
 

 

 

 

The Grocery Store 
Contract Evaluation Framework Walk Through 

Dave Arnold 
Version 1.1 

8/3/2007 
 



P a g e  | 2 

 

 

Contents 
Changes from Version 1.0 ............................................................................................................................. 3 

Introduction .................................................................................................................................................. 4 

Case Study ..................................................................................................................................................... 4 

Step 1 – Contract Creation ............................................................................................................................ 5 

The Item Contract ..................................................................................................................................... 5 

The BoundedContainer Contract............................................................................................................... 8 

The BoundedQueue Contract .................................................................................................................. 13 

The Customer Contract ........................................................................................................................... 16 

The Cash Contract ................................................................................................................................... 24 

The Store Contract .................................................................................................................................. 30 

Step 2 – Contract Compilation .................................................................................................................... 40 

Step 3 – Bindings ......................................................................................................................................... 41 

Step 4 – Static Checks ................................................................................................................................. 51 

Step 5 – Instrumentation ............................................................................................................................ 52 

Step 6 – Scenario Evaluation ....................................................................................................................... 53 

Step 7 – Non-functional Requirements ...................................................................................................... 53 

Step 8 – The Contract Evaluation Report .................................................................................................... 53 

 



P a g e  | 3 

 

 

Changes from Version 1.0 
 The following document contains all the information found within the previous version of this 

document.  This document also includes the specification and evaluation of non-functional 

requirements, the inclusion of a centralized scenario in the store, and some language cleanup.  In 

addition, the concept of contract namespaces and corresponding inclusion has also been added to this 

document. 

 

 

 

 

 

 

 

 



P a g e  | 4 

 

 

Introduction 
 The following document contains a simple example based on a physical grocery store.  The 

purpose of the example is to illustrate the elicitation of contracts and scenarios for the case study.  In 

addition the example will illustrate the binding and execution tasks performed by the framework.  The 

document is organized as follows.  A description of the case study will first be presented.  Next, six 

modular contracts will be derived and their syntax and semantics will be discussed in detail.  Once the 

contracts have been presented and discussed, the contract compilation process will be outlined, 

followed by the binding steps required to map the elements defined within the contracts to the 

Implementation Under Test (IUT). Once binding is complete,  the static check procedure is presented 

along with the necessary IUT instrumentation required for the evaluation of scenario execution and the 

execution of dynamic checks.  Following instrumentation the process of scenario execution is discussed.  

The examination of execution metrics and non-functional requirements is then presented.  Finally, the 

document concludes with a discussion of the contract evaluation report.  

Case Study 
 The case study used within this example is modeled after a physical grocery store.  A grocery 

store was selected because it requires little domain knowledge for the reader.  A grocery store can be 

viewed as a set of customers who each, enter the grocery store, and select one or more items for 

purchase.  Each of these items is placed into their shopping cart.  Once the customer has finished 

selecting the items that he/she wishes to purchase, they proceed to the checkout, where they select an 

open cash, and then join the queue (possibly empty).  Finally the customer purchases their goods and 

leaves the store. 

 The following assumptions will be made in order to simplify the example: 

 Stores always remove all of their items and cash registers when they are closed 

 Each item in the store is unique (i.e. two cans of soup are different items) 

 Cashes cannot be closed if they have customers waiting 

 Customers cannot leave a queue once they have entered it 

 Customers never enter a store unless they are going to buy something 

 Of course, there are a lot of other aspects within a complete grocery store.  However the short 

description shown above will introduce several scenarios, scenario interactions, and non-functional 

requirements.



P a g e  | 5 

 

 

Step 1 – Contract Creation 
 Initially, we need to specify the contract(s).  We will begin by looking at a modular contract 

design.  That is, we will create six separate contracts which will define the grocery store.  Each of these 

six contracts would then be assembled into a single contract project.  A contract project consists of 

three elements: 

1. One or more contracts 

2. An IUT to evaluate the contracts against 

3. A history of bindings which exists between the contract(s) and the IUT 

We will now examine the first of the six modular contracts.  Following each contract listing a 

detailed description of the syntax and semantics will be presented.  Each contract is expressed using 

Another Contract Language (ACL). The ACL is a simple high-level contract language.  Details of which will 

be presented in a separate document.   

The Item Contract 
 At the heart of all grocery stores are the individual items.  The first contract presented here 

represents a single store item.  The contract listing is shown below: 

Import Core; 

 

Namespace DaveArnold.Examples.GroceryStore 

{ 

Contract Item 

{ 

  once Value sku; 

 

  Responsibility new() 

{ 

  sku = context.SKU; 

} 

 

  Invariant UniqueSKU 

  { 

   Belief UniqueSKU("All items must have a unique SKU") 

   { 

    UniqueValue(context.SKU); 

   } 

  } 



P a g e  | 6 

 

 

 

  Responsibility Real Price() 

{ 

   Belief NoFreeItems("No item is given away for free") 

   { 

    Post(#"~result~ != 0.00"); 

   } 

   Belief NoNegativeItems("No item is sold for a  

negative price") 

   { 

    Post(#"~result~ > 0.00");  

}  

  } 

 

  Responsibility String Name() 

  { 

   Belief MustHaveName("All items must have a name") 

   { 

    Post(#"~result~ != null"); 

   } 

  } 

 

  Responsibility Integer SKU() 

  { 

   Belief MustHaveSKU("All items must have a sku") 

   { 

    Post(#"~result~ != null"); 

   } 

Belief MustHaveOrigionalSKU("Must have the sku  

we started with") 

   { 

    Post(#"~result~ == context.sku"); 

   } 

  } 

} 

} 

 

The contract begins with the Import keyword.  The Import keyword functions in a similar fashion 

to the #include keyword in C++.  Import is used to include additional static and dynamic checks defined 

by various contract developers.  The ACL will include some pre-packaged static and dynamic checks.  

Checks are grouped into namespaces which are included into the current contract by specifying the 

corresponding namespace name following the Import keyword.  The Item contract includes a single 

namespace “Core.”  The “Core” namespace will include basic/default static and dynamic checks. 

The contract is enclosed within a namespaces, as shown via the Namespace keyword.  

Namespaces perform similarly to those found within C++ and C#. The purpose of namespaces is to 

organize and group contracts.  It should be noted, that the contract namespaces which are used to store 

and group static and dynamic checks are different than the namespaces used to order and group the 

contracts themselves.  If the namespaces overlap a compile-time error will be generated.  More 



P a g e  | 7 

 

information regarding namespace behavior will be illustrated in future contracts. The Item contract is 

located within the DaveArnold.Examples.GroceryStore namespace. 

 Next, the contract proper begins.  A contract is denoted by the Contract keyword, followed by 

the contract’s identifier.  Each contract within the same namespace must have a unique identifier.  

Following the contract’s identifier an optional generic parameter list can be specified using the < and > 

notation.  Multiple generic parameters are separated by commas.  The Item contract is not a generic 

contract and does not contain a generic parameter list.  We will examine a generic contract shortly. 

 The first line of the Item contract defines a contract variable.  Contract variables are specified by 

using the Value keyword.  Contract variables can be used to preserve state information for the type 

bound to the contract.  The once modifier indicates that the contract variable can only be assigned a 

single time.  All contract variables must be initialized within the new responsibility.  The new 

responsibility will be shown shortly.  In the case of our Item contract, we will use the “sku” contract 

variable to record, and then ensure that a given item does not change its SKU during its lifetime. 

 The next section of the Item contract contains a responsibility.  A responsibility can be seen as a 

functional requirement, or a functional unit.  Responsibilities are bound to methods found within the 

implementation.  As such, responsibilities contain a method like signature: optional parameters, and a 

return value.  There are two special types of responsibilities: new and finalize. The new responsibility 

(shown here) is evaluated once a new instance of the type bound to the contract is created and a 

constructor has been executed. The new responsibility cannot contain any preconditions.  The finalize 

responsibility is analogous to a destructor, and is evaluated immediately before a destructor is called 

and the instance is destroyed.  It should be noted that due to garbage collection, the finalize 

responsibility may be evaluated at anytime following the release of the instance.  The finalize 

responsibility cannot contain post-conditions.  Both special responsibilities are optional, and are 

automatically bound to their implementation counterparts.  In the case of our Item contract, the new 

responsibility is used to store the initial value returned by the SKU responsibility.   

 The next section of the Item contract denotes an invariant named UniqueSKU.  As stated in the 

literature on design-by-contract, invariants contain one or more checks which are tested at the following 

times: 

 Before the invocation of each instance method 

 After the invocation of each instance method 

 After the creation of each instance 

 Before the destruction of each instance 

A contract may have any number of invariant sections, but all of the invariant sections will be 

merged into a single set of static and dynamic checks which will be tested during the times listed above.  

In the case of the Item contract, there is a single invariant.  The single invariant is nested within a belief.  

Beliefs allow a set of checks to be viewed as a single check, and when the results of the set of checks are 

displayed in the contract evaluation report, the belief is used.  Beliefs are denoted by the Belief keyword 

followed by an identifier.  The belief identifier is used to name the belief.  Belief identifiers can also be 



P a g e  | 8 

 

automatically generated by using the “~” notation.  The “~” notation is used to indicate that an 

automatic belief name should be generated.  An example of the “~” notation will be shown in a future 

contract.  Following the belief identifier, a description of the belief is given as a quoted string. Belief 

descriptions are only used when reporting on the contract evaluation report.  The set of checks 

composing the belief follow surrounded by matching braces. 

 In the Item contract there is a single check assigned to the UniqueSKU belief.  The purpose of 

the check is to ensure that each item in the grocery store has a unique SKU number.  The UniqueValue 

check would be defined as an extension (and imported via the previous Using keyword). The extension 

would insert instrumentation so that the profiler could gather and check each and every instance of the 

type bound to the Item contract, to ensure that no two items have the same SKU number.  The 

UniqueValue check accepts one parameter, which specifies the field to check.  The context keyword 

functions similar to the C++ this keyword, and is used to indicate that it is the current instance of the 

type bound to the Item contract that we are comparing against.   

Next the Price responsibility is defined to have a floating point return value and no parameters.  

The body of the Price responsibility contains two beliefs, which are each composed of a single post-

condition. Post-conditions are tested upon completion of the method bound to the responsibility.  

During static analysis, instrumentation is added to the IUT which will test the post-condition, and upon 

failure, information will be displayed in the contract evaluation report. Details of this process will be 

presented later.  Post-conditions are specified using C# like syntax (via the ‘#’ operator) with a few 

additional keywords.  One of these keywords is the ~result~ keyword.  The ~result~ keyword is a special 

variable which stores the value returned by the method bound to the responsibility.  The functionality of 

the two post-conditions is straightforward and will not be explained further. 

Following the Price responsibility, a Name responsibility is defined to ensure that each grocery 

store item has a name which is not an empty string.  Finally, the SKU responsibility is defined to ensure 

that there is an actual SKU value, which will be used in the invariant.  The SKU responsibility also ensures 

that the SKU value does not change. This concludes the Item contract.   

The BoundedContainer Contract 
With the individual items defined, we will require a container which will be used to store 

multiple items. An example of such storage is when the customers place items into their carts.  The 

BoundedContainer contract listing is shown below: 

Import Core; 

 

Namespace DaveArnold.Collections 

{ 

Contract BoundedContainer<Type T, Integer MaxSize> 

{ 

  Value Integer size; 

  Timer item_timer; 

 

  Observability Boolean   IsFull(); 

  Observability Boolean   IsEmpty(); 



P a g e  | 9 

 

  Observability T   ItemAt(Integer index); 

  Observability Boolean   HasItem(T item); 

  Observability Integer   Size(); 

   

  Responsibility new() 

  { 

   size = 0; 

   Post(#"IsEmpty() == true"); 

   Post(#"Size() == 0"); 

   Post(#"context.size == 0"); 

  } 

 

  Responsibility finalize() 

  { 

   Pre(#"IsEmpty() == true"); 

   Pre(#"Size() == 0"); 

   Pre(#"context.size == 0"); 

  } 

  

  Invariant SizeCheck 

  { 

   Inv(#"context.size >= 0"); 

   Inv(#"context.size == Size()"); 

   Inv(#"context.size <= MaxSize"); 

  } 

   

  Responsibility Add(T item) 

  { 

   Pre(#"IsFull() == false"); 

   Pre(#"item != null"); 

   Pre(#"HasItem(item) == false"); 

   context.size = context.size + 1; 

   item_timer.Start(item); 

    

   Post(#"HasItem(item) == true"); 

  } 

 

Responsibility T Remove() 

{ 

 

   Pre(#"IsEmpty() == false"); 

    

   item_timer.Stop(value); 

   context.size = context.size - 1; 

   Post(#"~result~ != null"); 

   Post(#"HasItem(~result~) == false"); 

  } 

 

Responsibility Remove(T item) 

  { 

   Pre(#"IsEmpty() == false");  

Pre(#"HasItem(item) == true"); 

   

   item_timer.Stop(item); 

   context.size = context.size - 1; 

   Post(#"HasItem(item) == false"); 

  } 



P a g e  | 10 

 

 

 

 

  Scenario AddAndRemove() 

  { 

   once Value T x; 

   Trigger(Add(x)); 

   Terminate((x == Remove()) | (Remove(x))); 

  } 

 

Metric Integer TimeInContainer(T item) 

  { 

   item_timer.Value(item); 

  } 

 

  Exports 

  { 

   Type T 

{ 

  not context; 

  not derrived context; 

} 

  } 

} 

} 

  

As with the Item contract, the BoundedContainer contract begins with a single import 

statement, a namespace definition, followed by the contract declaration.  The BoundedContainer 

contract is located within the DaveArnold.Collections namespace. The contract declaration contains two 

generic parameters.  A generic parameter represents a type or value which can be used to customize the 

contract.  Generic parameters are specified between < and > brackets, multiple parameters are 

separated by commas.  In the case of the BoundedContainer contract, the first generic parameter is 

used to assign an element type to the collection.  In effect, this creates a strongly typed container.  The 

second generic parameter specifies the maximum size for the container. 

 Following the contract declaration, a contract variable named “size” is defined to store the 

actual size of the container.  The actual size of the container will be stored separately from the IUT, so 

that the IUT’s Size() method can be verified. 

 The BoundedContainer contract also includes a timer named “item_timer”.  Variables which are 

defined using the Timer keyword are specialized variables which have predefined methods which can be 

used for gathering metric information.  Timers contain three predefined methods.  The first method is 

Start(x). Start(x) is used to initialize and start a new timer linked to the value specified by the parameter 

“x”.  If a timer has already been initialized for the given parameter, the existing timer will be 

reinitialized. The Stop(x) method stops a timer initialized via the Start(x) method.  If no such timer exists 

in the system, an error will be shown on the contract evaluation report.  Finally, the Value(x) method is 

used to report the amount of time (in application ticks) which have elapsed since the timer was started 

(if the timer is still running), or the number of ticks which have elapsed between the calls to Start(x) and 



P a g e  | 11 

 

Stop(x).  The BoundedContainer contract will use the “item_timer” to keep track of the amount of time 

that each element spends within the collection.  Examples showing the use of the timer and 

corresponding metrics will be discussed shortly. 

 Five observability methods are then defined.  An observability method is bound to a read-only 

method within the IUT.  Observability methods are used to acquire state information about the IUT for 

evaluation within a contract.  The IUT developer is responsible for ensuring that the observability 

methods required by the contract are implemented within the IUT.  Once the method binding for an 

observability method is completed, static checks will be automatically added to the contract to ensure 

that the corresponding IUT method is actually read-only.  In the case of the BoundedContainer contract 

the following observability methods are defined: 

 IsFull() – Returns true if the container is full, false otherwise 

 IsEmpty() – Returns true if the container does not contain any elements, false 

otherwise 

 ItemAt(Integer index) – Returns the item located at the specified index 

 HasItem(T item) – Returns true if the specified item is stored within the container, 

false otherwise 

 Size() – Returns the number of items currently being store within the container.  If 

no items are being stored, then a value of zero will be returned 

The first responsibility to be defined within the BoundedContainer contract is the new() 

responsibility.   Recall that the contents of the new() responsibility are evaluated once a new instance of 

the type bound to the contract has been created, and a constructor execution has been completed. The 

body of the new() responsibility initializes our “size” contract state variable to zero, and defines checks 

to ensure that the observability methods return correct initial values. 

Next the finalize() responsibility is defined.  Recall that the contents of the finalize() 

responsibility are evaluated when an instance of the type that the contract is bound to is being 

destroyed by the garbage collector. The body of the finalize() responsibility ensures that the 

BoundedContainer has been emptied, and does not contain any elements when it is destroyed. 

After the definition of the two special responsibilities, the BoundedContainer contract defines 

an invariant.  The invariant is named SizeCheck and as the name suggests, ensures two things: first, that 

the number of elements in the container specified by the contract state variable matches the value 

returned by the corresponding observability method.  Second that the current number of elements 

being stored by the container is not larger than the maximum size of the container. 

The Add() responsibility is evaluated when a new item is added to the container. The body of 

the responsibility checks to ensure that the container is in a valid state before adding the new item, and 

then ensures that the new item was actually added to the container.  Remember, that the invariant will 

ensure that the addition of the new item does not violate the container’s size constraints.  The Add() 

responsibility also uses the previously defined timer to begin recording how long the new item spends in 

the container. 



P a g e  | 12 

 

The two Remove() responsibilities are evaluated when an item is removed from the container.  

Depending on the context of the removal a different responsibility is evaluated.  The first Remove() 

responsibility removes a single item from the container. The second Remove() responsibility removes 

the specified item from the container.  Each Remove() responsibility first checks to ensure that there is 

actually an item in the collection to remove.  Then following the removal from the container, the 

responsibility ensures that the item was actually removed and the number of items remaining in the 

container has been updated accordingly.  Both Remove() responsibilities contain a call to the Stop() 

method defined on the timer, to indicate that the timer tracking how long the item has been in the 

collection should be stopped.  In the case of the first Remove() responsibility, the value keyword is used 

to refer to the value returned by the responsibility.  That is, the item being removed from the collection.  

The value keyword is equivalent to the ~result~ keyword used within the # (sharp) notation.  If the value 

keyword is used within a responsibility that does not have a return type, a compile-time error will be 

generated.     

Following the definitions of the responsibilities, the BoundedContainer contract defines a single 

scenario.  The scenario is named AddAndRemove(). The purpose of the scenario is to ensure that each 

item added to the container is removed from the container before the container is destroyed.  The 

definition of the scenario begins with the declaration of a local variable: “x”.  The variable can only be 

assigned once, due to the use of the once modifier.  The variable will be of type “T”, denoted by the first 

contract generic parameter.  Each separate instance of the scenario will have a unique instance of the 

local variable.  It should be noted that each instance of the contract may have several instances of a 

given scenario.  That is, each instance of the BoundedContainer contract, will have a scenario instance 

created each time a new item is added to the container.  The trigger of the scenario is specified using 

the Trigger keyword.  In the case the AddAndRemove() scenario, the trigger is the successful evaluation 

of the Add() responsibility. In addition the local variable “x” will be assigned to the item that was added 

to the container.  As previously stated, each time a new item is added to the container via the Add() 

responsibility, a new scenario instance will be created.  The scenario is active until the scenario 

termination condition occurs. Such a condition is specified using the Terminate keyword. In the case of 

the AddAndRemove() scenario, there are two responsibilities that are able to remove an item from the 

container.  As such, the or (“|”) operator is used within the body of the termination grammar to specify 

multiple scenario termination conditions.  The first condition occurs when the non-specific Remove() 

responsibility is evaluated, and the resultant item removed is the item that was added in the scenario 

trigger, and stored in the local variable: “x”. The second condition occurs when the specific Remove(x) 

responsibility is evaluated, and the item to remove matches the value stored in the local variable: “x”.  

Any scenario instances which have been triggered, but have not been terminated when the contract 

instance is destroyed, will be reported as failed in the contract evaluation report. 

Following the scenario definition the BoundedContainer contract defines a single metric 

method. Metric methods are used to report metrics gathered by the contract.  The metric defined 

within the BoundedContainer is named TimeInContainer().  TimeInContainer() returns an integer value 

which will be the number of application ticks which have elapsed while the specified item was in the 

container.  This value is attained by using the previously discussed Value() method defined on the timer 



P a g e  | 13 

 

variable type.  Usage of the TimeInContainer() metric will be illustrated shortly. In addition to using 

timers or contract variables to report a metric value, metric evaluation extensions can be provided by a 

developer.  Metric evaluation extensions allow a developer to create a specialized metric gathering and 

reporting plug-in.  More information on the creation and usage of metric evaluation extensions can be 

found in a future document.  Metrics are not automatically displayed within the contract evaluation 

report.  An example showing how to display a metric value on the contract evaluation report will be 

shown in a future contract. 

The final section in the BoundedContainer contract is an Exports section.  Each contract may 

have at most one Exports section.  The Exports section is used to denote binding points which are used 

within the contract.  In the case of the BoundedContainer contract, the item type being stored within 

the container must be bound to a type found within the IUT.  If the type “T” is not defined via an export 

declaration the “T” symbol will not be recognized by the ACL compiler.   Following the export 

declaration, optional binding rules and restrictions are specified between { and } braces.  There are 

several types of binding rules, two of which are illustrated in the BoundedContainer contract. The first 

indicates that the IUT type bound to the item of the container cannot be the same as the type bound to 

the container itself.  The second indicates that the item type also cannot be bound to any type that is 

derived from the type bound to the container itself.  Additional types of binding rules will be seen 

shortly. 

This concludes the definition and explanation of the BoundedContainer contract.  The contract 

is used to represent an un-ordered container of items, where each item is of the same type.  The 

container also keeps track of how long each item is stored within the container.  A BoundedContainer 

will be used to represent the shopping cart, storing items selected by a customer for purchase.  We will 

now look at a contract for a FIFO queue, which will represent the queues of customers at each cash. 

The BoundedQueue Contract 
 The BoundedQueue contract will be used to specify a FIFO queue, which will be used to 

represent customers waiting in line at a specific cash.  Each cash will have a separate instance of a 

queue.  The BoundedQueue contract listing is shown below: 

Import Core; 

 

Namespace DaveArnold.Collections 

{ 

Contract BoundedQueue<Type T, Integer MaxSize>  

extends BoundedContainer<T, MaxSize> 

{ 

  Value Integer inCount; 

  Value Integer outCount; 

  

  Observability Integer BackLocation(); 

  Observability Integer FrontLocation(); 

  

   

 

 



P a g e  | 14 

 

Observability T Back() 

  { 

   ItemAt(BackLocation()); 

  } 

 

  Observability T Front() 

  { 

   ItemAt(FrontLocation()); 

  } 

  

  Responsibiliy new() 

  { 

   context.inCount = 0; 

   context.outCount = 0; 

  } 

 

  refine Responsibility Add(T item) 

  { 

   Post(#"item == Back()"); 

  } 

 

  refine Responsibility T Remove() 

  { 

   PreSet(#"~1~ = Front()"); 

   

   Post(#"~result~ == ~1~"); 

  } 

 

  refine Responsibility Remove(T item) 

  { 

Belief CannotLeaveQueue("Items must be removed in order") 

   { 

    Pre(#"~fail~”); 

   }  

  } 

 

  refine Scenario AddAndRemove() 

  { 

   once Value T x; 

   once Value Integer index; 

   

   atomic  

   { 

    Trigger(Add(x)); 

    context.inCount = context.inCount + 1; 

    index = context.inCount; 

   }   

   atomic 

   { 

    Terminate(x == Remove()); 

    context.outCount = context.outCount + 1; 

    Post(#"index == context.outCount"); 

   } 

  }  

} 

} 



P a g e  | 15 

 

 As with the previous contracts, the BoundedQueue contract begins with an import statement 

and a namespace declaration.  As a bounded queue can be viewed as a specialized bounded container, 

the BoundedQueue contract will extend and specialize the previously discussed BoundedContainer 

contract.  The extension is accomplished through the use of the extends keyword.  The extends keyword 

immediately follows the BoundedQueue contract declaration.  Any generic contract parameters 

required by the base contract, must either be provided literally or by referencing generic contract 

parameters from the new contract.   

 The BoundedQueue contract begins with the declaration of two contract variables.  These 

variables will be used to store the number of items which have been put into the queue, and removed 

from the queue respectively. Notice that the once modifier is not used.  This allows the contract 

variables to be assigned a value more than a single time. 

 Following the contract variable declaration, four observability methods are defined.  The first 

two, BackLocation() and FrontLocation() are normal observability methods, which will be bound to 

read-only methods within the IUT that will return the location of the first item and last item in the 

queue respectively.  The third and fourth obervability methods illustrate the concept of an observability 

method defined via the use of other observability methods, rather than being bound to a method within 

the IUT.  That is, observability methods which define a body are defined by their body (which can only 

reference other observability methods), rather than being defined by a binding to an actual IUT method.  

The Front() and Back() observability methods use the previously defined FrontLocation() and 

BackLocation() obervability methods, along with the ItemAt() observability method defined within the 

BoundedContainer contract, to get the actual item at the front and back of the queue respectively. 

 The special new() responsibility is used to specify initial values for the contract variables. The 

contents of the BoundedContainer::new() will also be evaluated at the same time as the 

BoundedQueue::new() responsibility.  As there is no additional functionality required for the finalize() 

responsibility, only the functionality found within the BoundedContainer::finalize() responsibility will be 

evaluated. 

 Next, the responsibility BoundedContainer::Add() is refined. Refinement is specified through the 

use of the refine modifier on the responsibility declaration.  If such a responsibility does not exist within 

the base contract with a matching signature, a compile-time error will be generated.  In the case of our 

Add() responsibility, we are adding an additional post-condition to ensure that the new item was added 

to the back of the queue. 

 Analogous to the Add() responsibility, the two Remove() responsibilities are also refined.  Each 

version of the Remove() responsibility is refined in a very different way.  The first Remove() 

responsibility uses the PreSet construct to store the item that is located at the front of the queue, 

before the method bound to the Remove() responsibility is called.  The responsibility then ensures via a 

post-condition that the item removed from the queue was, in-fact the item at the front of the queue.  

The second Remove() responsibility, allows for a specific item to be removed from the queue.  As 

queues generally maintain a fixed order of addition and removal, we do not want items to be removed 



P a g e  | 16 

 

from the queue out of order.  Thus, the second Remove() responsibility should not be used. The refined 

responsibility, defines a belief that all items must be removed from the queue in order, and as such 

creates a precondition that always fails.  That is, if the second Remove() responsibility is called the 

contract will instantly fail.  Instant failure of pre or post-condition can be accomplished by using the 

~fail~ keyword.  It is recommended that such a failing check is placed within a belief, so that the 

rationale for the failure is displayed in the contract evaluation report. 

 Finally, the BoundedQueue contract refines the AddAndRemove() scenario from the base 

contract.  The scenario begins with the declaration of two scenario variables.  The first will store the 

actual item that is placed into the collection, and the second one will store the index within the queue 

where the item is stored.  This value will be used to ensure that the items in the queue are being stored 

in FIFO order.  The atomic keyword is used to specify that everything within the { and } brackets are 

evaluated as an atomic action.  In the case of the AddAndRemove() scenario, once the scenario is 

triggered, the value of the inCount contract variable is increased by one, and that value is stored within 

the index scenario variable.  This creates a numerical ordering of each item within the queue.  The 

second atomic section of the scenario specifies the scenario’s termination condition.  Note that only the 

first Remove() responsibility is included within the termination condition, as we do not wish to use the 

second one.  Upon encountering the termination condition for the scenario, the outCount contract 

variable is increased by one, and compared against the index scenario variable in a post-condition.  This 

will ensure that the item was removed from the queue in the correct order. 

 As there are no new symbols defined within the BoundedQueue contract, an Exports section is 

not required.  This concludes the BoundedQueue contract.  We will now turn our focus to three 

contracts which explicitly define the case study: Customer, Cash, and Store. 

The Customer Contract 
 As the name suggests, the Customer contract represents a single customer within the case 

study.  The Customer contract listing is as follows: 

Import Core; 

 

Using DaveArnold.Collections; 

 

Namespace DaveArnold.Examples.GroceryStore 

{ 

Contract Customer 

{ 

Value tStore store; 

Value Integer cartSize; 

 

  Structure 

  { 

Belief CanStoreItems("The customer needs a way to store 

items in his/her cart") 

   { 

    HasMemberOfType(tFoodContainer); 

   } 

  } 



P a g e  | 17 

 

 

  Observability Boolean HasPaid(); 

   

Observability Boolean InStore() 

  { 

   context.store == null; 

  } 

 

  Observability Boolean HasFood() 

  { 

   !foodContainer.IsEmpty(); 

  } 

  

  Responsibility new() 

  { 

   context.store = null; 

   context.cartSize = 0; 

 

   Post(#"InStore() == false"); 

   Post(#"HasPaid() == false"); 

   Post(#"HasFood() == false"); 

  } 

 

  Responsibility finalize() 

  { 

   Pre(#"InStore() == false"); 

   Pre(#"HasPaid() == true"); 

   Pre(#"HasFood() == false"); 

  } 

  

  Responsibility EnterStore(tStore s) 

  { 

   Belief ~1("The customer cannot be in more than one store") 

   { 

    Pre(#"InStore() == false"); 

   } 

   context.store = s; 

   

   Post(#"InStore() == true"); 

  } 

 

  Responsibility LeaveStore(tStore s) 

  { 

   Pre(#"InStore() == true"); 

   

   Belief ~2("Customer leaves the same store they entered") 

   { 

    Pre(#"s == context.store"); 

   } 

   context.store = null; 

   

Post(#"InStore() == false"); 

  } 

 



P a g e  | 18 

 

 

Responsibility AddFood(tFoodItem item) 

  { 

   Pre(#"item != null"); 

   Pre(#"foodContainer.HasItem(item) == false"); 

   

   Post(#"foodContainer.HasItem(item) == true"); 

  } 

 

  Responsibility RemoveFood() 

  { 

   Pre(#"HasFood() == true"); 

   context.cartSize = foodContainer.Size(); 

   

   Post(#"HasFood() == false"); 

  } 

 

  Responsibility Pay() 

  { 

   Pre(#"HasPaid() == false"); 

   Pre(#"InStore() == true"); 

   

   Post(#"HasPaid() == true"); 

  } 

 

  Responsibility tCash SelectQueue(tStore s) 

  { 

   Pre(#"s != null"); 

   Pre(#"s.IsOpen() == true"); 

   Pre(#"InStore() == true"); 

   Pre(#"s == context.store"); 

  

Post(#"~result~ != null");   

Post(#"s.HasCash(~result~)"); 

   Post(#"~result~.IsOpen() == true"); 

  } 

 

  



P a g e  | 19 

 

 

Scenario BuyItems() 

  { 

   once Value tStore store; 

   exported once Value tCash cash; 

 

Trigger(new()); 

EnterStore(store),  

(AddFood(dontcare))+, 

atomic 

{  

cash = SelectCash(store), 

Belief ValidCash("A valid cash will be selected") 

    { 

     Check(#"cash != null"); 

    } 

   }, 

   cash.AddCustomer(context), 

   context == cash.NextCustomer(), 

RemoveFood(), 

Pay(), 

LeaveStore(store); 

Terminate(finalize());  

} 

 

Metric Integer CartSize() 

  { 

   context.cartSize; 

  } 

 

  Metrics 

  { 

ReportAll("The average number of items in a cart is: {0}", 

AvgMetric(CartSize()); 

  } 

  

  Exports 

  { 

   Type tFoodItem conforms Item 

   { 

    Store::tItem; 

   } 

   Type tCash conforms Cash 

   { 

    Store::tCash; 

   } 

   Type tFoodContainer conforms  

BoundedContainer<tFoodItem, 100>; 

   Type tStore conforms Store; 

   Field foodContainer tFoodContainer;  

  } 

 } 

}  



P a g e  | 20 

 

 The Customer contract beings with the standard import statement.  The contract then 

references the DaveArnold.Collections namespace via the Using keyword. Unlike the Import keyword 

which imports extension namespaces, the Using keyword imports contract namespaces. In the case of 

the Customer contract, the DaveArnold.Collections namespace is imported so the customer’s shopping 

cart can be represented via the BoundedContainer contract.  The Customer contract is located within 

the DaveArnold.Examples.GroceryStore namespace.  The Customer contract is standalone and does not 

extend any other contract, or include any generic contract parameters. The contract begins with the 

declaration of two contract variables. The first will be used to represent the store that the customer is 

currently shopping in.  If the customer is not located in a store, the variable will be assigned a value of 

null. The second is used to record the number of items that the customer has in their cart when they 

checkout.  This value will be used to report metrics on the number of items that customers are 

purchasing.  

 The Customer contract contains a Structure section.  Each contract may have at most one 

Structure section.   As the name suggests a Structure section is used to express structural checks to be 

evaluated against the IUT.  An example of a structural check is illustrated in the Customer contract.  The 

check ensures that the type to which the Customer contract is bound to contains a member of the type 

bound to the tFoodContainer symbol.  The HasMemberOfType() check is a static check, which is located 

within the “Core” namespace.   Any number of structural checks could be specified within the Structure 

section. Such a check does not constitute a binding.  If the member that is being checked is used within 

the contract, an entry in the contract’s Exports section is required.  The Exports section of the Customer 

contract contains such a binding. 

 Following the Structure section, three observability methods are specified.  The first method, 

HasPaid() will be used to determine if the customer has paid for his/her items, and will be bound to a 

read-only method within the IUT.  The second observability method, InStore() will be used to determine 

if the customer is currently located within a grocery store.  InStore() does not need to be bound to an 

actual IUT method, as its value can be calculated by checking the previously defined store contract 

variable. The final observability method, HasFood() is used to determine if the customer has food in 

his/her cart.  The value is calculated by checking if the food container is empty.  The IsEmpty() 

observability method is guaranteed to be part of the food container because of the binding rules, which 

are specified in the Exports section. We will discuss the Exports section shortly.  

 The special new() responsibility, provides default values for the store and cartSize contract 

variables.  The new() responsibility also specifies post-conditions to ensure that the customer has been 

initialized properly by the IUT.  Likewise, the special finalize() responsibility specifies preconditions to 

ensure that the customer is no longer in the store, and has paid for his/her purchases. 

 The first normal responsibility for our customer is to get the customer into a store. The 

EnterStore() responsibility fulfills this requirement.  The responsibility first checks to make sure that the 

customer is not already in a store, and then assigns our contract variable the value of the store the 

customer has just entered.  That is, the customer will always know which store he/she is in. Finally, a 

post-condition is specified to ensure that the customer is actually in the store.  



P a g e  | 21 

 

 Analogous to the EnterStore() responsibility is the LeaveStore() responsibility. The LeaveStore() 

responsibility first checks to ensure that the customer is currently in a store.  Next a check is specified to 

make sure that the store that the customer is trying to leave, is the same store that they are actually in.  

The contract variable is updated to indicate that the customer is no longer in the store. Finally, a post-

condition is specified to ensure that the customer has actually left the store. 

 The AddFood() responsibility is used to add a new food item into the customer’s shopping cart.  

The preconditions ensure that an actual item is specified, and the item is not already in the cart.  The 

post-condition ensures that the food item has actually been put into the customer’s cart. 

 The RemoveFood() responsibility is used to remove the food items from the customer’s cart.  

The items are then given to the cash for scanning and payment.  The RemoveFood() responsibility 

contains a precondition to ensure that the customer has at least one food item to remove.  The scenario 

variable cartSize is assigned the number of elements which are in the collection before the bound IUT 

method is called.  That is, the number of items in the customer’s cart is recorded immediately before the 

cart is emptied.  Recall, that the cartSize scenario variable will store the number of items that he 

customer has purchased.  This value will be used for metric analysis.  The post-condition ensures that all 

of the items have been removed from the customer’s shopping cart. 

 The Pay() responsibility is used when the customer is ready to pay for his/her items.  The 

preconditions ensure that the customer has not already paid, and that the customer is actually in a 

store.  The post-condition ensures that the customer did actually pay for the items. 

 The SelectQueue() responsibility is used when the customer has finished adding items to his/her 

cart and is ready to select a cash for check out. The responsibility returns the selected cash.  The 

responsibility beings by ensuring that the given store is valid, open, and that the customer is in the given 

store, and not a different store.  Once the queue selection algorithm has been executed by the IUT, the 

result is checked to ensure that a cash was selected, the selected cash is part of the store, and the cash 

is open. 

 Following the responsibility definitions, the main customer scenario is defined. The scenario is 

named BuyItems() and contains the complete grammar for the customer’s involvement within the 

grocery store.  The scenario begins by defining two scenario variables.  The first will contain the value of 

the store that the customer has entered.   The second variable will contain the cash that the customer 

selects for checkout.  Both scenario variables contain the once modifier.  As previously stated, the once 

modifier indicates that the scenario variable can only be assigned once.  The second scenario variable 

also contains the exported modifier.  The exported modifier allows the value of the scenario variable to 

be referenced from outside the scenario.  We will see an example of such usage shortly.  The scenario is 

triggered immediately following the creation of an instance of the type bound to the Customer contract.  

The scenario then specifies a grammar of responsibilities that must be executed in the order specified by 

the grammar.  The BuyItems() scenario grammar begins with the execution of the EnterStore() 

responsibility. The value of the store used in the call to the EnterStore() responsibility will be stored in 

the store scenario variable.  The assignment is performed implicitly because the scenario variable is 



P a g e  | 22 

 

referenced before it has been assigned to.  In future references, the value passed to the responsibility 

will be checked against the value stored in the scenario variable. Next, the scenario grammar specifies 

that one or more food items are to be added to the customer’s shopping cart.  The dontcare keyword is 

used to indicate that we are not interested in the individual food items that are placed within the cart.  

The next event that the scenario grammar specifies is encompassed within an atomic block.  As 

previously stated, atomic blocks specify a set of actions which are to be completed/checked as one 

atomic unit.  In the case of the BuyItems() scenario grammar, the customer selects a cash register to line 

up for (join the queue).   A check is added to ensure that a valid cash was actually selected.  A check is 

the same as a pre or post-condition except that a check is evaluated at the location it is found within a 

scenario.  Checks can only be used within scenarios, they are not supported within other types of 

constructs.  The scenario grammar also includes an example of a belief nested within the scenario 

grammar.  If the check fails, the ValidCash belief will be shown as failed.  Once a cash is selected for 

checkout, the grammar indicates that the customer is added to the cash’s queue via the 

Cash::AddCustomer() responsibility.  Recall that the context keyword is used to indicate the current 

instance of the customer contract is to be used.  The next event in the grammar occurs when the 

Cash::NextCustomer() responsibility is executed and the result of the execution is the current customer.  

Let’s elaborate on this statement, the BuyItems() scenario is suspended after the customer is added to 

the cash’s queue.  The scenario continues once the customer is removed from the queue (via 

NextCustomer()).  Other events which occur on the Cash contract are ignored by the scenario. However 

if an event occurs on the Customer contract which is out of order within the scenario, the scenario fails.  

That is, only events which occur out of order within the context of the scenario (the Customer contract 

in this case), cause a scenario to fail.  The rationale here is that the Customer contract should know 

which of its own events should or should not occur, but the Customer should not have to specify events 

which take place within other contracts.  Next, the grammar indicates that the RemoveFood() 

responsibility is executed to take the items out of the customer’s cart, and to place them onto the cash 

register for scanning.  Once each item is processed, the Pay() responsibility is executed to pay for the 

items purchased.  Finally, the customer leaves the store via the LeaveStore() responsibility.  The 

scenario completes upon successful execution of the special finalize() responsibility. 

 Within the Customer contract, we have used a contract variable to keep track of the number of 

items which the customer has placed into his/her cart and purchased.  This is an example of using a 

contract variable to record a metric value.  In order for the metric value to be accessible and processed 

the metric section named CartSize() is provided.  The value returned by the CartSize() metric is the value 

stored within the cartSize contract variable.   

 Following the metric definition, the Customer contract contains a Metrics section.  Each contract 

may contain at most one Metrics section.  A Metrics section is used to call user defined dynamic 

extensions to process and report, via the contract evaluation report, information gathered while the IUT 

and corresponding scenarios were being executed.  In the case of the Customer contract, the Metrics 

section specifies a single ReportAll statement.  A ReportAll statement can only be used within a Metrics 

section to write directly to the contract evaluation report.  ReportAll statements are similar to the C 

printf statement.  They contain a string to be written to the contract evaluation report, followed by a 



P a g e  | 23 

 

variable length argument list.  Arguments are replaced within the string as specified by the {0} notation.  

The zero-based argument index is specified between matching braces.  The single argument in the 

Customer contract is calculated by calling a dynamic extension named AvgMetric().  The dynamic 

extension will be supplied within the Core namespace.  As the extension name suggests, it is used to 

calculate average metric values across multiple instances of the same contract.  AvgMetric() takes a 

single argument which is the number of items which were stored within the customer’s cart.  Before 

continuing with Customer contract, let’s look at the metric reporting mechanism in more detail.  

Individual metrics are gathered using various techniques while the IUT is being executed.  Metric values 

are reported via the use of Metric sections. Metric sections exist at the contract instance level.  That is, 

each Customer instance contains a CartSize() metric which will return a unique value for each customer.  

Once the execution of the IUT is complete, and the metric values have been calculated, the Metrics 

block of each contract is executed, if present. The Metrics block is executed a single time.  However, the 

report statements within the Metrics section determine if a given metric should be reported per-

instance, or per-contract.  For example, in the case of the Customer contract, we only want a single line 

on the contract evaluation report indicating the average of all of the customer cart sizes, and not a list of 

each cart size.  This is accomplished by using the ReportAll statement.  If we wanted a list of each cart 

size, the Report statement would be used.  An example of the Report statement will be illustrated in the 

next contract.  Additional details of metric evaluation and reporting will be illustrated in a future 

document.  Returning to the Customer contract, the ReportAll statement will display the average 

number of items placed within all customer shopping carts.      

 The final section of the Customer contract is the Exports section. The first export is the 

tFoodItem type.  The conforms keyword indicates that the IUT type that is bound to the tFoodItem type, 

will automatically have the Item contract applied to it.  That is, the Item contract will also be bound to 

the IUT type that is bound to the tFoodItem type.  The tFoodItem binding also contains a binding rule.  

The binding rule states that the IUT type that is bound to the tFoodItem type is the same type that is 

bound to the tItem type specified within the Store contract.  The Store contract will be presented 

shortly.  If the binding for the Store::tItem type has already been performed, the Customer::tFoodItem 

binding will be performed automatically.  Next, the tCash type binding specifies that the Cash contract is 

applied to the corresponding IUT type, and that the Store::tCash type will be bound to the same IUT 

type.  The tFoodContainer type is bound to an IUT type, that will have the BoundedContainer contract 

bound to it.  It should be noted, that the values of the generic contract parameters for the 

BoundedContainer contract must be specified at this point, as shown above.  Missing generic contract 

parameters will result in a compile-time error.  Next, the tStore type is bound to an IUT type which will 

have the Store contract bound to it.  It should be noted, that cyclic bounding rules are permitted, but 

not required.  Examples of cyclic binding rules will be shown in the last contract.  Finally, a field binding 

is specified to bind the foodContainer symbol to a field within the customer IUT type that is of the type 

bound to the tFoodContainer  symbol.  As previously stated, the field binding ensures that the check 

specified within the Structure section of the contract is preserved.  Thus, the Structure section of the 

Customer contract is not required.  



P a g e  | 24 

 

 The Exports section completes the definition of the Customer contract.  We will now examine 

the Cash contract, which is applied to each cash register. 

The Cash Contract 
 The Cash contract represents a single cash register found within a store.  Customers use the 

cash registers to checkout.  The Cash contract listing is as follows: 

Import Core; 

 

Using DaveArnold.Collections; 

 

Namespace DaveArnold.Examples.GroceryStore 

{ 

Contract Cash 

{ 

 Set Integer customer_times; 

 Value Integer processed_customers; 

 

  Observability Boolean IsOpen(); 

  Observability Boolean HasCustomers() 

  { 

   !queue.IsEmpty(); 

  } 

 

  Responsibility new() 

  { 

   customer_times.Init(); 

   processed_customers = 0; 

} 

 

  Responsibility Open() 

  { 

   Belief ~1("Cannot open a cash that is already open") 

   { 

    Pre(#"IsOpen() == false"); 

   } 

   

   Post(#"IsOpen() == true"); 

  } 

 

  Responsibility Close() 

  { 

   Belief ~2("Cannot close a cash that is not open") 

   { 

    Pre(#"IsOpen() == true"); 

   } 

   Belief ~3("Cannot close a cash that has customers") 

   { 

    Pre(#"HasCustomers() == false"); 

   } 

   

   Post(#"IsOpen() == false"); 

  } 

 

 



P a g e  | 25 

 

 

 

  Responsibility AddCustomer(tCustomer customer) 

{ 

Pre(#"customer != null"); 

Pre(#"IsOpen() == true"); 

Pre(#"queue.HasItem(customer) == false"); 

Pre(#"customer.BuyItems().cash == context"); 

 

Post(#"queue.HasItem(customer) == true"); 

Post(#"queue.Back() == customer"); 

} 

 

  Responsibility tCustomer NextCustomer() 

{  

Pre(#"IsOpen() == true"); 

Pre(#"HasCustomers() == true"); 

PreSet(#"~1~ = queue.Front()"); 

 

Post(#"~result~ != null"); 

Post(#"~1~ == ~result~"); 

Post(#"queue.HasItem(~result~) == false"); 

} 

 

  Responsibility ProcessCustomer(tCustomer customer) 

  { 

   Belief ~4("The customer must be valid") 

   { 

    Pre(#"customer != null"); 

    Pre(#"queue.HasItem(customer) == false"); 

   

    Belief ~5("The customer hasn't paid yet") 

    { 

     Pre(#"customer.HasPaid() == false"); 

    } 

   } 

   Belief ~6("The customer should have selected this cash") 

   { 

    Pre(#"customer.BuyItems().cash == context"); 

   } 

   customer.RemoveItems(), 

customer.Pay(), 

atomic 

{ 

customer_times.Add(queue.TimeInContainer(customer)); 

processed_customers = processed_customers + 1; 

 

Belief ~6("The customer is done") 

    { 

     Check(#"customer.HasPaid() == true"); 

    } 

customer.LeaveStore(dontcare)  

   }; 

  } 



P a g e  | 26 

 

 

  Scenario RunCash() 

{ 

  Value Integer count; 

 

Trigger(new()); 

( 

atomic 

{ 

   count = 0;  

Open() 

}, 

(    

atomic 

{ 

    count = count + 1;  

AddCustomer(dontcare) 

} 

| 

atomic 

{ 

    count = count - 1;  

ProcessCustomer(NextCustomer()) 

} 

)*, 

Close() 

)*; 

Terminate(finalize()); 

 

Belief ~7("All customers have been processed") 

   { 

    Post(#"count == 0"); 

   } 

} 

 

Metric Set Integer WaitingTimes() 

  { 

   context.customer_times; 

  } 

 

Metric Integer ProcessedCustomers() 

  { 

   context.processed_customers; 

  } 

 

Metrics 

{ 

Report("Avg customer waiting time: {0}", 

AvgMetric(WaitingTimes())); 

Report("Max customer waiting time: {0}", 

MaxMetric(WaitingTimes())); 

Report("Min customer waiting time: {0}", 

MinMetric(WaitingTimes())); 

Report("Number of Customers: {0}", ProcessedCustomers()); 

} 

 



P a g e  | 27 

 

 

 

  Exports 

  { 

   Type tCustomer conforms Customer; 

   Type tQueue conforms BoundedQueue<tCustomer, 100>; 

   Field queue tQueue; 

  } 

} 

} 

  

As with the Customer contract, the Cash contract begins with the standard import statement, 

DaveArnold.Collections reference, and a namespace declaration to place the contract within the 

DaveArnold.Examples.GroceryStore namespace.  The Cash contract itself begins with the declaration of 

a contract variable called customer_times.  Unlike previous Value contract variable declarations, the 

customer_times contract variable is defined using the Set keyword.  As the name suggests the Set 

keyword creates a set of the type specified following the Set keyword.  Contract variables defined using 

the Set keyword have the following operations: 

 Init() – Initializes the set and clears any elements which may be in the set. 

 Add(x) – Adds the element x to the set.  If x is already in the set, an additional element is added.  

That is, a set may contain duplicate elements. 

 Remove(x) – Removes the first instance of x found within the set. 

 RemoveAll(x) – Removes all instances of x found within the set. 

 Contains(x) – Returns true if at least one instance if x is stored within the set. 

 Count(x) – Returns the number of instances of x stored within the set. 

 Count() – Returns the size of the set. 

The contract will use the customer_times contract variable to record the amount of time each 

customer waits in the queue.  The processed_customers contract variable will record the number of 

customers processed by the cash. 

 The Cash contract continues with the declaration of two observability methods.  The first, 

IsOpen() indicates if the cash is open or closed.  Only an open cash can be selected by customers. The 

second observability method HasCustomers()  will indicate if the cash has customers waiting in its 

queue.  The IsOpen() observability method will be bound to a method within the IUT, where the 

HasCustomers()  observability method’s value will be determined by checking to see if the underlying 

queue is not empty. 

 The Cash contract contains a new() responsibility to initialize the contract variables.  Sets are 

initialized using the Init() set operation.  Each set must be initialized prior to use.  Following the new() 

responsibility, Open() and Close() responsibilities are used to open and close a cash respectively. The 

Open() responsibility ensures that the cash is not already open in a precondition and contains a post-

condition to ensure that the cash was actually opened upon completion of the bounded IUT method.  

The Close() responsibility performs the reverse action, containing a precondition to ensure that the cash 



P a g e  | 28 

 

is open, has no customers (cashes cannot be closed if they have customers waiting), and a post-

condition to ensure that the bounded IUT method actually closes the cash. 

 Next, the AddCustomer() responsibility adds a new customer to the queue leading up to the 

cash.  The responsibility checks to see that a valid customer has been passed in, the cash is open, and 

that the customer is not already in the queue.  In addition, the exported scenario variable cash from the 

Customer::BuyItems() scenario is used to ensure that the cash to which the customer is being added to, 

is the cash that the customer selected to check out at.  The syntax of this precondition should be noted.  

The scenario BuyItems() is referenced, and within it, the cash scenario variable is accessed.  If there is 

currently no active instance of the scenario the precondition will automatically fail.  Similarly, in the case 

where there is more than once instance of the scenario active for the specified customer instance, the 

precondition will automatically fail, unless each scenario has the same value in their respective cash 

variables.    Once the bounded IUT method has executed, the AddCustomer() responsibility checks to 

see that the customer has been added to the queue, and that the customer is located at the back of the 

queue. 

 The NextCustomer() responsibility is used to get the first customer in the queue.  That is, the 

customer in the front of the line to check out.  The responsibility begins with preconditions that ensure 

that the cash is open and contains customers.  The PreSet construct is used to store the customer that is 

located at the front of the queue.  Once the bounded IUT method has completed execution, the post-

conditions ensure that a customer was picked, the customer was the one that was at the front of the 

queue, before the IUT method executed, and that the customer is no longer in the queue. 

 The ProcessCustomer() responsibility shows the use of a different type of responsibility.  As with 

observability methods, responsibilities can either be bound to an actual IUT method, or can be defined 

in terms of other responsibilities.  The ACL compiler detects which type of responsibility is specified and 

will request bindings only if needed.  There is no special syntax to distinguish between the different 

responsibilities.  The non-bounded responsibilities can be seen as a scenario section that does not have 

a trigger or a terminate condition, but does have a section of scenario grammar in the responsibility 

body.  The ProcessCustomer() responsibility begins by ensuring that a valid customer has been selected, 

and that customer has already been removed from the queue.  Additional preconditions also check that 

the customer has yet to pay, and has selected this cash to check out at.  Once the preconditions are 

completed, the grammar specifies that the Customer::RemoveItems() responsibility is executed 

followed by the Customer::Pay() responsibility. Following that the atomic keyword is used to perform 

several operations and checks.  The first operation, is used to add the amount of time that the customer 

spent waiting in line (in the queue) to the customer_times set.  The amount of time is acquired by using 

the TimeInContainer() metric defined within the BoundedContainer contract.  Next, the 

processed_customers contract variable is incremented to indicate that another customer has been 

processed by this cash.  A check to ensure that the customer has paid follows, and finally the grammar 

specifies the Customer::LeaveStore() responsibility to allow the customer to leave the store.  The 

grammar is terminated with a semicolon (;) to indicate where the responsibility terminates. Post-

conditions may be placed after the grammar if needed.  The ProcessCustomer() responsibility does not 

require any post-conditions. 



P a g e  | 29 

 

 Following the specification of the responsibilities that compose the Cash contract, the RunCash() 

scenario is defined.  The RunCash() scenario specifies the entire life-cycle of a single cash register.   The 

scenario begins by defining a scenario variable named count that will be used to keep track of the 

number of customers that are located within the cash’s queue.  The scenario is triggered upon 

instantiation of the type bound to the Cash contract.  The atomic keyword is used to set the initial value 

of the customer counter and to open the cash.  The scenario grammar then states that while the cash is 

open there are two possible events. The first event is that a customer is added to the queue.  The 

dontcare keyword is used to indicate that the actual customer that is added to the queue is not 

important form the RunCash() scenario’s point of view. An atomic block is used to increment the count 

variable at the same time as the customer is added to the queue.  The second event that can occur is 

that a customer can be removed from the queue.  When a customer is removed from the queue via the 

NextCustomer() responsibility, the ProcessCustomer() responsibility is used to specify the grammar of 

events that occurs on the selected customer.  An  atomic  block is also used to decrement the count 

variable at the same time that the customer is removed from the queue.  The star (*) operator, indicates 

that any combination of the two events can occur zero or more times.  Note that even though the 

grammar allows the NextCustomer() responsibility to be executed before a customer has been added to 

the queue, it is impossible because of the preconditions associated with the NextCustomer() 

responsibility. The scenario grammar concludes with the closing of the cash via the Close() 

responsibility.  The outer star (*) operator allows for the cash to be opened and closed multiple times. 

The scenario terminates when the cash object is destroyed.  Once the scenario has completed, a post-

condition is used to ensure that there were no customers left in the queue when the cash closed. 

 Following the RunCash() scenario two metrics are defined.  The first metric, WaitingTimes() 

returns a set of integers which contains all of the waiting times for the customers which were processed 

by this cash.  The WaitingTimes() metric is implemented by returning the customer_times contract 

variable.  The second metric, ProcessedCustomers()  is used to return the number of customers which 

have passed through the cash.  ProcessedCustomers() is implemented by returning the value of the 

processed_customers contract variable. 

 The Cash contract contains a Metrics section.  The Metrics section begins by using the 

AvgMetric(), MaxMetric(), and MinMetric() dynamic extensions, which are all located within the Core 

namespace to report the average, maximum, and minimum customer waiting times for each cash via a 

Report statement.  The Metrics section also reports the number of customers processed by each cash 

register. 

 Finally, the Cash contract contains an Exports section to specify the symbols that need to be 

bound to types within the IUT.  In addition, binding rules are specified.  The first export is for the 

tCustomer type that must conform to the Customer contract.  The second export binds the tQueue type 

of a type within the IUT that conforms to the BoundedQueue contract that contains the generic contract 

parameters which specify that the queue contains customers and that it has a maximum size of 100 

customers.  The final export is to bind the field within the IUT that represents the actual queue to the 

queue symbol for use within the contract. 



P a g e  | 30 

 

 With the Cash contract specified, the only the specification of the Store contract remains. 

The Store Contract 
 The Store contract is the heart of the grocery store system. It represents the entire grocery 

store, and is the main contract for the system.  The Store contract listing is specified as follows: 

Import Core; 

 

Using DaveArnold.Collections; 

 

Namespace DaveArnold.Examples.GroceryStore 

{ 

MainContract Store 

{ 

  Value Integer openCashes; 

  

  Structure 

  { 

   Belief HasItemsToSell("The store holds items to sell") 

   { 

    HasMemberOfType(tFoodContainer); 

   } 

   Belief HasCash("The store has cash registers") 

   { 

    HasMemberOfType(tCashContainer); 

   } 

  } 

  

  Observability Integer OpenCashes(); 

  Observability Boolean IsOpen(); 

 

  Observability Boolean HasCash(tCash x) 

  { 

   cashContainer.HasItem(x); 

  } 

  

  Responsibility new() 

  { 

   context.openCashes = 0; 

   Post(#"foodContainer.IsEmpty() == true"); 

   Post(#"cashContainer.IsEmpty() == true"); 

   Post(#"IsOpen() == false"); 

  } 

 

  Responsibility finalize() 

  { 

   Pre(#"foodContainer.IsEmpty() == true"); 

   Pre(#"cashContainer.IsEmpty() == true"); 

   Pre(#"context.openCashes == 0"); 

Pre(#"IsOpen() == false"); 

  } 

 

 

 

  



P a g e  | 31 

 

  Invariant OpenCashNumber() 

  { 

   Inv(#"context.openCashes >= 0"); 

   Inv(#"context.openCashes == OpenCashes()"); 

  } 

  

  Responsibility Open() 

  { 

   Pre(#"foodContainer.IsEmpty() == true"); 

   Pre(#"cashContainer.IsEmpty() == true"); 

   Pre(#"context.openCashes == 0"); 

   Pre(#"IsOpen() == false"); 

 

   Post(#"foodContainer.IsEmpty() == false"); 

   Post(#"cashContainer.IsEmpty() == false"); 

   Post(#"context.openCashes == 0"); 

Post(#"IsOpen() == true");  

  } 

 

  Responsibility Close() 

  { 

Pre(#"IsOpen() == true"); 

   Pre(#"foodContainer.IsEmpty() == false"); 

   Pre(#"cashContainer.IsEmpty() == false"); 

 

Post(#"IsOpen() == false"); 

   Post(#"foodContainer.IsEmpty() == true"); 

   Post(#"cashContainer.IsEmpty() == true"); 

  } 

 

  Responsibility OpenCash(tCash c) 

  { 

   Pre(#"IsOpen() == true"); 

   Pre(#"c != null"); 

   Pre(#"cashContainer.HasItem(c) == true"); 

   Pre(#"c.IsOpen() == false"); 

   

   context.openCashes = context.openCashes + 1; 

   Post(#"cashContainer.HasItem(c) == true"); 

   Post(#"c.IsOpen() == true"); 

  } 

 

  Responsibility CloseCash(tCash c) 

  { 

Pre(#"IsOpen() == true"); 

   Pre(#"c != null"); 

   Pre(#"c.IsOpen() == true"); 

   Pre(#"cashContainer.HasItem(c) == true"); 

   

   context.openCashes = context.openCashes – 1; 

   Post(#"cashContainer.HasItem(c) == true"); 

   Post(#"c.IsOpen() == false"); 

  } 

 

 

 

 



P a g e  | 32 

 

  Responsibility AddFood(tFoodItem item) 

  { 

Pre(#"IsOpen() == true"); 

   Pre(#"item != null"); 

   Pre(#"foodContainer.HasItem(item) == false"); 

   

   Post(#"foodContainer.HasItem(item) == true"); 

  } 

 

  Responsibility RemoveFood(tFoodItem item) 

  { 

   Pre(#"IsOpen() == true"); 

   Pre(#"item != null"); 

   Pre(#"foodContainer.HasItem(item) == true"); 

   

   Post(#"foodContainer.HasItem(item) == false"); 

  } 

 

Scenario OpenAndCloseCash() 

  { 

   once Value tCash x; 

   Trigger(OpenCash(x)); 

   Terminate(CloseCash(x)); 

  } 

 

Scenario AddAndRemoveFood() 

  { 

   once Value tFoodItem x; 

   Trigger(AddFood(x)); 

   Terminate(RemoveFood(x)); 

  } 



P a g e  | 33 

 

 

Scenario RunStoreCash() 

{ 

  Value Integer count; 

 

Trigger(new()); 

( 

atomic 

{ 

   count = 0;  

Open() 

}, 

(    

atomic 

{ 

    count = count + 1;  

OpenCash(dontcare) 

} 

| 

atomic 

{ 

    count = count - 1;  

CloseCash(dontcare) 

} 

)*, 

Close() 

)*; 

Terminate(finalize()); 

 

Belief CashesAllClosed("No cashes are still open") 

   { 

    Post(#"count == 0"); 

   } 

} 



P a g e  | 34 

 

 

 

Scenario RunStoreFood() 

{ 

  Value Integer count; 

 

Trigger(new()); 

( 

atomic 

{ 

   count = 0;  

Open() 

}, 

(    

atomic 

{ 

    count = count + 1;  

AddFood(dontcare) 

} 

| 

atomic 

{ 

    count = count - 1;  

RemoveFood(dontcare) 

} 

)*, 

Close() 

)*; 

Terminate(finalize()); 

 

Belief FoodAllGone("No food is still in the store") 

   { 

    Post(#"count == 0"); 

   } 

} 



P a g e  | 35 

 

Scenario MainStore() 

  {   

   Trigger(new()); 

   ( 

    Open(), 

    (AddFood(dontcare))+, 

    OpenCash(dontcare), 

    ( 

 

     OpenCash(dontcare) 

     | 

     CloseCash(dontcare) 

     | 

     parallel 

     { 

      once Value tCash cash; 

      once Value tCustomer c; 

      c = newInstance tCustomer; 

      c.EnterStore(context), 

      (c.AddFood(dontcare))+, 

      atomic 

      { 

       cash = c.SelectCash(context), 

       Belief ValidCash( 

"A valid cash will be selected”) 

       { 

        Check(#"cash != null"); 

       } 

      }, 

      cash.AddCustomer(c), 

      c == cash.NextCustomer(), 

      c.RemoveFood(), 

      c.Pay(), 

      c.LeaveStore(context) 

     } 

    )+, 

    (RemoveFood(dontcare))+, 

    Close() 

   )+; 

   Trigger(finalize()); 

} 



P a g e  | 36 

 

 

 

  Exports 

  { 

   Type tFoodItem conforms Item 

   { 

    Customer::tFoodItem; 

   } 

   Type tCash conforms Cash 

   { 

    Customer::tCash; 

   } 

Type tCustomer conforms Customer 

   { 

    Cash::tCustomer; 

   } 

   Type tFoodContainer conforms  

BoundedContainer<tFoodItem, 10000>; 

   Type tCashContainer conforms BoundedContainer<tCash, 10>; 

   Field cashContainer tCashContainer; 

   Field foodContainer tFoodContainer; 

  } 

} 

} 

 

The Store contract is defined using the MainContract keyword instead of the Contract keyword. 

MainContract is used to denote that this contract is the entry point to the contract system.  Normally, 

contracts are not applied or bound until specified in a corresponding Exports section.  However, a 

contract specified using the MainContract keyword is automatically bound to a type within the IUT.  

Each contract project (a collection of one or more contracts), must contain at least one MainContract.  

Unlike conventional programming languages, a contract project can contain any number of 

MainContract declarations.  Put another way, regular contracts are not automatically bound to an IUT 

type, where main contracts are bound to an IUT type automatically.  With the exception of binding, 

main contracts behave exactly the same way and have the same functionality as normal contracts. 

 The Store contract begins with the declaration of a single contract variable named openCashes.  

The variable will be used to keep track of the number of open cash registers that the store currently has 

in operation. 

 The Structure section uses the HasMemberOfType() static check to ensure that the IUT type 

bound to the store contains a container for storing the food items that are in the store, as well as a 

container for storing the cash registers that are located within the store.  As previously stated, the field 

bindings located within the Exports section, ensure that the static checks specified within the Structure 

section exist, however if the fields are not needed within the contract, then the static checks should be 

used.  In addition, it would create a more complete contract if the structural requirements were 

explicitly specified. 



P a g e  | 37 

 

 Following the Structure section three observability methods are defined.  The first, 

OpenCashes(), is bound to the IUT and returns the number of open cashes as reported by the IUT.  The 

second observability method IsOpen(), is bound to the IUT and returns true if the store is in an open 

state, false otherwise. The third observability method HasCash() is used to determine if the grocery 

store contains a given cash register.  This observability method is implemented by using the result 

obtained from the BoundedContainer::HasItem() observability method. 

 Next, the special new() responsibility is defined.  The responsibility sets the initial value of the 

openCashes contract variable, and defines post-conditions to ensure that the store is in a valid initial 

state and not yet open.  The special finalize() responsibility performs the reverse action and tests to 

make sure that the store is closed and does not contain any cash registers or food items before it is 

destroyed.  The finalize() responsibility also ensures that no cash registers were left in an open state. 

 A single invariant is defined named OpenCashNumber(), the purpose of the invariant is to 

ensure that the number of open cash registers is never a negative amount and that the number of open 

cash registers according to the Store contract, matches the value returned by the IUT. 

 The Open() responsibility handles the opening of the actual store.  The responsibility is defined 

by a set of preconditions that ensure that the store is not already open, does not have any open cashes, 

and that the store has no cash registers, or food items within the store.  The Open() responsibility then 

has a set of post-conditions that ensure that once the store has been opened, it contains some food 

items, and cash registers, yet none of the cash registers are opened (this is accomplished by a separate 

responsibility).  

 The Close() responsibility handles closing of the store.  The responsibility is defined by a set of 

preconditions that ensure that the store is actually open, and that the store has food items and cashes.  

That is, the store is in a valid open state. The Close() responsibility’s post-conditions make sure that the 

store is no longer open, and that it does not contain any food items or cash registers. 

 The OpenCash() responsibility is used to open the specified cash register for customer use.  The 

preconditions check to make sure that the store is open, and that the cash register provided is valid, part 

of the store, and not already open.  The OpenCash() responsibility next increments the openCashes 

contract variable, and finally via the post-conditions ensures that the cash is still part of the store and 

that it has been opened. 

 The CloseCash() responsibility is used to close the specified cash register.  The preconditions 

check to ensure that the store is open, and that a valid already open cash register that is part of the 

store has been provided.  The CloseCash() responsibility then decrements the openCashes contract 

variable, and finally the post-conditions ensure that the cash register is still part of the store and that is 

has actually been opened. 

 The AddFood()  and RemoveFood() responsibilities are used to add and remove food items from 

the store respectively.  Each of the responsibilities contain two common preconditions, one to make 

sure that the store is open, and another to make sure the given food item is valid.  The AddFood() 



P a g e  | 38 

 

responsibility checks to make sure that the item being added is not already in the store, and then 

specifies a post-condition to ensure that the item was actually added.  The RemoveFood() responsibility 

performs the opposite action by ensuring that the item to be removed is currently located within the 

store, and has a post-condition to ensure that the item has been successfully removed. 

 The Store contract contains four scenarios, of which two overlap.  We will now examine each 

scenario in detail. The first scenario, OpenAndCloseCash() is used to ensure that each cash register that 

is opened, is closed at some point during the execution of the system.  Each time a new cash register is 

opened via the evaluation of the OpenCash() responsibility a new instance of the scenario is triggered.  

When the corresponding cash is closed via the evaluation of the CloseCash() responsibility the scenario 

is terminated.  Any scenarios that are still executing when the application terminates, indicates a cash 

register that was opened but never closed.   

 Likewise, the AddAndRemoveFood() scenario is used to ensure that each item of food put into 

the store is also removed at some point.  The scenario is triggered when a new food item is added to the 

store via the evaluation of the AddFood() responsibility.  The scenario terminates when that same food 

item is removed from the store. Any un-terminated scenario indicate food that is either still in the store 

or has been removed incorrectly (i.e. stolen). 

 The RunStoreCash() scenario defines a scenario grammar for the execution of cash openings and 

closings.  The scenario is triggered when a new instance of the store is created.  The scenario begins with 

the opening of the store, followed by a sequence of zero or more cash openings and closings.  The 

scenario grammar completes when the store closes.  The scenario contains a post-condition to ensure 

that the same number of cashes have been opened and closed.  The outer star (*) operator allows 

several openings and closings of the store to occur on one store instance. 

 The RunStoreFood() scenario is analogous to the RunStoreCash() scenario, except that it checks 

the addition and removal of food items, rather than opening and closings of cashes.  Both scenarios 

have the same triggering events, but because their scenario grammars are different both scenarios will 

execute concurrently.  Additional information on scenario execution will be presented later. 

 In order to illustrate a centralized scenario, the Store contract contains a scenario called 

MainStore().  The MainStore() scenario overlaps with other scenarios which have been already been 

specified. However the MainStore() scenario illustrates additional ACL keywords and the flexibility for 

the specification of scenarios.  MainStore() is triggered when the IUT type bound to the Store contract is 

instantiated and a constructor has completed executing.  The first responsibility the scenario grammar 

expects is Open().  As the name suggests, Open() is used to open the grocery store. Once the store has 

been opened, one or more food items are added to the store via the AddFood() responsibility.  The 

individual food items are not of interest to the high-level store scenario and thus are referenced via the 

dontcare keyword.  Once the food items have been added to the store, the grammar specifies that a 

single cash must be opened. Again the dontcare keyword is used to indicate that we do not care about 

the specific cash that has been opened.  Next, the scenario grammar specifies that one of three actions 

can occur. The first is to open a new cash via the OpenCash() responsibility.  The second performs the 



P a g e  | 39 

 

reverse operation, that is to close a cash via the CloseCash() responsibility.  The third action which can 

occur involves the introduction of the parallel keyword.  The parallel keyword is used to specify that the 

scenario grammar specified within the brace brackets can be seen as a single responsibility.  That is, 

multiple instances of the same scenario grammar section may be executing in parallel at any given time.  

A parallel section can also be viewed as a sub-scenario within the main scenario, where there can be any 

number of sub-scenarios active at any one time. In the case of the MainStore() scenario, several 

customers could be in the store buying items.  The parallel section begins with the declaration of two 

scenario variables named cash and c.  The cash scenario variable will be of the IUT type bound to the 

tCash symbol.  The c scenario variable will be of the IUT type bound to the tCustomer symbol. The first 

scenario grammar element within the parallel section is called when a new customer is created.  The 

first scenario grammar element within a parallel section, can be viewed as the sub-scenario trigger.  The 

grammar element also introduces the newInstance keyword. The newInstance keyword specifies that 

the scenario grammar continues when a new instance of the IUT type bound to the tCustomer symbol is 

created.  Next, the customer enters the store and adds one or more food items to his/her cart via the 

Customer::AddFood() responsibility.  The customer then selects a cash and is added to the end of the 

queue.  The scenario continues, when the customer gets to the front of the queue, and removes his/her 

food items from the cart via the Customer::RemoveFood() responsibility.  Finally, the customer pays for 

the items and leaves the store.  The MainStore() scenario concludes with the removal of the food items, 

and the closing of the store via the Close() responsibility.  The outer plus (+) operator indicates that the 

store can be opened and closed one or more times during the execution of the IUT. 

 The Store contract does not define any metrics.  There are several metrics which could be 

reported by the store, such as the number of food items sold, and the number of open cashes.  The 

addition of these metrics would require a dedicated contract variable, and corresponding increment 

statements within various responsibilities.  As the implementation of such metrics does not introduce 

any additional features of the ACL or contract runtime, they have been omitted. 

 Finally, the Store contract contains an Exports section.  As previously discussed, the Exports 

section is used to specify the bindings required for the contract.  The first export line, binds the 

tFoodItem symbol to an IUT type which conforms to the previously defined Item contract.  In addition, a 

binding rule is specified to indicate that the tFoodItem referenced in the Customer contract, is the same 

as the tFoodItem referenced here.  The second export line, binds the tCash symbol to an IUT type which 

conforms to the previously defined Cash contract.  A binding rule is also specified to match the tCash 

type referenced in the Customer contract.  The third export line, binds the tCustomer symbol to an IUT 

type which conforms to the previously defined Customer contract.  A binding rule is specified to match 

the tCustomer type referenced in the Cash contract. Next, the tFoodContainer and tCashContainer 

symbols as bound to IUT types that conform to the BoundedContainer contract using the specified 

generic contract parameters.  Finally, exports to the two internal container fields are specified so that 

the containers can be referenced within the contract. 

 With the completion of the Store contract, we have presented a set of six contracts which define 

the grocery store case study.  Such contracts create a testable model of the grocery store case study. 

With the contracts defined, we will now examine the next steps of the framework. 



P a g e  | 40 

 

Step 2 – Contract Compilation 
 The first step in processing the contracts listed above is to create a contract project.  As 

previously stated, contract projects will be implemented as a project type within Visual Studio 2008, and 

will consist of the following elements: 

 One or more contracts 

 An IUT on which to execute the static and dynamic checks and to execute for 

scenario validation 

 A set of bindings to bind the contract to the IUT 

The entire contract project is sent to the ACL compiler which tokenizes, and parses the 

contracts.  The compiler flattens any contract inheritance, performs generic parameter substitution, and 

ensures that all identifiers can be resolved.  That is, the ACL compiler ensures that the contract syntax is 

correct, and all required extensions have been located.   

The ACL compiler does not perform binding operations.  The previous ACL compiler performed 

binding operations as needed, during the processing of each contract.  In order to incorporate the 

binding rules and contract conformance, all binding operations are performed once the ACL compiler 

has checked syntax, and semantics.  At this point the contracts are represented by an abstract syntax 

tree.  Each requested binding has been mapped to any other bindings based on the specified binding 

rules.  The next step is to perform the actual bindings.  

 



P a g e  | 41 

 

 

Step 3 – Bindings 
 As the name suggests, the types, methods, and fields specified within the Exports section of a 

contract are bound to IUT counterparts.  Each binding selection is stored within the contract project so 

that bindings do not need to be specified each and every time the IUT is run against the contract. Of 

course, any change in either the IUT or contract will require bindings in the affected area to be re-

specified.  In addition, a tree like view will be present in Visual Studio 2008 to graphically show the 

bindings between the contract’s structure and the structural elements within the IUT.  The contract 

developer is then able to view, edit, and reset the binding information.   

 For the purposes of this example we will assume that no previous binding history exists.  The 

following chart illustrates the steps required the bind the six contracts that we defined in Step 1.  The 

bindings in the chart below are specified in the order a binding query would be required from the 

contract developer.  For each binding query a structural tree representation of the IUT is presented for a 

corresponding selection.  Depending on the context only a portion of the IUT’s structure would be 

presented to the contract developer.  For example, in the case where a field within a given type is 

requested, only the fields which reside within given type will be displayed. 

 The binding algorithm begins with the first MainContract and binds the contract to a type within 

the IUT.  Next bindings for observability methods and responsibilities contained within the contract are 

preformed.  If an observability or responsibility has a parameter or return type, which contains an 

exported symbol that is not yet bound, binding will be performed for the parameters and return values 

before the actual observabillity or responsibility has been bound.  Finally, all export lines found within 

the contract’s Exports section are bound. 

 When binding observability methods, an exact parameter and return type match is required.  In 

the case where the requested observability method does not exist within the IUT, the contract 

developer is able to specify a literal value for the result of an observability instead of an IUT method.  

The rationale for this feature is that in some cases the observability method may not be needed from 

the IUT’s point of view.  For an example, consider the BoundedContainer<Type, Size> contract.  It would 

be possible to implement a BoundedContainer using an unbounded data structure.  As such the 

BoundedContainer<Type, Size>::IsFull() observability method could be hard-wired to yield a false value.  

When a hard-wired binding is used, the compiler will issue a warning to notify the contract developer of 

such hard-wiring. 

 When binding responsibilities, an actual IUT method must be specified.  However to allow for 

maximum flexibility responsibilities which do not specify a return type may be bound to an IUT method 

with any return type (including void).  Also, when a responsibility specifies a parameter set, that 

responsibility can be bound to any IUT method which has at least the requested parameters.  That is, a 

parameter map will be created between the IUT method’s parameters and the parameters specified by 



P a g e  | 42 

 

the responsibility.  Any additional parameters specified by the IUT method are simply ignored by the 

contract. 

 The following binding chart, illustrates the bindings performed for the six contracts specified in 

Step 1.  It may be easier to follow along with a printed copy of the contracts, while reading the chart.    

Contract Symbol Binding Action 

Store Can be bound to any type within the IUT.  This binding is 
performed because the Store contract is defined using the 
MainContract keyword. 

Store::OpenCashes() Can be bound to any method within the type selected for the 
Store contract symbol.   The IUT method must have a return type 
of Integer (or an implicit cast must exist), and can have any 
number of parameters.  The parameters will be ignored by the 
contract. The IUT method that is selected, will automatically be 
instrumented to instruct the profiler to ensure that the IUT 
method is side-effect free. 

Store::IsOpen() Can be bound to any method within the type selected for the 
Store contract symbol.  The IUT method must have a return type 
of Boolean (or an implicit cast must exist), and must take zero 
parameters, or the parameters must have default values (if 
supported by the IUT’s implementation language).  The IUT 
method that is selected will automatically be instrumented to 
instruct the profiler to ensure that the IUT method is side-effect 
free. 

Store::Open() Can be bound to any method within the type selected for the 
Store contract symbol.  The IUT method may have any return type 
(but it is ignored by the contract), and can have any number of 
parameters.  The parameters will be ignored by the contract. The 
binding cannot be the same as the binding used for 
Store::IsOpen(), as it would create a cycle when checking the pre 
and post-conditions. 

Store:Close() Can be bound to any method within the type selected for the 
Store contract symbol.  The IUT method may have any return type 
(but it is ignored by the contract), and can have any number of 
parameters.  The parameters will be ignored by the contract. The 
binding cannot be the same as the binding used for 
Store::IsOpen(), as it would create a cycle when checking the pre 
and post-conditions. 

Store::tCash The tCash parameter to the Store::OpenCash() responsibility can 
be bound to any type within the IUT.  The selected type will 
instantly have the Cash contract bound to it. 

Cash::IsOpen() Can be bound to any method within the type selected for the Cash 
contract symbol.  The IUT method must have a return type of 
Boolean (or an implicit cast must exist), and must take zero 
parameters, or the parameters must have default values (if 
supported by the IUT’s implementation language).  The IUT 



P a g e  | 43 

 

method that is selected will automatically be instrumented to 
instruct the profiler to ensure that the IUT method is side-effect 
free. 

Cash::Open() Can be bound to any method within the type selected for the Cash 
contract symbol.  The IUT method may have any return type (but it 
is ignored by the contract), and can have any number of 
parameters.  The parameters will be ignored by the contract. The 
binding cannot be the same as the binding used for Cash::IsOpen(), 
as it would create a cycle when checking the pre and post-
conditions. 

Cash:Close() Can be bound to any method within the type selected for the Cash 
contract symbol.  The IUT method may have any return type (but it 
is ignored by the contract), and can have any number of 
parameters.  The parameters will be ignored by the contract. The 
binding cannot be the same as the binding used for Cash::IsOpen(), 
as it would create a cycle when checking the pre and post-
conditions. 

Cash::tCustomer The tCustomer parameter to the Cash::AddCustomer() 
responsibility can be bound to any type within the IUT.  The 
selected type will instantly have the Customer contract bound to 
it. 

Customer::HasPaid() Can be bound to any method within the type selected for the 
Customer contract symbol.  The IUT method must have a return 
type of Boolean (or an implicit cast must exist), and must take zero 
parameters, or the parameters must have default values (if 
supported by the IUT’s implementation language).  The IUT 
method that is selected will automatically be instrumented to 
instruct the profiler to ensure that the IUT method is side-effect 
free. 

Customer::tStore The tStore parameter to the Customer::EnterStore() responsibility 
will be automatically bound to the Store type already selected. 
This is done, because we are currently in the process of binding 
the Store contract, so it is that binding that is used here as well. 

Customer::EnterStore() Can be bound to any method within the type selected for the 
Customer contract symbol.  The IUT method may have any return 
type (but it is ignored by the contract), and must have at least one 
parameter matching the type bound to the tStore symbol.  Any 
additional parameters will be ignored.  

Customer::LeaveStore() Can be bound to any method within the type selected for the 
Customer contract symbol. The IUT method may have any return 
type (but it is ignored by the contract), and must have at least one 
parameter matching the type bound to the tStore symbol.  Any 
additional parameters will be ignored. 

Customer::tFoodItem The tFoodItem parameter to the Customer::AddFood() 
responsibility can be bound to any type within the IUT.  The 
selected type will instantly have the Item contract bound to it. 

Item::Price() Can be bound to any method within the type selected for the Item 



P a g e  | 44 

 

contract symbol. The IUT method must have a return type of Real 
(or one for which an implicit conversion exists to Real).  The IUT 
method can have any number of parameters, but they will be 
ignored by the contract. 

Item::Name() Can be bound to any method within the type selected for the Item 
contract symbol.  The IUT method must have a return type of 
String (or one for which an implicit conversion exists to String 
[char* in C++]). The IUT method can have any number of 
parameters, but they will be ignored by the contract. 

Item::SKU() Can be bound to any method within the type selected for the Item 
contract symbol.  The IUT method must have a return type of 
Integer (or one for which an implicit conversion exists to Integer).  
The IUT method can have any number of parameters, but they will 
be ignored by the contract. 

Customer::AddFood() Can be bound to any method within the type selected for the 
Customer contract symbol. The IUT method may have any return 
type, but it will be ignored by the contract.  The IUT method must 
have at least one parameter which is of the same type that is 
bound to the tFoodItem symbol.  Other parameters will be 
ignored. 

Customer::RemoveFood() Can be bound to any method within the type selected for the 
Customer contract symbol. The IUT method may have any return 
type, but it will be ignored by the contract.  The IUT method can 
have any number of parameters, but they will be ignored by the 
contract. 

Customer::Pay() Can be bound to any method within the type selected for the 
Customer contract symbol. The IUT method may have any return 
type, but it will be ignored by the contract.  The IUT method can 
have any number of parameters, but they will be ignored by the 
contract. 

Customer::tCash Will be automatically bound to the same IUT type as Store::tCash, 
as per the binding rule in the Customer contract. 

Customer::SelectQueue() Can be bound to any method within the type selected for the 
Customer contract symbol. The IUT method must have a return 
type matching the IUT type bound to the tCash type.  The IUT 
method must have at least one parameter that matches the type 
bound to the tStore type.  Other parameters will be ignored by the 
contract. 

Customer::tFoodItem Already bound. 

Customer::tCash Already bound. 

Customer::tFoodContainer The tFoodContainer type exported by the Customer contract can 
be bound to any type within the IUT.  The selected type will 
instantly have the BoundedContainer<tFoodItem, 100> contract 
bound to it. 

BoundedContainer<tFoodItem, 
100>::IsFull() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 



P a g e  | 45 

 

must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedContainer<tFoodItem, 
100>::IsEmpty() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedContainer<tFoodItem, 
100>::ItemAt() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 
method must have a return type matching the IUT type bound to 
the tFoodItem symbol, and must take exactly one parameter of 
type Integer.  The IUT method that is selected will automatically be 
instrumented to instruct the profiler to ensure that the IUT 
method is side-effect free. 

BoundedContainer<tFoodItem, 
100>::HasItem() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 
must exist), and must take exactly one parameter whose type 
must match the IUT type bound the tFoodItem symbol.  The IUT 
method that is selected will automatically be instrumented to 
instruct the profiler to ensure that the IUT method is side-effect 
free. 

BoundedContainer<tFoodItem, 
100>::Size() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 
method must have a return type of Integer (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedContainer<tFoodItem, 
100>::Add() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 
method may have any return type, and must have at least one 
parameter whose type matches the IUT type bound to the 
tFoodItem symbol. 

BoundedContainer<tFoodItem, 
100>::Remove() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 
method must have a return type which matches the IUT type 
bound to the tFoodItem symbol. 

BoundedContainer<tFoodItem, 
100>::Remove(T) 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 100> contract symbol.  The IUT 



P a g e  | 46 

 

method may have any return type, and must have at least one 
parameter whose type matches the IUT type bound to the 
tFoodItem symbol. 

Customer::tStore Already bound. 

Customer::foodContainer Can be bound to any field within the IUT type selected for the 
Customer contract, which is of the type bound to the 
tFoodContainer symbol. 

Cash::AddCustomer() Can be bound to any method within the type selected for the Cash 
contract symbol.  The IUT method may have any return type, and 
must have at least one parameter whose type matches the IUT 
type bound to the tCustomer symbol. 

Cash::NextCustomer() Can be bound to any method within the type selected for the Cash 
contract symbol. The IUT method must have a return type that 
matches the IUT type bound to the tCustomer symbol.  The 
method can have any number of parameters, but they will be 
ignored by the contract. 

Cash::ProcessCustomer() Is not bound, because the responsibility contains a scenario 
grammar. 

Cash::tCustomer Already bound. 

Cash::tQueue The tQueue type exported by the Customer contract can be bound 
to any type within the IUT.  The selected type will instantly have 
the BoundedQueue<tCustomer, 100> contract bound to it. 

BoundedQueue<tCustomer, 
100>::IsFull() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedQueue<tCustomer, 
100>::IsEmpty() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedQueue<tCustomer, 
100>::ItemAt() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method must have a return type matching the IUT type bound to 
the tCustomer symbol, and must take exactly one parameter of 
type Integer.  The IUT method that is selected will automatically be 
instrumented to instruct the profiler to ensure that the IUT 
method is side-effect free. 

BoundedQueue<tCustomer, 
100>::HasItem() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 



P a g e  | 47 

 

method must have a return type of Boolean (or an implicit cast 
must exist), and must take exactly one parameter whose type 
must match the IUT type bound the tCustomer symbol.  The IUT 
method that is selected will automatically be instrumented to 
instruct the profiler to ensure that the IUT method is side-effect 
free. 

BoundedQueue<tCustomer, 
100>::Size() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method must have a return type of Integer (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedQueue<tCustomer, 
100>::BackLocation() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method must have a return type of Integer (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedQueue<tCustomer, 
100>::FrontLocation() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method must have a return type of Integer (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedQueue<tCustomer, 
100>::Add() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method may have any return type, and must have at least one 
parameter whose type matches the IUT type bound to the 
tCustomer symbol. 

BoundedQueue<tCustomer, 
100>::Remove() 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method must have a return type which matches the IUT type 
bound to the tCustomer symbol. 

BoundedQueue<tCustomer, 
100>::Remove(T) 

Can be bound to any method within the type selected for the 
BoundedQueue<tCustomer, 100> contract symbol.  The IUT 
method may have any return type, and must have at least one 
parameter whose type matches the IUT type bound to the 
tCustomer symbol. 

Cash::queue Can be bound to any field within the IUT type selected for the Cash 
contract, which is of the type bound to the tQueue symbol. 

Store::OpenCash() Can be bound to any method within the type selected for the 



P a g e  | 48 

 

Store contract symbol. The IUT method may have any return type, 
and must have at least one parameter whose type matches the 
IUT bound to the tCash symbol. 

Store::CloseCash() Can be bound to any method within the type selected for the 
Store contract symbol. The IUT method may have any return type, 
and must have at least one parameter whose type matches the 
IUT bound to the tCash symbol. 

Store::tFoodItem Automatically bound to the same IUT type as the 
Customer::tFoodItem symbol.  This is based on a binding rule 
found within the Store contract. 

Store::AddFood() Can be bound to any method within the type selected for the 
Store contract symbol. The IUT method may have any return type, 
and must have at least one parameter whose type matches the 
IUT bound to the tFoodItem symbol. 

Store::RemoveFood() Can be bound to any method within the type selected for the 
Store contract symbol. The IUT method may have any return type, 
and must have at least one parameter whose type matches the 
IUT bound to the tFoodItem symbol. 

Store::tFoodItem Already bound. 

Store::tCash Already bound. 

Store::tCustomer Automatically bound to the same IUT type as the Cash::tCustomer 
symbol.  This is based on a binding rule found within the Store 
contract. 

Store::tFoodContainer The tFoodContainer type exported by the Store contract can be 
bound to any type within the IUT.  The selected type will instantly 
have the BoundedContainer<tFoodItem, 10000> contract bound 
to it. 

BoundedContainer<tFoodItem, 
10000>::IsFull() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedContainer<tFoodItem, 
10000>::IsEmpty() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedContainer<tFoodItem, 
10000>::ItemAt() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method must have a return type matching the IUT type bound to 
the tFoodItem symbol, and must take exactly one parameter of 



P a g e  | 49 

 

type Integer.  The IUT method that is selected will automatically be 
instrumented to instruct the profiler to ensure that the IUT 
method is side-effect free. 

BoundedContainer<tFoodItem, 
10000>::HasItem() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method must have a return type of Boolean (or an implicit cast 
must exist), and must take exactly one parameter whose type 
must match the IUT type bound the tFoodItem symbol.  The IUT 
method that is selected will automatically be instrumented to 
instruct the profiler to ensure that the IUT method is side-effect 
free. 

BoundedContainer<tFoodItem, 
10000>::Size() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method must have a return type of Integer (or an implicit cast 
must exist), and must take zero parameters, or the parameters 
must have default values (if supported by the IUT’s 
implementation language).  The IUT method that is selected will 
automatically be instrumented to instruct the profiler to ensure 
that the IUT method is side-effect free. 

BoundedContainer<tFoodItem, 
10000>::Add() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method may have any return type, and must have at least one 
parameter whose type matches the IUT type bound to the 
tFoodItem symbol. 

BoundedContainer<tFoodItem, 
10000>::Remove() 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method must have a return type which matches the IUT type 
bound to the tFoodItem symbol. 

BoundedContainer<tFoodItem, 
10000>::Remove(T) 

Can be bound to any method within the type selected for the 
BoundedContainer<tFoodItem, 10000> contract symbol.  The IUT 
method may have any return type, and must have at least one 
parameter whose type matches the IUT type bound to the 
tFoodItem symbol. 

Store::tCashContainer The tCashContainer type exported by the Store contract can be 
bound to any type within the IUT.  The selected type will instantly 
have the BoundedContainer<tCash, 10> contract bound to it. 

BoundedContainer<tCash, 
10>::IsFull() 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10> contract symbol.  The IUT method 
must have a return type of Boolean (or an implicit cast must exist), 
and must take zero parameters, or the parameters must have 
default values (if supported by the IUT’s implementation 
language).  The IUT method that is selected will automatically be 
instrumented to instruct the profiler to ensure that the IUT 
method is side-effect free. 

BoundedContainer<tCash, 
10>::IsEmpty() 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10> contract symbol.  The IUT method 
must have a return type of Boolean (or an implicit cast must exist), 



P a g e  | 50 

 

and must take zero parameters, or the parameters must have 
default values (if supported by the IUT’s implementation 
language).  The IUT method that is selected will automatically be 
instrumented to instruct the profiler to ensure that the IUT 
method is side-effect free. 

BoundedContainer<tCash, 
10>::ItemAt() 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10> contract symbol.  The IUT method 
must have a return type matching the IUT type bound to the tCash 
symbol, and must take exactly one parameter of type Integer.  The 
IUT method that is selected will automatically be instrumented to 
instruct the profiler to ensure that the IUT method is side-effect 
free. 

BoundedContainer<tCash, 
10>::HasItem() 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10> contract symbol.  The IUT method 
must have a return type of Boolean (or an implicit cast must exist), 
and must take exactly one parameter whose type must match the 
IUT type bound the tCash symbol.  The IUT method that is selected 
will automatically be instrumented to instruct the profiler to 
ensure that the IUT method is side-effect free. 

BoundedContainer<tCash, 
10>::Size() 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10> contract symbol.  The IUT method 
must have a return type of Integer (or an implicit cast must exist), 
and must take zero parameters, or the parameters must have 
default values (if supported by the IUT’s implementation 
language).  The IUT method that is selected will automatically be 
instrumented to instruct the profiler to ensure that the IUT 
method is side-effect free. 

BoundedContainer<tCash, 
10>::Add() 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10> contract symbol.  The IUT method 
may have any return type, and must have at least one parameter 
whose type matches the IUT type bound to the tCash symbol. 

BoundedContainer<tCash, 
10>::Remove() 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10000> contract symbol.  The IUT 
method must have a return type which matches the IUT type 
bound to the tCash symbol. 

BoundedContainer<tCash, 
10>::Remove(T) 

Can be bound to any method within the type selected for the 
BoundedContainer<tCash, 10> contract symbol.  The IUT method 
may have any return type, and must have at least one parameter 
whose type matches the IUT type bound to the tCash symbol. 

Store::cashContainer Can be bound to any field within the IUT type selected for the 
Store contract, which is of the type bound to the tCashContainer 
symbol. 

Store::foodContainer Can be bound to any field within the IUT type selected for the 
Store contract, which is of the type bound to the tFoodContainer 
symbol. 

  



P a g e  | 51 

 

 

Step 4 – Static Checks 
 Once binding has been completed, the static checks are executed against the IUT.  The IUT is 

opened using Microsoft’s Phoenix system, and a tree structure of the IUT is created internally. The static 

checks operate against this tree structure.  They look for the existence of various structural elements, 

and patterns.   

 From the implementation point of view, the execution of static checks is fairly straightforward in 

that the check executes a query against the model of the IUT to obtain a result.  The framework’s 

extension mechanism allows for custom static checks to be designed and implemented. 



P a g e  | 52 

 

 

Step 5 – Instrumentation 
 Once the static checks have been completed, the IUT is instrumented in several ways in 

preparation for scenario execution.  The following list indicates how the IUT is instrumented: 

 Side-Effect Free Methods – IUT methods which have been bound to observability 

methods are marked so that the profiler can ensure that the state of the system 

does not change while an observability method is being executed.  This is 

accomplished by taking a snapshot of the system state before and after the method 

has been executed, and comparing them to see if something has changed. 

 Pre/Post/Inv – IUT methods which have been bound to responsibilities which 

contain design by contract elements are instrumented so that the corresponding 

preconditions, post-conditions, and invariants are tested.  This also includes 

instrumentation for the PreSet construct and the saving of the return value for use 

in post-conditions.  The sharp notation (#) used for the specification of the design-

by-contract constructs allows for directly executable (after variable/binding 

substitutions) C# code to be used for the design-by-contract constructs.  When a 

design-by-contract construct fails, a special exception will be thrown. The exception 

will notify the profiler of the construct failure, and will report any beliefs, the stack 

trace, and the constraint that failed on the contract evaluation report. 

 Scenario Triggers – IUT methods which are bound to responsibilities that are used as 

a trigger within a scenario are instrumented, so that the profiler is able to create a 

new internal scenario when the trigger occurs. 

 Contract Variables – When a contract variable is used instrumentation is added to 

the responsibility or observability where the variable is used, so that the profiler can 

either store or return the requested value as needed. 

 Dynamic Checks – Custom dynamic checks are able to instrument the IUT so that 

the profiler and the check is able to monitor runtime information. Such checks also 

include the preservation of metric values recorded within the contract.   

Once instrumentation is complete, the IUT is executed against the profiler to record execution 

events and requested metrics. 



P a g e  | 53 

 

 

Step 6 – Scenario Evaluation 
 As the IUT is being executed, the profiler will record when a scenario triggering event occurs.  At 

this point the profiler will create a new scenario instance within the profiler.  That is, scenario evaluation 

is performed on-the-fly.  As the profiler is notified of method calls, events, and other activities, any 

scenario instances which apply to the instance which received the method call/event will be notified of 

the event.  The scenario instance will then determine if the method call/event matches the scenario 

grammar.  To put this another way, scenario instance objects can be seen as a Windows application, 

which receives events which occur within their window space.  Each scenario instance object will then 

filter the event to determine if the scenario object should “eat” the event, or if the event has no bearing 

on the scenario.  Such processing involves walking through the scenario grammar, and determining if 

the scenario termination event occurs.  Pre/Post/Checks found within a scenario are translated into 

specialized methods added to the IUT by the Phoenix system, and are called as needed to execute the 

check.   

 Any scenarios which have yet to terminate when the IUT finishes execution are said to fail.  

Step 7 – Non-functional Requirements 
 Non-functional requirements are checked, through the use of metrics and dynamic checks.  As 

illustrated by the contracts described in this document, each contract is able to gather metric 

information as the IUT and corresponding scenarios are executed.  Once the IUT has finished executing 

each contract’s Metrics section is processed. The Metrics section uses the metric methods defined 

within the contract to get the required values.  These values are then passed to specified dynamic 

checks to interpret and report on the values.  That is, dynamic checks are used to evaluate the metrics 

gathered while the IUT was executed.  The result of such evaluation is reported on the contract 

evaluation report. 

 Dynamic checks were chosen as the method for the evaluation of non-functional requirements, 

due to the subjective nature of non-functional requirements.  That is, determining if a given metric is 

“good” or “bad” depends heavily on the domain in which the IUT exists.  As such, contract developers 

can provide specialized dynamic checks to interpret and report on metrics gathered by the contract 

framework.  

Step 8 – The Contract Evaluation Report 
 The Contract Evaluation Report is displayed once the IUT has finished executing and all metrics 

have been processed.  The report contains a summary of the checks performed, and indicates any 

scenarios, checks, and design-by-contract elements which have failed to execute.  The report also 

contains the results of metric interpretation performed by the dynamic checks. 



P a g e  | 54 

 

 The presentation of the contract evaluation report concludes this example. 


