
2017-11-14 

1 

Scenario-Based Validation 
Beyond the User Requirements Notation 

 

Dave Arnold, Jean-Pierre Corriveau, and Wei Shi 
Carleton University, Ottawa, Canada 

 
April 8th 2010 

Model-Based Testing 

© Dave Arnold 2010 Slide - 2 



2017-11-14 

2 

§  We require a testable model capable of automatically 
generating executable checks. 

§  Such a testable model must support: 
–  The capture of functional and non-functional requirements 
–  Testability of the requirements model 
–  Executability of the generated checks 
–  Semantics rooted in the notions of responsibilities and scenarios 
–  Abstraction of the testable model over several possible 

implementations 

§  Current approaches to validation typically do not offer a 
testable requirements model with the above 
characteristics… 

Testable Models 

© Dave Arnold 2010 Slide - 3 

The Framework 



2017-11-14 

3 

§  We need to connect the testable requirements 
model (in ACL) to the Implementation Under Test 
(IUT) 
–  This is accomplished through the notion of bindings 
–  Bindings are a mapping between an ACL element and a 

IUT element: 
– Contracts à Types (Classes, Structs) 
– Observabilities à A single method or property 
– Responsibilities à One or more methods 

Bindings 

© Dave Arnold 2010 Slide - 5 

§  In order to reduce the dependency on manual binding 
–  We use binding extension modules to infer as many bindings 

as possible 
–  Modules can be written by third-party developers. 

–  When a binding cannot be inferred, a short list of possible 
bindings is presented, and the user is asked to make a 
selection 

–  Each of our two sample modules achieve 95% of the required 
bindings 

§  Each binding extension module can target different 
implementation styles or development methodologies. 

Bindings 

© Dave Arnold 2010 Slide - 6 



2017-11-14 

4 

Bindings 

© Dave Arnold 2009 Slide - 7 

Bindings 

© Dave Arnold 2009 Slide - 8 



2017-11-14 

5 

Bindings 

© Dave Arnold 2009 Slide - 9 

Bindings 

© Dave Arnold 2009 Slide - 10 



2017-11-14 

6 

Bindings 

© Dave Arnold 2009 Slide - 11 

§  The CER provides information on the IUT’s 
execution: 
–  Static evaluation results 
–  For each object instance 

–  Information pertaining to any dynamic checks 
–  Information regarding the pass/fail of observabilities, 

responsibilities, and scenarios 
•  Preconditions 
•  Post-conditions 
•  Invariants 
•  Beliefs 
•  Dynamic Checks 

–  The result of metric analysis 

Contract Evaluation Report 

© Dave Arnold 2010 Slide - 12 



2017-11-14 

7 

Execution 

© Dave Arnold 2009 Slide - 13 

Execution 

© Dave Arnold 2009 Slide - 14 



2017-11-14 

8 

§  The VF is also able to support 
–  Contract refinement/inheritance 
–  Atomic / parallel scenario blocks 
–  Support for execution against web applications 

§  The VF consists of 1,355 classes totaling over 
260,000 lines of C# and C++ source code 

Additional Features 

© Dave Arnold 2010 Slide - 15 

Import	Core;	
	
Namespace	DaveArnold.Examples.School	
{	

	MainContract	University	
	{	
	 	Parameters	
	 	{	
	 	 	[1-100]	Scalar	Integer	InstanceBind	UniversityCourses;	
	 	 	Scalar	Integer	MaxCoursesForFTStudents	=	4;	
	 	 	Scalar	Integer	MaxCoursesForPTStudents	=	2;	
	 	 	Scalar	Integer	PassRate	=	70;	
	 	 	[1-12]	Scalar	Integer	InstanceBind	NumTermsToComplete;	
	 	}	
	 		
	 	Observability	List	tCourse	Courses();	
	 	Observability	List	tStudent	Students();	

An Example Contract 

Slide - 16 



2017-11-14 

9 

Responsibility	new()	{	
	Post(Courses().Length()	==	0);	
	Post(Students().Length()	==	0);		

} 	 		
Responsibility	finalize()	{	

	Pre(Courses().Length()	==	0);	
	Pre(Students().Length()	==	0);	

} 	 		
Responsibility	tCourse	CreateCourse(String	name,	Integer	cap)	{	

	once	Scalar	Integer	oldSize;	
	oldSize	=	PreSet(Courses().Length());	
	Post(value.bindpoint.Name()	==	name);	
	Post(value.bindpoint.CapSize()	==	cap);	
	Post(Courses().Length()	==	oldSize	+	1);	
	Post(Courses().Contains(value)	==	true);	

} 	 		
Responsibility	RegisterStudentForCourse(tStudent	student,	tCourse	course);	

An Example Contract 

© Dave Arnold 2010 Slide - 17 

Scenario	Term	{	
	Trigger(new()),	
	(	
	 	CreateCourse()[Parameters.UniversityCourses],	
	 	TermStarted(),	
	 	fire(TermStarted),	
	 	LastDayToDrop(),	
	 	fire(LastDayToDrop),	
	 	TermEnded(),	
	 	fire(TermEnded),	
	 	observe(MarksRecorded)[Parameters.UniversityCourses],	
	 	CalculatePassFail(),	
	 	DestroyCourse()[Parameters.UniversityCourses],	
	 	fire(TermComplete)	
	)+,	
	Terminate(finalize());	

}	

An Example Contract 

© Dave Arnold 2010 Slide - 18 



2017-11-14 

10 

Exports	
{	

	Type	tCourse	conforms	Course	
	{	
	 	Student::tCourse;	
	}	
	Type	tStudent	conforms	Student	
	{	
	 	Course::tStudent;	
	}	

}	

An Example Contract 

© Dave Arnold 2010 Slide - 19 


