
3

3 Table of Contents

Pages.

6.1 Motivation . 07

6.2 Methodology . 07

6.3 Setting up the Environment and TDD with Junit . 08

6.3.1 Test Driven Development (TDD) . 08

6.3.2 Git and GitHub . 09

6.3.3 Eclipse and Junit. 09

6.3.4 Creating Exercise One. 10

6.4.1 Running Tests and Creating a Test Suite in JUnit. 10

6.4.2 Running Tests. 11

6.4.3 Creating Test Suite. 12

6.4.4 Creating Exercise Two. 12

6.5.1 Creating logs with Log4j. 13

6.5.2 Log4j. 13

6.5.3 Creating Exercise Three. 14

6.6.1 TestNG Integration. 14

6.6.2 TestNG. 14

6.6.3 Creating exercise Four. 15

6.7.1 Web App Automation with Selenium. 15

6.7.2 Selenium. 16

6.7.3 Potential Web App Problems. 17

6.7.4 Creating Exercise Five . 17

6.8.1 BDD with Cucumber and Client/Server system. 18

6.8.2 Behaviour Driven Development (BDD) . 18

6.8.3 Cucumber. 19

6.8.4 Client and Server Testing. 20

6.8.5 Creating Exercise Six. 20

6.9.1 Threads, Race Condition, and Deadlocks . 22

6.9.2 Threads . 22

6.9.3 Race Conditions . 23

Disclaimer: This write-up and its videos may refer to versions of the tools that differ from the ones you will be using.
Similarly, pay attention to the versions used in tutorials found in youtube. Despite these differences, this material is
useful to study and to try to actually carry out yourself.
Please first focus on JUnit, Cucumber and Selenium as we may not use the other material.

4

Pages.

6.9.4 Deadlocks . 23

6.9.5 Creating Video Seven . 24

6.10.1 TOTEM Methodology’s Issues with Concurrent Systems . 25

6.10.2 Testing Object-oriented Systems with the Unified Modeling Language (TOTEM) 25

6.10.3 TOTEM Process. 26

6.10.4 TOTEM Difficulties with Concurrent Systems. 26

6.10.5 Difficulty in Recreating Faults in Concurrent Systems. 27

6.10.6 Creating Video Eight . 28

7 Results. 28

8 References . 30

5

4 List of Figures

Pages.

Figure 1 – Green JUnit test .11

Figure 2 - Red JUnit Test .11

Figure 3 - JUnit Expected vs Actual. .11

Figure 4 - List of test cases ran. 12

Figure 5 - Inspect Element . 17

Figure 6 - Cucumber Feature. 19

Figure 7 - Step Definitions. 20

Figure 8 - Thread Randomness. 22

Figure 9 – Deadlock Visualization . 25

6

5 List of Tables

Pages.

Table 1 - Sequences of Lines Run by Threads. 27

7

6.1 Motivation

In Comp 4004, students are taught software quality assurance and testing. In this course

students complete a variety of assignments with different software tools to ensure that the

applications they produce through their work is thoroughly tested and working as intended. As

students are expected to learn how to use the software tools on their own time, the content taught

in lectures is not aimed at the usage of the tools but rather the ideas and concepts of software

testing and quality assurance. As most of the material taught during lectures are higher concepts

the material is quite stale as students do not have the time to practice the techniques and concepts

taught until they are working on their projects during their own time.

The objective of this honours project is to create a set of exercises to enhance the learning

experience during lectures. With short exercises and examples of the tools being used, ideally

this would increase attentiveness in lectures and may act as a supplementary resource for the

students outside of lectures. The exercises cover the following tools used in the course: JUnit,

Log4j, TestNG, Selenium, Cucumber. It also covers some concepts taught in lectures such as

Test-Driven Development (TDD), Client / Server Testing, Java Threads, Concurrent Threads

Testing and Testing Object-oriented Systems with the Unified Modeling Language (TOTEM).

6.2 Methodology

Initially, the plan was to create short written exercises / walkthroughs that students would

download and then follow the steps to complete the exercise. The problem with written exercises

is that it is very difficult to communicate specific aspects of how certain tools need to be set-up.

Another problem with written exercises being done during lectures is the speed at which they are

completed. There may be a large variance on the speed at which the exercises are completed as

different students may complete the task faster or slower than other students. This may lead to

students finishing quickly and idling during the lecture or other students feeling pressured to

complete the exercise faster instead of ensuring that they learn the objective of the exercise. This

8

would defeat the purpose of the exercises as they are meant to make lectures more engaging and

to ensure that the students have the tools necessary for their assignments.

The solution to this problem is to create video exercises. Each exercise has a main

objective to be completed and follows a demonstrator performing the actions in ‘real time’. In

addition to showing what the demonstrator is doing, it also verbally guides them through the

exercise, explaining certain aspects that may be more complex to the student. This allows

students to get a visual of how certain tools are set up, as well as having a more controlled time

for completion (the length of the video). This solution also has the benefit of being accessible at

whatever time that is convenient to the student if they were not in attendance on the day of the

exercise. This approach has been taken with all the required tools and some concepts that will be

utilized in Comp 4004.

6.3 Setting up the Environment and TDD with Junit

This section will focus on the initial technologies used for the environment setup. Git and

GitHub are used as a tool to monitor the Test-Driven Development methodology (TDD). Eclipse

Integrated Development Environment (IDE) will be the workspace used and all additional tools

are installed with respect to the Eclipse IDE. After the workspace is properly setup, the first tool

used to demonstrate TDD is JUnit. JUnit is a testing framework which allows unit tests which

are a core part of software testing. The section’s sub-sections below will explain in-depth the

tools and concepts being used for this exercise.

6.3.1 Test Driven Development (TDD)

This exercise covers what TDD is and how to replicate the TDD ideology and incorporate

it into your own work. TDD requires the tester to (1) write the tests first, (2) run the test, (3)

write new code for the test to pass as the test initially fails because it has not been implemented,

and (4) then finally refactor the code. This process is then repeated until testing is complete. It

9

would be difficult to monitor TDD without certain tools as there is no effective way to ensure

that the student has followed the TDD methodology when writing their assignments. To remedy

this problem, we will have the students begin the semester by setting up their work environment

so that it is possible to check if they have been following the proper conventions.

6.3.2 Git and GitHub

GitHub is a software development platform which will allow students to upload their

work to a directory that is located on the platform. With Git, they can easily clone a directory

from their own computer to the platform and can update their code on the platform with Git.

Given permission by the user, GitHub displays the commits that are done on a directory and

what is included in each commit; with this, it is possible to check the consistency of the tests that

the students write and it is easy to identify that they are following a TDD methodology.

6.3.3 Eclipse and JUnit

The final component of the setup is installing the Eclipse Integrated Development

Environment (IDE). With this IDE, students can easily install additional tools that are used for

software testing and quality assurance. Along with being able to install certain tools, Eclipse has

its own marketplace that allows for easy installation of certain course tools such as TestNG and

Cucumber. Eclipse IDE is commonly used for Java development and there are many helpful

tools that come with it. After the Eclipse installation, the students will need to create a Maven

project in Eclipse and add JUnit to the dependencies file. Once that has been completed, JUnit is

now usable in Eclipse and they can begin writing tests to mimic TDD.

10

6.3.4 Creating Exercise One

Once all the components were gathered, the video could then be recorded. The video

begins with creating a GitHub account followed by installing Git and Eclipse. A new directory is

then created on GitHub which is then cloned onto the desktop’s eclipse-workspace directory with

Git. Following this, a Maven Project is created on Eclipse using the directory that was previously

cloned by Git; this allows the user to clone / push the new code made on Eclipse to GitHub.

When a Maven Project is created, a pom.xml file is also added to the directory; with this file,

JUnit can be added to the Maven dependencies. Once JUnit is added to the Maven

dependencies, it can be noted that new files appear in the Maven Dependencies directory: those

being JUnit and hamcrest-core. With new files added to the directory, a demonstration with Git

is performed to show how to add the changes and then push them onto GitHub. Following the

installation, a few simple test cases are created and ran. After the test cases failed, the newly

created files are pushed onto GitHub with Git to demonstrate the TDD methodology. Following

the push to GitHub, the video covers quick run-through of JUnit and how to write test cases with

it. The video exercise provides a walkthrough of how to get the Eclipse, Maven, and JUnit

working together as well as explaining the process of how files are cloned to GitHub with Git.

6.4.1 Running Tests and Creating a Test Suite in Junit

This section will explain the importance of running tests, as well as how to parse the test

results. Understanding the test results is an important part of the troubleshooting process as it

allows the tester to determine what has caused the problem. In addition to running tests, this

section will cover creating test suites, which allow for customization of which set of tests would

be run.

11

6.4.2 Running Tests

Running tests and being able to

identify the results of the test is

important for diagnosing the potential

errors throughout the system’s code.

After running a JUnit test, the tester

can see that their test cases return

either a green result (Fig. 1) or a red

result (Fig. 2). The green result indicates that

the test has passed, and the red result indicates

that the test has failed. It is important to note

that failed test cases show which test has failed

and displays to the tester why it failed (Fig. 3).

With this information, it should give a rough

idea on where the problem is occurring

so it may be fixed.

FIGURE 3

Failed Test with Failure Trace

FIGURE 1

Green Test Case

FIGURE 2

Red Test Case

12

6.4.3 Creating Test Suite

It is beneficial to separate test cases into separate files as it is easier to manage the test

cases. One drawback of creating multiple test cases is the requirement of running multiple tests

at the same time. It is time consuming to run each test case individually to demonstrate that all

the tests have passed. With JUnit, it is possible to create a test suite that allows the tester to run

all of the test cases included in the test suite. This allows the tester to stay organized when

creating test cases as well as being able to efficiently demonstrate that all the test cases have

passed. In addition, test suites allow a tester to easily determine if any refactored code has

produced an error in any other part of the system. When running a test suite, it displays all of the

test cases as well as all of the test methods inside of those cases. This allows for easy

identification of the test cases seen in (Fig. 4).

FIGURE 4

List of Tests ran in Test Suite

6.4.4 Creating Exercise Two

With this exercise, the objective is to ensure that the students understand how to run tests

with JUnit, be able to diagnose whatever problems that may occur, as well as create a test suite

so that they may implement it in their own work. The nature of this exercise is to get accustomed

to the tools provided (JUnit and Eclipse); therefore, there is no need for the student to spend time

creating the Java classes that will be tested. Skeleton test cases are provided for the student to

download, but they are missing the crucial components that JUnit requires to run the tests. The

13

students begin the exercise by downloading the files and then following the video and the

comments provided to implement the methods required for JUnit to work. Once they have

written the test cases, they run the file as a JUnit test and can see that their tests either pass or

fail. If there is a failure, JUnit shows what problem caused the test case to fail and allows the

students to diagnose the problem in their own work. The video covers the basic JUnit methods,

such as assertEquals() and assertSame(), which allow the tester to compare if two objects are

either equal or the same. This is usually used to compare the expected result to the one that the

program has returned. Finally, the video demonstrates how to create a test suite and how to add

test cases to said test suite. By completing this exercise, the student will have had experience

with running tests / test suites and analyzing the results of the test cases.

6.5.1 Creating logs with Log4j

This section will cover the logging tool Log4j. Log4j is another important tool to be

accustomed with when working in environments that do not have a dedicated debugger. It does

this by taking in line log methods and writing their input into a log file. The format of how the

logs are written to the log file can be configured in a log.properties file. The exercise for this tool

includes the initial installation and setup as well as creating logs in a simple Java program.

6.5.2 Log4j

Log4j is a logging tool for Java. Before using Log4j it must first be installed and

log.properties file must be created, this file is essentially the rules that Log4j will follow when it

is used to create logs. The properties file allows the tester to filter out different log levels as well

as add helpful information such as which Java class has thrown the log. This tool is extremely

helpful in situations where the system that is being used does not necessarily have a debugger.

As the log statements are written in line with the rest of the code, it is easy to identify any faults

that may occur during the testing period as it is easy to read the log file and trace the path of the

log messages.

14

6.5.3 Creating Exercise Three

The objective of this exercise is to allow the students to understand what the tool did and

how to set up the tool in the Eclipse environment. The video begins by explaining how to

navigate the Apache Log4j website in order to find the correct file to add to Eclipse’s Java build

path. Once everything is installed, the video demonstrates how to create a log4j.properties file

along with a few lines of code to populate the properties file with. Following the creation of the

properties file, a Java class is created to demonstrate how to create logs and how to insert them

into the code. Throughout the demonstration, the following are covered: creating different logs

with different log levels, how to use the properties file to filter out unnecessary log messages,

and how to use the conversion pattern to display the requested information along with the log.

By completing this exercise, students learn how to write log files with Log4j and will have

another tool when trying to test their work for faults.

6.6.1 TestNG Integration

This section covers the testing framework TestNG. It is similar to JUnit in basic

functionality; the tests ran are similar in structure. However, TestNG has many additional

methods that are potentially helpful to the tester. As TestNG is similar to JUnit, the transition

from JUnit to TestNG should be beneficial as TestNG’s additional tools allow for more specific

test scenarios. This increase in control can allow a tester to run tests where certain pre-conditions

must be met before other tests are ran.

6.6.2 TestNG

TestNG is a testing framework which is inspired by JUnit; it holds some similarities as it

uses very similar ways of creating tests. In addition to being able to test code with results similar

15

to JUnit, TestNG comes with a variety of additional features that allows the tester to run their test

code in a more specific manner. TestNG uses annotations which can be used for a variety of

different things. Annotations are mainly used to run tests; some annotations allow the tester to

control the order in which test cases are run to ensure that the sequence of tests matches what the

tester was planning. Other annotations allow for helpful functionality. For example, the

@DataProvider annotation allows the tester to supply the connected test method with a list of

multiple variables that needed to be tested. In addition, TestNG comes with its own test suite

which has more control than the test suite with JUnit. TestNG’s test suite allows the tester more

control of which tests need to be included in the test suite; it does this by allowing the tester to

group the test methods into specific categories. The tester may then select the specific tests that

they would like to run by calling their project folder, class, or even group name.

6.6.3 Creating exercise Four

At the beginning of this exercise’s creation, the method of installation was the first

problem. There are numerous of methods to install TestNG but installing TestNG via the Eclipse

Marketplace is the fastest and simplest option. After installation, the video begins by

demonstrating how to use annotations. The @Test annotation was first as it is a very important

annotation for testing purposes. Other annotations were covered later in the video:

@BeforeSuite, @AfterSuite, and @DataProvider were covered in the exercise. TestNG’s test

suite is built differently from JUnit’s test suite and has different features as well. After finishing

the annotations examples, the video demonstrates how to create a test suite with TestNG as well

as how to modify the test suite to include different categories of tests. By completing this

exercise, students will have learnt how to use TestNG’s annotations to create more effective test

cases.

6.7.1 Web App Automation with Selenium

This section will cover the Selenium tool and the web driver associated with it. With the

two systems, a tester can perform tests on web applications. Selenium allows for the automation

16

of web browsers; with this tool, it is possible for a tester to imitate human interaction with a web

application. It may do this by performing actions similar to a human such as inputting text and

clicking on various web elements. This process can be useful in finding potential faults in a web

application. The following chapters explain the tools used and how the exercise was created. The

exercise covers the basics of Selenium and gives a notion of the things to check for in a web

application.

6.7.2 Selenium

Selenium is an automated tool which allows for a tester to test web applications through

web drivers. Instead of needing to manually open a web browser and entering the information

required to perform the test, the tester can give instructions to Selenium so it may perform the

task automatically. For Selenium to run properly, it must also have a web driver installed so

Selenium can launch the correct web browsers to perform the tests. With the Selenium client and

both server files and the web driver installed, the tester may then insert Selenium code into their

own work to begin using it.

Selenium functions by performing tasks in the sequence that the tester has set. Most web

applications have elements that a user would interact with which would lead to certain

functionalities being performed. For Selenium to detect the correct elements to modify, the tester

must first discover information regarding the element from the webpage. The tester may do this

by viewing the web page and selecting the ‘inspect element’ in certain web browsers to gain

insight on the web page’s elements (Fig. 5). Once the tester has determined which elements need

to be modified by the user, they may use Selenium’s methods to either send information to the

elements or perform actions such as a click on the element.

17

FIGURE 5

Web Element Information with Inspect Element

6.7.3 Potential Web App Problems

When testing web applications, there can be a few things that can go wrong. Some fields

may have incorrect information, or the information can be in an entirely different format. It is

important to test a variety of situations that may occur in case one of the situations leads to a

fatal fault that would cause problems to the web application such as a crash or corruption of data.

When testing applications, it is important to cover all the possible scenarios as they might be a

potential threat to the system if they were not designed / tested properly. The more complex the

system becomes, the more potential scenarios that need to be tested. Web applications are no

exception as there are many possible outcomes that a human can perform when interacting with

the application. In this exercise, the importance of covering multiple scenarios is addressed.

6.7.4 Creating Exercise Five

The objective of this exercise is to demonstrate how students can use Selenium to test

web applications. The video begins by walking through how to install all the proper components

to setup Selenium in the Eclipse environment. Following the installation, the students may

download a Java class file which they can begin using Selenium with. This exercise begins with

the students using a web driver to go to Carleton’s student webpage. They then run the code to

understand how the driver opens the webpage. While on the webpage, they learn how to use the

18

inspect element option to discover the relevant information on certain webpage elements. Once

they have noted the reference to the element, they can return to the Java class file and begin

giving instructions to the web driver. With the findElement() method, the student may instruct

the web driver to locate the element on the webpage and then perform an action to that element.

The student is taught how to fill out the webpage with a username, a password, and how to click

the login button with the web driver to complete the login to Carleton. They repeat this cycle for

an invalid login (with improper information), invalid credentials login (name and password do

not exist), and finally a correct login (correct name and password). There are a few more

conditions to be tested such as correct name and incorrect password, but to keep the video short,

it only covers three scenarios. By completing this exercise, students learn how to use Selenium

and the web driver as well as having an idea of the different things that one must account for

when testing a web application.

6.8.1 BDD with Cucumber and Client / Server system

 This section covers Cucumber, a tool that allows for Behaviour Driven Development

(BDD). The section covers what BDD is, as well as how Cucumber enables BDD. In addition,

the section covers the difficulties that may occur during client / server testing. The exercise

created in this section demonstrates how to use Cucumber in conjunction with a client / server

environment.

6.8.2 Behaviour Driven Development (BDD)

 Behaviour Driven Development is a process which encourages communication between

different groups of a project. With the increased communication between different groups, it may

lead to less vague requirements from the client so the developers can deliver a more accurate

product. The increased collaboration between different groups of a project may also reduce the

ambiguity of the project; if all parties involved with the project understand the goal and create

examples together, they will all be working towards completing the same tasks. Examples are

19

stories with rules: the rules are followed, and a result is obtained at the end. The examples

created by collaboration can also allow different groups to discover the faults that can occur in

the system. With the examples produced they can then be created into automated tests with

Cucumber.

6.8.3 Cucumber

 Cucumber is a tool which allows the tester

to follow BDD. Cucumber files have the ‘.feature’

file extension. This file extension tells Eclipse that

the file is a Cucumber feature file and will run in a

specific way. Feature files are written in plain

language, which is understood by everyone on a

team, as there is no technical jargon which may

confuse non-technical members of the team (Fig. 6).

A Cucumber feature file uses Gherkin’s keywords to

give the feature file proper functionality. A scenario

(example) follows this pattern: Given, When, Then. This pattern allows the team to easily define

scenarios and what happens at which step. When the scenarios are completed, there is no actual

functionality behind the feature file, and the tester will then implement the step definitions (Fig.

7) to give the feature file its functionality. When the feature file is shown to other members of

the team, they understand the plain language of the feature file and can visually see the test being

performed.

FIGURE 6

Cucumber Feature File

20

FIGURE 7

 Cucumber Feature File Step Definitions

6.8.4 Client and Server Testing

 When creating a client and server environment, there are a multitude of potential errors to

test for. Aside from the usual unit tests that need to be performed, there are also new errors that

exist in client / server environments. Some problems include client disconnections, server

disconnections, port problems, timeouts, and packet loss. When testing in a client / server

environment, it is important to have proper tests for these systems in addition to testing the

system itself.

6.8.5 Creating Exercise Six

 The objective of this exercise is to demonstrate BDD with Cucumber as well as some of

the problems to account for during client / server development. The exercise begins with the

21

installation steps for Cucumber which include a Maven dependency as well as installing the

Cucumber Eclipse plugin from the Eclipse marketplace. Once installed, the first task is to create

a feature file. The video demonstrates how to create a simple feature file and how to create the

associated step definitions. Following the initial introduction video, the second exercise goes into

more depth regarding Gherkin’s keywords such as Background and Example Tables. The

Background keyword allows for all features to have a preset ‘background’ (initial rule); these

initial rules reduce the redundancy of steps in the feature file. When the Example Table has

elements, the keyword allows the tester to duplicate scenarios without manually creating

different scenarios for each element in the table. Once the Background and Example Table

examples are finished, the next video exercise includes Cucumber and its usage with a client /

server application.

In the final exercise, once the files that include the client and server are downloaded,

feature files need to be created. The client / server system used for demonstration is simple in its

functionality. The server is active on a port number specified by the user (port 123 is used in the

video) and the client can connect to it when it is started. The client then sends a specified number

to the server (the number 12 is used in the video). The number is then squared by the server and

then returned to the client. Cucumber tests are then written to ensure the functionality of the

system is correct.

To test the functionality of the code along with the logic, JUnit is used to ensure that the

results to be received match the expected results. Cucumber features were written with the

standard Given, When, Then format. An example of the client feature file is as follows: Given

(the server is on), When (the client sends the number five), Then (the client receives the squared

number twenty-five from the server). This feature demonstrates the expected results that the

client would receive under the rules that have been provided. A different scenario regarding

invalid numbers is done for the client as well as two different scenarios for the server. One

scenario depicts a server timeout, and another ensures that the server recorded the squared

number properly. One problem that was encountered during the server scenario testing was that

the JUnit test to check for the squared number would occur before the server performed the

arithmetic. To remedy the problem, the client thread was called via the .run() method instead of

22

the .start () method. This halts the program until the client has terminated; this ensures that the

server has finished its arithmetic as the client would not terminate before receiving a result. The

video exercises demonstrate how to install Cucumber, how to create feature files, how to use the

Background and Example Table keywords, as well as demonstrate how to use Cucumber in a

client / server environment

6.9.1 Threads, Race Condition, and Deadlocks

 In this section, the basics of Java threads are explained and how they allow for concurrent

programming. The section also covers two important faults that can occur during concurrent

programming: race conditions and deadlocks. The solution to the two faults is also mentioned in

their respective sections. The final video created in this section is not an exercise but rather a

video explaining how the threads function and the solution to the problems that occur in

concurrent development.

6.9.2 Threads

 In concurrent programming, many actions are defined and

performed simultaneously. To perform this in Java, we need to create

Java threads. Threads are used as an independent execution of defined

code. Meaning that if multiple threads of the same code are run, that

instance of code will be run for each initialized thread. The time which

threads run is random (Fig. 8) and is out of the control of the tester. This

is because an internal Java scheduler handles the Java threads.

Additional attention needs to be added when working with threads as

concurrent programming opens a lot of more potential problems that

may not be initially apparent.

FIGURE 8

Console Output of

Numerically

Initialized Threads

23

6.9.3 Race Conditions

 Race conditions are one of the problems that occur when working in a concurrent

environment. Race conditions occur when two or more different threads try to manipulate the

same object at the same time. This occurs when there are no prevention steps taken as threads do

not run in a specific order. This may lead to a crash or an improper change of data. We can use

two threads to illustrate this point. In this example, we will have two threads and a box with a

single object. If the thread sees an object, it will then grab the object from the box. Thread one

checks the box and determines if there is an object, and it then begins to grab the item. Thread

two also checks the box after thread one checks it, and it proceeds to grab the object as the object

has not yet been removed by thread one. Thread one grabs the object and then thread two crashes

the program as it is grabbing a null value as nothing exists in the box anymore. To solve this

problem, the keyword Synchronized can be used to protect the box object so that only one thread

can access it at a time. This will allow thread one to grab the item, and then thread two will see

that there is no item to grab and stop. Although synchronization prevents race conditions from

happening, another problem can occur in concurrent programming, namely deadlocks.

6.9.4 Deadlocks

 Deadlocks occur when there is a fault in the system that prevents the system from moving

forward. This can occur when certain threads are waiting for resources to move forward in their

execution. If the resources are never returned to the waiting threads, then they cannot continue

their execution and the entire system may halt. To remedy this problem, it is essential to be

aware of where the problem may occur. When a thread enters a synchronized method / object, it

is essential that the thread must release its hold on the method if it is no longer using the

resource. The release of a synchronized lock is done by calling the thread’s wait method. The

thread calling the method will release the lock on the object and allow another thread to use it. It

is important to remember that waiting threads are suspended and need to be awoken with a notify

method to begin running again.

24

6.9.5 Creating Video Seven

 The objective of this exercise is to explain the basics of concurrent programming. The

video begins by introducing what threads are and is then followed by an example of a race

condition, and finally a deadlock situation. During the race condition proportion of the video, the

race condition is demonstrated with four threads trying to remove three items from a box object.

The program crashes as the final thread attempts to remove an item that does not exist. In

addition to the race condition, this example demonstrates the randomness of Java thread (with

numbered threads) and that it is observable that they all run in a random order despite being

initialized numerically. The solution to the race condition is then demonstrated with the use of

synchronized objects and with a combination of wait() and notifyAll() methods. The wait()

method is called upon the threads that obtain the lock but cannot move on as there are no

resources to obtain from the box. Thus, it relinquishes the lock on the box to another thread. The

threads that obtain an item from the box hold onto the item for a few seconds before returning it

to the box and then call notifyAll(). The notifyAll() method then awakens all waiting threads and

the first thread scheduled by the Java scheduler will obtain the lock and the item, while the

following threads will enter the waiting state once again. The program is run with ten threads and

does not create a race condition / crash, nor does it run into a deadlock.

 The next example was to display a deadlock situation; with the previous example no

deadlock occurs as all the threads call the notifyAll() method on completion. Once notifyAll() is

called, the waiting threads are notified so that they may begin running once more. To

demonstrate a deadlock, when the system begins and the first few threads obtain the lock, the

threads are suspended indefinitely. This ensures that the threads do not terminate their code and

call the notifyAll() method. Once suspended, it is observable that the program has not

terminated, but as all the resources are held by the suspended threads, the program cannot move

forward. One additional deadlock example was shown afterwards; in this program, four different

threads desire two objects each. Two different threads grab object one first while the others grab

object two first. The deadlock occurs when a thread grabs object one and then waits for object

two, while the reverse happens with the other thread. This creates a deadlock as a thread requires

25

object two to continue, while the other one requires object one to continue. Neither one can move

on as the other resource is in use and the program halts. A visualization of the deadlock problem

can be seen in the figure below (Fig. 9). The figure demonstrates ‘Thread 1’ halting, but it

should be noted that ‘Thread 2’ is also halted as it cannot obtain ‘Item 1’ due to the same

reason. This video demonstrates Java thread usage as well as common problems and solutions

that can occur in a concurrent system.

FIGURE 9

 Deadlock Example with Two Items

6.10.1 TOTEM Methodology’s Issues with Concurrent Systems

 This section covers the difficulties in modeling concurrent systems with the Testing

Object-oriented Systems with the Unified Modeling Language (TOTEM). The section provides

an overview of the TOTEM methodology and how it is difficult to capture concurrent systems

with it. There is no exercise created from this section as it is mostly explanatory. The video

explains the difficulties that are mentioned in depth in this section.

6.10.2 Testing Object-oriented Systems with the Unified Modeling Language (TOTEM).

 The TOTEM methodology is a testing method proposed by Lionel Briand and Yvan

Labiche [Lionel Briand and Yvan Labiche, 2002]. This test methodology derives the test cases

from the artifacts that are produced at the end of the analysis stage in development. This includes

26

documents such as use case diagrams, unified modeling language diagrams, and class diagrams.

With all these documents, it would be possible to derive the test requirements.

6.10.3 TOTEM Process

 In the TOTEM paper [Lionel Briand and Yvan Labiche, 2002], the writers explain the

methodology with a library system as an example. At the beginning of the process, an activity

diagram for the library is presented, and many sequences of events can be seen from the diagram.

A sequence is a set of events that will occur in a potential use of the system. For example, a User

can be added to the system, the user then borrows a book, then returns the book, and then the

user is removed from the system. That covers one sequence, but there are many more as Users

can renew loans, books can be removed from the library, etc. The different paths are then placed

into a tree for easy identification of paths. From these paths, they have determined many

potential sequences. The sequences can then be modeled for testing. The problem with

concurrent programming begins when all the potential sequences are analyzed.

6.10.4 TOTEM Difficulties with Concurrent Systems

 Without adding concurrency to the problem, the TOTEM paper [Lionel Briand and

Yvan Labiche, 2002] mentions the interleavings of sequences. When the sequences were listed,

it can be noted that some are repeated instances in other sequences: the use cases sequences are

combined, creating a large number of interleavings but creating complete sequences to be tested.

This method of analysis was done under the assumption that there would be a correct sequence

of events, as every line of code would run in order.

 If someone were to analyze this system under a concurrent system, the number of

interleavings would balloon out of proportion. As threads are random, the lines of code in each

sequence may run randomly. For example, thread one might run line one, then thread two runs

line one and two, then thread one completes with line two. That sequence may occur differently

27

depending on how the Java thread schedule schedules the threads; Table 1 shows potential

execution paths in a theoretical program which has two lines of code. In the rather simple

program, there are four sequences of code execution with the thread scheduler. If the TOTEM

methodology allowed for concurrency, the number of interleavings would be too difficult to

model as the number of potential sequences becomes too large.

“Sequence of activated lines with threads (T1 and T2)”

Sequences First Action Second Action Third Action Fourth Action

1 Line 1 (T1) Line 1 (T2) Line 2 (T1) Line 2 (T2)

2 Line 1 (T1) Line 2 (T1) Line 1 (T2) Line 2 (T2)

3 Line 1 (T2) Line 1 (T1) Line 2 (T1) Line 2 (T1)

4 Line 1 (T2) Line 2 (T2) Line 1 (T1) Line 2 (T1)

TABLE 1

6.10.5 Difficulty in Recreating Faults in Concurrent Systems

 If a fault is detected during the analysis of sequences, the fault could be found by tracing

the sequences that occurred. As there is a specific sequence of events that occur to create the

fault, it should be easy to reproduce it for testing purposes by simply repeating the sequences that

lead to the fault. In a concurrent system, this process is more difficult to perform, as the sequence

of events is determined by the Java scheduler. If the tester noticed a fault that occurs during a

specific sequence, it would not be very plausible to ensure that the test can be automated as the

Java scheduler may run a different sequence. This randomness prevents accurate testing for

faults in concurrent systems which occur in specific sequences.

28

6.10.6 Creating Video Eight

 The objective of this exercise was to demonstrate the difficulties in testing concurrency

with the TOTEM methodology. The video briefly covers the overview of the TOTEM system.

Following the overview, the video covers the combinatory nature of interleaving sequences and

how modeling a concurrent system would have the combinatorial sequences balloon out of

proportion. Finally, the video mentions the problem in trying to fix faults that occur during a

specific sequence of concurrent events. The automated tests would not always be able to spring

the exact sequences as the Java scheduler runs the threads randomly. By completing this video,

the main takeaway is that it is very difficult to model concurrent system with the TOTEM

method.

7 Results

 The objective of this project was to enhance the learning experience during Comp 4004

lectures. Throughout the course of the project, video exercises and videos which explain certain

concepts have been created. Instead of simply learning about the tools used, students may

become accustomed to the tools during class with the video exercise. This will reduce the

amount of trouble they encounter when they first begin to use the tools in their own project. As

the video removes the troubleshooting required to install the tools as well as covers the basics of

the tools, the student should not run into difficulties when attempting to setup and utilize the tool

in their own works. Alongside the technical aspect, the videos cover certain conceptual aspects

of different testing methodologies. Alongside the explanation of concepts such as TDD and BDD

the videos demonstrate the methodologies being performed with the tools used with the course.

 Alongside the videos, all written code is available if the student would like to attempt the

exercises on their own time or would simply like to view the finished product. All the video

recordings and example code will be available to the students and may be used as supplementary

material with the Comp 4004 lectures. As these exercises have not yet been implemented, it is

difficult to say that this approach will be successful; but even if the videos do not necessarily

29

enhance the learning experience, the videos and code can act as supplementary information to

help the student in their studies with Comp 4004.

30

8 References

Lionel Briand and Yvan Labiche (2002) A UML-Based Approach to System Testing, Software

and Computer Engineering Department, Carleton University.

Jean-Pierre Corriveau (2019) Private Communication.

Connor Poland (2019) Private Communication.

