
ar
X

iv
:1

11
2.

35
23

v1
  [

cs
.D

M
]  

15
 D

ec
 2

01
1

Approximating the Edge Length of 2-Edge Connected
Planar Geometric Graphs on a Set of Points⋆

(Extended Version)

Stefan Dobrev1, Evangelos Kranakis2, Danny Krizanc3, Oscar Morales-Ponce4, and
Ladislav Stacho5

1 Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovak Republic.
Supported in part by VEGA and APVV grants.

2 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada. Supported
in part by NSERC and MITACS grants.

3 Department of Mathematics and Computer Science, Wesleyan University, Middletown CT
06459, USA.

4 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada. Supported
by MITACS Postdoctoral Fellowship.

5 Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby,
British Columbia, Canada, V5A 1S6. Supported in part by NSERC grant.

Abstract. Given a setP of n points in the plane, we solve the problems of con-
structing a geometric planar graph spanningP 1) of minimum degree 2, and 2)
which is 2-edge connected, respectively, and has max edge length bounded by a
factor of 2 times the optimal; we also show that the factor 2 isbest possible given
appropriate connectivity conditions on the setP, respectively. First, we construct
in O(n logn) time a geometric planar graph of minimum degree 2 and max edge
length bounded by 2 times the optimal. This is then used to construct inO(n logn)
time a 2-edge connected geometric planar graph spanningP with max edge length
bounded by

√
5 times the optimal, assuming that the setP forms a connected Unit

Disk Graph. Second, we prove that 2 times the optimal is always sufficient if the
set of points forms a 2 edge connected Unit Disk Graph and givean algorithm
that runs inO(n2) time. We also show that fork ∈ O(

√
n), there exists a setP of

n points in the plane such that even though the Unit Disk Graph spanningP is k-
vertex connected, there is no 2-edge connected geometric planar graph spanning
P even if the length of its edges is allowed to be up to 17/16.

1 Introduction

Consider a set of pointsP in the plane in general position, and a real numberr ≥ 0,
the radius. The geometric graphU(P,r) is the graph spanningP in which two vertices
are joined by a straight line iff their (Euclidean) distanceis at mostr. Note that the
geometric graphU(P,1) is the well known unit disk graph onP, and in factU(P,r) is a
unit disk graph for anyr whenr is considered to be the unit.

⋆ This is the extended version of a paper with the same title that will appear in the proceedings
of the 10th Latin American Theoretical Informatics Symposium (LATIN 2012), April 16-20,
2012, Arequipa, Peru.

http://arxiv.org/abs/1112.3523v1


The main focus of this paper is to find 2-edge connected geometric free crossing
(or planar) graphs on a set of points such that the longest edge is minimum. Recall
that a graphG is 2-edge connected if the removal of any edge does not disconnect
G. Several routing algorithms have been designed for planar subgraphs of Unit Disk
Graphs, for example [14], which are widely accepted as models for wireless ad-hoc
networks. Therefore it would be essential for the robustness of routing algorithms to
construct such geometric graphs with “stronger” connectivity characteristics.

Observe that the optimal length of any 2-edge connected geometric planar graph
on a set of pointsP is at least the min radius to construct a 2-edge connected UDG
on P possible with crosses. Thus, we can raphase the problem as follows: For what
connectivity assumptions onU(P,1) and for whatr does the geometric graphU(P,r)
have a 2-edge connected geometric planar subgraph spanningP? Clearly,r gives an
approximation to the optimal range when the connectivity ofU(P,1) is at most 2-edge
connected.

1.1 Related work

Two well-known constructions are related to this problem. If U(P,1) is connected,
then the well-known Gabriel Test (see [5] and [13]) will result in a planar subgraph
of U(P,1). However, 2-edge connectivity is not guaranteed. Alternatively, the well-
known Delaunay Triangulation onP will result in a 2-edge connected planar subgraph
of U(P,r). However the radiusr (the length of the longest edge of this triangulation) is
not necessarily bounded.

Abellanas et al. [1] give a polynomial algorithm which augments any geometric
planar graph to 2-vertex connected or 2-edge connected geometric planar graph, re-
spectively, but no bounds are given on the length of the augmented edges. Tóth [12]
improves the bound on the number of necessary edges in such augmentations, and Rut-
ter and Wolff [11] prove that it is NP-hard to determine the minimum number of edges
that have to be added in such augmentations.

Tóth and Valter [3] characterize geometric planar graphs that can be augmented to
3-edge connected planar graphs. Later Al-Jubeh et al. [2] gave a tight upper bound on
the number of added edges in such augmentations. Finally, Garcı́a et al. [6] show how
to construct a 3-connected geometric planar graph on a set ofpoints in the planar with
the minimum number of straight line edges of unbounded length.

A related problem is studied in [9]. The authors prove that itis NP-hard to de-

cide whetherU(P,
√

5
2 ) contains a spanning planar graph of minimum degree 2 even if

U(P,1) itself has minimum degree 2. They also posed and studied the problem of find-
ing the minimum radiusr so thatU(P,r) has a geometric planar spanning subgraph of
minimum degree 3 provided thatU(P,1) has a spanning subgraph of minimum degree
3.

Closely related is the research by Kranakis et al. [8] which shows that ifU(P,1)
is connected thenU(P,3) has a 2-edge connected geometric planar spanning subgraph.
The construction starts from a minimum spanning tree ofU(P,1) which in turn is aug-
mented to a 2-edge connected geometric planar spanning subgraph ofU(P,3). In the
same paper several other constructions are given (startingfrom more general connected



planar subgraphs) and also bounds are given on the minimum number of augmented
edges required. However, the question of providing an algorithm for constructing the
smallestr > 0 such thatU(P,r) has a 2-edge connected geometric planar spanning sub-
graph remained open. This question turns out to be the main focus of our current study.

Our problem is also related to the well-known bottleneck traveling salesman prob-
lem, i.e. finding a Hamiltonian cycle that minimizes the length of the longest edge,
since such a cycle is 2 edge conected (but not necessarily planar). Parker et al. [10]
gave a 2-approximation algorithm for this problem and also showed that there is no bet-
ter algorithm unlessP = NP. There is also literature on constructing 2 edge connected
subgraphs with minimum number of edges. In [4] it is proved that given a 2-edge con-
nected graph there is an algorithm running in timeO(mn) which finds a 2-edge con-
nected spanning subgraph whose number of edges is 17/12 times the optimal, where
m is the number of edges andn the number of vertices of the graph. An improvement
is provided in [15] in which a 4/3 approximation algorithm isgiven. Later, Jothi et
al. [7] provided a 5/4-approximation algorithm. However inthese results the resulting
spanning subgraphs are not guaranteed to be planar.

1.2 Contributions and outline of the paper

We start with Section 2, where we give the notation and provide some concepts which
are useful for the proofs. In Section 3 we prove that ifU(P,1) has minimum degree
2, thenU(P,2) contains a spanning geometric planar subgraph with minimumdegree
2. Note that these subgraphs are not necessarily connected.An algorithm that runs in
time O(n logn) to find such a subgraph is presented as well. In Section 4 we prove that
if U(P,1) is connected and has minimum degree 2, thenU(P,

√
5) contains a 2-edge

connected spanning geometric planar subgraph and we give a corresponding algorithm
that runs in timeO(n logn). In section 5 we combine results from previous sections and
prove the main theorem of the paper by showing that ifU(P,1) is 2-edge connected,
thenU(P,2) contains a 2-edge connected spanning geometric planar subgraph. A cor-
responding algorithm that runs in timeO(n2) is presented as well. We also show that
all the bounds are tight. In Section 6 we show that there exists a setP of n points in the
plane so thatU(P,1) is k-vertex connected,k ∈ O(

√
n), but evenU(P,17/16) does not

contain any 2-edge connected spanning geometric planar subgraph.

2 Preliminaries and Notation

Let G = (V,E) be a connected graph. As usual we represent an undirected edge as
{u,v} and a directed edge with headu and tailv as(u,v). A vertexv ∈V is a cut-vertex
of G if its removal disconnectsG. Similarly an edge{u,v} ∈ E is a cut-edge or bridge
if its removal disconnectsG. We denote the line segment between two pointsx andy
by xy and their (Euclidean) distance byd(x,y). LetC(x;r) denote the circle of radiusr
centered atx, and letD(x;r) denote the disk of radiusr centered atx.

Before we proceed with the main results of the paper we introduce the concepts of
Tie andBow that will help to distinguish various crossings in the proofof the main
results.



Definition 1. We say that four points u,v,x,y form a Tie, denoted by Tie(u;v,x,y), if
uv crosses xy, x and y are outside of D(u;d(u,v)) and u is outside of D(x;d(x,y)). The
point u is called the tip of the Tie and xy the crossing line of {u,v}. See Figure 4a.

Lemma 1. Let u,v,x,y form a Tie(u;v,x,y). Then, π/3 ≤ ∠(uvx) < 2π/3 and π/3≤
∠(yvu)< 2π/3.

Proof. Consider the angle∠(yvx). Observe that∠(yvx) ≥ π/2 since by Definition 1,
x,y /∈ D(x;d(x,y)) anduv crossesxy. Therefore,d(x,y) > max(d(x,v),d(v,y)). Also
from Definition 1,d(u,x)> d(x,y). Therefore,∠(uvx)≥ π/3 since it is the largest angle
in the triangle△(uvx). It remains to prove that∠(yvu) ≥ π/3 and the result follows
since∠(yvx)< π. For the sake of contradiction assume that∠(yvu)< π/3; see Figure 1.
From Definition 1,d(u,v)< d(u,y). Hence,∠(uyv)<∠(vuy) and consequently∠(vuy)
is the largest angle in△(vuy). Therefore,∠(xuy)> ∠(vuy)> ∠(uyv)> ∠(uyx) which
implies thatd(x,y)> d(u,x). This contradicts Definition 1.

v u

x

y

Fig. 1: If u,v,x,y form aTie(u;v,x,y), then∠(yvx)≥ 2π/3.

⊓⊔

Lemma 2. Let u,v,x,y form a Tie(u;v,x,y) and u′ be a point.
(i) If u′v crosses ux, then u′,v,u,x cannot form a Tie.
(ii) If u′x crosses uv, then u′,x,u,v cannot form a Tie.

Proof. (i) Arguing by contradiction, assume thatu′v andux form a Tie(u′;v,u,x); see
Figure 2a. From Lemma 1,∠(xvu) ≥ 2π/3. Now consider theTie(u;v,x,y). From
Lemma 1,∠(uvx)< 2π/3, a contradiction.

(ii) From Lemma 1,∠(uvx)≥ π/3. Therefore,∠(vxu)< 2π/3. However, the mini-
mum angle∠(uxv) to form aTie(u′;x,u,v) is at least 2π/3; see Figure 2b.

⊓⊔

The following lemma shows that the points of aTie(u;v,x,y) are at distance at most√
2 of each other.

Lemma 3. Let u,v,x, and y be four points forming a Tie(u;v,x,y) such that max{d(u,v),
d(x,y)}= 1. Then, d(u,x) and d(u,y) are bounded by

√
2.
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(a) {u′,v} and {u,x}
cannot form aTie.

u v

x

yu
′

(b) {u′,x} and {u,v}
cannot form aTie.

Fig. 2: If u,v,x,y form aTie(u;v,x,y), thenu′ cannot form aTie with eitherv or x or y
that overlapsTie(u;v,x,y).

u
v
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l

Fig. 3:d(u,x)≤
√

2 andd(u,y)≤
√

2 in aTie(u;v,x,y).

Proof. Let p be the intersection point ofxy andC(u;d(u,v)) closer toy, andl be the
tangent line atp; see Figure 3. Since the angle thatup forms with l is π/2,∠(upx) ≤
π/2. Therefore,d(u,x)≤

√
2, since max(d(u, p),d(p,x)) ≤ 1. Similarly, we can prove

thatd(u,y)≤
√

2.
⊓⊔

We conclude the preliminaries by introducing the concept ofaBow.

Definition 2. We say that four points u,v,x,y form a Bow, denoted by Bow(u,v,x,y), if
uv crosses xy, d(u,y)≤ d(u,v)< d(u,x) and d(v,x)≤ d(x,y)< d(u,x). See Figure 4b.

3 Planar Subgraphs of Minimum Degree 2 of a UDG of Minimum
Degree 2

In this section we prove that ifU(P,1) has minimum degree 2, thenU(P,2) always
contains a spanning geometric planar subgraph of minimum degree 2. We also show that
the radius 2 is best possible. Therefore in this section we assumeU(P,1) has minimum
degree 2.

The following theorem shows that the bound 2 is the best possible.
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(a) Tie(u;v,x,y) with tip u.
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(b) Bow(u,v,x,y)

Fig. 4: Tie and Bow.

Theorem 1. For any real ε > 0 and any integer k, there exists a set P of 4k points in the
plane so that U(P,1) has minimum degree 2 but U(P,2− ε) has no geometric planar
spanning subgraph of minimum degree 2.

Proof. It is not difficult to see that the component depicted in Figure 5 requires{u,v}
to create a planar graph of degree two. To create a family of UDGs with 4k vertices, it
is enough to considerk disconnected components.

2− ǫu v

1 1

Fig. 5: UDG of minimum degree two that requires scaling factor of 2− ε.

⊓⊔

Let T = (P,E) be the minimum spanning forest (MSF) (or nearest neighborhood
graph) ofU(P,1) formed by connecting each vertex with its neareast neighbor. Recall
thatU(P,1) has minimum degree 2 but it is not guaranteed to be connected,and that any
two vertices in different components are at distance more than 1. Letu be a leaf ofT
andv be the second nearest neighbor ofu. (If there exist more than one, then choose any
one among them.) The directed edge(u,v) is defined as a second nearest neighbor edge
(SNN edge). LetE ′ be the set of SNN edges for all leaves ofT . Observe thatE∩E ′ = /0,
since the nearest neighborhood graph is a subgraph ofU(P,1) and SNN edges ofE ′ are
considered for leaves ofT .

Before giving the main theorem we provide some lemmas that are required for the
proof. The following lemma shows that if an SNN edge(x,y) ∈ E ′ crosses an edge
{u,v} of T , then the four vertices form aTie(u;v,x,y).

Lemma 4. Let (x,y) ∈ E ′ be an SNN edge that crosses an edge {u,v} ∈ T . Then, the
four vertices form a Tie(u;v,x,y) such that either {u,x} ∈ T or {v,x} ∈ T . Moreover,
the quadrangle uxvy is empty.



Proof. First we will show that if(x,y) crosses{u,v} then either{u,x}∈ T or{v,x}∈ T .
For the sake of contradiction, assume that neither{u,x} /∈ T nor {v,x} /∈ T . Observe
thatu andv are outsideD(x;d(x,y)), otherwise(x,y) would not be the SNN edge; see
Figure 6a. Therefore,∠(vyu)≥ π/2 since(x,y) crosses{u,v}. Hence,d(u,v) is greater
than d(u,y) and d(v,y). This contradicts the minimality of MSFT , since replacing
{u,v} by either{u,y} or {v,y} results in a spanning forest ofU(P,1) of smaller weight.

To show that the four vertices form aTie(u;v,x,y), assume that{v,x} ∈ T . Observe
thatd(u,x)> d(x,y)> max{d(v,x),d(v,y)} sincey is the second nearest neighbor ofx
and∠(xvy) ≥ π/2; see Figure 6b. It is not difficult to see thatd(u,v)< d(u,x) (Other-
wise we can obtain a spanning forest of smaller weight by replacing{u,v} with {u,x}.)
To prove thatd(u,v) < d(u,y) assume by contradiction thatd(u,v) > d(u,y). Hence,
∠(yuv) is the largest angle in△(uvy) sinced(u,v) < d(v,y) (Otherwise we can ob-
tain a spanning forest of smaller weight by replacing{u,v} with either{u,y} or {v,y}.)
Therefore,∠(yux)>∠(yuv) which implies thatd(x,y)> d(u,x). This is a contradiction
sinced(x,y)< d(u,x).

To prove thatuxvy is empty, we consider independently△(uvx) and△(uvy). First
consider△(uvx). It is known that the angle that a vertex forms with two consecutive
neighbors inT is at leastπ/3 and the triangle is empty. Therefore,v does not have a
neighbor in the sector∠(xvu) since by Lemma 1∠(uvx) < 2π/3. Therefore,△(uvx)
is empty. Now we consider△(uvy). Assume by contradiction that exists a pointp in
△(uvy) as depicted in Figure 6c. Observe that∠(uvp)> π/3 (Otherwise we can replace
{u,v} with either{u, p} or {v, p}.) Therefore,∠(xvp) < ∠(xvy) andd(x, p) < d(x,y)
sinced(v, p)≤ d(v,y) which contradicts the SNN edge definition.

x y

v

u

(a) {u,v} /∈
D(x;d(x,y))

x

y

vu

(b) A SNN edge that
crosses an edge ofT
forms aTie.

x

y

vu

p

v

(c) uxvy is empty.

Fig. 6: A SNN edge crossing an edge ofT

⊓⊔

As a consequence of Lemma 4, an SNN edge crosses at most one edge of T , since
the angle that a vertex forms with two consecutive neighborsin T is at leastπ/3. The
following lemma will help to characterize crossings between SNN edges.

Lemma 5. Let (u,v),(u′,v′) ∈ E ′ be two crossing SNN edges. Then {u′,v} ∈ T .



Proof. Assume that{u′,v},{u,v′} /∈ T , thenu′ andv′ are not inD(u;d(u,v)) as depicted
in Figure 7. Observe that if eitheru′ or v′ is in D(u;d(u,v)), then(u,v) would not be the
SNN edge. Therefore,d(u′,v′)> max(d(u′,v),d(v,v′)) since∠(v′vu′)> π/2 and(u,v)
crosses(u′,v′). This is a contradiction since{u′,v} /∈ T .

u v

v
′

u
′

Fig. 7: Two crossing SNN edges

⊓⊔

Lemma 6. Let (u,v),(u′,v′) ∈ E ′ be two crossing SNN edges.
(i) If {u,v′},{u′,v}∈T , then they form a Bow(u,v,u′,v′) such that the quadrangle uv′vu′

is empty.
(ii) If {u′,v} ∈ T and {u,v′} /∈ T , then they form a Tie(u;v,u′,v′) such that the quad-
rangle uu′vv′ is either empty or contains the neighbor of u in T .

Proof. (i) Let {u,v′} ∈ T and{u′,v} ∈ T . Clearly,d(u,u′)> d(u,v)> d(u,v′), sincev′

is the nearest neighbor ofu andv the second. Similarly,d(u,u′) > d(u′,v′) > d(u′,v).
Therefore, the four vertices form aBow(u,v,u′,v′). To prove that the quadrangleuv′vu′

is empty considerR=D(u;d(u,v))∪D(u′;d(u′,v′)) as depicted in Figure 8a. Obviously
any point insideR is closer to eitheru or u′. Therefore,R contains onlyu,v,u′,v′.

(ii) Let {u′,v} ∈ T and{u,v′} /∈ T . From the definition of SNN edge,d(u,v) ≤
min{d(u,u′),d(u,v′)} andd(u′,v′)< d(u,u′). Therefore, the four vertices form aTie(u;v,u′,v′).
To prove that the quadrangle may contain at most one pointp such that{u, p}∈ T , con-
siderR = D(u;d(u,v))∪D(u′;d(u′,v′)) as depicted in Figure 8b. Obviously any point
insideR is closer to eitheru or u′. Therefore, it contains only the nearest neighbors of
u andu′. Further,v is the nearest neighbor ofu′. Therefore,p ∈ R where{u, p} ∈ T . It
remains to prove thatR contains the quadrangleuu′vv′. Let a be the intersection point
of {u,v′} andC(u;d(u,v)). It is enough to prove thata ∈ D(u′;d(u′,v′)). However,
∠(u′va)< ∠(u′vv′) and∠(avv′)< π/3. Therefore,d(u′,a)< d(u′,v′).

⊓⊔

The following lemma will help to determine our upper bound.

Lemma 7. Let u,v,u′,v′ be four vertices forming a Tie(u;v,u′,v′) and w be a vertex
such that d(u,w) ≤ 1, ∠(wuv) ≤ ϕ, and {u′,u} crosses {w,v}. Then, d(w,u′)2 ≤ 3−
2
√

2cos(ϕ−π/4).



u

v
v
′

u
′

(a)
{{u,v′},{u′,v}} ∈
T

u
v

u
′

v
′

a

(b) {u′,v} ∈ T and
{u,v′} /∈ T

Fig. 8: Crossings of SNN edges

Proof. Observe that{u′,v′} crosses at least two points ofC(u;d(u,v)). Thus, we can
assume without loss of generality that{u′,v′} crossesC(u;d(u,v)) in v andd(u,v) =
d(u,v′) as depicted in Figure 9. Letα = ∠(vuv′) andβ = ∠(uv′v) = ∠(v′vu) = π−α

2 .
Observe that 0< α ≤ π/3 since by Lemma 1,∠(uvv′)≥ π/3. By the law of cosines in
△(uv′u′), d(u,u′)2 = d(u,v′)2 + d(u′,v′)2 − 2d(u,v′)d(u′,v′)cos(β) ≤ 2− 2cos(β) =
2−2sin(α/2) andd(u,u′)≤ 2sin(β

2) = 2cos(π−α
4 ).

Let γ = ∠(wuu′) = ϕ−∠(u′uv). Since∠(v′vu) = β, ∠(uvu′) = π−β. Therefore, if

d(u,v)≤ d(u′,v), then∠(u′uv)≥ π−(π−β)
2 = π−α

4 . Otherwise,∠(vu′u)≥ π−(π−β)
2 = β

2 .

From△(uv′u′), ∠(u′uv)≥ π−β− β
2 −α = π−α

4 .
From the law of cosines,d(w,u′)2 = d(u,w)2+d(u,u′)2−2d(u,u′)d(u,w)cos(γ)≤

3−2sin(α
2 )−4cos(π−α

4 )cos(ϕ− π−α
4 ). Observe that when the angles satisfy 0≤ α ≤

π/3 andπ/3≤ ϕ ≤ π, then the three values sin(α
2 ),cos(π−α

4 ) and cos(ϕ− π−α
4 ) attain

positive values. Therefore, for anyϕ ∈ [π/3,π] the maximum value is reached when
α = 0 andd(w,u′)2 ≤ 3−2

√
2cos(ϕ− π

4).

w

u
v

v′

u′

α

γ
β

Fig. 9: If ∠(wuv)≤ ϕ, thend(w,u′)2 < 3−2
√

2cos(ϕ− π
4)

⊓⊔

Now we are ready to prove the main theorem.

Theorem 2. Let P be a set of n points in the plane in general position. If U(P,1) con-
tains a spanning subgraph of minimum degree 2, then U(P,2) contains a geometric



planar spanning subgraph of minimum degree 2. Further, such a subgraph can be con-
structed in time O(n logn).

Proof. Consider the Nearest Neighbor GraphT = (P,E) of U(P,1). It is known that
T is a subgraph of any minimum spanning tree ofU(P,1). Let E ′ be the set of SNN
edges from leaves ofT . Clearly every edge inE ′ has length at most 1 sinceU(P,1)
has minimum degree two. LetG = (P,E ∪E ′). It follows thatG spansP, has minimum
degree 2, however it may not be planar. We show how to modifyG to a planar graph.

Claim. Let Tie(u;v,u′,v′) be aTie of G whereu′ is a leaf ofT .
(i) {u,v} may cross at most one other edge{u′′,v′′} of G such that they form either a
Tie(v;u,u′′,v′′) or aTie(u′′;v′′,u,v).
(ii) {u′,v} ∈ E does not cross any edge ofG.

Proof. (i) From Lemma 4 and Lemma 5,{u′,v} ∈ E. Therefore,v is not a leaf inT .
Hence, ifu is a leaf ofT , then from Lemma 5,{u,v} may be only the crossing line of a
Tie(u′′;v′′,u,v) as depicted in Figure 10a. On the other hand,v may be the tip of another
Tie(v;u,u′′,v′′) as depicted in Figure 10b. However, in that caseu is not a leaf ofT .

(ii) Assume by contradiction that{u′,v} crosses a SNN edge(x,y) ∈ E ′ wherex is a
leaf ofT . Therefore, from Lemma 4 they form aTie(u′;v,x,y) where{x,v} ∈ E sinceu′

is a leaf. Observe that(x,y) also crosses(u′,v′) otherwise(u′,v′) would not be the SNN
edge. Therefore, from Lemma 5 either{v,x} ∈ E or {u′,y} ∈ E. This is a contradiction
sinceu′ andx are leaves ofT .

u
v

u
′

v
′

u
′′

v
′′

(a) Tie(u;v,u′,v′) and
Tie(u′′;v′′,u,v).

u v

u
′

v
′

u
′′

v
′′

(b) Tie(u;v,u′,v′) and
Tie(v;u,u′′,v′′)

Fig. 10:{u,v} is in at most twoTies (Solid lines are edges ofT and dashed arrow lines
are SNN edges.)

The proof is constructive. In every step we remove at least one crossing ofG by
replacing edges ofE ′. First, we remove allTies.

Let Tie(u;v,u′,v′) be aTie of G whereu′ is a leaf ofT . Observe that from Lemma
2, there is no leafr of T such that either(r,v) crosses{u′,v′} or (r,v′) crosses{u,v}.
According to Claim, three cases can occur:



1. {u,v} does not form anotherTie. From Lemma 4 and Lemma 5,△(uvu′) is either
empty or it has exactly one vertexw such that{w,u} ∈ E. If △(uvu′) is empty, let
E ′ = E ′∪{{u,u′}} \ {{u′,v′}}. Otherwise, letE ′ = E ′∪{{w,u′}} \ {{u′,v′)}; see
Figure 11. From Lemma 3,d(u,u′)≤

√
2. Therefore the length of the new edge is

bounded by
√

2. Since{u,v} and{v,u′} do not cross, the new edge does not cross
any edge ofG.

u v

u
′

v
′

w

Fig. 11:{u,v} is in oneTie (Dotted lines are removed edges and dashed lines are pos-
sible new edges.)

2. {u,v} forms aTie(v;u,u′′,v′′) whereu′′ is a leaf ofT . Observe that in this case
u and v are not leaves ofT . Therefore, from Lemma 4 the quadranglesuu′vv′

and vu′′uv′′ are empty. We consider two cases. In the first case{u,u′} does not
cross{u′′,v}. Let, E ′ = E ′ ∪{{u,u′},{u′′,v}} \ {{u′,v′},{u′′,v′′}} as depicted in
Figure 12a. From Lemma 3, the new edges are bounded by

√
2. In the second

case{u,u′} crosses{u′′,v}; see Figure 12b. Consider the quadrangleuvu′u′′. If
it is empty, letE ′ = E ′ ∪ {{u′,u′′}} \ {{u′,v′},{u′′,v′′}}. Otherwise, letp andq
be the vertices inuvu′u′′ such that∠(uu′′p) and∠(vu′q) are minimum. LetE ′ =
E ′ ∪ {{u′,q},{u′′,q}} \ {{u′,v′},{u′′,v′′}}. From Lemma 7,d(u′,u′′) ≤ 2 since
∠(u′′uv) ≤ 2π/3. Observe thatp does not have a neighbor in the same half-space
determined by{u′′, p} as u because∠(uu′′p) is minimum. Similarly,q does not
have a neighbor in the same half-space determined by{u′,q} asv because∠(vu′q)
is minimum. Since,{v,u′} and{u,u′′} do not cross any other edge and{u,v} only
formsTie(u;v,u′,v′) andTie(v;u,u′′,v′′), the new edges do not cross any edge of
G.

3. {u,v} forms aTie(u′′;v′′,u,v). {u,v} forms aTie(u′′;v′′,u,v). Observe that in this
caseu is a leaf ofT . Assume without loss of generality that{u′′,v} crosses{u,u′}.
Consider the quadrangleu′′uvu′. If it is empty, then letE ′ = E ′ ∪ {{u′,u′′}} \
{{u′,v′}}. Otherwise, letp be the vertex inu′′uvu′ such that∠(vu′p) is mini-
mum. Let E ′ = E ′ ∪ {{u′, p}} \ {{u′,v′}}. From Lemma 7,d(u′,u′′) ≤ 2 since
∠(u′′uv) ≤ 2π/3. Observe that all the neighbors ofp are in the same half-plane
determined by{u′, p}. It is not difficult to see that the new edge does not cross any
edge ofG since the regionu′′uvu′ is close.
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(a){u,v} is in oneTie.
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(b) {u,v} is in two Ties

Fig. 12:{u,v} crosses at least one edge ofG (Dotted lines are removed edges and dashed
lines are possible new edges.)

After removing theTies we remove theBows. Consider aBow(u,v,u′,v′) whereu
andu′ are leaves ofT . Let E ′ = E ′∪{{u,u′′}} \ {{u,v},{u′,v′}}. Clearly,d(u,u′) ≤ 2
and{u,u′′} does not cross any edge ofG.

The pseudocode is presented in Algorithm 1. Regarding the complexity, the Nearest
Neighbor Graph ofU(P,1) can be constructed inO(n logn). A range tree can be also
constructed inO(n logn) where each query of proximity neighbors takesO(logn). The
removal of a crossing can be done in timeO(logn) and there exist at most 2n Ties since
each leaf ofT can form at most twoTies. Therefore, the whole construction can be
done inO(n logn) since there are at mostO(n) crossings. This complete the proof.⊓⊔

4 2-Edge Connected Geometric Planar Subgraphs of a UDG of
Minimum Degree 2

In this section we prove that ifU(P,1) is connected and has minimum degree 2, then
U(P,

√
5) always contains a 2-edge connected planar spanning subgraph. We also show

that the radius
√

5 is best possible. Therefore in this section we assumeU(P,1) is con-
nected and has minimum degree 2.

The following theorem shows that the bound
√

5 is best possible.

Theorem 3. For any real ε > 0 and any integer n ≥ 8, there exists a set P of n points in
the plane so that U(P,1) is connected and has minimum degree 2 but U(P,

√
5− ε) has

no geometric planar 2-edge connected spanning subgraph.

Proof. Consider the componentC despited in Figure 13. The vertexx is called the entry
point and has the following properties:d(x) = 1, d(v,x) ≥

√
5 and{u2,x} crossesC.

Observe thatC requires at least one of the edges{u1,w},{u2,w} be included so that
the edge{v,w} is in a 2-edge connected geometric planar spanning subgraph. We may
assume without loss of generality that the edgeu1w is added. Observe, that for any
arbitrarily smallε > 0, there existsδ > 0 sufficiently close to zero such that

√
5−

d(u1,w) ≤ ε. Observe thatC \ x has minimum degree two and the lower bound holds.
We can construct a family of UDGs withn> 8 vertices and minimum degree two having
the same lower bound by connecting the entry pointx to distinct UDG components. ⊓⊔



Algorithm 1: Geometric planar subgraph of minimum degree 2 and longest edge
length bounded by 2.

input : U(P,1) with minimum degree 2.
output: G: Geometric Planar spanning subgraph ofU(P,2) of minimum degree 2 and

longest edge length bounded by 2.
1 Let T = (P,E) be the Nearest Neighbor Graph ofU(P,1).
2 Let E ′ be the set of SNN directed edges from leaves ofT .
3 Let G = (P,E ∪E ′).
4 foreach edge {u,v} in G that forms a Tie(u;v,u′,v′) do
5 if {u,v} does not form another Tie then
6 if △(uvu′) is empty then Let E ′ = E ′∪{{u,u′}}\{{u′ ,v′}}.
7 else
8 Let w ∈△(uvu′) such that{u,w} ∈ E.
9 Let E ′ = E ′ ∪{{w,u′}}\{{u′ ,v′}}.

10 end
11 end
12 if {u,v} forms a Tie(v; ,u,u′′,v′′) where u′′ is a leaf of T then
13 if {u,u′} crosses {u′′,v} then Let

E ′ = E ′∪{{u,u′},{u′′,v}}\{{u′ ,v′},{u′′,v′′}}.
14 else ifthe quadrangle (uvu′u′′) is empty then Let

E ′ = E ′∪{{u′,u′′}}\{{u′ ,v′},{u′′,v′′}}.
15 else
16 Let p andq be the points in the quadrangle(uvu′u′′) such that∠(uu′′p) and

∠(qu′v) are minimum.
17 Let E ′ = E ′ ∪{{u′, p},{q,u′}}\{{u′ ,v′},{u′′,v′′}}.
18 end
19 end
20 if {u,v} forms a Tie(u′′;v′′,u,v) then
21 if the quadrangle (uvu′u′′) is empty then
22 Let E ′ = E ′ ∪{{u′,u′′}}\{{u′ ,v′}}.
23 if u′′ is a leaf of T then Let E ′ = E ′ \{{u′′,v′′}}.
24 end
25 else
26 Let p be the point in the quadrangle(uvu′u′′) such that∠(uu′′p) is minimum.
27 Let E ′ = E ′ ∪{{u′′, p}}\{{u′ ,v′}}.
28 end
29 end
30 end
31 foreach edge {u,v} in G that forms a Bow(u,v,u′,v′) do
32 Let E ′ = E ′ ∪{u,u′}\{{u,v},{u′ ,v′}}
33 end

Theorem 4. Let P be a set of n points in the plane in general position such that U(P,1)
is connected and has minimum degree 2. Then U(P,

√
5) has a 2-edge connected geo-

metric planar spanning subgraph. Further, it can be constructed in time O(n logn).
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Fig. 13: UDG Component with minimum degree 2 that requires scaling factor of
√

5.

Proof. Let T = (P,E) be a minimum spanning tree (MST) ofU(P,1). Properly color
the internal vertices ofT with two colors, say black and red, and then color leaves
with green. Recall that a properk-coloring is an assignment of one color amongk
to vertices in such a way that vertices of the same color are never adjacent. LetG =
(P,E∪E ′) be the spanning planar subgraph ofU(P,2) (which is a subgraph ofU(P,

√
5))

with minimum degree 2 obtained by Theorem 2. Choose a chromatic class, say black.
Consider a black vertexu and its neighborv in G. It is not difficult to see that if{u,v} ∈
E ′, thenv is green, i.e. a leaf inT , and eitheru was the tip of aTie(u,u′,v,v′) and
d(u,v) ≤

√
2 or all the neighbors ofu in T are in the same half-plane determined by

{u,v}.
Suppose that{u,v} ∈ E is a bridge ofG. Consider the immediate edge{u,w} of

{u,v} such that∠wuv < π with the preference to edges inE and then edges inE ′. We
will add a new edge (for each such bridge) intoG and make sure these new edges do not
add any crossings. The set of added edges will beE ′′ which is empty at the beginning.

– {u,w} ∈ E. Let E ′′ = E ′′∪{{v,w}}. Obviouslyd(u,w)≤ 2.
– {u,w} ∈ E ′. Observe that this corresponds to aTie(u,u′,w,w′) as depicted in Fig-

ure 14. We consider two cases: If△(uvw) is empty, then letE ′′ = E ′′ ∪{{v,w}}.
Otherwise, letp andq be the points such that∠(pvu) and∠(qwu) are minimum.
Let E ′′ =E ′′∪{{v, p},{q,w}}. Sinceu is the tip of aTie(u,u′,v,v′), from Lemma 7,
d(w,v)≤

√
5.

Observe that every vertex ofG = (P,E ∪E ′∪E ′′) is in at least one cycle. Therefore,
it is two edge connected. The pseudocode is presented in Algorithm 2. Regarding to
the complexity, each new edge can be added in timeO(logn). Therefore, the whole
construction can be completed in timeO(n logn). ⊓⊔

5 2-Edge Connected Planar Subgraphs of a 2-Edge Connected
UDG

In this section we prove that ifU(P,1) is 2-edge connected, thenU(P,2) always contains
a 2-edge connected geometric planar spanning subgraph. We also show that the radius
2 is best possible. Therefore in this section we assumeU(P,1) is 2-edge connected.
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Fig. 14:∠(wuv)< π and{u,v′} ∈ E ′.

Algorithm 2: Constructing a 2-Edge Connected Planar Graph with longest edge
length

√
5

input : Connected UDG with minimum degree 2.
output: G: 2-Edge Connected Planar Graph with longest edge length bounded by

√
5.

1 Let G = (P,E ∪E ′) be the connected planar graph of minimum degree 2 obtained from
Algorithm 1.

2 Color internal vertices ofT = (P,E) with black and red.
3 foreach Bridge {u,v} ∈ E of G do
4 Let u be a black vertex.
5 Let {u,w} be the immediate of{u,v} such that∠vwu < π with the preference to

edges inE and then edges inE ′.
6 if △(uvw) is empty then Let E ′ = E ′ ∪{{v,w}}.
7 else
8 Let p andq be the points in△(uvw) such that∠(uvp) and∠(qwu) are minimum.
9 Let E ′ = E ′ ∪{{v, p},{q,w}}.

10 end
11 end

The following theorem shows that the bound 2 is best possible.

Theorem 5. For any real ε > 0 and any integer k, there exists a set R of n = 3k+1
points in the plane so that U(P,1) is 2-edge connected but U(R,2− ε) has no planar
2-edge connected spanning subgraph.

Proof. The construction is based on the component depicted in Figure 15a. Observe
that the component is the same as the component of the lower bound of planar graphs
with minimum degree two. Clearly, it requires{u,v} to create a 2-edge connected planar
graph. A UDG withk components can be created by forming a convex path as depicted
in Figure 15b. It is not difficult to see that the lower bound also holds for this UDG with
1+3k vertices. ⊓⊔

We say that a vertexv of a graphG is Arduous if v has degree two, is not in a cycle,
and the angle that it forms with its consecutive neighbors isgreater than 5π/6. Thus,
we have the following Corollary to Theorem 3.
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Fig. 15: Two-edge connected UDG with 1+3k vertices that requires scaling factor of 2.

Corollary 1. Let P be a set of n points in the plane in general position such that U(P,1)
is connected and has minimum degree 2. Let T = (P,E) be an MST of U(P,1). Consider
a (proper) 2-coloring of vertices of T with colors black and red. If U(P,1) does not have
either black or red Arduous vertices, then U(P,2) has an underlying 2-edge connected
geometric planar graph.

Proof. Let G=(P,E∪E ′) be the 2-edge connected geometric planar spanning subgraph
obtained by Theorem 5. Assume thatT does not have blackArduous vertices. For the
sake of contradiction assume thatG has an edge{v,w} ∈ E ′ such thatd(v,w) > 2.
Let u be the black vertex ofT that added{v,w} to G. Observe thatu was the tip of a
Tie(u;u′,w,w′} wherew is a leaf and the angle thatu forms with u′ andw is greater
than 5π/6. However,T does not have blackArduous vertices. This contradicts the as-
sumption. ⊓⊔

First we prove that ifU(P,1) is 2-vertex connected, thenU(P,2) has a spanning
2-edge connected geometric planar subgraph. Then we prove the same from 2-edge
connectivity ofU(P,1).

Theorem 6. Let P be a set of n points in the plane in general position such that U(P,1)
is 2-vertex connected. Then U(P,2) has a spanning geometric planar 2-edge connected
subgraph.

Proof. Let T = (P,E) be an MST ofU(P,1). Consider a (proper) 2-coloring of internals
vertices ofT with red and black colors, and assign green to leaves. Chooseany color
class, say black. IfT does not have blackArduous vertices, then by Corollary 1,U(P,2)
has an underlying 2-edge connected planar graph. Thus, assume thatT has at least one
black Arduous vertex. We will add edges toE ′ in a greedy manner to obtain a graph
G = (P,E ∪E ′) that does not have blackArduous vertices.

Consider a blackArduous vertexv of G. Let G1 andG2 be the connected compo-
nents ofT \ v and{u,w} be a shortest edge inU(P,1) that connectsG1 andG2. Since
U(P,1) is 2-vertex connected,{u,w} always exists. Assume thatu ∈ G1 andw ∈ G2.
Observe that every vertex inD(u,d(u,w)) is in G1 and every vertex inD(w,d(u,w)) is
in G2, otherwise{u,w} is not shortest. Therefore,D(u,d(u,w))∩D(w,d(u,w)) either
is empty or containsv.

We will show that{u,w} does not cross an edge ofE. For the sake of contradiction
assume that{u,w} crosses an edge{u′,w′} ∈ E. Let R = D(u,d(u,w))∩D(w,d(u,w)).
Consider first the case whenu′ and w′ are not inR. Therefore, either∠(u′uw) or



∠(uwu′) is the largest angle in△(uwu′). Similarly, either∠(wuw′) or ∠(w′wu) is the
largest angle in△(uww′). Observe that if∠(u′uw) and∠(wuw′) are the largest angles,
then there exists a cycleu′w′u whered(u′,w′) is the longest edge length. Therefore,
{u′,w′} is not inT . Thus, assume that∠(u′uw) and∠(w′wu) are the largest angles in
the respective triangles as depicted in Figure 16a. Hence,d(u′,w′)> d(u,w). Therefore
d(u′,u) ≤ d(u,w) and similarlyd(w′,w) ≤ d(u,w). This is a contradiction since there
is a cycleuww′u′u whered(u′,w′) is the largest edge length. Now consider the case
when at least one vertex ofu′ or w′ is in R, sayw′. Therefore,v = w′. However,v is also
incident tou andw. This contradicts the assumption sinced(v) = 2.

Now we will prove that if{u,w} crosses and edge{u′,w′} ∈ E ′, then{u′,w′} can
be removed fromE ′ without increasing the number of blackArduous vertices inG. As-
sume without loss of generality thatu′ andw′ are inG1 as depicted in Figure 16b, other-
wise,v would not be anArduous vertex. Therefore,d(u,w) ≤ max(d(u′,w),d(w,w′)).
Consider the previous step where{u′,w′} was added fromG′. Let v′ be the black
Arduous vertex of G′ andG ′1 andG ′2 be the components ofG′ \ v′. Hence,w was
in eitherG ′1 or G ′2 and eitherd(u′,w′) ≤ d(u′,w) or d(u′,w′) ≤ d(w′,w). Therefore,
they form aTie(w;u,u′,w′) whereu ∈ D(u′;d(u′,w′))∩D(w′;d(u′,w′)). Hence,u = v′.
Thus, if {u,w} crosses an edge{u′,w′} ∈ E ′, then letE ′ = E ′∪{{u,w}} \ {{u′,w′}}.
Otherwise, letE ′ = E ′ ∪ {{u,w}}. Observe that any immediate neighbor{u,x} and
{w,y} of {u,w} wherex,y /∈ D(u;d(u,w))∩D(w;d(u,w)) form an angle of at least
π/3.

u
w

u
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w
′

(a) {u,w} does not
cross any edge ofT .

u = v
′

w

u
′

w
′

v

(b) If {u,w} ∈ E ′ crosses
an edge{u′,w′} ∈ E ′, then
{u′,w′} can be removed.

Fig. 16: Removal of blackArduous vertices.

ClearlyG = (P,E ∪E ′) is planar and does not have blackArduous vertices. LetE ′′

be the set of SNN edges ofG.

Claim. Let (u,v) ∈ E ′′ be an edge that crosses an edge{u′,v′} ∈ E ′.
(i) If {u,u′},{u,v′} /∈ E, then{u′,v′} can be removed fromE ′ without increasing the
number of blackArduous vertices.
(ii) If {u,u′},{v,v′} ∈ E, then{u′,v′} can be removed fromE ′ without increasing the
number of blackArduous vertices.
(iii) If {u,u′} ∈ E and{v,v′} /∈ E, then they form aTie(v′;u′,u,v).



Proof (Claim). Consider the step where{u′,v′} was added fromG′. Let w′ be the black
Arduous vertex ofG′ and letG ′1 andG ′2 be the components resulting fromG′ \w′.
Further, letu′ ∈ G ′1 andv′ ∈ G ′2. Now we prove each case separately.

(i) Clearly d(u,v)≤ min(d(u,u′),d(u,v′)) sincev is the second nearest neighbor of
u. Assume without loss of generality thatu ∈ G ′1. Therefore,d(u′,v′) < d(u,v′) and
they form aTie(u;v,u′,v′). However,v ∈ D(u′;d(u′,v′))∩D(v′;d(u′,v′)) which means
that w′ = v. Thus, we can remove{u′,v′} from E ′ without increasing the number of
blackArduous vertices inG; see Figure 17a.

(ii) First consider that{u′,v} /∈ E. Therefore,d(u′,v′) < d(u′,v) sincev is in the
same component asv′. Observe that∠(uu′v′) and∠(u′v′v) are the largest angles in the
triangles△(uu′v′) and△(u′v′v) respectively. However, sinced(u′,v) ≥ d(u′,v′) and
∠(uu′v) > ∠(uu′v′), d(u,v′) ≤ d(u,v). This contradicts the assumption. Now consider
that{u′,v} ∈ E, thenvu′v′ form a cycle where{u′,v′} is the longest edge otherwiseT is
not minimum. Therefore,v ∈ D(u′;d(u′,v′))∩D(v′;d(u′,v′)) andw′ = v. Thus, we can
remove{u′,v′} from E ′ without increasing the number of blackArduous vertices inG.

(iii) First we will prove thatv ∈ G ′1. Assume by contradiction thatv is in G ′2.
Similarly to the previous case,d(u′,v′) < d(u′,v). Thus,∠(uu′v′) and∠(u′v′v) are
the largest angles in the triangles△(uu′v′) and△(u′v′v) respectively. However, since
d(u′,v)> d(u′,v′) and∠(uu′v)>∠(uu′v′), d(u,v′)≤ d(u,v). Therefore,u,v ∈ G ′1 and
d(u′,v′) ≤ min(d(v′,u),d(v′,v)). Hence, they form aTie(v′;u′,u,v) sinced(u,v′) >
d(u,v).

u v = w
′

u
′

v
′

(a) If {u,u′},{u,v′} /∈ E, then
{u′,v′} can be removed from
E ′.
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(b) If
{u,u′},{v,v′} ∈ E,
then{u′,v′} can be
removed fromE ′.

Fig. 17: Removal of black Arduous vertices.

Observe that the crossings between edges inE ′′ and edges inE∪E ′ are equivalent to
crossings between edges inE ′′ andE. That is, they formTies where leaves are endpoints
of crossing lines. Thus, we can obtain a geometric planar graph ofG = (P,E ∪E ′∪E ′′)
with minimum degree two from Theorem 2. It remains to add eachbridge ofG into at
least one cycle. Letv be a black vertex ofG incident to a bridge{u,v} ∈ E and{w,v}
be an edge such that∠(uvw)< π with the preference to edges inE, then inE ′ and then
in E ′′. We have three cases:

– {w,v} ∈ E. Let E ′′ = E ′′∪{{u,w}}. Clearly,d(u,w)≤ 2.



– {w,v} ∈ E ′. We consider two cases. First assume thatw is red. LetE ′′ = E ′′ ∪
{{u,w}}. d(u,w)≤ 2. Now assume thatw is black. ClearlydG(v)≥ 3 anddG(w)≥
3. Observe that since{w,v} ∈ E ′ andv is an internal black vertex ofT , there exits
a neighborw′ of v such that∠(uvw′) < π and{u,w′} crosses{v,w}. Therefore,
∠(wvu) ≤ 2π/3. Let u′ be the first neighbor ofw such thatu′wvu form a convex
path; see Figure 18. If eitheru′ does not exist or{u′,w} ∈ E ′ or {u′,w} ∈ E ′′, then
let E ′′ =E ′′∪{{w,u}}. Otherwise,{u′,w}∈E. Similarly, since{w,v}∈E ′ andw is
an internal black vertex ofT , there exits a neighborv′ of w such that∠(u′wv′)< π
and{u′,v′} crosses{w,v}. Therefore,∠(u′wv) ≤ 2π/3. If the quadrangleuvwu′

is empty, then letE ′′ = E ′′ ∪{{u,u′}}. Otherwise, letp andq be the points such
that∠(pu′w) and∠(quv) are minimum. LetE ′′ = E ′′ ∪{{u′, p},{q,u}}. It is not
difficult to see thatd(u,u′)≤ 2. To see this, consider the right trianglesauv andu′bw
wherea andb are the points in{u′,u} such that∠(vau) = π/2 and∠(u′bw) = π/2.
From the Law of sinesd(a,u)≤ 1/2,d(u′,b)= 1/2 andd(p,q) = 1 since∠(avu)≤
π/6 and∠(u′wb)≤ π/6.
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Fig. 18:{w,v} ∈ E ′ andw is black.

– {w,v} ∈ E ′′. We consider two cases: If△(uvw) is empty, then letE ′′ = E ′′ ∪
{{u,w}}. Otherwise, letp andq be the points such that∠(puv) and∠(qwv) are
minimum. LetE ′′ = E ′′ ∪ {{u, p},{q,w}}. Sincev is the tip of aTie(v,v′,w,w′)
and∠(v′vu)≤ 5π/6, from Lemma 7,d(u,w)≤ 2.

The pseudocode is presented in Algorithm 3. Regarding the time complexity, the
dominating step is the removal ofArduous vertices and can be implemented in time
O(n2). That is, given anArduous vertex, determine the componentsG1,G2 of G \ v in
O(n) time and look for the shortest edge length{u,w} of U(P,1) not in G such that
u ∈ G1 andw ∈ G2 in O(n) time. Therefore, the construction can be done inO(n2) time.

⊓⊔

Theorem 7. Let P be a set of n points in the plane in general position such that U(P,1)
is 2-edge connected. Then U(P,2) has a spanning geometric planar 2-edge connected
subgraph.

Proof. Consider the subsetsPi of P such thatU(Pi,1) is 2-vertex connected. Using
Theorem 6, we can construct a spanning 2-edge connected geometric planar subgraph



Algorithm 3: Geometric planar 2-Edge connected subgraph with longest edge
length bounded by 2

input : 2-vertex connectedU(P,1).
output: G: Geometric planar 2-edge connected planar subgraph ofU(P,2)with longest

edge length bounded by 2.
1 Let T = (P,E) be a MST ofU(P,1), E ′ = /0 andG = (P,E ∪E ′).
2 Color the internal vertices ofT with black and red colors.
3 Let A be the set of blackArduous vertices ofT .
4 Let G = (P,E ∪E ′).
5 while A is empty do
6 Let v be a vertex ofA andG1,G2 be the components ofG\v.
7 Let {u,w} be the shortest edge such thatu ∈ G1 andw ∈ G2
8 if {u,w} crosses an edge {u′,w′} ∈ E ′ then Let E ′ = E ′ ∪{{u,w}}\{{u′ ,w′}}. else

Let E ′ = E ′ ∪{{u,w}}. Remove the vertices ofA that are in cycles or have degree at
least three inG.

9 end
10 Let E ′′ be the SNN edges ofG andG = (P,E ∪E ′ ∪E ′′) be the connected geometric

planar graph of minimum degree 2 obtained from Algorithm 1.
11 foreach Black vertex u ∈ T do
12 Let v be a black vertex and{v,u} be a bridge ofG.
13 Let {v,w} be the consecutive edge such that∠(wvu)< π and given the following

priority E, E ′, E ′′.
14 if {v,w} ∈ E then Let E ′ = E ′′ ∪{{u,w}}.
15 if {v,w} ∈ E ′ then if w is red then Let E ′ = E ′′∪{{u,w}}.
16 if w is black then
17 Let u′ be the first neighbor ofw such thatu′wvu form a convex path.
18 if u′ does not exist or {w,u′} ∈ E ′ or {w,u′} ∈ E ′′ then Let E ′ = E ′′ ∪{{u,w}}.
19 else
20 if The quadrangle u′wvu is empty then Let E ′ = E ′′∪{{u,u′}}.
21 else
22 Let p andq be the points inu′wvu such that∠(pu′w) and∠(quv) are

minimum;
23 Let E ′ = E ′′∪{{u′, p},{q,u}}.
24 end
25 end
26 end
27 if {v,w} ∈ E ′′ then if △(uvw) is empty then Let E ′ = E ′ ∪{{u,w}}.
28 else
29 Let p andq be the points in△(uvw) such that∠(vwp) and∠(quv) are minimum.
30 Let E ′ = E ′ ∪{{w, p},{q,u}}.
31 end
32 end

Gi of U(Pi,2) since eachU(Pi,2) has at least three vertices. It is not difficult to see that
⋃

Gi is 2-edge connected and planar. ⊓⊔



6 UDG of High Connectivity without 2-Edge Connected
Geometric Planar Subgraphs

One may ask: for whichk > 1, ak-edge (ork-vertex) connectedU(P,1) with n points
has a spanning 2-edge connected geometric planar subgraph?We will show that even
for k ∈ O(

√
n) this is not always true.

Theorem 8. There exist a set P of n points in the plane so that U(P,1) is k-vertex con-
nected, k ∈ O(

√
n), but U(P,17/16) does not contain any 2-edge connected geometric

planar spanning subgraph.

Proof. Assumek = 2m. Consider theCk and the wire components depicted in Fig-
ure 19a and Figure 19b with 2k+2 vertices and 2k vertices respectively. It is easy to see
thatCk is a valid two-vertex connected UDGs and the wire is a validk-vertex connected
UDGs. Observe thatCk does not have a 2-edge connected planar subgraph since the
inclusion of{u1,u′k} and{u′1,uk} leavesv′ andv with degree one respectively. Hence,
we call v andv′ the isolated vertices ofCk. Observe that we can embedCk in such a
way that the distancesd(v,uk),d(uk,uk−1),d(u2,u1) andd(v′,u′k),d(u

′
k,u

′
k−1),d(u

′
2,u

′
1)

are 1
4 − ε. Hence,d(u′1,v) = d(u′1,u2) = d(u1,v′) = d(u1,u′2) = 17/16−δ. LetCk

i bem
consecutiveCk components in such a way that they are at distance greater than 17/16
from each other. We can connect the upper and lower part ofCk

i with Ck
i+1 with a con-

stant number of wires, i.e. creatingk independent paths that connect the upper and the
lower part ofCk

i andCk
i+1 in such a way that the isolated vertices of eachCk

i are far from
the wires as depicted in Figure 19a. It is easy to see that the resulting graph isk-vertex
connected and hasO(k2) vertices.

u1

u2
uk

u
′

1
u
′

2 u
′

k

v
′

v

(a)Ck component.

uku1

u
′

k
u
′

1

(b) Wire. (c) Upper connection between
Ck

i andCk
i+1.

Fig. 19:k-vertex connected UDG that does not have 2-edge connected planar subgraph.

⊓⊔



7 Conclusion

In this paper, we have shown that for any given point setP in the plane forming a 2-edge
connected unit disk graph, the geometric graphU(P,2) contains a 2-edge connected
geometric planar graph that spansP. It is an open problem to determine necessary and
sufficient conditions for constructingk-vertex (ork-edge) connected planar straight line
edge graphs with bounded edge length on a set of points for 3≤ k ≤ 4.
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