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Abstract

Recognizing the need for a notation that would be used in the very first and often informal stages of the development

cycle, the International Telecommunication Union (ITU-T) initiated a question on a User Requirements Notation

(URN), which will be standardized as the Z.150 series of Recommendations. URN supports the development, de-

scription, and analysis of requirements for telecommunications systems and services, as well as for other types of

complex reactive, distributed, and dynamic systems. Through a wireless telephony example, this paper gives an over-

view of the core elements and typical usage of the two complementary notations comprised in URN. The Goal-oriented

Requirement Language (GRL) is used to describe business goals, non-functional requirements, alternatives, and ra-

tionales, whereas Use Case Map (UCM) enables the description of functional requirements as causal scenarios. This

paper also briefly explores methodology elements and the complementarity between URN and the existing ITU-T

languages.
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1. Introduction

Requirements engineering has become an essen-

tial part of all development processes, especially in

the area of complex reactive and distributed sys-

tems, which includes telecommunications services.
However, few standardized notations and tech-

niques can address the needs specific to visualizing

and analyzing functional (behaviour) and non-

functional requirements (NFRs, such as perfor-

mance, cost, security, and usability). The User

Requirements Notation (URN), to be published

by the International Telecommunications Union

(ITU-T) in 2003, pioneers work in the standard-

ization of visual notations that address these

needs [16]. URN will allow software engineers and

requirements engineers to discover or specify re-

quirements for a proposed system or an evolving
system, and review such requirements for cor-

rectness and completeness. Standardization of a

formally defined notation used for capturing and

analyzing user requirements aims to make re-

quirements engineering activities more rigorous

and predictable and the results yielded by these

activities clearer, more consistent, correct, and

complete. These results should lead to a reduction
of development costs, earlier delivery of products

to market, and increased customer satisfaction.
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URN focuses on user requirements (desired

goals or functions that users or other stakeholders

expect the system to achieve) but it also enables the

description of their refinement as system require-

ments (expression of ideas to be embodied in the

system or application under development). Like
most notations in ITU-T�s family of languages,

URN is graphical, because graphical presentations

are often compact and evocative.

The URN is intended for use in requirements

descriptions in specifications developed by na-

tional and international standards organizations.

In ITU-T, requirements descriptions are often

called Stage 1 descriptions (e.g., Q.65 [13]). The
URN is also intended for use by commercial or-

ganizations developing requirements specifications

for new products and product extensions; these

specifications are not necessarily governed by

standards.

In order to cope with the ever-increasing com-

plexity of requirements engineering activities for

emerging telecommunications services, reactive
systems, and distributed systems, URN is defined

to have the following capabilities [16]:

1. capture user requirements when very little de-

sign detail is available;

2. describe scenarios as first class entities without

requiring reference to system sub-components,

specific inter-component communication facil-
ities, or sub-component states;

3. facilitate the transition from a requirements

specification to a high-level design involving

the consideration of alternative architectures

and the discovery of further requirements that

must be vetted by the stakeholders;

4. have dynamic refinement capability with the

ability to allocate scenario responsibilities to
architectural components;

5. be applicable to the design of policy-driven ne-

gotiation protocols involving dynamic entities;

6. facilitate detection and avoidance of undesir-

able interactions between services (also called

features in this paper);

7. provide insight at the requirements level that

enables designers to reason about feature inter-
actions and performance trade-offs early in the

design process;

8. provide facilities to express, analyze and deal

with goals and non-functional requirements;

9. provide facilities to express the relationship be-

tween goals and system requirements;

10. provide facilities to capture reusable analysis
and design knowledge related to know-how

for addressing non-functional requirements;

11. provide facilities to trace and transform re-

quirements to other languages (especially ITU-

T notations and UML);

12. provide facilities to connect URN elements to

external requirements objects;

13. provide facilities to manage evolving require-
ments.

Since it is next to impossible to find a single

notation that could satisfy all these ambitious

objectives, the current proposal for URN com-

bines two complementary notations: the Goal-ori-

ented Requirement Language (GRL) for goals and

NFRs, and Use Case Maps (UCMs) for scenarios.
The nature and content of GRL and UCMs will be

illustrated in Sections 3 and 4, respectively. As the

standard is still evolving and not yet completed,

this tutorial focuses on the core notation elements

that are the most stable and the most useful. More

advanced concepts and notation elements may be

tackled at times, but they will not be systematically

covered.
In order to illustrate typical applications of the

notations, we will use an example from the wireless

telephony domain. Though inspired from previous

work on the application of UCMs to 2.5 G and

3 G wireless standards in TIA, 3GPP, and 3GPP2

[2,4,12,27], and especially from the work done by

Andrade and Logrippo [6,7], this partial example

is artificial and is not a case study as such. It is
meant to illustrate a variety of notation elements

in a context simpler than real wireless systems and

standards, which would need to address many

more concerns. In order to help the readers unfa-

miliar with background terminology and structural

concepts commonly found in wireless telephony, a

brief introduction to TIA�s Wireless Intelligent

Network (WIN) is given in Section 2.
URN does not impose any process or method-

ology on its users. However, elements of typical

processes and relations to other languages are ex-
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plored in Section 5, followed by our conclusions.

As a convenience to the reader, Appendix A pro-

vides a summary of the main notation elements

found in GRL and UCM.

2. WIN concepts and terminology

Our URN examples will be presented in the

context of the Wireless Intelligent Network stan-

dard, which has been developed to drive Intelligent

Network capability into ANSI-41-based wireless

networks [27]. WIN separates call processing in-
telligence and feature functionality from network

switches, includes mobility management functions,

and offers a diversity of enhanced services to

subscribers. WIN was developed in multiple pha-

ses and covered various features from call screen-

ing to flexible billing to location-based services.

Fig. 1 depicts WIN�s Distributed Functional

Model with computational objects, called func-

tional entities (FEs), and their relationships. A

grouping of actions across one or more FEs, when

coordinated by communication flows, provides the

required WIN service execution. Additional FEs

for service management also exist but are not
shown here. It is not necessary to understand all

these FEs, but some of them will get used in our

URN example and they will be explained further

where appropriate.

Additionally, WIN possesses a Network Refer-

ence Model, which defines network entities (NEs)

similar to those found in typical wireless telephony

systems (e.g., GSM and UMTS). Fig. 2 illustrates
interfaces connecting common NEs. The core ele-

ments include the mobile switch named MobSC, 1
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Fig. 1. Wireless distributed functional model (adapted from [27]).
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Fig. 2. Wireless network reference model (adapted from [27]).

1 Usually called MSC in the literature, but this paper uses

MobSC to avoid conflicts with the MSC acronym used for

Message Sequence Charts.
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the home and visiting profile databases (HLR,

VLR), and the service control point (SCP) where

additional service logic can be found. Usually, FEs

are allocated to NEs, but such mapping is vendor-

specific and is not dictated by the WIN standard.

The reader is invited to use these two figures as
references when wireless terminology and acro-

nyms are used in our URN examples.

3. Goals, non-functional requirements, and GRL

In software development practice, many non-

functional requirements (NFRs) are stated only
informally, making them difficult to analyze,

specify and enforce during software development

and to get validated by customers and users once

the system has been built. Goal-oriented model-

ling, which aims to address such issues, has been

used in the requirements engineering community

for a number of years. A goal is an objective or

concern used to discover and evaluate functional
and non-functional requirements.

The GRL is a recent addition to the growing list

of goal-modelling techniques built on the well-

established NFR framework [11]. GRL captures

business or system goals, alternative means of

achieving goals (either objectively or subjectively),

and rationales for contributions and decisions.

GRL intends to provide some of the capabilities
(7–10) identified for URN in the introduction.

3.1. Basic GRL notation

In our ongoing example, we plan to discover

and analyze various requirements for a generic

wireless telephony system. Such a system has

obvious objectives such as high performance,
evolveability, scalability, interoperability, security,

reliability, and so on. Business concerns also in-

clude low cost, fast time to market, high customer

satisfaction, etc. For a wireless telephony system,

several concerns such as usability are much less

important for the network than for the mobile

device (telephone) itself.

GRL offers graphical means of describing and
structuring such concerns. Softgoals, which repre-

sent goals that are somewhat fuzzy in nature and

can never be entirely satisfied, capture high-level

objectives. They are shown graphically as clouds,

and they can be connected to each other, in an
AND/OR graph, using contribution links. In the

GRL diagram of Fig. 3, both maximum hardware

utilisation and high throughput contribute posi-

tively to the high performance softgoal. Contri-

butions links can be composed using AND (all

sub-goals are needed) or OR (one sub-goal is

needed) constructs. A short line crossing a con-

tribution link near the arrow indicates an AND
composition. Contributions may have various de-

grees of impact, including positive and sufficient

(make), positive but insufficient (help), unknown

positive (some+), and their corresponding contri-

butions on the negative side (break, hurt, and

some)). A summary of GRL contribution types

and symbols can be found in Fig. A.1e. Contri-

butions are qualitative in nature because we deal
with rather fuzzy and unquantifiable objectives at

this level of abstraction.

If we consider additional objectives, then more

nodes and possibly more links are added to the

graph. For instance, requirements for a wireless

telephony system will be influenced by objectives

such as low cost and evolveability, also identified

in Fig. 3. In order to minimize cost, the changes to
the existing infrastructure should also be kept to a

minimum. Using the hardware to its fullest extent

not only contributes to the system performance,

but this helps reducing the number of changes re-

quired in the system. Such side-effects are called

correlations in GRL, and dashed arrows are used

to illustrate them. Like contribution links, corre-

lation links can be of different types (or weights).
Justifications or explanations of GRL links can be

High
Evolveability

High
Performance

High
Throughput

Maximum
Hardware
Utilisation

Minimum
Changes to

Infrastructure

Low
Cost

Less need for
new hardware

Fig. 3. Structuring objectives with GRL softgoals and contri-

bution links.
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added in the form of beliefs, shown as ellipses.
Beliefs document the rationale behind various

parts of a GRL model. Other stakeholders can

support or argue against such beliefs while vali-

dating the model. Once validated and agreed

upon, beliefs become very useful documentation

items that can prevent stakeholders from repeating

the same discussions over and over again.

Softgoals can be decomposed and refined until
a point where they become quantifiable goals or

potential operational solutions. Tasks, shown as

hexagons, are typically used to operationalize

parent (soft-)goals. Fig. 4a presents further re-

finement of the High Throughput softgoal. In

particular, to minimize the exchanges of messages,

two alternative solutions are foreseen: have the

mobile switching center (MobSC) support the
service, or leave that to the service control point

(SCP). Packing additional services (independently

of their nature) in the MobSC will obviously

contribute very positively to the reduction of

message exchanges, whereas an SCP-based option

would do quite the opposite. However, these al-

ternative tasks would have different side-effects on

the additional load imposed on the MobSC.
Fig. 4b presents the problem of determining a

location for service data functions (SDF) as a

regular goal with two alternative tasks. These tasks

are connected to the goal with means-end links

because they are both solutions that fully satisfy

that goal. Again, these solutions could have side-

effects on the existing infrastructure. However,

the impact here is unknown because it is vendor-

specific. For instance, one company could already
have the SDF in a service node (SN), a second

company would have them in a SCP, and a third

one could have them elsewhere.

3.2. GRL evaluations

The GRL models seen so far illustrate the use-

fulness of GRL for visualizing static relations ex-
isting between the various goals, the alternatives

means to achieve these goals, their interactions,

and accompanying rationales. GRL also supports

an evaluation mechanism used to measure the

impact of qualitative decisions on the level of

satisfaction of high-level goals. Given initial de-

grees of satisfaction 2 to some tasks and goals in a

GRL model, a propagation algorithm (inspired by
[11]) will guide the computation of the satisfaction

level of all the other (soft-)goals in the model. In-

put from requirements engineers might be required

to solve conflicting situations.

Fig. 5 combines the GRL models from Figs. 3

and 4 for a service provider whose existing wireless

infrastructure has SDF in the SCP (the undecided

contributions to the Determine SDF Location
goal were updated accordingly). This evaluation

starts with the selection of a location for services.

In this example, we evaluate the option where

services are located in the SCP. Different labels are

SDF in SCP SDF in SN

Determine
SDF Location

Minimum
Changes to

Infrastructure

??

Impact is
vendor-specific

SDF in SCP SDF in SN
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Changes to
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Impact is
vendor-specific

SDF in SCP SDF in SNSDF in SCPSDF in SCP SDF in SNSDF in SN

Determine
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Determine
SDF Location

Minimum
Changes to

Infrastructure

Minimum
Changes to
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????

Impact is
vendor-specific

Impact is
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High
Throughput
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MobSC Load

Minimum
Message
Exchange

Service
in SCP

Service
in MobSC(a) (b)

High
Throughput

Minimum
MobSC Load

Minimum
Message
Exchange

Service
in SCP

Service
in MobSC

High
Throughput

High
Throughput

Minimum
MobSC Load

Minimum
MobSC Load

Minimum
Message
Exchange

Minimum
Message
Exchange

Service
in SCP
Service
in SCP

Service
in MobSC
Service

in MobSC

Fig. 4. Expressing alternatives with GRL tasks: (a) alternative locations for the service and (b) alternative locations for the SDF.

2 For softgoals, we often use the term satisficed, which means

satisfied within acceptable limits.

D. Amyot / Computer Networks 42 (2003) 285–301 289



added next to the tasks and (soft-)goals to show
their level of satisfaction (see legend in Fig. A.1b).

We usually start with the leaves of the diagrams,

e.g., we first checkmark the selected tasks (SDF in

SCP, and Service in SCP). Additionally, we do not

yet know how utilised the hardware will be, and

this is shown with the undecided label.

The propagation algorithm takes this initial

configuration and propagates the satisfaction
levels to the top through the weighted contribution

links. The SDF location goal is satisfied because of

the means-end link; it is sufficient for one of the

alternative tasks to be satisfied for the parent to

become satisfied. The Minimum Message Ex-

change takes the best degree of satisfaction offered

by its two contributors, which means it becomes

weakly denied (a high satisfaction going through a
some) contribution amounts to a weakly denied

score, which is still better than the fully denied

score from the other alternative). The Minimum

MobSC Load is satisficed because the service re-

sides in the SCP. This, combined to the some +

contribution, causes the High Evolveability to be

weakly satisficed. Because of the AND composi-

tion, the High Throughput softgoal needs to take
into consideration both contributions (one positive

and one slightly negative). We can hence argue

that the high throughput is weakly satisfied.

This goes on until all the high-level softgoals

get labeled with a degree of satisfaction. Different

alternative solutions can be quickly and syste-

matically evaluated, which helps finding a global

solution that maximizes the satisfaction of the
highest-level goals, and hence leads to a good

tradeoff between conflicting goals. In this partic-

ular GRL model, evaluating the option where

the services are located in the MobSC would result

in a lower satisfaction of the high performance

and of the high evolveability. After the evalua-

tion, the selected configuration of tasks becomes

an initial set of requirements for the system, and
these requirements are traceable to the business

objectives.

The propagation in a GRL model is usually

bottom-up, and the current techniques assume

that there are no cycles caused by contributions

links. The feasibility and usefulness of top-down

propagation for root-cause analysis and of prop-

Fig. 5. Evaluation of a candidate combination of solutions.
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agation in models with circular contributions

(feedback) are left for future work.

3.3. Advanced GRL notation and tool support

The concept of GRL actor is not illustrated here
because its usage goes beyond the scope of this

tutorial. Suffice it to say that actors are active

entities that execute actions to achieve their goals.

They can encapsulate GRL graphs and can have

dependencies on other actors or on other GRL

elements. Actors, which are based on Yu�s agent-
oriented modelling language i� [29], are often used

to do role-based analysis on social relationships.
These concepts are further developed in the draft

Z.151 document [17].

GRL is currently supported by a modelling and

analysis tool named Organization Modelling Envi-

ronment (OME) [19]. OME offers a Java-based

graphical environment for the creation, mainte-

nance, and analysis of GRL models. An interac-

tive propagation algorithm is also supported.

4. Scenarios, functional requirements, and use case

maps

A functional requirement is a requirement de-

fining functions of the system under development.

Modelling functional requirements of complex
systems often implies an early emphasis on

behavioural aspects, often captured in the form of

use cases and scenarios. In a recent survey [3], it

was observed that few scenario notations can offer

capabilities such as those enumerated in Section 1

(1–7 in particular). Many notations are variants of

MSCs and focus on messages and inter-compo-

nent interactions. This is valuable for design, but
this is often overcommitting for requirements.

As will be shown in the next sub-sections, the

Use Case Map scenario notation avoids the

problems cited above by focusing on causal rela-

tionships between responsibilities of one or more

use cases. The relationships are said to be causal

because they involve concurrency and partial

orderings of responsibilities, because they link
causes to effects, and because they abstract from

component interactions expressed as message

exchanges. UCMs are applicable to use case cap-

turing and elicitation, use case validation, as well

as high-level architectural design and test case

generation. The combined, gray-box, view of be-

haviour and structure and the flexible allocation of

responsibilities to architectural structures contrib-
ute to bridging the gap between requirements and

design. UCMs provide a behavioural framework

for evaluating and making architectural decisions

at a high level of design, optionally based on

performance analysis of UCMs. Moreover, UCMs

provide their users with dynamic (run-time) re-

finement capabilities for variations of scenarios

and structures, and they allow incremental devel-
opment and integration of complex scenarios. The

UCM Web page [28] contains various applications

of UCMs in the areas just mentioned.

UCMs share some commonalities with UML

activity diagrams [24], but they have additional

capabilities (e.g., dynamic stubs, multiple start

points, hierarchical structure of components in-

stead of swimlanes, and timers) which make them
more suitable for expressing and analysing re-

quirements for complex systems (see [3,5] for more

detailed comparisons). Recently, the concept of

scenario definition was also incorporated to UCMs,

and it will be further explored in this section.

Note that the following UCM examples contain

many abbreviations, whose meanings are summa-

rized in Appendix B.

4.1. Basic UCM notation

In UCMs, a scenario is a partial description of

system usage defined as a set of partially-ordered

responsibilities a system performs to transform

inputs to outputs while satisfying preconditions

and postconditions. UCM responsibilities are sce-
nario activities representing something to be per-

formed (operation, action, task, function, etc.). A

responsibility can potentially be associated or al-

located to a component. In UCMs, a component is

generic and abstract enough to represent software

entities (e.g., objects, processes, databases, or

servers) as well as non-software entities (e.g., ac-

tors or hardware).
The UCM in Fig. 6 illustrates some of

these concepts through the description of a simple
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handling procedure for cellular hand-off. Filled
circles represent start points, which capture pre-

conditions and triggering events (in this case, a

hand-off request HOreq). End points capturing re-

sulting events and post-conditions are illustrated

with bars perpendicular to causal paths. Scenarios

progress along paths from start points to end

points. Paths also support responsibilities, shown

as crosses. Paths can fork as alternatives (OR-fork)
and may also join (OR-join). Alternative branches

can be guarded by conditions, shown between

square brackets. A condition needs to be true for

the guarded path to be followed. In this hand-off

example, after tuning to a new channel the signal

quality might be better or worse. When it is better,

the user profile is updated and the scenario may

continue. Otherwise, the mobile station will tune
to the previous channel. If it is still good enough

([OK]), then the scenario continues otherwise the

hand-off fails (FailHO).

Although this UCM can be a standalone map,

in our wireless system example it is only a sub-map

of a larger collection of scenarios, whose root

UCM is shown in Fig. 7. This UCM contains

many new notation elements such as direction ar-
rows and concurrent paths. Concurrency and

partial ordering of responsibilities and events are

supported in UCMs through the use of AND-forks

and AND-joins (see Fig. A.2b). While an OR-join

simply indicates overlapping of scenarios that

share common paths, an AND-join is a synchro-

nization between two or more paths which must all

have been visited for the rest of the scenario to

progress. Fig. 7 also has multiple start points,

which can be triggered independently as long as
their preconditions are satisfied.

The diamond symbols are called stubs and are

used as containers for sub-maps, which are then

referred to as plug-in maps (because they are

plugged into a stub). Any map can be a plug-in.

The hand-off UCM in Fig. 6 is in fact a plug-in for

stub Handoff. A hand-off check is triggered peri-

odically (CellCheck) to determine whether a new
channel would result in a better communication

quality. Stubs have identifiable input and output

segments (IN1, OUT1,. . .) connected to start

points and end points in the plug-in. This binding

relationship is also made visual in the plug-in,

where the connections to the parent stub are

shown between curly brackets (see Fig. 6). Binding

relationships ensure that paths flow from parent
maps to sub-maps, and back to parent maps.

While static stubs contain only one plug-in map

and are typically used for hierarchical decompo-

sition (e.g., CM), dynamic stubs contain many plug-

ins and are drawn with dashed diamonds (e.g.,

Update). Plug-ins in dynamic stubs have precon-

ditions which are used to select among them at

run-time. This collection of preconditions form the
stub�s selection policy. In our example, a second

plug-in exists for Handoff (not shown here) and it

connects IN1 to OUT1 when hand-offs are no

longer required, e.g., when a Disconnect is initi-

ated. The presence of multiple plug-ins in a dy-

namic stub enables the refinement of that stub into

many potential sub-scenarios, one of which is se-

HOreq{IN1}

Continue{OUT2}
[better]

[worse]

Tune New Chan

[OK]

Upd Profile

[NotOK]

FailHO{OUT1}

Tune Prev Chan

Fig. 6. UCM model for hand-off handling.

StartCom

EndCom

Reject
GetAuthInfo

ChkLoc[OK]

UpdHLoc

IN1 OUT1

OUT1

OUT1

Answer
IN1

IN1

Disconnect

IN2

IN3

OUT2

CellCheck

StopHO

GoHO

Update

Handoff

CM

LogReject

[NotOK]

ChkAuth

Fig. 7. Root UCM for the simplified wireless system.
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lected at run-time according to the selection policy

local to the stub.

After having authentified the call originator and

updating its location record in the home database

(UpdHLoc), the system needs to update visiting

databases if the mobile user enters or leaves a

visiting area. This can be expressed using two al-

ternative plug-ins for stub Update, as shown in
Fig. 8. The first plug-in is selected when the mobile

user is in the same area as before, and the visiting

profile is updated if this area is not the home area.

The second plug-in is selected when the mobile

user has entered a different area. Different activi-

ties (deletion and creation of visitor profiles) are

required to handle the various situations where the

old and new areas are the home area or visiting
areas (i.e., home! visiting, visiting! home, vis-

iting! other visiting).

The UCM illustrated in Fig. 9 is a plug-in for

the communication management (CM) stub. The

system must first acquire the resources needed to

establish communication and then waits for a

connection. In UCM, waiting can be done with

waiting places (filled circles on a path) and timers

(clock symbols). The waiting period ends when the

waiting place or the timer receives an event coming

from the environment or from another UCM

scenario. This can be done asynchronously or

synchronously (through juxtaposition of a path or

of an end point, see Fig. A.2e). When it is not

triggered in a timely way, a timer stops and its

timeout path (the path with a zigzag symbol) is
taken. We have such a situation here when the

terminating party does not answer within a certain

amount of time, which causes the resources to be

released and the plug-in to exit. The zigzag symbol

used in Fig. 9, generated by the UCM Navigator

tool (to be discussed in Section 4.4), is only an

approximation of the official one.

4.2. UCM component structures

UCM responsibilities and other elements in-

cluded within the boundaries of a component are

said to be allocated to that component. Generic

components are represented as rectangles. They

have names and can have multiple attributes,

which are not covered in this paper. Components

UpdSameArea{IN1} Prof Updated {OUT1}
[HomeArea]

UpdVisProfile

[VisArea]

UpdDiffArea{IN1}
ProfUpdated{OUT1}

[OldAreaHome] [NewAreaHome]

DelVisProfile

[OldAreaVis]

CreateVisProfile

[NewAreaVis]

(b)

(a)

Fig. 8. Plug-ins for the Update dynamic stub: (a) update profile in same area and (b) update profile in different area.

StartCM{IN3}

[NotAllResAvail]

EndCM{OUT1}WaitConn[ResAvail]

Answer{IN1}

WaitDisc

Disconnect{IN2}

RelResGetRes

Talking
[NotTalking]

[Talking]

Fig. 9. Plug-in for the communication management (CM) stub.
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can also contain sub-components. This is useful to

capture various mappings of FEs to NEs. For in-

stance, NEs such as HLR, SCP, or SN (Fig. 2) can

all include various FEs such as SDF and SCF (Fig.

1). These two degrees of freedom (responsibilities

to components, and sub-components to compo-
nents) greatly improve the ease with which alter-

native architectures can be evaluated and with

which scenarios can be adapted and reused in

different contexts.

For the sake of simplicity, we will focus on the

very beginning of the root map from Fig. 7, which

handles the authentification of the originating

party. The allocation of these responsibilities to
FEs and NEs can be done in a number of ways, as

suggested in the GRL models in Fig. 4. Three

options are illustrated in Fig. 10. In the first one,

the authentication is handled entirely by the

MobSC. The second option also performs au-

thentication in the MobSC, only this time the

matching authentication information needs to be

acquired from the SDF located in a Service Node.

Similar scenarios where the SDF is in an SCP or in
an HLR are also possible. In the third option, the

service is located in the SCP (in its SCF functional

entity), where we also find the SDF. Again, other

variants exist. In particular, additional options not

being considered here include the handling of the

authentification by specialized functions (such as

an ACF, see Fig. 1), which could be located in

various places (e.g., in the MobSC, or in a dedi-
cated Authentication Center, as shown in Fig. 2).

With UCM, different structures suggested by

the alternatives identified in a GRL model or other

means can be quickly expressed and evaluated by

moving responsibilities from one component to

another, or by restructuring the components. Other

scenario notations usually require much more de-

tails and efforts to achieve this, and often this
distracts engineers and other stakeholders from

addressing core issues.

4.3. UCM scenario definitions, path traversal, and

transformations

Our UCM model integrates dozens of scenarios

in a very compact form, which is not always suit-
able for understanding when used as is. Scenario

definitions offer the possibility to describe and ex-

tract individual scenarios from a complex UCM

model. Such scenarios can be used to explain and

visually emphasize particularly interesting cases,

to analyze potentially conflicting situations (for

instance, between interacting services), or to gen-

erate other types of models (e.g., MSCs, UML
sequence diagrams, and test cases).

A scenario definition is composed of four ele-

ments: a name, a list of starting points, a set of

initial conditions, and (optionally) a set of post-

conditions. Conditions are expressed using an

abstract path data model comprised of global

Boolean variables. These variables are also used in

guarding conditions, timers, and selection policies,
and their values can be modified inside responsi-

bilities. A UCM model with variables can be tra-

(a)

(b)

(c)

MobSC:Orig

CCF

MS:Orig HLR

LRFh

SCP

SDF SCF

StartCom
Continue

Reject

GetAuthInfo ChkAuth

LogReject
[NotOK] ChkLoc[OK]

MobSC:Orig

CCF

MS:Orig HLR

LRFh

SN

SDF

StartCom
Continue

Reject

GetAuthInfo

ChkAuth

LogReject
[NotOK]

ChkLoc

[OK]

MobSC:Orig

CCF

MS:Orig HLR

LRFh
StartCom

Continue

Reject GetAuthInfo

ChkAuth

LogReject

[NotOK]
ChkLoc

[OK]

Fig. 10. Allocation of UCM responsibilities to alternative

component structures: (a) service in MobSC; (b) service in

MobSC, SDF in SN and (c) service and SDF in SCP.
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versed using scenario definitions in combination

with a path traversal mechanism. Guidelines for

such mechanisms are provided in the draft UCM

standard [18].

Any Boolean expression can be used to for-

malize our conditions. Given a Boolean variable
Authentified, the conditions [OK] and [NotOK]
found in Fig. 10 could be formalized as Authenti-
fied and !Authentified, respectively. In the Update
stub of Fig. 7, the selection policy would use an-

other variable (NewArea) that indicates whether

the mobile user has moved to a new area. This

policy would be:

• NewArea! use plug-in UpdateDiffArea (Fig.

8b)

• !NewArea! use plug-in UpdateSameArea (Fig.

8a)

Individual scenarios can be highlighted in a

UCM tool, or they can be transformed into a

different formalism. Fig. 11 shows the result of one
potential transformation of two scenario defini-

tions to Message Sequence Charts [15]. The first

MSC corresponds to the successful scenario from

Fig. 10a and the second MSC to Fig. 10c. Since

UCMs do not contain any information relative to

the message exchanges required to implement

causal relationships across components, synthetic

messages (m0;m1;m2; . . .) have to be inserted.
These abstract messages could be refined into

more detailed and realistic protocol exchanges

given the necessary information. As expected in

Fig. 4a, placing services in the MobSC minimizes

the number of messages at the expense of addi-

tional load on the MobSC. These two MSCs

provide further insight regarding the real impact of

such solution.
The path traversal mechanism permits us to

find whether undesirable interactions, which often

result from the composition of multiple plug-ins

or complex conditions, can happen in a given

context. It can report incomplete or ambiguous

conditions (e.g., plug-ins with overlapping pre-

conditions) while attempting to traverse them.

Transformations to MSCs also help visualizing
and understanding long scenarios that traverse

multiple plug-in maps.

4.4. Advanced UCM notation and tool support

In addition to the elements summarized in Fig.

A.2, the UCM notation includes symbols for var-

ious types of components (processes, objects,
agents, and interrupt service requests) as well as

component attributes (e.g., replicated, protected,

formal, and anchored). Path elements and com-

ponents can also be annotated with information

used to generate performance models in the form

of Layered Queueing Networks (LQN). Such LQN

models can be used to provide a quantitative

analysis of alternative UCM architectures [25].
UCMs also support the concept of dynamic com-

ponents, where the component structure can

Fig. 11. Generation of MSCs from UCM scenario definitions: (a) MSC for service in MobSC and (b) MSC for service in SCP.
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evolve at run-time. Components can be created,

deleted, moved along UCM paths, stored in pools,

and put in slots to assume particular roles. Dy-

namic responsibilities enable the manipulation of

dynamic components, and together they support

the description of dynamic systems using a static
representation. Additional information on these

concepts can be found in [9,10,18].

UCMNAVAV is a free graphical tool for the edi-

tion and exploration of UCMs [21,28]. The edition

is transformation-based and ensures that the

UCMs drawn respect the syntax and static se-

mantics of the language. The tool supports the

whole notation and maintains many types of
bindings (responsibilities to components, plug-ins

to stubs, child components to parent components,

performance annotations, etc.). The file format is

in line with the XML concrete syntax proposed in

[18] and is multi-platform, like the tool itself

(Windows, Linux, HP/UX, and Solaris). The

UCMs can be exported to various graphical for-

mats (EPS, CGM, SVG, and MIF), and many
types of reports can be generated (PostScript/

PDF). UCMNAVAV version 2.1 now supports sce-

nario definitions, scenario highlights (traversed

paths are colored), and the generation of MSCs in

Z.120 format [22], of XML scenarios, and of

Layered Queuing Networks [25].

5. Methodology elements

The upcoming URN standard will not impose

any development process. However, several meth-

odology elements will be proposed in a companion

document (Z.153), and some of the most typical

ones are discussed in this section.

The first problem requirements engineers and
designers are faced with when using URN is where

to start. For new systems, one can start by iden-

tifying and analyzing system objectives and ten-

tative corse-grained requirements (functional and

non-functional). Evaluations of GRL models help

making and justifying high-impact decisions very

early in the development cycle. The various GRL

tasks that are refined during this process can be
connected to UCMs in a number of ways (e.g.,

task to UCM, task to UCM element, task to sce-

nario definition, etc.). A UCM could also elabo-

rate a collection of tasks (for instance, to explore

ordering among these tasks) or be connected di-

rectly to goals or softgoals in the GRL model.

Such traceability relationships are important, es-

pecially during the evolution of the system where
they can be used for impact analysis. Alternatively,

for legacy systems and for cases where stakehold-

ers have difficulties expressing goals and require-

ments in an abstract way, UCMs can be used as a

start point for the discovery of requirements. In-

dividual UCMs can be gradually integrated to-

gether and structured using stubs and plug-ins.

Both approaches should be iterative and incre-
mental.

If the underlying structure of components is

unknown, UCM scenarios can be documented

without referencing it. Boolean conditions and

scenarios can then be introduced, and validation

through exploration and scenario highlight can

then be used. The various alternatives identified

in the GRL model contribute to the qualitative
selection of a suitable structure of components.

When necessary, quantitative analysis based on

UCM performance annotations and the genera-

tion of LQN models can be done. Once the com-

ponent structure becomes more stable, MSC

scenarios can be generated to pave the way to-

wards more detailed designs based on the UCM

requirements. Functional test cases (e.g., in
TTCN) can likely be created from UCMs in a

similar way.

Checking traceability links between GRL and

UCM models can also be beneficial. A goal not

covered by any scenario is a symptom of an in-

correct or overspecified GRL model or of an in-

complete UCM model. Similarly, a scenario that

does not contribute to any goal is either not nec-
essary, or the goal model needs to be enhanced.

The contribution levels in a GRL model can also

indicate which scenarios will have a high impact

on the system objectives, and hence these levels

can help prioritize requirements and scenarios.

Many of the above methodology elements have

been illustrated in this paper. The high-level rela-

tionships that exist between GRL, UCM, other
ITU-T languages, and UML are summarized in

Fig. 12. URN represents a missing piece of the
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modelling puzzle that connects informal require-

ments and use cases to structural and behavioral

models.

Many of the connections between UCM/GRL

and the other pieces of this puzzle have been ex-

plored in the literature. Liu and Yu [20] experi-

mented the combined use of GRL and UCM for
architectural design, and compared a URN-based

approach with other related architectural ap-

proaches. A related proposition where UCM

scenarios support the selection of appropriate ar-

chitectures is described by de Bruin and van Vliet

[8]. Sales presented an approach that bridges in-

formal requirements and formal specifications

using UCMs and SDL [14] which has been suc-
cessfully applied to the description and analysis of

IETF�s Open Shortest Path First routing protocol

[26]. Petriu and Woodside [25] did many successful

experiments involving the analysis of LQN-based

performance models synthesized from UCMs.

Amyot and Mussbacher [5] have explored the re-

lationships that exist between UCMs and UML

activity diagrams. Andrade has developed a pat-
tern language for mobile wireless systems using

UCMs [6,7], while Mussbacher and Amyot [23]

provided patterns of UCM styles for describing

complex systems. Guan [12] recently implemented

a tool that synthesizes LOTOS specifications from

UCMs, following previous work by Amyot and

Logrippo [1,4] in the same area.

The development of UCM-to-MSC generators,

initiated by Miga et al. [22], is still ongoing. A

recent addition to the UCMNAVAV tool decouples

the traversal of UCMs (whose results are stored in

an XML file) from the generation of a target sce-
nario model such as MSC. This separation of

concerns contributed to the resolution of many

problems in the previous mechanism (which was

attempting to do too many things at the same

time), and leads to more flexible generation of

MSCs (e.g., through XSLT transformations). We

expect the same mechanism to be reusable for the

generation of UML sequence diagrams and of
TTCN test goals. Additionally, we started experi-

menting with the generation of SDL models from

UCMs, for early validation purposes. Instead of

doing a direct UCM-to-SDL transformation, we

are studying a UCM!MSC! SDL synthesis

process that combines the MSC generation capa-

bilities of UCMNAVUCMNAV with the MSC-to-SDL syn-

thesis supported by commercial tools.
Relations between URN and ASN.1, and be-

tween URN and eODL, remain to be explored.

URN has little need for data, except in the UCM

path data model, which could be aligned with (a

subset of) ASN.1. UCM components could also

?
?MSC, UML Use

Case Diagram &
Activity Diagram

?
?
??
??MSC, UML Use

Case Diagram &
Activity Diagram

Informal
Requirements,

Textual Use Cases

Informal
Requirements,

Textual Use Cases

UCMs link to
operationalizations

(tasks) in GRL
models

Structural
Diagrams

SDL, eODL, or
UML class, object,

component, &
deployment

diagrams

Structural
Diagrams

SDL, eODL, or
UML class, object,

component, &
deployment

diagrams

Testing and
Performance
Languages

TTCN, LQN, ...

Testing and
Performance
Languages

TTCN, LQN, ...

Behavioral Diagrams
MSC/SDL, or UML
sequence, collabor.,

statechart diagrams

Behavioral Diagrams
MSC/SDL, or UML
sequence, collabor.,&

statechart diagrams

UCMs represent
visually use cases
in terms of causal

responsibilities

UCMs provide a
framework for

making high level
and detailed

design decisions

UCMs visually
associate

behavior and
structure at the

system level

URN-FR / UCMs
Superimpose visually system level behavior
onto structures of abstract components. Can

replace UML use case & deployment diagams.

URN-FR / UCMs
Superimpose visually system level behavior
onto structures of abstract components. Can

replace UML use case & deployment diagams.

URN-FR / UCMs
Superimpose visually system level behavior
onto structures of abstract components. Can

replace UML use case & deployment diagams.

URN-NFR/GRL
Goals, non-functional
requirements, alterna-

tives, rationales

URN-NFR/GRL
Goals, non-functional
requirements, alterna-

tives, rationales

Data
ASN.1 where
appropriate

Fig. 12. GRL, UCM, and other pieces of the modelling puzzle.
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the bridging point between URN scenarios and

eODL concepts.

6. Conclusions

This paper gives an overview of the core URN

concepts and notation elements, illustrated with

examples from the wireless telephony domain.

URN supports the discovery and analysis of re-

quirements at multiple levels. It targets early

phases of the development of complex reactive,
distributed and dynamic systems, but is also ap-

plicable to many other domains, both in industrial

setting and in standardization organizations. URN

helps bridging the gap between informal and for-

Fig. A.1. Summary of the GRL notation: (a) GRL elements; (b) GRL satisfication levels; (c) links composition; (d) GRL links and

(e) GRL contribution types.

Fig. A.2. Summary of (a subset of) the UCM notation: (a) UCM path elements; (b) UCM forks and joins; (c) UCM (generic)

component; (d) UCM stubs and plug-ins and (e) UCM waiting places and timers.
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mal concepts, and between requirements models

and design models. URN combines two comple-

mentary notations, both with a history of appli-

cations to requirements engineering activities.

The GRL focuses on incomplete, tentative, re-

quirements (especially non-functional ones). GRL
models describe business and system goals, alter-

natives, and rationales that are refined into re-

quirements. Evaluations are used to determine

whether goals are satisfied by a given solution.

Evaluations of alternatives can be achieved in a

qualitative way using initial levels of satisfaction

and propagation rules.

UCMs are most useful for specifying opera-

tional scenarios and functional requirements.
UCM scenarios can be independent from under-

lying components, or they can be allocated to them

in order to evaluate alternative architectures.

Fig. A.3. Abbreviations used in Figs. 6–9.
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Scenario definitions and path traversals enable the

analysis of complex UCMs and the generation of

more detailed representations, including MSCs.

Transformations to performance models support

early performance engineering activities, at the

requirements level.
Together, GRL and UCM cover most of the

language objectives for URN identified in Section

1. Using URN, even in a lightweight and informal

way, can bring major benefits for little modelling

investment. URN also fills a void in the ITU-T

family of languages and has many potential con-

nections to these languages and to UML. These

relationships are expected to get tighter as UML
profiles are created for the ITU-T languages. Such

a profile for URN (Z.159) is planned for 2004.
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Appendix A. Summary of the main URN notation

elements

See Figs. A.1 and A.2.

Appendix B. Abbreviations used in the UCM ex-
amples

See Fig. A.3.
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