The University

Contract Evaluation Framework Walk Through

Dave Arnold

School of Computer Science
Carleton University
Document Version 2.1
05/23/2008

Page |2

Contents
Y o1 o - Yot AR T T T PO TP T PP PPV PR UPPOTOPPPROPPIOt 3
T A oY [V 4T] o HA O O T PP TP T VU P TP UPTOPOPTPP 4
(OF= T <I] 1¥ o | PP 4
(=] oI Al 0o] oY d = [o1 a0 ==} o o DU PPN 6
THE COUISE CONTIACTE ..eeiiiiiiiiie ettt ettt ettt et e et e e sab e e e s abe e e bbeeesabeeaabbeesaabeeesabeeeambeeesabeeeanbeeesabeeanns 7
R (N o] [=Jot (o TV Y =2 Oo] oL r- Yot U UUUU 19
The SEUANT CONTIACT .eeueiiiiiiee ettt ettt ettt e et e e e bt e e sab e e sbteesaabeeebeeesanbeeesnbeesneeeesnreenn 21
RN LR T T 15 A o] 1] 1 = ot AU UUUU 32
The SOOI INTEIACION ...ttt ettt e et e ettt e s bt e e s ab e e s bbeesanbeeesabeesnbeeesareens 40
N H=T o Ofo] ol u - Yot ol @eT 0] o 11 = To] o U UUU 43
Ny AT OB Rl = 11 Yo [TV = S UUU 44
Y =T oI] =Y 4o O o [T ol <P UU 45
StEP 5 = INSETUMENTATION 1ottt e e e e et s e e e eetba e e e eeeaabaeeeaaeeaes 46
SteP 6 — SCENANIO EVAlUATION. . .ceiiii e e e e e e e e e et ra e e e e e e e e e e e e arrrraaaeeeas 47
Step 7 — Non-functional REQUITEMENTSuviiiiiiiiiee ettt e e e e e e et r e e e e e e e e e e e aartsraeaeeeas 48
Step 8 — The Contract EValuation REPOIt......ueeiii i ittt e et e e e e e e e e abtrraeeee s 49

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |3

Abstract

A university system is used to present an open framework for the specification, execution, and
evaluation of scenarios. Our framework supports the binding of a testable model against a candidate
implementation for evaluation. Such evaluation includes the invocation of static and dynamic checks,
the execution of scenarios, and the capture and evaluation of metrics. Metric evaluation allows our
framework to consider both functional and non-functional requirements. The grocery store is used to
provide a complete end-to-end walk through of our framework’s capabilities and operation. The walk
through will begin with the elicitation and specification of scenarios and finish with a contract evaluation
report.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |4

Introduction

The following document contains a simple example based on a university registration system,
the execution and the completion of a term. The purpose of the example is to illustrate the elicitation of
contracts, scenarios, and interactions for the case study. In addition, the example will illustrate the
binding and execution tasks performed by the framework. The document is organized as follows. A
description of the case study will first be presented. Next, four modular contracts will be derived and
their syntax and semantics will be discussed in detail. Our example will then define a series of scenario
relations based on the case study. As will be seen shortly, a scenario relation is used to define
constraints on the execution of scenarios. Our example will be based on the second version of the ACL

and our case study is designed to present the new features found within ACL 2.0.

Once the contracts have been presented and discussed, the contract compilation process will be
outlined, followed by the binding steps required to map the elements defined within the contracts to
the Implementation Under Test (IUT). Once binding is complete, the static check procedure is presented
along with the necessary IUT instrumentation required for the evaluation of scenario execution is
discussed. The examination of execution metrics and non-functional requirements is then presented.
Finally, the document concludes with ah discussion of the contract evaluation report.

Case Study

The case study used within this example is modeled after a physical university. A university was
selected because it requires little domain knowledge from the reader and the university example has
also been used as a canonical example in other works. A university can be viewed as a set of students
who are part of a university. The university creates a set of courses each and every term. Once course
creation is completed, students register in courses, with a maximum number of courses constrained by
their student status (full/part-time). Once students have completed their course registration, the term
begins. During a term, students must complete their courses by doing assignments, mid-terms and final
exams. Some courses also have group projects that also must be completed. Once the term ends, each
course reports final grades to the university, and the university decides if a given student is allowed to
continue with his/her education. Additional details regarding the case study will be provided as each of
the contracts is presented.

The following assumptions will be made in order to simplify the example:

* Courses span a single term.
* Courses have single sections.
* Courses have at least one grade element (i.e. no satisfactory or incomplete courses).

Of course, there are a lot of other aspects within a complete university registration system.
However the short description shown above will introduce several scenarios, scenario interactions, and

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |5

non-functional requirements.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |6

Step 1 - Contract Creation

Initially, we need to specify the contracts. We will begin by looking at a modular contract
design. That is, we will create four separate contracts that define the university system. After the four
separate contracts have been specified, we will present a series of relations that define how the
scenarios defined within the four contracts interact. The four contracts and the relations would then be
assembled into a single contract project. A contract project consists of three elements:

One or more contracts and contract relations.
An IUT to evaluate the contracts against.
Bindings that exist between the contracts and the IUT.

We will now examine the first of the four modular contracts. Following each contract listing a
detailed description of the syntax and semantics will be presented. Each contract is expressed using
Another Contract Language (ACL). The ACL is a simple high-level contract language. Details of which will
be presented in a separate document. The ACL used in this example conforms to ACL 2.0, and includes

features that were not present in the first ACL release.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |7

The Course Contract

The Course contract represents a single university course. A course is created by the university,

and consists of a name, code, a list of prerequisites, a list of students currently enrolled in the course,

and a size limit on the number of students that can take the course. The contract listing is shown below:

Import Core;

Namespace DaveArnold.Examples.School

{
Contract Course
{
Parameters
{

Scalar Boolean EnforcePreRequisites =

{ true, default false };
[0-2] Scalar Integer InstanceBind NumMidterms = 1;
[0-5] Scalar Integer InstanceBind NumAssignments = 1;
Scalar Boolean InstanceBind HasFinal =

{ default true, false };

Observability String Name() ;

Observability Integer Code() ;

Observability List tStudent Students();

Observability Integer CapSize();

Observability List Integer PreRequisites();

Observability Integer AssignmentWeight (Integer assignmentNum) ;
Observability Integer MidtermWeight (Integer midtermNum) ;
Observability Integer FinalWeight();

Observability Integer MarkForStudent (tStudent student);

Observability Boolean HasFinal/()

{
}

Parameters.HasFinal == true;

Observability Integer TotalMarks()

{

Scalar Integer markTotal = 0;

loop(l to Parameters.NumAssignments)

{ markTotal = markTotal + AssignmentWeight (counter);
{oop(l to Parameters.NumMidterms)

{ markTotal = markTotal + MidtermWeight (counter) ;
lhoice(HasFinal()) true

{ markTotal = markTotal + FinalWeight () ;

}

value = markTotal;

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page | 8

Observability Boolean IsFull()
{

Students () .Length() >= CapSize():;
}

Observability Boolean HasPreRequisites (tStudent s)
{
List Integer completedCourses = s.TakenCourses();
value = true;
each (PreRequisites())
{
value = value && completedCourses.Contains(iterator);
}
}

Responsibility new ()

{
Post (Name () not= null);
Post (Code () not= 0);

Post (Students () .Length() == 0);
Post (TotalMarks () == 100);
}
Responsibility finalize()
{
Pre(Students () .Length() == 0);
}
Invariant IsFullCheck
{
Students () .Length() <= CapSize():;
}
stub Responsibility AddStudent (tStudent s)
{
[Default] AddStudentNoPreReqCheck(s) ;
[Parameters.EnforcePreRequisites == true]
AddStudentPreReqgCheck (s) ;
}

Responsibility AddStudentNoPreReqgCheck (tStudent s)
{

Pre(Students () .Contains(s) == false);
Post (Students () .Contains(s) == true);
}
Responsibility AddStudentPreReqgCheck(tStudent s)
{
Pre(Students () .Contains(s) == false);
Pre (HasPreRequisites(s));
Post (Students () .Contains(s) == true);
}

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |9

Responsibility RemoveStudent (tStudent s)

{
Pre(Students () .Contains(s) == true);
Post (Students () .Contains(s) == false);
}
Scenario ReportMarks
{
Trigger (observe (TermEnded)),
once Scalar Contract University u = instance;
each (Students())
{
u.ReportMark (context, iterator,
MarkForStudent (iterator)) ;
b,
Terminate (fire (MarksRecorded)) ;
}
Exports
{
Type tStudent conforms Student
{
University::tStudent;
}
}

The Course contract listing begins with an Import statement. Import statements are used to
reference plug-in namespaces that will be used within the contract. It should be noted that the
Validation Framework (VF) system maintains two separate namespace systems. One for plug-ins, and
one for contracts. The rationale here is that plug-ins are external items that are not used in the same
way as contracts, and thus are kept separate. The Import statement is used for referencing plug-ins,
and the Using statement (not shown) is used for referencing contract namespaces. In the case of our
Course contract we are referencing the plug-in “Core” namespace. The “Core” namesace will contain a
set of frequently used plug-ins that will be shipped with the VF. The “Core” namespace would be
analogous to the contents of the “stdio.h” file in the C language. Details regarding the contents of the
“Core” namespace will be provided in seperae documentation. Import statements must be placed
before any other type of statements.

Next, the Namespace keyword is used to denote a new namespace entry. The name of the
namespace entry follows the namespace keyword. All our contracts for this example will be located in
the “DaveArnold.Examples.School” namespace. A given namespace may contain any number of
namespace entries, but all contracts defined within a given namespace must have unique names. That
is, two contracts with the same name cannot exist within the same namespace. Each namespace entry
may contain any number of contract or interaction declarations. However for our example, we will only
have a single item within each namespace entry.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |10

The contract proper begins with the use of the Contract keyword. The Contract keyword is
followed by an identifier denoting the name of the contract. As previously stated all contract names
within a single namespace must be unique. The contract name is used to reference the current contract
in other locations, such as within relations and other contracts. The contract name is also used as the
binding point to reference the contract when a binding is made between the contract and a type defined
within the IUT. Contracts defined using the Contract keyword are not automatically bound to an IUT
counterpart. Rather, they are bound only if they are referenced within the contract project. To enable
automatic binding between the contract and the IUT, the MainContract keyword should be used. An
example of the MainContract keyword will be presented later in this example. Once a contract is
defined, the body of the contract is specified between opening and closing brace brackets (‘{* and ‘}').
Within the body of the contract a number of different contract sections can be specified that define the
actual contract. There is no ordering to the placement of the contract sections. We will now examine
the sections that compose our Course contract.

The first section found within the Course contract is a parameters section. The parameters
section is denoted by the use of the Parameters keyword. The Parameters keyword is then followed by
a set of matching brace brackets denoting the body of the parameters section. Parameters are used to
configure the contract. They are analogous to testing parameters used by other testing tools.
Parameters can be used to specify different scenario paths, or simply to denote a constant value, such
as the maximum number of students within a class. There is no limit to the number of parameter
sections that can occur within a contract; the only restriction is that all parameters defined within a
contract must have a unique name. Parameters defined in base contracts are automatically inherited in
all subcontracts. Let’s now look at the five parameter definitions provided by the Course contract in
detail.

The first parameter begins with the Scalar keyword. The Scalar keyword indicates that the
parameter stores a scalar value, as opposed to a list value (denoted by the List keyword). Next, the type
of parameter is specified. In the case of the EnforcePreRequisites parameter, the parameter is of type
Boolean. After the parameter type, the name of the parameter follows. The parameter name is used to
reference the parameter within and outside of the contract. Next, an equals (=) sign is used to assign a
value to the parameter. In the case of the EnforcePreRequisites parameter, we have provided a set of
possible values: true and false. The default keyword that precedes the false value denotes that false is
the default value. If the default keyword is not specified on any values then no default value will be
provided. In the case of the EnforcePreRequisites parameter, at binding time, a value will be requested
from the user. The value will only requested once and will apply to all instances of the Course contract.
That is, the parameter is static across all instances of the contract. The EnforcePreRequisites parameter
will be used to determine if students registering in the course will have their prerequisites checked
when they register. We will now look at a parameter that can have a unique value for each instance of
the contract: NumMidterms.

The NumMidterms parameter will be used to denote the number of midterm exams that the
current course has. The parameter declaration begins with range information. Range information is
optional and is located before the parameter declaration. If no range information is specified then the

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |11

parameter can be assigned any value, constrained to the parameter type. The range is specified
between matching square brackets (‘[and ‘]’). The range shown for the NumMidterms parameter is an
integer range that indicates, acceptable values are between 0 and 2. That is, a course may have 0, 1, or
2 midterms. In the case of string or character parameter types, a regular expression can be placed
between the square brackets to indicate expected parameter values. Following the range, the Scalar
and Integer keywords are used to indicate that the NumMidterms parameter is a scalar value and is of
the Integer type. Next, the InstanceBind keyword is used to indicate that each instance of the Course
contract has a unique parameter value. That is, each course has a different number of midterm exams.
At run-time a binding box will be provided to the user each and every time that a new course is created.
The user must specify a value that satisfies the range condition (if any). Finally, following the parameter
name a default value is assigned. In the case of the NumMidterms parameter, the default value is 1. It
should be noted that if the default value does not satisfy the parameter’s range, a compile-time error
will be generated.

Next, the NumAssignments parameter is declared in a similar fashion, and will be used to
indicate the number of assignments that must be completed during the course. One more parameter
declaration follows: HasFinal. HasFinal is a scalar Boolean value that is bound per contract instance
indicating if the course has a final exam. The default value for the HasFinal parameter is true (denoted
by the default keyword).

Following the parameters section is a set of observability methods. Observability methods are
used to acquire information from the IUT type that is bound to the contract. There are two types of
observability methods: bound observability methods, and derived observability methods. Bound
observability methods do not contain a body and are bound directly to a procedure within the IUT that
has the same signature as the observability. The same signature is defined as the same return type, and
parameter types (in any order). It should be noted that the name of the observability method does not
have to match the name of the procedure that it is bound to. Instrumentation will be added to the
bound IUT procedures to ensure that all observability methods are side-effect free. Derived
observability methods are not bound to a procedure within the IUT. Their value is calculated by using
other observability methods and contract variables. The Course contract contains examples of both
types of observability methods. We will start by presenting the bound observabilities.

The first bound observability is called Name(). The Name() observability will be bound to an IUT
procedure that returns the name of the course. Likewise the Code() observability will be bound to an
IUT procedure that returns a integer value representing the course code. Next, the Students()
observability is defined. The return type of the Students() observability contains the List keyword in
addition to the return type (tStudent). By default all observability methods return a scalar value. That
is, the Scalar keyword is implied. The List keyword indicates that the Students() responsibility returns a
list of type tStudent. tStudent is a bound type. That is, the tStudent type is a placeholder for the IUT
type that actually represents a student in the university. Details regarding the definition of the tStudent
type will be provided shortly. The Students() observability is used to return a list of the students
currently enrolled in the course. The CapSize() observability is used to return a scalar integer value
indicating the maximum number of students that can be enrolled in the course. The PreRequsites()

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |12

observability method will be bound to an IUT procedure that returns a list of integers indicating the
course codes of all prerequisites required to take the current course. It should be noted that this list
could be empty.

Next three observability methods are defined: AssignmentWeight(), MidtermWeight(), and
FinalWeight(). These observability methods are used to get the mark weight for each of the course
components. In the case of the AssignmentWeight() and MidtermWeight() observability methods, a
single parameter is also required by the observability method to indicate the assignment or midterm
number that the caller is interested in. When binding observability methods that accept parameters,
the IUT method must at least accept the requested parameter. By at least, we mean that the IUT
method could accept additional parameters, and the values of these parameters must be specified by
the user at bind-time.

Finally, a scalar integer observability method is defined named MarkForStudent(). The
MarkForStudent() observability is bound to an IUT method that returns the final mark for the student
specified by the given student.

Next the Course contract specifies four derived observability methods. Recall that a derived
observability method contains a body and the body determines the value returned to the caller. The
first derived observability method is named HasFinal() and returns a Boolean value indicating if the
course has a final exam or not. The resultant value is determined by referencing the HasFinal
parameter. Parameters are referenced by using the Parameters keyword followed by the parameter
name. The Parameters keyword is required to prevent ambiguity between parameters and variables.
The HasFinal() derived observability method does not have an explicit value statement (return) because
the body of the method contains a single expression. It is the result of this expression that is returned to
the caller. We will now look at a derived observability method that requires an explicit value statement.

The TotalMarks() derived observability method is used to determine the total number of marks
that can be obtained from this course. The body of the TotalMarks() observability method begins with
the declaration of a scalar variable of type integer that has an initial value of zero. ACL 2.0 supports the
use of initializing expressions in variable declarations. In the case of the markTotal variable, the
initializing expression sets the variable to a value of zero. Next, the body contains one of the new
statements found within ACL 2.0: a loop. As the name suggests, the loop statement is used to repeat a
block of ACL code one or more times. The loop statement begins with the loop keyword, followed by
the looping condition enclosed within matching round brackets (‘(“ and ‘)’). The first element of the
looping condition is the starting value. The starting value is the initial value of the loop counter and
must be an integer value. The starting value is followed by the to keyword that indicates a separation
between the starting value and the ending value. The ending value is the final value that the loop will
operate on. That is, the final value is included in the loop iteration. If the final value is less than the
starting value, the body of the loop will not execute. At each iteration of the loop, the loop counter,
denoted by the counter keyword is increased by one. Nested loops are not allowed. Returning to the
TotalMarks() derived observability method, the body of the observability begins by iterating through
each assignment and adding its mark weight to the markTotal variable. If there are no assignments, the

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |13

body of the loop will not execute and no call to the AssignmentWeight bound observability will be
made. Next, the same process occurs for any midterms that may exist within the course. Once the
marks for any assignments and midterms have been added to our running total, we move on to a choice
statement. A choice statement is similar to an if statement found within other programming languages,
but it has been tailored for use at the requirements level. The choice statement begins with the use of
the choice keyword, followed by the value that we are comparing against enclosed in matching round
brackets (‘(“and ‘)’). In the case of our observability method, the value returned by the previously
discussed HasFinal() observability is used as the comparison value. Following the ending bracket, the
choice condition is specified, in this case true. The choice statement indicates that if the comparison
value is equal to the choice condition, then the ACL code specified in the block immediately following
the choice statement will be executed. If this is not the case, then the ACL code in the block will not be
executed. Returning to the TotalMarks() derived observability, if there is a final exam in the course, then
we add the value of the final exam to our running markTotal variable. Finally, because the observability
body is not defined using a single expression, the resultant value has to be assigned to the value
keyword to indicate the value that should be returned to the caller. If no such assignment exists, then a
compile time error will be issued.

Next, the IsFull() derived observability is specified. The body of the IsFull() observability consists
of a single expression that will return true if the course is full and no additional students can be
registered in the course. The expression uses the built-in Length() operation defined on all list variables
to return the number of students in the course. For the complete set of operations available on list
variables please see the ACL specification. The number of students is compared with the cap size for the
class to determine if the course is full or not.

Finally, the HasPreRequisites() derived observability method returns true if the given student
has the required prerequisites to take the course. The body starts by defining a variable named
completedCourses that is a list of integers. The variable’s initializer assigns our new variable the list of
courses that the student has already taken. Next, the observability body sets the value keyword to true.
Such an assignment is required because if the course has no prerequisites then the each statement will
not execute and there will be no resultant value. Next, an each statement is used to iterate through
each of the elements stored within the integer list returned from the PreRequsites() bound
observability. The each statement is new in ACL 2.0 and begins with the each keyword, followed by the
collection to iterate enclosed in round brackets (‘(‘ and ‘)’). The current element of the iteration can be
accessed using the iterator keyword. In HasPreRequisites() each course prerequisite is iterated through
and checked against the list of courses that the given student has already completed. The value
returned to the caller will be true if the course has no prerequisites or if the student has taken each of
the required prerequisites and false otherwise.

The Course contract next defines a series of responsibilities that must be implemented by the
IUT type bound to the contract. There are three ways that an IUT is able implement a given

responsibility:

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page | 14

1) The responsibility is bound 1-to-1 to a method within the IUT.

2) The responsibility is bound to a starting method and an ending method. In this case the
responsibility is said to be complete only after the ending method has completed execution.

3) The responsibility is decomposed into a grammar of other responsibilities.

Our example will illustrate all three responsibility types. The Course begins with one of two
special responsibilities: new(). As the name suggests the new() responsibility is automatically invoked
upon the creation of a new instance of the IUT type bound to the contract. The new() responsibility does
not require binding. The new() responsibility in the Course contract contains four post-conditions to
ensure that a valid Course has been created. It should be noted that the new() responsibility cannot
contain preconditions, as the IUT object has not been created before execution of a constructor. The
post-conditions ensure that the course has a name, a valid course code, that it does not already contain
any students, and the total marks assigned during the course add up to 100.

Analogous to the special new() responsibility is the special finalize() responsibility. As the name
suggests the finalize() responsibility is automatically invoked right before an object of the IUT type
bound to the current contract is destroyed. For that reason the finalize() responsibility cannot contain
any post-conditions. In the Course contract our finalize() responsibility contains a single precondition
that ensures that a course is not destroyed if it contains any students.

Next the Course contract defines an invariant named IsFullCheck. An invariant is a way to
ensure a consistent state at all times during the lifetime of the contract. Invariants are checked before
and after each responsibility with two exceptions: Invariants are not checked upon entry to the new()
responsibility or upon exit from the finalize() responsibility. In the case of the Course contract our
invariant contains a single expression that will ensure that the course never ends up being over capacity.
That is, having more students than the course size.

Following the IsFullCheck invariant, the Course contract defines a set of regular responsibilities
that each and every course defined within the university is expected for perform. The first responsibility
is AddStudent(). As the name suggests the AddStudent() responsibility takes the given student and adds
him/her to the course. However one look at the body of the AddStudent() responsibility doesn’t seem
to do that at all. Rather, the AddStudent() responsibility is a stub. Stub responsibilities are denoted by
the use of the stub modifier before the responsibility declaration. Stub responsibilities are analogous to
stubs found in use case maps: stubs represent a point where different functionality can be either
statically or dynamically placed into the location represented by the stub. Put another way, a stub is like
a place holder for ACL code. Stub responsibilities are new in ACL 2.0, and must contain a body. That s,
stub responsibilities cannot be directly bound to an IUT procedure, but rather must be bound to another
responsibility found within the contract. In the case of the AddStudent() responsibility we are defining a
stub, because some courses may require a prerequisite check, where others may not, and may allow
students without the required prerequisites to take a given course. This example represents a dynamic
stub, in that the selection of which add student algorithm (prerequisite checking or not) will be done a
runtime on a per course basis. Let us look at the body of the AddStudent() responsibility to see how this
is accomplished with ACL 2.0. The body references two other responsibilities:

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |15

AddStudentNoPreReqCheck() and AddStudentPreReqCheck() . The selection of which one to execute is
done using stub constraints. Stub constraints are specified between square brackets (‘[and ‘]’) that
indicates an expression that when it evaluates to true, the responsibility that follows the stub condition
should be evaluated instead of the one defined by the stub. In addition, the Default keyword can be
used to indicate a default choice of responsibility. In the AddStudent() responsibility, we do not perform
a prerequisite check by default. As previously discussed, we have created a parameter whose value is
specified on a per instance basis that indicates if the current course should check prerequisites or not. If
the parameter ‘s value is set to true then, the AddStudentPreReqCheck() responsibility will be used.
There are two things to note. First, if there is a case where more than one responsibility could be
executed, based on their stub constraints, a runtime error will be issued. Secondly, a default
responsibility is not required. If there is no responsibility that matches the stub constraints, then
execution of the IUT proceeds as normal, and the AddStudent() responsibility is not executed. The fact
that the responsibility is not executed is important when designing scenario grammars. Additional
examples of stub responsibilities will be presented later in this document.

The AddStudentNoPreReqCheck() responsibility will be bound to an IUT procedure (or group of
IUT procedures) that add a student to the course without checking prerequisites. The responsibility has
one precondition that checks to ensure that student is not already in the class, and a post-condition to
make sure that the student was actually added to the class.

The AddStudentPreReqCheck() responsibility is similar to the AddStudentNoPreReqCheck() with
the exception that AddStudentPreReqCheck() contains an additional precondition that uses the
previously defined HasPreRequisites() observability method to ensure that the student being registered
in the course does in-fact have the required pre requisites.

Analogous to the AddStudent() responsibility, the RemoveStudent() responsibility removes a
student from the course. The responsibility defines a single precondition that ensures that the student
to be removed from the course has been previously enrolled in the course. Finally, the responsibility
defines a post-condition to ensure that the after the bound IUT procedure has completed executing, the
student is no longer enrolled in the course.

The Course contract next defines a single scenario: ReportMarks. The scenario specifies a
grammar for the process of recording a mark for each student enrolled in the course. A number of
changes have been made to the scenario contract element in ACL 2.0. The ReportMarks scenario will
outline a few of them. For a complete list see the ACL 2.0 specification document. The scenario begins
with the Scenario keyword followed by the name of the scenario. The scenario name is used in the
contract evaluation report and within the Relation construct. The Relation construct will be discussed
later in this document. Scenarios do not accept parameters. The rationale here is that scenarios are
triggered by observed events or IUT procedures being invoked, there is no way to invoke a scenario, and
as such it cannot accept parameters. The body of the scenario is specified between matching brace
brackets (‘{" and ‘}’). The scenario begins with a trigger. As in ACL 1.0, the scenario trigger is specified
using the Trigger keyword. The scenario trigger can be one of two things: responsibility or an observed
event. A responsibility trigger occurs after the specified responsibility has completed executing. That is,

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page | 16

the IUT procedure (or group of) bound to the responsibility have finished executing, and any post-
conditions have been evaluated. This was the only way of triggering a scenario in ACL 1.0. In ACL 2.0,
there is an additional was to trigger a scenario, through the use of an observable event. An observable
event trigger is denoted by using the observe keyword within the body of the Trigger statement, as
shown in the ReportMarks scenario. The observe keyword is followed by the event name enclosed in
matching round brackets (‘(and ‘)’). Event names are represented by identifiers, and follow the same
naming rules as variables. Details regarding the observable event system within ACL 2.0 will be provided
later in this document. Returning to the ReportMarks scenario, the scenario is triggered upon receipt of
the event named TermEnded. That is, the scenario begins once a term has ended.

Next the scenario captures the current University contract instance. In ACL 2.0, contracts are
variable types. That is, instances of contracts can be referenced. Through these instances, contract
variables, observability methods, and responsibilities can be used. The declaration of a contract variable
begins with the Contract keyword followed by the name of the contract that we are referencing. Note
that if the requested contract does not reside within the current contract namespace, a Using
declaration is required before the current contract declaration. Following, the contract name, an
identifier is used to represent the contract instance within the current scope, in our case within the body
of the ReportMarks scenario. Contracts are instantiated only when their bound IUT type is instantiated.
As such, new contract instances cannot be created within the ACL. There are two ways to obtain a
contract instance.

The first way is illustrated in the ReportMarks scenario and uses the instance keyword to assign
the contract variable the current instance of the contract. The instance keyword has different semantics
depending on if the contract variable to be assigned is a scalar or list. If a scalar is used, the current
instance is obtained using the following algorithm:

1. Ifthereis no current contract instance of the requested type, the scenario fails.
If there is a single contract instance of the requested type, that instance is used.
If there is more than one contract instance of the requested type, the triggering event is
examined to see if a specific contract instance was used to fire the triggering event. If
so, then it is that instance that is used. In the case of the ReportMarks scenario if the
algorithm gets to Step 3, then the university instance that fired the TermEnded event
would be used.

4. Finally, if the runtime cannot determine the correct instance to use, the binding tool is
used to request the instance to use from the user.

In the case, where the above algorithm is not sufficient in selecting the current contract instance, the
instance keyword can be replaced with the bind keyword (not shown) to force the presentation of the
binding tool for instance selection.

If a list is used, the current instance list is obtained using the following algorithm:

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |17

1. Ifthereis no current contract instance of the requested type, an empty list of contract
instances is used.

2. Ifthereis a single contract instance of the requested type, a list with a single instance is
used.

3. If there is more than one contract instance of the requested type, a list with each
instance is used.

If the bind keyword is used for a list of contract instances, the binding tool will allow for multiple
instance selection. The selected instances will then be placed into a list and assigned to the specified
contract variable.

The second way to obtain a contract instance is through the use of the bindpoint keyword with
an IUT type. The bindpoint keyword is used to obtain the element bound to a given item. The
bindpoint keyword can only be used to obtain scalar contract instances and works as follows:

1. In <IUT type instance>.bindpoint — The contract instance that the IUT instance has been
bound to is returned. If there is no contract bound to the IUT type, a null value is
returned.

2. In<contract instance>.bindpoint — The IUT instance that has been bound to the contract
instance is returned. This value cannot be null, because a contract cannot be created
without having an underlying IUT type.

Examples of both uses of the bindpoint keyword will be presented in this document. To recap,
the ReportMarks scenario is triggered following the receipt of the TermEnded event, and beings with
acquiring the current instance of the University contract, using the algorithm above. Next, the scenario
uses the previously discussed each statement to iterate through each student within the course. When
the each statement is used within a scenario, it denotes that the scenario grammar specified within the
body of the each statement must be executed for each element within the list. It should be noted that
there is no ordering requirements, the students can be processed in any order as long as each student is
processed, once and only once. In addition, it is possible that several collection elements can be
processed in parallel. That is, the body of the each statement does not denote any concurrency
constraints.

The body of the each statement contains a single grammar element. It denotes that the
ReportMark responsibility defined on the university contract instance is invoked using our course, the
current student, denoted by the iterator keyword, and that the mark reported by the previously
discussed MarkForStudent() observability method is provided. The purpose of this element is to ensure
that the correct mark for the given student is recorded. A positive scenario grammar element match is
made only when the following conditions are true:

1. The IUT procedure(s) bound to the ReportMark responsibility have been executed on
the IUT instance that is bound to the contract instance that is captured in the u contract
variable. (The responsibility could be implemented by a grammar of other
responsibilities, in this case the grammar is flattened, and then the step proceeds as
normal).

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |18

2. Any pre/post-conditions and/or other constraints specified within the ReportMark
responsibility have evaluated to true.
3. The parameters passed to the ReportMark responsibility are as follows:
a. The first parameter is the instance of the IUT type bound to this course. Note:
The context keyword should actually be context.bindpoint but, the compiler is
able to infer when the IUT type should be used rather than the contract
instance, so the bindpoint keyword is not required in the is case.
b. The second parameter is the student specified by the iterator keyword. This is
actually any student within the Students() list that has not already been used.
c. The third parameter is the same value as returned by the MarkForStudent()
observability.

Following the each statement, the scenario is completed with a termination condition. A
scenario termination condition is used to specify when the scenario is complete. As with scenario
triggers termination conditions have also been updated in ACL 2.0 to include support for observable
events. A scenario termination condition begins with the Terminate keyword followed by one of four
elements enclosed in round brackets (‘(“ and ‘)’):

1. A responsibility - This was the only way to specify a scenario termination condition in
ACL 1.0. The scenario terminates when the specified responsibility has completed
execution. Execution is defined as previously discussed with triggering events.

2. An observe statement — The scenario is completed upon receipt of the specified
observable event.

3. Afire statement — The fire statement (shown here) is denoted by the fire keyword and
is used to raise the event specified within matching round brackets (‘(“ and ‘)’). The fire
statement is used to raise events that are observed using an observe statement.

4. Empty — An empty terminate statement is denoted with an empty set of matching
round brackets (‘(“ and ‘)’), and indicates that the scenario automatically terminates
when execution reaches the terminate statement.

The terminate statement completes the ReportMarks scenario. The Course contract continues
with an Exports section. The Exports section defines the IUT binding points required for the contract,
and also includes any binding constraints. Our Course contract only requires a single binding point:
tStudent. The binding point begins with the Type keyword to denote that the binding of the tStudent
symbol is to be made against a type within the IUT. The Method, and Field keywords can be used to
bind a contract symbol to an IUT procedure or field respectively. Only the binding type keyword and the
symbol are required to define a binding point. The tStudent symbol is followed by the conforms
keyword. The conforms keyword is used to indicate that the IUT type that the tStudent symbol is bound
to will automatically have the Student contract applied to it. Following the binding point, a set of
binding rules/constraints can be optionally specified within an enclosing set of brace brackets (‘{* and
‘Y). The tStudent binding point contains a single binding rule that states that the IUT type that is bound
to the tStudent symbol must be the same type that is bound to the tStudent symbol found within the
University contract. The Exports section concludes the Course contract. We will now look at a contract
that offers a refinement on our Course contract by creating a Course that also includes a course project
in addition to just the assignments and exams provided by the just presented Course contract.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |19

The ProjectCourse Contract
The ProjectCourse contract represents a refinement on the Course contract representing a
single university course. The ProjectCourse is used for courses that also include a course project in

addition to any number of assignments, mid-terms, and a final exam. The contract listing is shown
below:

Import Core;

Namespace DaveArnold.Examples.School

{

Contract ProjectCourse extends Course

{

Parameters

{

Scalar Boolean InstanceBind HasProject =
{ default true, false };

Observability Integer ProjectWeight();
Observability Boolean HasProject ()
{

Parameters.HasProject == true;

refine Observability Integer TotalMarks()
{

Scalar Integer markTotal = base.TotalMarks() ;
choice (HasProject()) true

{
markTotal = markTotal + ProjectWeight() ;
}

value = markTotal;

The ProjectCourse contract listing begins with an Import statement to import the plug-ins that
are located within the "Core” namespace. Recall that the “Core” namespace will contain a set of
commonly used plug-ins. Next a namespace declaration is used to place the ProjectCourse contract into
the “DaveArnold.Examples.School” namespace. This namespace will be used for all of the contracts in
our example. The ProjectCourse contract begins with the Contract keyword followed by the name of
the contract. After the ProjectCourse contract identifier the extends keyword is used to denote a base
contract. The name of the base contract follows the extends keyword. The contents of the base
contract are available for use within the current contract. In the case of the ProjectCourse contract, we
are using the Course contract to provide the functionality for a regular course. The ProjectCourse
contract will then specialize to create a course that also contains a course project.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |20

The ProjectCourse contract begins with a Parameters section. The parameters defined within
the base contract are automatically part of the current project. ProjectCourse defines a new parameter
named HasProject. HasProject is a scalar Boolean value that defaults to true. HasProject is used to
define if the current course has a project. That is, it is possible for a project course to not actually have a
project. For example a course may usually be a course project but during a given term the project
portion of the course is cancelled.

Next, three observability methods are defined. The first observability method is named
ProjectWeight(). ProjectWeight() will be bound to a procedure within the IUT that will return an integer
value representing the number of marks that compose the project component of the course. The
second observability method is HasProject() . HasProject() is a defined observability method and will
not be bound to a procedure within the IUT. The observability method’s body consists of a single
expression that tests the value of the previously discussed HasProject parameter to see if the current
course has a project or not. The third and final observability method is a refinement over an existing
observability defined within the base contract. It should be noted that only derived observability
methods can be refined. Bound observability methods cannot be refined, as they do not contain a body.
A refined observability method begins with the refine modifier before the Observability keyword. The
refine modifier instructs the compiler that this observability method is refining an existing observability
method. If no such base observability method exists, a compile-time error will be generated. The base
observability method must have the same return type, name and parameter set as the refined
observability. The CourseProject contract refines the TotalMarks() defined observability method so that
the total mark calculation also includes the project mark. The body of the TotalMarks() observability
method begins with the declaration of a scalar integer variable named markTotal. markTotal will be
used to record the total marks for the course. The variable’s initializer uses the base keyword to access
the base contract, and invoke the base version of the TotalMarks() observability. Such invocation gets
the total marks for all aspects of the course except for the project. A choice statement is then used to
execute the body of the choice statement only if the HasProject() observability method returns true.
The body of the choice statement consists of a single assignment that adds the weight of the course
project, obtained from the ProjectWeight() bound observability method, to the markTotal variable.
Finally, the TotalMarks() observability method assigns the markTotal variable to the value keyword so
that the calculated total number of marks for the course is returned to the caller. The TotalMarks()
observability method completes the ProjectCourse contract. It should be noted, that the ProjectCourse
contract was included to provide an example of contract inheritance and refinement. Additional
refinements could also be added to account for the complexities introduced within a project course. Or
instead of creating a specialized ProjectCourse contract, the original Course contract could have been
modified. Our example now turns away from courses, and moves to a contract representing an
individual student.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |21

The Student Contract

The Student contract represents an individual student enrolled at a university who is able to

take courses. The Student contract listing is as follows:

Import Core;

Namespace DaveArnold.Examples.School

{

Contract Student

{

Scalar Integer failures;

Observability List Integer CompletedCourses();
Observability Integer StudentNumber () ;
Observability String Name() ;

Observability List tCourse CurrentCourses() ;
Observability Boolean IsFullTime() ;

Observability Boolean IsCreated()

{
StudentNumber > 0;
}

Responsibility tCourse SelectCourse(List tCourse courses)
{

Post (value not= null);

Post (courses.Contains(value) == true);
}
Responsibility RegisterCourse(tCourse course)
{
Pre (CurrentCourses () .Contains (course) == false);
Post (CurrentCourses () .Contains (course) == true);
}
Responsibility DropCourse (tCourse course)
{
Pre (CurrentCourses () .Contains (course) == true);
Post (CurrentCourses () .Contains (course) == false);
}
Responsibility DeRegisterCourse (tCourse course)
{
Pre (CurrentCourses () .Contains (course) == true);
Post (CurrentCourses () .Contains (course) == false);
}
stub Responsibility DoAssignment (tCourse c)
{
Contract Course course = c.bindpoint;
[course.Parameters.NumAssignments > 0] DoAssignment (c) ;
}

The University Example — Version 2.1 — © Dave Arnold — May 232008

stub Responsibility DoMidterm(tCourse c)

{
Contract Course course = c.bindpoint;
[course.Parameters.NumMidterms > 0] DoMidterm(c) ;
}
stub Responsibility DoFinal (tCourse c)
{
Contract Course course = c.bindpoint;
[course.Parameters.HasFinal == true] DoFinal (c);
}
stub Responsibility DoProject (tCourse c)
{
Contract Course course = c.bindpoint;
[course sameas ProjectCourse] DoProject(c);
}

Responsibility DoAssignment (tCourse c);
Responsibility DoMidterm(tCourse c);
Responsibility DoFinal (tCourse c);

Responsibility DoProject (tCourse c)

{
FormATeam(c) ,
observe (TeamFinalized),
WorkOnProject(c) ;
}
Responsibility FormATeam(tCourse c)
{
fire(TeamFinalized);
}

Responsibility WorkOnProject (tCourse c);

Page |22

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |23

Scenario RegisterForCourses

{

Scalar tCourse course;

Contract University u = instance;

Trigger (observe (CoursesCreated), IsCreated()),
choice(IsFullTime()) true

{
(

) [0-u.
}

atomic
{
course = SelectCourse(u.Courses()),
choice(course.bindpoint.IsFull()) true
{
course = SelectCourse(u.Courses()),
redo;

};
},
u.RegisterStudentForCourse (context, course),
RegisterCourse (course)
Parameters.MaxCoursesForFTStudents];

alternative (false)

{

) [0-u.
b,

Terminate() ;

atomic
{
course = SelectCourse(u.Courses()),
choice(course.bindpoint.IsFull()) true
{
course = SelectCourse(u.Courses()),
redo;

};
},
u.RegisterStudentForCourse (context, course),
RegisterCourse (course)
Parameters.MaxCoursesForPTStudents];

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |24

Scenario TakeCourses

{
failures = 0;
Trigger (observe (TermStarted)),
parallel
{
Contract Course course = instance;
Check (CurrentCourses () .Contains (course.bindpoint)) ;
atomic
{
(
parallel
{
(DoAssignment (course.bindpoint))
[course.Parameters.NumAssignments];
}
I
(DoMidterm(course.bindpoint))
[course.Parameters.NumMidterms]
(DoProject (course.bindpoint))
[course sameas ProjectCourse &&
course.Parameters.HasProject]
),
(DoFinal (course.bindpoint)
[course.Parameters.HasFinal];
}
alternative(not observe(LastDayToDrop))
{
DropCourse (course.bindpoint) ;
};
} [CurrentCourses () .Length()],
Terminate () ;
}
Exports
{
Type tCourse conforms Course
{
University::tCourse;
}
}

The Student contract begins with the usual Import satement to import the “Core” plug-in
namespace. Next, the Namespace keyword is used to denote a new namespace entry in the
“DaveArnold.Examples.School” namespace. As previously stated, all of the contracts that compose the
university example reside in the “DaveArnold.Examples.School” namespace. Within the namespace
entry the Student contract begins. The contract begins with the Contract keyword followed by an
identifer to denote the name of the contract, Student in our case. The body of the Student contract
begins with the declaration of a variable named failures. The failures variable is a scalar integer, and
will be used to record the number of courses that the student has failed in the current term. The

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |25

number of failures is used to determine if a given student is able to continue with his/her degree. Usage
of the failures variable will be shown shortly.

Next the Student contract defines five bound observability methods. The CompletedCourses()
observability method will be bound to an IUT procedure that returns a list of integers representing all of
the courses that have been completed by the student. Each integer represents the course code of a
course that the student has completed in a previous term. The StudentNumber() observability method
returns an integer that contains the student number for the current student. Likewise the Name()
observability method returns a string representing the name of the current student. The
CurrentCourses() observability method will be bound to an IUT procedure that returns a list of courses
that the student is currently enrolled in. The tCourse type will be bound to the IUT type that represents
a univeristy course. The binding point is defined within the Student contract’s Exports section. Finally,
the IsFullTime() bound observability method returns true if the current student is a full time student,
and false otherwise (part time).

The Student contract then defines a single defined observability method, named IsCreated(). As
the name suggests, IsCreated() returns true if the student has been assigned a valid student number,
false otherwise. The body of the IsCreated() observability method uses a single expression to test that
the student has been assigned a student number. It is the result of this single expression that is returned
to the caller.

The SelectCourse() responsibility is a black box responsibility that is bound to a procedure (or
procedures) within the IUT that selects a course from the provided list of courses that the student wants
to take. The selection algorithm is not of importance to our contract, but it could be specified using
various ACL constructs. The SelectCourse() responsibility contains two post-conditions that ensure that
the result returned from the bound IUT elements is not null and that the result is from the list of courses
provided. That is, a valid course was actually selected.

Next, the RegisterCourse() responsibility is defined to register a student in a course. The
responsibility defines a single precondition that checks to make sure that the student hasn’t already
registered in the course. That is, the student’s list of current courses doesn’t already contain the course
that they want to register in. Next, a post-condition is used to ensure that the upon completion of the
responsibility, the student is registered in the requested course.

The Student contract then defines the DropCourse() responsibility. The DropCourse()
responsibility is a black box that represents the action of a student dropping a course. The course to
drop is specified by the responsibility’s only parameter. The responsibility defines a single precondition
to ensure that the student is currently enrolled in the course that he/she wishes to drop. A
corresponding post-condition checks to see that the student is no longer enrolled in the course that
he/she chose to drop. That is, the course has been successfully dropped. The DeRegisterCourse()
responsibility follows, and contains the same pre and post-conditions as the DropCourse()
responsibility. The difference between the two responsibilities is that DropCourse() is used to drop a
course that has already started, where as DeRegisterCourse() is used to remove the student from a

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page | 26

course that has not yet begun. Depending on how the IUT is implemented, the two responsibilities
could be bound to the same IUT procedure. Such binding is not apparent from the contract point of
view, and would only be discovered during execution of the binding tool.

Next a stub responsibility named DoAssignment() is defined. The DoAssignment() responsibility
is a stub for a responsibility that will perform the task of a student doing an assignment. The rationale
for using a responsibility stub in this situation is that is if a student is not taking a course that has any
assignments, then the student will not require a corresponding responsibility. The body of the
DoAssignment() responsibility stub begins with the extraction of the Course contract instance from the
provided IUT instance representing the given course that we are doing the assignment for. The
bindpoint keyword is used to get the Course contract instance that is attached to the IUT instance.
Recall that the bindpoint keyword is used to get the opposite end of a binding. That is, a contract
instance from an IUT instance, or an IUT instance from a contract. Note that if the resultant contract
type does not match the declared type a run-time error will be issued. An example of such an error
would be if a contract other than the Course contract was bound to the IUT type represented by the
tCourse symbol. In addition, if the IUT instance does not have a corresponding contract instance, a
value of null will be returned. The second line of the responsibility stub indicates the responsibility that
should be used to fill the stub and a constraint for its use. Let us elaborate, the constraint specifies that
the DoAssignment() regular (non-stub) responsibility will be used if the given course has at least one
assignment. There are two things to note here. The first is that the Student contract contains two
DoAssignment() responsibilities. One is a stub and the other is a regular responsibility. While such
naming is not required, it is allowed so that a stub can be used to select possible responsibilities
(including one with the same name) that can be invoked depending on the evaluation of a constraint.
The second thing to note is what happens if there is no responsibility that fits into the stub, due to the
constraint evaluation. In this case no responsibility executes and the responsibility stub is automatically
completed. That is, if the responsibility stub is part of a scenario grammar the grammar element will
automatically be satisfied.

The DoMidterm(), DoFinal(), and DoProject() responsibility stubs perform the similar action to
the DoAssignment() responsibility. As such their specifics will not be discussed any further. One thing
to note is that the constraint used in the body of the DoProject() responsibility uses the sameas
keyword to check if the given course is actually an instance of the ProjectCourse contract. That is, the

student can only do a project within a course that contains a project.

Following the four stub responsibilities, their corresponding regular responsibilities are defined.
The DoAssignment(), DoMidterm(), and DoFinal() responsibilities will each be bound to an IUT
procedure (or group of procedures), that carries out the assignment, mid-term or final task respectively.
The responsibilities defined within the Student contract do not define any pre or post-conditions but
they could be enriched with any of the constraint functionality that has already been discussed. Next
the DoProject() responsibility is defined. The DoProject() responsibility is an example of a responsibility
that is not bound to a corresponding IUT procedure, but rather is specified by a grammar of other
responsibilities and events. The difference between the two types of responsibilities can be seen within
the responsibility body. If the body, as in DoProject(), contains a scenario grammar then a binding will

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |27

not be created between the responsibility and the IUT, but rather the responsibility will be marked as
completed only following a successful execution of the containing grammar. It should be noted, that
stub responsibilities cannot be defined using a scenario grammar. The rationale for such a restriction is
that a stub responsibility is defined to be a place holder for one of possibly many responsibilities. The
body of the stub responsibility will be replaced with the body of the selected regular responsibility. As
such, a scenario grammar located within the body of the stub responsibility would be hidden by the
responsibility used to fill in the stub. As such, stub responsibilities cannot be defined using a scenario
grammar. If such a responsibility exists, a compile-time error will be generated. Returning to the
DoProject() responsibility, the body defines a grammar of responsibilities for completing a course
project. The course that the project is being done for is specified in the responsibility’s only parameter.
The grammar begins with the FormATeam() responsibility, followed by the observation of an event
named TeamFinalized. The TeamFinalized event will be used to indicate that the student has found a
team to complete the project with. Following the observation of the TeamFinalized event, the
WorkOnProject() responsibility is used to actually work on the project. The DoProject() responsibility is
only completed if the specified scenario grammar is satisfied, this will only occur upon completion of the
WorkOnProject() responsibility.

The Student contract then defines the FormATeam() responsibility. The dynamics of forming a
team are treated as a black box in the context of our example, but they could be specified in detailed
using a scenario grammar as was done in the DoProject() responsibility. In our case, the FormATeam()
responsibility will be bound to an IUT procedure (or group of procedures) that performs the task of a
student forming a team. The responsibility’s body contains a single statement; the responsibility uses
the fire keyword to send the TeamFinalized event upon completion of the responsibility. Thatis, when
an event is fired from within a bound responsibility, the event is only fired upon completion of the
responsibility. It should be noted that in the DoProject() responsibility, we did not need to explicitly
observe the TeamFinalized event because when the FormATeam() responsibility completed the
grammar would have moved on to the next element: WorkOnProject(). However, we have included the
event here to illustrate the use of the observable event system in ACL 2.0. More examples will be
provided later in this document.

The final responsibility in the Student contract is WorkOnProject(). The WorkOnProject()
responsibility will be bound to an IUT procedure (or group of procedures) that will perform the task of
actually working on a project for the course. We will examine the two scenarios that compose the
Student contract.

The first scenario is named RegisterForCourses and as the name suggests is used to define the
process of course registration as performed by the student. The scenario begins with the declaration of
a scalar variable that will be used to store instances of courses. The course instances are of type
tCourse. The tCourse type will be bound to the IUT type that will represent a university course. Next,
the current instance of the University contract is obtained using the previously discussed instance
keyword. Following the variable declarations, the scenario beings with the scenario trigger denoted by
the Trigger keyword. The trigger for the RegisterForCourses scenario is the observation of the
CoursesCreated event. That is, a student begins course registration once the university has created all

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |28

the courses for the current term. Unlike the previously discussed scenario triggers, the trigger
statement within the RegisterForCourses scenario contains an extra element: a constraint. Triggering
constraints are specified by a Boolean expression that follows the actual triggering event as shown in
the RegisterForCourses scenario. The triggering constraint must be true in order to trigger the scenario.
If the triggering constraint does not result in a true value, the scenario is not triggered. It should be
noted that unlike a precondition, an error is not generated, but rather the scenario simply is not
triggered. If the triggering event occurs (again) at a later time and the triggering constraint now
evaluates to true, then the scenario will be triggered. Note, that such an occurrence requires the
triggering event to re-occur. In the case of our example, the student would have a get a student
number, but then would not be able to register until the next term, when the CoursesCreated event is
fired. Returning to the RegisterForCourses scenario the triggering constraint is used to ensure that the
student has in-fact been registered with the university and been assigned a student number, as per the
previously discussed IsCreated() derived observability method. IsCreated() is a derived observability
because rather than being bound to an IUT procedure, its result is calculated by the expression found
within the body of the observability. Once the scenario has been triggered, a choice statement is used
to denote a block of scenario grammar that is executed only if the current student is a full time student.
The scenario block begins with the atomic keyword. Recall that an atomic block indicates a set of
scenario elements, that are to be executed as one atomic action, and for the atomic block to be
satisfied, the entirety of the body, specified between matching brace brackets (‘{* and ‘}), must be
satisfied. For more information on the use of the atomic keyword see the ACL 2.0 specification
document. The atomic block is required so that the action of selecting a course (regardless of the
number of times the SelectCourse() responsibility is invoked) can be viewed as a single action from the
scenario’s point of view. The body of the atomic block begins with the invocation of the SelectCourse()
responsibility with the list of courses provided by the University contract. The resulting (selected)
course is then assigned to the previously declared course variable. The idea is that the value stored
within in the course variable will be the course that the student wishes to register in. Following the
course selection, the scenario continues with another choice statement. The choice statement checks
to see if the selected course is full via the IsFull() responsibility defined on the Course contract. The
bindpoint keyword is used to reference the contract instance that is bound to the IUT instance that has
been assigned to the course variable. The body of the choice statement is then executed if the course
that the student selected is full. That is, if the student cannot be registered in the course, because the
course is full. The body begins with another invocation of the SelectCourse() responsibility to select
another course. It should be noted, that our example has been designed with the assumption that the
SelectCourse() responsibility will select a unique course each time that it is invoked. If this is was not the
case, a new SelectDifferentCourse() responsibility could be created that accepts a list of courses that
have already been selected, in addition to the list of university courses. Once a new course has been
selected and assigned to the course variable, the body of the choice statement continues with the redo
keyword. The redo keyword is new in ACL 2.0, and can only be used within the body of a choice, loop,
or each statement. When the redo keyword is encountered, the runtime will return to the enclosing
statement. In the case of a choice statement, the runtime will re-evaluate the choice condition. That is,
the scenario grammar loops until the student selects a course that is not full. In the case of a loop or
each statement, the redo keyword has the same functionality as the continue keyword found in C++ or

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |29

C#. The redo keyword only applies to the inner most choice, loop, or each statement. If no such
statement exists a compile-time error will be issued. Returning to the RegisterForCourses scenario, once
the student has selected a course that is not full, the scenario grammar specifies that the
RegisterStudentForCourse() responsibility defined on the same contract instance that is bound to the u
variable is to be invoked, using the supplied parameters. The first parameter is a reference to the
current contract instance: the current student. Such a reference is accomplished using the context
keyword. In fact, the correct syntax should be context.bindpoint. However, as previously discussed the
context keyword is automatically adapted to the correct side of the binding: the contract instance or the
IUT instance. The second argument to the RegisterStudentForCourse() responsibility is the course to
register the given student in. The course is specified by the course variable. After the student has been
registered in the course with the university, the student’s own RegisterCourse() responsibility is
expected to complete the course registration process. As shown in the RegisterForCourses scenario, the
grammar that selects and then registers the student in a course is enclosed within matching round
brackets (‘(“and ‘)’). Following the closing bracket is a range specification. A range specification is new
in ACL 2.0. A range specification is placed within matching square brackets (‘[“ and ‘]’), and begins with
an integer expression denoting the lower boundary of the range, followed by a dash (*-*), and finally
another integer expression denoting the upper boundary. If there is no range, but rather a fixed value,
the range specification can simply consist of a single integer expression. In the case of our scenario
grammar the range specifies that the student may register is any number of courses (including zero) up
to and including the maximum number of courses allowed for full time students. We know that the
student is a full time student because the enclosing choice statement tested for full time status. The
maximum number of courses allowed for a full time student is obtained from a parameter named
MaxCoursesForFTStudents that is located within the University contract, denoted by the u variable.
Now, what about part time students? Following the body of the choice statement that is an alternative.
Each choice statement can have any number of alternatives, including zero. Each alternative is denoted
by the alternative keyword, followed by a value to compare against the original choice expression
enclosed in matching round brackets (‘(“ and ‘)’). Alternatives can are similar to case statements found
in most object-oriented programming languages. There are a few things to note. First the original
choice expression is only evaluated once. That is, the choice expression is not evaluated for each
alternative. Next, an empty alternative can be specified as the last alternative. An empty alternative is
denoted by the alternative keyword followed by the opening brace bracket for the body. That is, no
value to compare against is specified, nor are the matching round brackets. Alternative statements can
also be used in other locations, as will be illustrated in the next scenario. Returning to the
RegisterForCourses scenario, the body of the alternative is evaluated if the IsFullTime() observability
method returns false. That is, the student is not a full time student, and thus part time. The body of the
alternative is exactly the same as the body of the choice statement with one exception, the range
specification uses the MaxCourcesForPTStudents parameter value used for the upper value, as opposed
to the MaxCoursesForFTStudents. Following the alternative, the RegisterForCourses scenario contains
an empty terminate statement to denote the end of the scenario. Recall that a scenario termination
event can be empty, denoted by an empty set of round brackets (‘(“ and ‘)’) following the Terminate
keyword. An empty terminate statement indicates that as soon as scenario execution reaches the
terminate statement; the scenario grammar has been satisfied.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |30

The Student contract continues with the TakeCourses scenario. The TakeCourses scenario
denotes the grammar of responsibilities that must execute for the current student to actually take the
courses that he/she enrolled in. The body of the scenario begins with setting the failures contract
variable to zero. Recall that the failures variable is used to determine the number of courses that the
student fails in the current term. As the TakeCourses scenario is used to denote the student taking the
courses that he/she has enrolled in, the failures variable is re-set for the new term. Next a trigger
statement is used to denote the triggering event for the scenario. The triggering event for the
TakeCourses scenario is the observation of the TermStarted event. That is, the student begins taking
courses when a new term starts. The University contract will fire the TermStarted event, and will be
discussed shortly. Once the scenario is triggered, the parallel keyword is used to indicate a block of
scenario grammar that can execute in parallel with itself. That is, several active sub-scenarios (denoted
by the body of the parallel statement) can be executing at the same time. The purpose of the parallel
block in the TakeCourses scenario, is that a student is able to take several courses simultaneously
(bound by their student status, and university regulations regarding course loads). The body of the
parallel block begins with the acquisition of a contract instance representing a Course contract. The idea
here is to get a course that the student is currently taking. Next a check statement is used to ensure
that the Course contract instance is bound to an IUT instance (via bindpoint) that the student is
currently enrolled in. That is, the current student is actually taking the course. Once the course is
validated, an atomic block is used to denote that the action of completing the course requirements can
be viewed as an atomic action with respect to the completion of a course. That is, the atomic statement
ensures that a course can only be completed if each element of the course is completed. Within the
body of the atomic statement there are three elements that have been ‘or’ed (‘|’) together. Intuitively,
it may seem that the three elements should be ‘and’ed (‘&) together, as the three elements all need to
be completed before the final exam is written. However, the ‘or’ is used because the elements can be
completed in any order. The range (‘[n]’) specified on each of the elements will ensure that each of the
three elements is executed the correct number of times. The first element is enclosed within a parallel
statement and represents a student doing assignments for the course. The assignments are within a
parallel block because a student could be working on more than one assignment at a time. As denoted
by the range, following the specification of the DoAssignment() stub responsibility, the student must
complete the same number of assighnments that the course has. The second element, consists of the
DoMidterm() stub responsibility that must be completed the same number of times that the course has
midterm exams. Notice that a parallel block is not used here, because it is not possible for a student to
write two midterm exams as the same time. Finally, the DoProject() stub responsibility is used to
complete the course project. Notice the use of a Boolean expression within the range specification. If
the Boolean expression evaluates to true then, the range specification will result in a value of one, zero
otherwise. That is, if the course is a project course and that the course has a project. The course type is
tested using the previously discussed sameas keyword, and the HasProject parameter is used to see if
the course project actually defines a course. Once each of the course elements have been completed by
the student that is the assignment(s), midterm(s), and project (if any) is completed the student then
writes the final exam. The final exam is expressed by the DoFinal() stub responsibility. If the HasFinal
parameter contains a false value, then the range will have a value of zero, and the responsibility will be
skipped. As previously stated the atomic block represents the task of completing the course. Following

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |31

the atomic block is an alternative. The alternative, denoted by the alternative keyword, indicates that
at any point during execution of the preceding atomic block, the grammar specified by the alternative
block may execute. Unlike an alternative for a choice statement, where only the value is required, an
alternative that is not tied to a choice statement, must contain a complete expression, that when it
evaluates to true, allows the body of the alternative to execute. In the TakeCourses scenario the
alternative may execute anytime before the last day to drop a course. That is the LastDayToDrop event
has not been observed. The body of the alternative contains a single responsibility, DropCourse(). As
the name suggests, the DropCourse() responsibility is used when a student wishes to drop a course. The
alternative allows the student to drop a course at any time while the student is taking courses, up until
the drop date. The parallel statement defining the grammar for taking or dropping a single course is
repeated once for each course that the student is enrolled in. Once each of the courses that the student
is enrolled in is either completed or dropped, the scenario automatically terminates due to the empty
terminate statement, denoted by the terminate keyword followed by an empty set of matching round
brackets (‘(“and ‘)’).

The final section in the Student contract is an exports section. The exports section denoted by
the Exports keyword and a set of matching brace brackets (‘{* and ‘}) defines a single binding point
named tCourse that will be bound to an IUT type that will automatically have the previously discussed
Course contract applied to it. It should be noted that any derivation of the Course contract, such as the
ProjectCourse contract can be used. In the case where multiple derived Course contracts exists, the
binding tool will request that the user select the contract that they want to bind to the IUT type that is
bound to the tCourse symbol. In addition, the tCourse binding point includes a single binding constraint
that states the tCourse symbol must be bound to the same IUT type that is/will be used to bind the
tCourse type in the University contract. The exports section completes the Student contract. We will
now examine the final contract of our example: the University.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |32

The University Contract

The University contract represents the university itself. It will contain courses and students.

The University contract also contains scenarios that will define university operation. The University

contract is as follows:

Import Core;

Namespace DaveArnold.Examples.School

{

MainContract University

{

Parameters

{

}

[1-100] Scalar Integer InstanceBind UniversityCourses;

Scalar Integer MaxCoursesForFTStudents = 4;
Scalar Integer MaxCoursesForPTStudents = 2;
Scalar Integer PassRate = 70;

[1-12] Scalar Integer InstanceBind NumTermsToComplete;

Observability List tCourse Courses();
Observability List tStudent Students();

Responsibility new ()

{

}

Post (Courses () .Length() == 0);
Post (Students () .Length() == 0);

Responsibility finalize()

{

}

Pre (Courses () .Length() == 0);
Pre(Students () .Length() == 0);

Responsibility tCourse CreateCourse(String name, Integer cap)

{

}

once Scalar Integer oldSize;
0ldSize = PreSet(Courses().Length())

Post(value.bindpoint.Name () == name);

Post (value.bindpoint.CapSize () == cap);
Post (Courses () .Length () == oldSize + 1);
Post (Courses () .Contains(value) == true);

Responsibility RegisterStudentForCourse (tStudent student,

tCourse course);

Responsibility CancelCourse (tCourse course)

{

Pre(Courses () .Contains (course) == true);

Post (Courses () .Contains (course) == false);

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |33

Responsibility DestroyCourse(tCourse course)

{
once Scalar Integer oldSize;
0ldSize = PreSet(Courses().Length())
Pre (Courses () .Length() > 0);
Pre(Courses () .Contains (course) == true);
Post (Courses () .Length () == oldSize - 1);
Post (Courses () .Contains (course) == false);
}

Responsibility tStudent CreateStudent(String name) ;
Responsibility DestroyStudent (tStudent student);

Responsibility TermStarted() ;
Responsibility LastDayToDrop() ;
Responsibility TermEnded() ;

Responsibility CalculatePassFail ()

{
each (Students())
choice(iterator.bindpoint.failures) >= 2
FailStudent (iterator);
alternative
PassStudent (iterator);
}

Responsibility FailStudent (tStudent student) ;
Responsibility PassStudent (tStudent student) ;

Responsibility ReportMark(tCourse course, tStudent student,
Integer mark)

{
choice(mark) < Parameters.PassRate
{
student.bindpoint.failures =
student.bindpoint.failures + 1;
}
}
Scenario CreateCourses
{
Trigger (new()),
CreateCourse (dontcare, dontcare)
[Parameters.UniversityCourses],
Terminate (fire (CoursesCreated)) ;
}
Scenario CreateStudents
{
Trigger (new()),
CreateStudent (dontcare)+,
Terminate (finalize())
}

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page | 34

Scenario Term

{
Trigger (new()),
(
CreateCourse () [Parameters.UniversityCourses],
TermStarted(),
fire(TermStarted),
LastDayToDrop (),
fire(LastDayToDrop),
TermEnded (),
fire (TermEnded),
observe (MarksRecorded) [Parameters.UniversityCourses],
CalculatePassFail(),
DestroyCourse () [Parameters.UniversityCourses],
fire(TermComplete)
)+,
Terminate(finalize());
}
Exports
{
Type tCourse conforms Course
{
Student::tCourse;
}
Type tStudent conforms Student
{
Course: :tStudent;
}
}

The Univesity contract represents a physical university and defines the creation of coruses and
students. The University contract also specifiies several scenarios that govern how the physical
university operates. The contract begins with the usual “Core” import statement followed by a
namespace entry, denoted by the Namespace keyword, that places the University contract in the
“DaveArnold.Examples.School” namespace. Unlike the previously discussed contracts, the University
contract is specified using the MainContract keyword instead of the Contract keyword. Each contract
project must contain at least one main contract. Main contracts behave and can have the exact same
sections as a regular contract. The only difference is that a main contract must be bound to an IUT type
at compile time, where regular contracts are only bound on demand. That s, if a regular contract is not
referenced by any other bound countracts within a given contract project it will not be used, and the
binding tool will not be invoked.

The body of the University contract begins with a parameter set, denoted by the Parameters
keyword followed by matching brace brackets (‘{* and ‘}’). The first parameter UniversityCourses is a
scalar integer value that will denote the number of courses that the university will have each term. The
range specified immediately before the parameter declaration specifies that the university must have
between one and one-hundred courses. The actual value of the UniversityCourses parameter will be
provided by the user through the binding tool, as per the use of the InstanceBind keyword. The next

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |35

three parameters have values that are hard-coded into the contract. That is, the user will not be asked
by the binding tool to provided values for the parameters. The MaxCoursesForFTStudents parameter is
a scalar value that indicates the maximum number of courses that a full time student can take per term.
The MaxCoursesForPTStudents indicates the same value for part time students. The scalar integer
PassRate stores the minimum mark required in order to pass a course. The final parameter,
NumTermsToComplete, is a scalar integer that is specified by the user through the binding tool that
indicates the number of terms that each student must complete at the university in order to obtain a
degree. As per the provided range this number can be between one and twelve terms.

Following the parameter definitions the University contract defines two bound observability
methods. The first is named Courses() and returns a list of courses. The observability method will be
bound to an IUT procedure that will return the list of courses that are currently created within the
university. The second bound observability method is named Students() and returns a list of students.
Like the Courses() bound observability, the Students() bound observability will be bound to a IUT
procedure that returns a list of all the students that are currently enrolled at the university.

The University contract then defines a series of responsibilities. The first responsibility is the
special new() responsibility that will be executed upon successful creation of a new instance of the IUT
type bound to the University contract. The responsibility defines two post-conditions that ensure that
the lists returned by the Courses() and Students() responsibilities do not contain any elements. That is,
the university does not begin with a set of unknown courses or students. Likewise, the finalize()
responsibility is executed immediately before the IUT instance bound to the contract is destroyed. The
finalize() responsibility contains two preconditions that ensure that all students and courses have been
removed from the university prior to destruction.

Next the CreateCourse() responsibility is defined. As the name suggests, the responsibility
accepts a course name, and an integer representing the maximum number of students that can take the
course, and returns a new course object of type tCourse. The tCourse type is bound to an IUT type
representing a course, as per the bind point definition in the contract’s exports section. The body of the
CreateCourse() responsibility begins with the definition of a scalar integer named oldSize. The variable’s
definition includes the once modifier. The once modifier indicates that that the variable can only be
assigned to once. If the variable is assigned to more than once a compile time error will be issued. The
oldSize variable is assigned to using a preset statement. The preset statement is denoted by the PreSet
keyword followed by an expression enclosed in a set of matching round brackets (‘(“and ‘)’). Any preset
statements are evaluated before the IUT procedure (or group of procedures) bound to the responsibility
are invoked. That is, the preset statement is used to capture a value before execution of the IUT, so that
the value can be used in a post-condition or other expression within the responsibility following IUT
execution. In the case of the CreateCourse() responsibility, the oldSize variable is assigned the number
of elements that exist within the course list returned from the Courses() observability method. Next,
four post-conditions are specified to validate the creation of the course, and addition to the list of
courses maintained by the university. The value keyword is used to reference the result returned by the
bound IUT procedure. In the case where the responsibility is bound to a group of IUT procedures, the
value keyword holds the value returned by the last IUT procedure in the set. The Name() and CapSize()

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |36

observability methods defined in the Course contract are used to ensure that they return values that are
consistent with the supplied parameters to the CreateCourse() responsibility. The last two post-
conditions ensure that the course list has increased in size by one, and that the new course is contained
within the list.

The RegisterStudentForCourse() responsibility follows, the responsibility will be bound to an IUT
procedure (or group of procedures) that perform the task of registering the given student in the given
course. The CancelCourse() responsibility will be bound to an IUT procedure (or group of procedures)
that will cancel a course that has been previously created by the CreateCourse() responsibility. The
course to cancel is provided as the single parameter to the responsibility. CreateCourse() specifies one
precondition that ensures that the requested course to cancel is actually part of the current course list.
The responsibility then uses a post-condition to ensure that the course is in-fact removed from the
university. The University contract continues with the DestroyCourse() responsibility. The
DestroyCourse() responsibility is used upon the completion of a term to remove a course from the list of
courses, and to free up any resources that the course may have used. The body of the DestroyCourse()
responsibility begins with the definition of a scalar integer named oldSize. The once modifier indicates
that the variable can only be assigned to once. Next, a preset statement is used to assign the number of
courses stored by the university in the oldSize variable before execution of the bound IUT procedure(s).
Two preconditions are then defined to ensure that the university course list contains at least one course,
and that the given course to destroy is one of the courses in the list. DestroyCourse() then specifies two
post-conditions that ensure that the given course was removed from the course list and that the course
list contains one less element.

With responsibilities for the creating, registering in, canceling, and destroying of courses defined
we will now look at responsibilities that apply to students. The first such responsibility is
CreateStudent() . The CreateStudent() will be bound to an IUT procedure (or group of procedures) that
creates a new student instance using the provided student name. The CreateStudent() responsibility
does not define any pre or post-conditions. Such constraints could be specified to check the validity of
the student name, and resultant student in as similar fashion as was done for the CreateCourse()
responsibility. However, due to the fact that such constraints would not introduce any additional ACL
functionality they have been omitted. Such an example, also illustrates how an ACL contract can initially
be absent of detailed constraints and specifications, and then over time the contracts can be refined by
the contract writer to yield a more detailed contract set. Analogous to the DestroyCourse()
responsibility, the DestroyStudent() responsibility is used to remove and clean up a student from the
university. Such an operation would occur once a student has graduated, or if the university was
destroyed for any reason.

The University contract then defines a series of responsibilities for handling university
operations during the duration of an academic term. The TermStarted() responsibility is invoked when
classes for the current term begin. The invocation is defined by the execution of the IUT procedure (or
group of procedures) that are bound to the TermStarted() responsibility. The LastDayToDrop()
responsibility is bound to an IUT procedure (or group of procedures) that will be invoked when the last
day to drop a course has occurred. After this day, students are unable to drop any courses that they are

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |37

enrolled in. The previously discussed Student contract enforces this rule. Next the TermEnded()
responsibility is used to denote when the current university term has ended. Any end of term
operations that would be performed by the university would be executed by the IUT procedure(s) bound
to the TermEnded() responsibility.

Next, the University contract defines a derived responsibility named CaculatePassFail(). Recall
that instead of being bound to an IUT procedure (or a group of procedures) a derived responsibility is
defined by the grammar specified in the body of the responsibility. In the case of the
CalculatePassFail() responsibility the body consists of an each statement, that iterates through each
student, denoted by the iterator keyword, to see if that student has passed or failed the term. A
student is said to have failed the term if they have failed two or more courses. Recall from the Student
contract that the number of failures is stored within the failures contract variable. A choice statement is
used to compare the number of failures the student being iterated currently has. Because the list of
students returned by the Students() observability method are of the tStudent type, the bindpoint
keyword is used to obtain the contract instance to access the failures contract variable. Notice the use
of the greater than or equals (“>=") operator in the choice statement. The previously discussed choice
statements have not used an operator. That is because the equality (‘==") operator is the default
operator and does not have to be specified. However, in the case where you would like to use a
different comparison operator, the operator must be specified. If the choice statement evaluates to
true then the FailStudent() responsibility is expected to perform the actual action of failing the given
student, denoted by the iterator keyword. An empty alternative statement is then specified to create
an ‘else’ case. That is, if the choice statement evaluates to false then the body of the alternative
statement will be executed. The body expects an invocation to the PassStudent() responsibility. The
alternative completes the grammar of the CalculatePassFail() responsibility. Next, the actual
FailStudent() and PassStudent() responsibilities are specified. Each responsibility will be bound to an
IUT procedure (or group of procedures) that will perform the actual task of failing or passing a student
respectively.

The final responsibility within the University contract is named ReportMark() and is used to
report a mark for a student within a given course. The course, the student, and the mark to be recorded
are provided as parameters to the responsibility. ReportMark() will be bound to a corresponding IUT
procedure (or group of procedures) that will record the actual mark for the student. It should be noted
that each parameter from the responsibility is mapped by the binding tool to a parameter in the IUT
procedure. In the case where multiple IUT procedures are specified, the responsibility parameters can
be bound as required by the tester to the parameters used by the procedures in the IUT set. That is, one
responsibility parameter could be bound to the first IUT procedure, and a different parameter could be
bound to the second IUT procedure. Or even, the same responsibility parameter could be bound to
several IUT procedures. For more information on the binding process, please see the binding software
development kit documentation.’ The body of the ReportMark() responsibility contains a choice
statement that checks the mark to be recorded against the previously discussed PassRate parameter. If
the student has not received a sufficient mark to pass the course, the number of failures contract

! Not until the summer.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |38

variable, failures, is increased by one. With the ReportMark() responsibility completed, we will now
turn our attention to the scenarios that compose the University contract.

The first scenario is named CreateCourses(), and it is used to define the process that the
university uses to create the courses at the start of a term. The body of the scenario begins with a
trigger statement. The scenario trigger is the completion of the new() responsibility. Using the new()
responsibility as a scenario trigger, has the effect of triggering the scenario as soon as a new IUT
instance of the type bound to the contract has been created. The next step in the scenario grammar is
the specification of the CreateCourse() responsibility, the range specified within matching square
brackets (‘[and ‘]’) specifies that the CreateCourse() responsibility must be invoked once for each
course that university is offering this term, denoted by the UniversityCourses parameter. Once all of the
university courses have been created, the scenario grammar moves on to the terminate statement. The
terminate statement fires the CoursesCreated event. That is, the CoursesCreated event will be fired
when all of the requested university courses have been created and added to the list of courses offered
by the university.

Next, the CreateStudents scenario is used to specify how and when students can be created.
The scenario is triggered using the new() responsibility, and thus is triggered as soon as the university is
created. Next, one or more students are created through the CreateStudent() responsibility. The plus
(“+’) is used to indicate that one or more students can be created and added to the university. The
scenario grammar is completed by the terminate statement. The CreateStudents scenario is terminated
upon successful execution of the finalize() responsibility. That is, the scenario ends when the university
is destroyed.

Finally, the University contract defines the Term scenario. The Term scenario is used to define a
grammar representing how a term is managed by the university. The body of the scenario begins with a
trigger statement, the Term scenario is triggered by the new() responsibility. Next, the grammar begins
with the CreateCourse() responsibility. The grammar specifies that CreateCourse() is required to
execute once for each course that the university wants to create, denoted by the UniversityCourses
parameter. Once all the courses have been created, the grammar then specifies that the TermStarted()
responsibility is then executed. Upon completion of the TermStarted() responsibility the grammar
moves on to a fire statement. The fire statement, denoted by the fire keyword, will immediately fire the
TermStarted observable event when the scenario grammar encounters the statement. That is, as soon
as the TermStarted() responsibility finishes executing the TermStarted event is fired. Next, the
responsibility waits for the LastDayToDrop() responsibility to finish executing, and then fires the
LastDayToDrop observable event. The grammar then specifies the same sequence of events with the
TermEnded() responsibility and the TermEnded event. After the TermEnded event is fired, the scenario
grammar waits for the observation, denoted by the observe keyword, of the MarksRecorded observable
event. The range specified between matching square brackets (‘[* and ‘]’) specifies that the scenario
must observe the MarksRecorded event for each course in the university, denoted by the
UniversityCourses parameter. Next, the grammar specifies the execution of the CalculatePassFail()
responsibility, followed by the DestroyCourse() responsibility for each course that was created. Once all
the courses have been destroyed using the DestroyCourse() responsibility, the scenario grammar fires

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |39

the TermComplete observable event. The entire operation of a university term is enclosed within
matching round brackets (‘(‘ and ‘)’) followed by a plus (‘+’). Such notation denotes that during
execution of the IUT, several terms may occur. However, the university cannot be destroyed during the
execution of a term. Finally, the scenario grammar specifies a terminate statement, the Term scenario
only terminates upon successful execution of the finalize() responsibility. That is, the Term scenario
only terminates when the university is destroyed.

The final section of the University contract is an exports section. The exports section is denoted
by the Exports keyword followed by matching brace brackets (‘{* and ‘}’) that contain the body of the
exports section. The exports body in the University contract defines two binding points. One that binds
the tCourse symbol to an IUT type that conforms to the Course contract, the other binds the tStudent
symbol to an IUT type that conforms to the Student contract. Both binding points contain constraints,
so that the IUT type used for the course and the student is consistent throughout the contract project.
The exports section completes the University contract.

The University contract concludes the set of contracts that compose our university example.
While, contracts specify responsibilities and scenarios that operate within the context of the containing
contract, there is no global specification illustrating the interactions between contracts. Such global
specification is analogous to a use case diagram used to specify the interactions between use cases that
compose a system’s specification. In ACL 2.0, such a notation was added in the form of a new first order
entity known as an interaction. Interactions are optional, and a given contract project can contain any
number of interactions. Our university contains a single interaction that we will now discuss.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |40

The School Interaction

Import Core;

Namespace DaveArnold.Examples.School

{
Interaction School
{
Relation Creation
{
Contract University u;
(u.CreateStudents || u.CreateCourses);
}
Relation Cancelling
{
Contract University u;
Instance c;
c = u.CreateCourse (dontcare, dontcare),
(u.CancelCourse(c))?,
observe (TermStarted) ;
}
Relation Students
{
Contract Student s;
Contract University u;
(
s.RegisterForCourses,
observe (TermStarted),
s.TakeCourses,
observe (CourseComplete) [s.CurrentCourses () .Length ()],
observe (TermEnded) ,
observe (MarkRecorded) [s.CurrentCourses () .Length ()],
observe (TermComplete)
) [u.Parameters.NumTermsToComplete] ;
}
}
}

Like contracts interactions must reside within a namespace entry. The School interaction is is
located within the “DaveArnold.Examples.School” namespace, as were the other contracts defined in
our example. The interaction begins with the Interaction keyword followed by an identifier
representing the name of the interaction. Each contract project may contain zero or more interactions.
Interaction names must be unique within a given namespace, and are used in the contract evaluation
report to identify the interactions. However, other than identification purposes, the interaction name is
not used. The body of an interaction is specified with a set of matching brace brackets (‘{* and ‘}’). As
with contracts, the body of an interaction contains a set of sections. Interactions can only contain a
single type of section: a relation. Each interaction may contain any number of relations. As the name
suggests, a relation is used to specify how scenarios and responsibilities defined within contracts relate

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |41

and interact with one another. A relation is denoted with the Relation keyword followed by an
indentifier representing the name of the relation. Each relation defined within an interaction must have
a unique name. Relation names are used for identification purposes only within the contract evaluation
report and to not have any additional meaning. The body of a relation is defined by a set of matching
brace brackets (‘{* and ‘}'). The School relation defines three relations.

The first relation, Creation, is used to define how scenarios used to create the university
interact. The body of the Creation relation begins with the delcaration of a contract variable. Unlike
variables defined within a contract, relation contract variables do not have an instance. That is, all
instances of a given contract must obey any relation that is defined. A relation contract variable is
defined by the Contract keyword followed by the name of the contract, and an identifier denoting the
varaible name. The body of the Creation relation continues with a relation grammar. A relation
grammar is similar to the scenario grammars found within a contract with the following exceptions:

Relations do not have triggering or termination events.

2. The atomic, parallel, or fire keywords and corresponding statements cannot be used in
relations.

3. Scenarios and responsibilities can both be used as part of the relation grammar.

Returning to the Creation relation, the relation grammar specifes that the CreateStudents and
CreateCourses scenarios defined in the University contract are independent and their execution can
overlap. Such a relation is expressed usign the independence operator (‘| |’). For more details regarding
the independence operator see the ACL 2.0 specification document. This simple independence relation

completes the Creation relation.

Next the School interaction defines the Cancelling relation. The Cancelling relation is used to
specify that the university can only cancel courses until the term has started. That is, once the term has
started, the course can no longer be cancelled. The body of the relation begins by creating contract
varaible, u, represeting the University contract. Next, the Instance keyword is used to define an
instance variable, ¢, that will be used to store the course that the university has created. Instance
variables are used to represent values returned and sent (via parameters) to responsibilities. Instance
varibles are denoted by the Instance keyword followed by an identifier that will be used to represent
the variable. Instance variable declarations do not specify a type, because their type is inferred based
on the instance variable’s first use. In the case of the Cancelling relation, the instance variable will be of
type tCourse, as per the definition of the CreateCourse() responsibility. The dontcare keywords are
used to indicate that the parameters passed to the CreateCourse() responsibility are not of interest to
the Cancelling relation. Next, the CancelCourse() responsibility is specified followed by the optional
operator (‘?’). As the name suggests, the optional operator is used to denote that the relation grammar
that is specified before the optional operator is optional and does not have to execute in order for the
relation to be satisified. In addition, the optional operator only allows the corresponding relation
grammar to be executed at most once, that is repetition of the relation grammar is not permitted.
Finally, the Cancelling relation concludes with the observation of that TermStarted event. That is, the

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |42

relation specifies that for each course that is created within the university the course may be optionally
cancelled before observation of the TermStarted event.

The Students relation completes the definition of the School interaction. The Students relation
is used to enforce the order of execution for the scenarios defined within the Student contract. The
body of the relation begins with the definition of two contract variables. One, s, to represent the
Student contract and one, u, to represent the University contract. The relation grammar indicates using
the follows operator (‘,’) that the RegisterForCourses scenario must execute before the observation of
the TermStarted event that must occur before the TakeCourses scenario, etc. The entire block of
relation grammar must execute once for each term that the university requires the student to complete,
denoted by the NumTermsToComplete parameter defined by the University contract. It should be
noted that a separate relation instance will be created by the runtime for each student contract instance
that is created. Thus, the Students relation ensures that each student within the university completes
the required number of terms. The Students relation completes the School interaction. The School

interaction completes the university example.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |43

Step 2 - Contract Compilation

The first step in processing the contracts and interaction listed above is to create a contract
project. As previously stated, contract projects are implemented as a project type within Visual Studio
2008, and consist of the following elements:

* One or more contracts with at least one main contract.

* Zero or more interactions.

* An IUT that represents the system being modeled by the contracts and interactions.
* Aset of bindings to bind the contracts to the IUT

The entire contract project is sent to the ACL compiler that tokenizes, and parses the contracts
and interactions. The compiler flattens any contract inheritance, performs generic parameter
substitution, and ensures that all identifiers can be resolved. That is, the ACL compiler ensures that the
contract syntax is correct, and that all required plug-ins have been located. At this point the contracts
and interactions are represented by an abstract syntax tree. Each requested binding has been mapped
to any other bindings based on the specified binding rules. The next step is to perform the actual
bindings.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |44

Step 3 - Bindings

As the name suggests, the types, methods, and fields specified within the Exports section of a
contract are bound to IUT counterparts. Each binding selection is stored within the contract project so
that bindings do not need to be specified each and every time the IUT is run against the contract. Of
course, any change in either the IUT or contract will require bindings in the affected area to be re-
specified. In addition, a tree like view will be present in Visual Studio 2008 to graphically show the
bindings between the contract’s structure and the structural elements within the IUT. The contract
developer is then able to view, edit, and reset the binding information. The bind also includes the
specification of contract parameters that require user specification.

The binding algorithm begins with the first MainContract and binds the contract to a type within
the IUT. Next bindings for observability methods and responsibilities contained within the contract are
performed. If an observability or responsibility has a parameter or return type that contains an
exported symbol that is not yet bound, binding will be performed for the parameters and return values
before the actual observability or responsibility has been bound. Finally, all export lines found within
the contract’s Exports section are bound.

When binding non-derived observability methods, an exact parameter and return type match is
required. In the case where the requested observability method does not exist within the IUT, the
contract developer is able to specify a literal value for the result of an observability instead of an IUT
procedure. The rationale for this feature is that in some cases the observability method may not be
needed from the IUT’s point of view. For an example, consider a BoundedContainer contract. It would
be possible to implement a BoundedContainer using an unbounded data structure. As such the
BoundedContainer::IsFull() observability method could be hard-wired to yield a false value. When a
hard-wired binding is used, the ACL compiler will issue a warning to notify the contract developer of
such hard-wiring.

When binding non-derived responsibilities, an actual IUT procedure (or group of procedures)
must be specified. However to allow for maximum flexibility responsibilities that do not specify a return
type may be bound to an IUT procedure with any return type (including void). Also, when a
responsibility specifies a parameter set, that responsibility can be bound to any IUT procedure that has
at least the requested parameters. That is, a parameter map will be created between the IUT
procedure’s parameters and the parameters specified by the responsibility. Any additional parameters
specified by the IUT method are simply ignored by the contract. Additional responsibility binding rules
have been already discussed within this document and will not be repeated here.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |45

Step 4 - Static Checks

Once binding has been completed, the static checks are executed against the IUT. The IUT is
opened using Microsoft Phoenix and a tree structure of the IUT is created internally. The static checks
operate against this tree structure. From the implementation point of view, the execution of static
checks is fairly straightforward in that the check executes a query against the model of the IUT to obtain
aresult. The VF's plug-in mechanism allows for custom static checks to be designed and implemented.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |46

Step 5 - Instrumentation
Once the static checks have been completed, the IUT is instrumented in several ways in
preparation for scenario execution. The following list indicates how the IUT is instrumented:

* Side-Effect Free Procedures — IUT procedures that have been bound to observability
methods are marked so that the profiler can ensure that the state of the system
does not change while an observability method is being executed.

* Pre/Post/Inv — IUT procedures that have been bound to responsibilities that contain
design-by-contract elements are instrumented so that the corresponding
preconditions, post-conditions, and invariants are tested. This also includes
instrumentation for the PreSet construct and the saving of the return value for use
in post-conditions. When a design-by-contract construct fails, a special exception
will be thrown. The exception will notify the profiler of the construct failure, and will
report any beliefs, the stack trace, and the constraint that failed in the contract
evaluation report.

¢ Dynamic Checks — Custom dynamic checks are able to instrument the IUT so that
the profiler and the check are able to monitor runtime information. Such checks also
include the preservation of metric values recorded within the contract.

It should be noted that the current version of the VF performs less instrumentation than
previous versions. The rationale for this is that more information is captured by the runtime and does
not need to be explicitly added to the IUT. Additional details regarding instrumentation will be provided
once implementation of the VF has been completed. Once instrumentation is complete, the IUT is
executed against the profiler to record execution events and requested metrics.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |47

Step 6 - Scenario Evaluation

As the IUT is being executed, the profiler will record when a scenario triggering event occurs. At
this point the profiler will create a new scenario instance within the profiler. That is, scenario evaluation
is performed on-the-fly. As the profiler is notified of method calls, events, and other activities, any
scenario instances that apply to the instance that received the method call/event will be notified of the
event. The scenario instance will then determine if the method call/event matches the scenario
grammar. Put another way, scenario instance objects can be seen as a Windows application that
receives events that occur within their window space. Each scenario instance object will then filter the
event to determine if the scenario object should “eat” the event, or if the event has no bearing on the
scenario. Such processing involves walking through the scenario grammar, and determining if the
scenario termination event occurs. Any scenarios that have yet to terminate when the IUT finishes
execution are said to fail.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |48

Step 7 - Non-functional Requirements

Non-functional requirements are checked, through the use of metrics and dynamic checks. Each
contract is able to gather metric information as the IUT and corresponding scenarios are executed.
Metrics can also be gathered by statically analyzing the IUT. Such static analysis is accomplished
through the use of a static check in the Structure section of the contract.

Once the IUT has finished executing each contract’s Reports section is processed. The Reports
section uses the metric methods defined within the contract to get the required values. These values
are then passed to specified metric evaluators to interpret and report on the values. That is, metric
evaluators are used to evaluate the metrics gathered while the IUT was executed. The result of such
evaluation is reported on the contract evaluation report.

Metric evaluators were chosen as the method for the evaluation of non-functional
requirements, due to the subjective nature of non-functional requirements. That is, determining if a
given metric is “good” or “bad” depends heavily on the domain in which the IUT exists. As such,
contract developers can provide specialized metric evaluators to interpret and report on metrics
gathered by the contract framework. These metrics can be gathered through the use of dynamic checks
or by static checks analyzing the structure of the IUT.

The University Example — Version 2.1 — © Dave Arnold — May 232008

Page |49

Step 8 - The Contract Evaluation Report

The Contract Evaluation Report is displayed once the IUT has finished executing and all metrics
have been processed. The report contains a summary of the checks performed, and indicates any
relations, scenarios, checks, and design-by-contract elements that have failed to execute. The report
also contains the results of metric interpretation performed by the metric evaluators. The presentation

of the contract evaluation report concludes this example and this document.

The University Example — Version 2.1 — © Dave Arnold — May 232008

