent 120 minutes to define the
scenarios of the application.



An Approach to Prioritize Code Smells for Refactoring 25

Table 8: Relevance of code smells given by the developer.

[ Code smell [ Relevance ]

God Class 5
Brain Class
Brain Method
Data Class
Dispersed Coupling
Feature Envy
Intensive Coupling
Shotgun Surgery
Refused Parent Bequest
Tradition Breaker

=N N N N of Lo i~

Also, the developer defined the God Class and the Brain Class as the most
relevant smells (Table 8). Note that the developer defined God Class and Brain
Class as the most relevant smells even when both had very few occurrences in
the total list of smells for BCFS (5.35% and 0.57% respectively, as shown in
Fig. 8). This supports the intuition that some smells are more important than
others for the developer, regardless of their density in the code.

With these values as input, SpIRIT generated three rankings. Table 9
shows the top-10 smells of each ranking. All the rankings were primarily com-
posed by God classes, as follows::

— a =0 9 instances of God Class and 1 instance of Brain Class.
— a=0.5 6 instances of God Class and 4 instances of Brain Class.
— a=1 10 instances of God Class.

These results can be explained by the fact that the God Class was defined as
the most relevant smell, and the main classes of the ranked God classes have
high SRC (Relevance of a Code Smell) values or they are mapped by scenarios.

The overlapping between the rankings generated with the three values of o
was relatively low (considering just the first 10 smells of each ranking). Only
two smell instances were present in the three rankings (although in different
positions). This means that the values chosen for « are sufficiently different to
conduct the experiment. Table 10 shows the percentage of overlapping between
the top-10 smells of the three rankings. For example, only four smells ranked
in the top-10 of the ranking generated with o = 0 are present in the top-10
generated with @ = 0.5.

We also compared the main classes of the first 10 smells of the rankings
generated by SpIRIT against the 10 classes provided by the developer. Re-
member that the developer defined her ranking before knowing the lists of
smells outputted by SpIRIT. In the SpIRIT ranking with o = 0.5, we found
that the main classes of the first 4 smells (of the list of 10 smells) matched
some of the classes in the developer’ ranking (Fig. 9). This matching shows
that 40% of the smells in the SpIRIT ranking are implemented in problem-
atic classes from the list given by the developer. If we analyze the values for
a = 0 and o = 1, the matching classes are lower than those for a = 0.5.



26 Santiago A. Vidal et al.
Table 9: Top-10 smells of the rankings generated by SpIRIT.
[ a=0 a=0.5 [ a=1
God Class - God Class - DefaultSimulationDatabase God Class -
Reproduction DefaultSimulation-
Database
God Class - God Class - Simulation God Class -
‘Weaning Cow
God Class - God Class - EarlyWeaning God Class - Re-
EarlyWeaning proDataSummary
God Class - God Class - Cow God Class -
OrganizeMobs Animal
God Class - God Class - Animal God Class - Simu-
MoveMobs lationFrontEnd
God Class - God Class - Weaning God Class -
DefaultSimulation- Simulation
Database
God Class - Brain Method - GrowAni- God Class -
Simulation mals.simulationStep(Simulation) FeedlotType
God Class - Brain Method - FeedIn- God Class -
GrowPasture take.simulationStep(Simulation) Mob
God Class - Brain Method - God Class Mob-
Economico ProductiveDataRecopila- CowCalfFeatures
tion.simulationStep(Simulation)
Brain Class - Brain Method - DefaultSimulation- God Class - Pro-
Hibrido Database.insertStep(Simulation) ductiveSummary

Table 10: Overlapping between SpIRIT rankings.

« 0 0.5 1
0 - 40% | 20%

0.5 | 40% - 40%
1 20% | 40% -

Note that, although a 40% of matching is relatively low in terms of predictive
power of SpIRIT, it is important to know if the remaining smells (those whose
main class is not in the developer’s ranking) are actually problems that the
developer might have overlooked. This aspect is analyzed during the second
interview. Table 9 highlights in gray those smells of the SpIRIT ranking whose
main class was ranked by the developer as a source of problems. For example,
the God Class Cow is highlighted in gray in Table 9 because this class was
identified as a source of problems, as shown in Table 7.

We analyzed the number of main classes (of the smells) that received map-
pings from at least one scenario, as a sanity check about the influence of
scenarios according to the value of «. This analysis was made for the first 10
smells ranked by SpIRIT. Interestingly, we found that all main classes of the
SpIRIT ranking using 0 < a < 0.5 had mappings from one or more scenarios
(Fig. 10). This level of matching indicates that when the scenarios are used
for generating the ranking, the top positions of the ranking are smells strongly
related to those scenarios. This finding is worth noticing because the scenarios



An Approach to Prioritize Code Smells for Refactoring 27

=
o

O R N W H U1 O N 0 W

#coincidences with developer ranking

Fig. 9: Coincidences between classes of the SpIRIT ranking and the developer’s
ranking

=
o

#tcoincidences with scenarios

O Rr N W bH U OO N © O

Fig. 10: Coincidences between main classes of the code smells ranked and
classes mapped by scenarios

only covered 15% of the system classes. Regarding the main classes of all the
code smells, only 49% of them are mapped by some scenario.

Analysis of the Second Interview To test the hypotheses, we used a binomial
test because we consider each smell as an independent trial and evaluated a
finite number of them. The test inputs were the developer’s answers to the
statement “How important do you think each code smell is?”. These answers
are summarized in Table 11. The table shows the agreement of the developer
with the importance of the top-10 smells of the rankings generated by SpIRIT
with different values of a.

We consider that a smell is important if the developer’s answer was Some-
what tmportant or Very important. That is, for « = 0 and o = 0.5 we have 9



28 Santiago A. Vidal et al.
Table 11: Developer’s agreement with the ranked smells
«a Not at all Somewhat Neutral Somewhat Very
important unimportant important important
0 - - 1 2 7
0.5 - - 1 2 7
1 - 4 1 - 5

important smells. Analogously, for &« = 1 we have 5 important smells. Table
9 shows in bold those smells of the SpIRIT ranking that were judged as im-
portant by the developer. Note the differences (and overlaps) with the smells
considered as related to problematic classes by the developer during the first
interview (gray cells in the table). The differences essentially say that SpIRIT
uncovered problems that went undetected to the developer (in her first anal-
ysis). Thus, with this additional information, the 40% of problem matching
observed during the first interview for the ranking generated with a = 0.5 now
goes up to a 90% of matching.

The facts above, however, need to be checked from a statistical perspective.
Let X be the number of important smells and k£ = 0.6 the probability that
we want to test in the null hypotheses (Hp). Then, the binomial test statistic
is X ~ B(10,0.6). After testing the data for « = 0 and a = 0.5 with a
significance level of 5%, we obtained a p-value=0.04636. Since p-value<0.05,
it is possible to reject the null hypotheses with a one-tailed test. This means
that we accept the alternatives hypotheses H1; and H2;, which state that the
number of important code smells (ranked in the first 10 positions) is greater
or equal than 7 when a = 0 or @ = 0.5 is used.

Similarly, we tested the data for « = 1 (H3p) with a significance level of
5% . In this case, we obtained a p-value=0.8338. Since p-value<£0.05, it is not
possible to reject the null hypothesis with a one-tailed test. Thus, the number
of important smells (ranked in the first 10 positions) is equal or less than 60%
of the smells.

Results Overall, we investigated how important the first 10 smells ranked by
SpIRIT were, from the point of view of the developer. We verified that SpIRIT
ranks at least 7 important smells in the first 10 positions of the ranking when
a = 0 or a« = 0.5. That is, the best results are found when the ranking is
influenced (to some extent) by the modifiability scenarios. Since only 10% and
40% (for « = 0 and « = 0.5 respectively) of the smells ranked by SpIRIT
were shared by the developer’s ranking, these results indicate that SpIRIT is
indeed useful to the developer as it reveals “new” problems in the form of code
smells. This finding is graphically shown in Table 9 by the smells in bold that
are not highlighted in gray.

Another interesting finding derived from the good results with o = 0 is
that the approach could also generate acceptable rankings when the history
it is not available. This case is specially relevant in early development stages
of an application or when there is little or no history of previous versions



An Approach to Prioritize Code Smells for Refactoring 29

available. However, the mixture of criteria had the best performance. This is
because the ranking generated with o = 0.5 contains more smells that affects
problematic classes than the rankings generated with « = 0 and o = 1 see the
smells highlighted in gray in Table 9).

4.2.8 Threats to Validity

Our case-study and its results are subject to validity threats.

Conclusion validity While well-known statistical techniques were applied in
the experiment, the main concern is that the experiment was conducted over
one single application. This fact could reduce the power of the statistical test.
For this reason, we think that further experiments with other applications are
necessary in order to generalize our results.

Internal validity In our case, the main threat is the selection of the developer.
Since she defined the scenarios and also indicated the relevance of each code
smell, having other expert developers with a different background or percep-
tion of the system could generate different results. To mitigate this threat, a
second developer of the application could be interviewed to corroborate the
answers of the first developer.

Construct validity The main concern is that the previous knowledge of the de-
veloper about certain kinds of code smells could have made her prefer specific
relevance values for those smells, regardless of their importance in the appli-
cation context. We think that this is a minor threat because each developer
would have different preferences about the smells relevances.

External validity In this case, this threat concerns the generalization of the
experiment results to other environments. A minor threat is that the developer
only analyzed the first 10 positions of each ranking. However, the analysis
of all possible values was not viable. Also, this experiment is threatened by
the concerns that we detail on case-study #1 about the difficulty to define
modifiability scenarios in some contexts and also on how to map scenarios to
source code in large or geographically-distributed teams.

5 Related Work

The literature proposes various approaches to prioritize problems in object-
oriented systems.

Tsantalis and Chatzigeorgiou (2011b) rank refactoring suggestions to deal
with code smells based on the analysis of past modifications. In this ranking,
those refactorings whose target code was modified in the past will have the
highest priority. Similar to us, the approach uses historical volatility models
taken from the field of financial markets to calculate the probability of change



30 Santiago A. Vidal et al.

of a given component. However, the way in which the volatility is calculated
by the authors varies for each kind of code smell. Thus, the volatility is based
in each instance of the smell. That means that the volatility can only be
calculated since the creation of the smell ignoring important information of
changes that could have been done before. Additionally, since only the volatil-
ity is taken into account to rank the smells, this approach can only be used
in late development stages. Also, instead of generating a unique ranking, this
approach generates a different ranking for each kind of code smell. This could
confuse developers when a catalog of smells is used because of the high number
of rankings. Moreover, the developer would not know which kind of smell to
refactor first. Another difference between this approach and the Beta analysis
used by us is that Beta calculates the volatility by comparing the change be-
tween the system and a class. That is, Beta allows us to know how important
the changes are in the class with respect to the changes in the system.

Tsantalis and Chatzigeorgiou also present approaches to identify state-
checking problems (the use of if clauses to decide the behavior of an object
instead of polymorphism) and the decomposition of large methods (Tsantalis
and Chatzigeorgiou 2010, 2011a). Differently from us, the ranking in these ap-
proaches is done according to specific characteristics of the problems detected
(e.g. number of instance variables used). Also, this work only ranks problems
of the same kind.

Girba et al (2004) follow the hypothesis that those fragments of code that
were modified in the past are more likely to be modified in the future. This
work analyzes each class of a version of a system using an algorithm that deter-
mines the probability of change of the class in future versions. The algorithm
simply makes a ranking of the most changed classes in the last n versions of
the system, then selects the top X classes. If the class is likely to change, then
it is marked as candidate class to be refactored. That is, differently to us the
output of the approach is not a list of smells but simply a list of classes that
were modified frequently in the last versions of the system under analysis.
The work does not cover the analysis of possible problems in the classes to
be refactored or the suggestion of refactorings. To measure the change of a
class between versions, the authors introduce a metric called Latest Evolution
of Number of Methods (LENOM) that identifies the classes that experienced
more changes in the last versions of the system.

Lanza and Marinescu (2006) present a strategy to identify code problems
called disharmonies. The disharmonies are defined based on a combination of
different metrics that have to exceed a predetermined threshold. They also
propose the use of a visualization technique called Class Blueprint in order to
complement the detection strategy. To prioritize the disharmonies to be refac-
tored, the authors propose a naive approach in which the classes (or methods)
that present a high number of disharmonies should be refactored first. We
think that analyzing the concentration of smells can be an interesting comple-
ment for SpIRIT in the task of understanding the system under analysis.

Marinescu (2012) proposes the measurement of the impact of code smells
based on three factors: (i) the negative influence of a kind of code smell in the



An Approach to Prioritize Code Smells for Refactoring 31

architecture of a system; (ii) the kind of entity that the smell affects (such as a
method or a class); and (iii) the values of the metrics used to identify each kind
of code smell. This impact score can be used to rank smells. Factors (i) and
(ii) are similar to our RCS criteria. In the case of factor (i) it is pre-calculated
for each kind of code smells using a three value nominal scale (low, medium,
high). That is, not real assessment is performed of the impact of a smell’s
instance in the architecture of the system but an estimation of the influence
of a kind of smell. Regarding factor (iii), we think that a similar calculation
can be used to measure the benefits of fixing a smell.

Arcoverde (2012) presents an approach to prioritize code smells using
heuristics. The heuristics are based on different characteristics, namely: the
number of changes of a component (e.g. packages, classes) during the history
of a system, the number of bugs found in the component during its history, the
concentration of smells in a class or package, and architecture roles played by
classes. The heuristics are used to rank first those smells that affect components
that meet the heuristics. While this approach takes into account architectural
information through the use of architectural roles, the definition of architec-
tural roles requires a thorough knowledge of architecture (for example, some
form of documentation of the architecture, which typically is not available).
Differently, to define the modifiability scenarios of our approach this kind of
information is not always necessary since developers generally know the parts
of the system that needs to be modifiable. Another difference with SpIRIT is
that the work does not take into account the relevance of each kind of code
smell.

Moreover, in contrast to the aforementioned approaches, our approach re-
lies on modifiability scenarios as the lenses to look at important code smells.
In this way, SpIRIT prioritizes those parts of the application that need to be
as modifiable as possible.

6 Conclusion

This article presents a semi-automated approach for prioritizing code smells
before deciding on suitable refactorings for them. The approach is based on
three criteria: the history of changes of the components in which a smell is
implemented, the relevance of the kind of smell for the developer, and how
smells are affected by key modifiability scenarios. The approach is intended
to help the developer choose which code smells should be fixed based on how
critical the smells are.

In order to validate the benefits of the approach we conducted two case-
studies. These case-studies corroborated our assumptions about the advan-
tages of our approach, allowing the developer to refactor first the most critical
smells. In the first study, we compared the smells ranked by SpIRIT for a Java
application with the smells ranked by an expert in the application. We found
that the ranking proposed by SpIRIT generated with 0 < o < 0.5 were highly
correlated with the one proposed by the expert. In the second study, we ana-



32 Santiago A. Vidal et al.

lyzed how important the top-ten smells ranked by Spirit are for the developer
in the context of a mid-size Java application. We found that SpIRIT ranks
at least 7 important smells for the developer in the first 10 positions of the
ranking when a = 0 or & = 0.5. That is, we found in both studies that SpIRIT
ranks first the most critical smells of an application when the three criteria
are combined. However, we also found that SpIRIT returns acceptable results
when the criterion based on modifiability scenarios is preferred over the his-
tory. This is important because the history criterion has some drawbacks when
used in isolation. For example, since a number of past versions needs to be
available for the analysis, the results often come “late” in the lifecycle, when
problems are harder to fix or important efforts might have been committed to
implementation. Moreover, results from the second study showed that SpIRIT
helps to reveal “new” problems in the form of code smells that the developer
was not aware of.

Although we found that the approach helps the developer during the pri-
oritization and refactoring of smells, the approach has still some limitations.
First, since the Beta analysis is currently based on changes in the number of
methods, it does not identify as a change the situation in which a number of
methods of a class are removed and a same number of new methods are added.
It neither takes into account the case in which the whole body of a method
(or an important part of it) is replaced. Second, an adoption challenge is that
the definition of scenarios by the developer can take some time and might re-
quire experience and knowledge of the system. Anyway, we believe it pays off in
terms of aligning the code smell analysis with the system goals. Third, another
limitation is that the criteria that takes into account the history of changes of
the application can only be used in late stages of development (when enough
history is available). However, we think that this criterion is complemented by
the other two which can be used from the beginning of the development.

As future work, we will propose strategies to suggest refactorings to fix
smells. Along with the suggestion of refactoring alternatives, we also plan to
measure not only their benefits but also the cost of applying each alterna-
tive. These measurements should be based in different aspects: the number
of refactorings of an alternative, the kind of refactorings to apply, the num-
ber of classes affected, among others. Moreover, this cost measurement could
be integrated into SpIRIT as a new prioritization criterion. In this way, the
developer could prioritize the most critical smells with the lowest refactoring
costs. We also plan to test SpIRIT in other applications. For instance, we are
interested in using SpIRIT to assist novice developers who are tasked to do
refactoring of a system they might not be familiar with. In this situation, we
conjecture that SpIRIT can help these developers to be more productive in
their analysis of smells. Also, we will replicate some of the experiments and
also analyze applications written in other programming languages than Java.

Acknowledgements This work was partially supported by CONICET (Argentina) through
PIP Project No. 112-201101-00078. We are grateful to Mauricio Arroqui and Carlos Machado
for their valuable collaboration in the BCFS case-study.



An Approach to Prioritize Code Smells for Refactoring 33

References

April A, Abran A (2008) Software maintenance management: evaluation and continuous
improvement. IEEE Computer Society

Arcoverde RL (2012) Prioritization of code anomalies basead on architecture sensitiveness.
Master’s thesis, Pontificia Universidade Catdélica do Rio de Janeiro

Bashroush R, Spence ITA, Kilpatrick P, Brown TJ (2004) Towards an automated evaluation
process for software architectures. In: TASTED Conf. on Software Engineering, pp 5458

Clements P, Kazman R (2003) Software Architecture in Practice. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA

D’Ambros M, Lanza M (2009) Visual software evolution reconstruction. Journal of Software
Maintenance 21(3):217-232

Demeyer S, Ducasse S, Nierstrasz O (2003) Object-Oriented Reengineering Patterns. Morgan
Kaufmann

Erlikh L (2000) Leveraging legacy system dollars for e-business. IT Professional 2(3):17-23,
DOI http://doi.ieeecomputersociety.org/10.1109/6294.846201

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA

Gamma E, Helm R, Johnson RE (1995) Design Patterns. Elements of Reusable Object-
Oriented Software., 1st edn. Addison-Wesley Longman, Amsterdam

Girba T, Ducasse S, Lanza M (2004) Yesterday’s weather: Guiding early reverse engineering
efforts by summarizing the evolution of changes. In: ICSM, IEEE Computer Society, pp
40-49

Hurtado JF, Sabadini F, Vidal S, Marcos C (2013) Prediccién del cambio a través de la
historia del sistema. In: 14th Argentine Symposium on Software Engineering (ASSE
2013), 42 JAIIO (Jornadas Argentinas de Informdtica). In Spanish.

Kazman R, Abowd GD, Bass LJ, Clements PC (1996) Scenario-based analysis of software
architecture. IEEE Software 13(6):47-55

Kim M, Zimmermann T, Nagappan N (2012) A field study of refactoring challenges and ben-
efits. In: Proceedings of 20th International Symposium on the Foundations of Software
Engineering (FSE)

Lanza M, Marinescu R (2006) Object-Oriented Metrics in Practice - Using Software Metrics
to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer

Levy H (2002) Fundamentals of investments. Financial Times/Prentice Hall

Macia I, Arcoverde R, Cirilo E, Garcia A, von Staa A (2012a) Supporting the identification
of architecturally-relevant code anomalies. In: Software Maintenance (ICSM), 2012 28th
IEEE International Conference on, pp 662-665, DOI 10.1109/ICSM.2012.6405348

Macia I, Arcoverde R, Garcia A, Chavez C, von Staa A (2012b) On the relevance of code
anomalies for identifying architecture degradation symptoms. In: CSMR

Mangudo P, Arroqui M, Marcos C, Machado C (2012) Rescue of a whole-farm system: Crys-
tal clear in action. International Journal of Agile and Extreme Software Development
(IJAESD) 1:6-22

Marcos C, Vidal S, Abait E, Arroqui M, Sampaoli S (2011) Refactoring of a beef-cattle farm
simulator. IEEE Latin America Transactions 9:1099-1104

Marinescu R (2012) Assessing technical debt by identifying design flaws in software systems.
IBM Journal of Research and Development 56(5):9

Mens T, Demeyer S (2001) Future trends in software evolution metrics. In: Proceedings of
the 4th International Workshop on Principles of Software Evolution, ACM, New York,
NY, USA, IWPSE ’01, pp 83-86, DOI http://doi.acm.org/10.1145/602461.602476, URL
http://doi.acm.org/10.1145/602461.602476

Mkaouer MW, Kessentini M, Bechikh S, O Cinnéide M (2014) A robust multi-objective
approach for software refactoring under uncertainty. In: Le Goues C, Yoo S (eds) Search-
Based Software Engineering, Lecture Notes in Computer Science, vol 8636, Springer
International Publishing, pp 168-183

Moha N, Guéhéneuc YG, Duchien L, Meur AFL (2010) Decor: A method for the specification
and detection of code and design smells. IEEE Trans Software Eng 36(1):20-36



34 Santiago A. Vidal et al.

Ozkaya I, Diaz Pace JA, Gurfinkel A, Chaki S (2010) Using architecturally significant re-
quirements for guiding system evolution. In: CSMR, IEEE, pp 127-136

Ricci F, Rokach L, Shapira B, Kantor PB (eds) (2011) Recommender Systems Handbook.
Springer, URL http://dblp.uni-trier.de/db/reference/rsh/rsh2011.html

Seacord R, Plakosh D, Lewis G (2003) Modernizing legacy systems: software technologies,
engineering processes, and business practices. Addison-Wesley Professional

Tsantalis N, Chatzigeorgiou (2010) Identification of refactoring opportunities introducing
polymorphism. Journal of Systems and Software 83(3):391-404

Tsantalis N, Chatzigeorgiou A (2011a) Identification of extract method refactoring opportu-
nities for the decomposition of methods. Journal of Systems and Software 84(10):1757—
1782

Tsantalis N, Chatzigeorgiou A (2011b) Ranking refactoring suggestions based on historical
volatility. In: Mens T, Kanellopoulos Y, Winter A (eds) CSMR, IEEE Computer Society,
pp 25-34

Vidal SA (2013) Spirit: Smart identification of refactoring opportunities. PhD thesis, UNI-
CEN University

Wong S, Cai Y, Kim M, Dalton M (2011) Detecting software modularity violations. In:
Taylor RN, Gall H, Medvidovic N (eds) ICSE, ACM, pp 411-420

Woods E (2012) Industrial architectural assessment using tara. Journal of Systems and
Software 85(9):2034-2047


https://www.researchgate.net/publication/273328605

