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Abstract

We present results of computer experiments, which indicate that
several RNAs for which the native state (minimum free energy sec-
ondary structure) is functionally important (tRNAs, type III hammer-
head ribozymes, selenocysteine insertion sequences, signal recognition
particle RNAs, small nucleolar spliceosomal RNAs) all have lower fold-
ing energy than random RNAs of the same length and dinucleotide
frequency. Additionally we find that whole mRNA as well as 5′ UTR,
3′ UTR, and cds regions of mRNA have folding energies compara-
ble to that of random RNA, although there may be a statistically
insignificant trace signal in 3′ UTR and cds regions. Various authors
have used nucleotide (approximate) pattern matching and the compu-
tation of minimum free energy as filters to detect potential RNAs in
ESTs and genomes. We introduce a new concept of asymptotic Z-score
and describe a fast, whole-genome, scanning algorithm to compute
asymptotic minimum free energy Z-scores of moving window contents.
Asymptotic Z-score computations offer another filter, to be used along
with nucleotide pattern matching and minimum free energy compu-
tations, to detect potential functional RNAs in ESTs and genomic
regions.

1 Introduction

In [Le et al., 1990b] it was shown that RNA stem-loop structures situated 3′

to frameshift sites of retroviral gag-pol and pro-pol regions of several viruses

(human immunodeficiency virus HIV-1, Rous sarcoma virus RSV, etc.) are

thermodynamically stable and recognizable among positions 300 nucleotides

upstream and downstream of the frameshift site. Using Zuker’s algorithm1

(see [Zuker and Stiegler, 1981, Zuker, 2003, Mathews et al., 2000]) to com-

pute the minimum free energy (mfe) secondary structure for RNA, [Le et al.,

1990a] showed that certain RNAs have lower folding energy (i.e. minimum

free energy of predicted secondary structure) than random RNA of the same

1Zuker’s algorithm was first implemented in Zuker’s mfold, subsequently in Hofacker
et al.’s Vienna RNA Package RNAfold, and most recently in Mathews’ and Turner’s
RNAstructure.
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mononucleotide (or compositional) frequency. This was measured by per-

forming permutations (i.e. mononucleotide shuffles) of nucleotide positions,

subsequently computing the Z-score2 of the minimum free energy (mfe) of

real versus random RNA – see the Section on Materials and Methods for

details.

In [Seffens and Digby, 1999], it was shown that folding energy of mRNA

is lower than that of random RNA of the same mononucleotide frequency,

as measured by Z-score of the mfe secondary structure of mRNA versus

mononucleotide shuffles of mRNA. In [Rivas and Eddy, 2000], a moving

window, whole genome scanning algorithm was developed to compute Z-

scores of windows of a genome with respect to mononucleotide shuffles of the

window contents. By constructing artificial data with samples of real RNA

(RNase-P RNA, T5 tRNA, soy bean SSU, etc.) planted in the center of a

background sequence of random RNA of the same compositional frequency,3

Rivas and Eddy found that the planted RNA had a low Z-score, as expected;

however, other regions of the artificial data displayed low Z-scores as well,

and by considering p-values for an assumed extreme value distribution, Rivas

and Eddy subsequently argued that determining Z-scores of genomic window

contents is statistically not reliable enough to allow one to construct an RNA

gene finder on this basis.4

2The Z-score of x (with respect to a histogram or probability distribution) is the number
of standard deviation units to the left or right of the mean for the position where x lies;
i.e. x−µ

σ
.

3See Figures 4-11 of [Rivas and Eddy, 2000].
4Figures 12 and 13 of [Rivas and Eddy, 2000] are similar to some of the graphs presented

in this paper; however, unlike our work, [Rivas and Eddy, 2000] use mononucleotide
shuffles to produce random sequences. As previously observed in [Workman and Krogh,
1999] when computing Z-scores for minimum free energies of RNA, it is important to
generate random sequences which preserve dinucleotide frequency of the given RNA. Our
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In [Workman and Krogh, 1999] it was noted that Zuker’s algorithm

[Zuker and Stiegler, 1981] computes secondary structure minimum free en-

ergy (mfe) by adding contributions of negative (stabilizing) energy terms

for stacked base pairs and positive (destabilizing) energy terms for hairpin

loops, bulges, internal loops and multiloops. In Zuker’s algorithm, experi-

mentally determined stacked base pair energies and loop energies for various

lengths of hairpin, bulge and internal loop are used, as determined by D.

Turner’s lab (see [Matthews et al., 1999]). The energy term contributed by

a base pair depends on the base pair (if any) upon which it is stacks; for

instance, Turner’s current rules [Xia et al., 1999] at 37 degrees Celsius assign

stacking free energy of −2.24 kcal/mol to
5′-AC-3′

3′-UG-5′
of −3.26 kcal/mol to

5′-CC-3′

3′-GG-5′
and of −2.08 kcal/mol to

5′-AG-3′

3′-UC-5′
. For this reason, Workman

and Krogh argued that random RNA must be generated with the same dinu-

cleotide frequency, for any valid conclusions to be drawn. Their experiments

using mfold indicated that, in contrast to the earlier mentioned results of

[Seffens and Digby, 1999], mRNA does not have any statistically significant

lower mfe than random RNA of the same dinucleotide frequency. This is

consistent with the notion that mRNA exists in an ensemble of low energy

states, lacking any functional structure. Workman and Krogh additionally

considered a small sample of five rRNAs and five tRNAs; for the latter they

stated that: “Surprisingly, the tRNAs do not show a very clear difference

between the native sequence and dinucleotide shuffled, and one of the native

sequences even has a higher energy than the average of the shuffled ones”

work presents a careful analysis of a large class of RNAs using the dinucleotide shuffling
Algorithm 4.
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[Workman and Krogh, 1999].

In this paper, we use Zuker’s algorithm as implemented in version 1.5

of Vienna RNA Package RNAfold,

http://www.tbi.univie.ac.at/~ivo/RNA/.

to compute minimum free energy for RNA sequences, and analyze the follow-

ing RNA classes: tRNA, hammerhead type III ribozymes, SECIS5 elements,

U1 and U2 small nuclear RNA (snRNA) components of the spliceosome,

signal recognition particle RNA (srpRNA), entire mRNA, as well as the 3′

UTR,6 5′ UTR, and coding sequence (cds) of mRNA. Structural RNAs were

chosen using information from the Rfam database [Griffiths-Jones et al.,

2003] and the SCOR (Structural Classification Of RNA) database [Kloster-

man et al., 2002]. While [Workman and Krogh, 1999] use a heuristic to

perform dinucleotide shuffle, their heuristic is not guaranteed to correctly

sample random RNAs having a given number of dinucleotides, and so we

have implemented the provably correct procedure of [Altschul and Erikson,

1985]. We provide both Python source code as well as a web server for our

implementation of the Altschul-Erikson algorithm7 – see

http://clavius.bc.edu/~clotelab/.

The work of the present paper validates the conclusion of [Workman and

Krogh, 1999] concerning mRNA. Concerning their conclusion about tRNA,

5SECIS abbreviates ‘selenocysteine insertion sequence’, a small (30-45 nt.) portion of
the 3′ UTR which forms a stem loop structure necessary for the UGA stop codon to be
retranslated to allow selenocysteine incorporation.

6UTR abbreviates ‘untranslated region’.
7After completion of this paper, we learned of the more general web server Shufflet of

[Coward, 1999].
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by using the database of 530 tRNAs [Sprinzl et al., 1998], where we gener-

ated 1000 random RNAs for each tRNA considered,8 we show that Z-scores

for tRNA are low (∼ −1.5), though not as low as certain other classes of

structural RNA (∼ −4), and that there is a statistically significant, though

moderate signal in the Z-scores of tRNA with p-value of around 0.12.

Additionally, in this paper, we introduce the novel concept of asymp-

totic Z-score, and by proving an asymptotic limit for the mean and standard

deviation of minimum free energy per nucleotide for random RNA, we in-

dicate how to perform certain precomputations which entail an enormous

speed-up when computing asymptotic Z-score for whole genome sliding win-

dow scanning algorithms. This method provides a filter, which may be used

along with (approximate) pattern matching, minimum free energy compu-

tations and other filters, when attempting to determine putative functional

RNA genes in ESTs and genomic data.

Various researchers have employed a combination of filters to determine

potential RNAs of interest. [Kryukov et al., 1999] developed the program

SECISearch, which employs PATSCAN Dsouza et al. [1997] to filter for ap-

proximate matching nucleotide sequences for SECIS elements (e.g. there is

a required AA dinucleotide in an internal loop region of the secondary struc-

ture of the SECIS element, as well as certain other nucleotide constraints).

Subsequently SECISearch uses Vienna RNA Package RNAfold to compute

free energies related to the SECIS secondary structure. [Lescure et al., 1999]

developed a filter using the tool RNAMOT [Gautheret et al., 1990, Laferriere

8Work of [Workman and Krogh, 1999] focuses on mRNA, and only at the end of their
article do they consider a small collection of 5 tRNAs, where 100 random RNAs are
generated per tRNA.
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et al., 1994] to find approximate pattern matches in human ESTs for known

SECIS stem-loop structure with certain nucleotide constraints. After exper-

imentally validating the SECIS elements found in Lescure et al. [1999], the

secondary structure of valid SECIS elements was found by chemical probing

in [Fagegaltier et al., 2000].

In [Lim et al., 2003] vertebrate micro RNA (miRNA) genes were found

by devising a computational procedure, MiRscan, to identify potential miRNA

genes. Micro RNAs Harborth et al. [2003], Tuschl [2003] are 21 nt. RNA

sequences which form a known stem-loop secondary structure, are (approx-

imately) the reverse complement of a portion of transcribed mRNA and

prevent the translation of protein product. MiRscan [Lim et al., 2003] in-

volves a moving window scan of 21 nt. regions of the genome, and by us-

ing Vienna RNA Package (C. Burge, personal communication), determines

stem-loop structures, then assigns a log-likelihood score to each window to

determine how well its attributes resemble those of certain experimentally

verified miRNAs of C. elegans and C. briggsae homologs.

Klein et al. [2002] scanned for GC-rich regions in the AT-rich genomes of

M. jannaschii and P. furiosus to determine noncoding RNA genes. Recently,

[Hofacker et al., 2004] developed a fast whole-genome version of RNAfold,

which determines the minimum free energy structure of RNA from whole

genomes, where base paired indices i, j are required to be of at most a user-

specified distance (e.g. 100 nt.).

Although [Rivas and Eddy, 2000] argued that genome scanning compu-

tations of Z-scores, where randomized window contents preserve mononu-

cleotide frequency (Algorithm 2), are not statistically significant enough to
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be used as a base for a general ncRNA gene finder, it is nevertheless possi-

ble that Z-score computations, where randomized window contents preserve

dinucleotide frequency (Algorithms 3 or 4), may be used as one of several

filters to determine RNA of interest. Such Z-score computations, especially

for large window size, are enormously time consuming. Due to a precom-

pution phase, asymptotic Z-scores, introduced in this paper, may provide a

computationally efficient filter to identify certain RNA. In all of our com-

putational experiments, asymptotic Z-scores, when compared to (classical)

Z-scores, have substantially higher signal to noise ratio,9 although at present

we have no understanding of why this is so.

2 Results

As described in detail in the section on Materials and Methods, we performed

experiments on tRNA, SECIS elements, hammerhead type III ribozymes and

other structural RNAs, as well as whole mRNA and the cds, 5′ UTR and 3′

UTR regions of mRNA. For each RNA sequence s from a given class (e.g.

tRNA), we compute the minimum free energy of s, as well as that of a large

number of random RNA having the same expected (Algorithm 3) or the same

exact (Algorithm 4) dinucleotide frequency as that of s. From this data, we

compute the Z-score (number of standard deviation units to the right or left

of the mean) for each RNA sequence, and produce histograms summarized

in Tables 1 and 2 and related Figures.

Tables 1 and 2 give details on the number of sequences, mean, standard

9Average Z-scores have value 0, while average asymptotic Z-scores are greater than
0, making a greater contrast with negative scores of functional RNA in computational
experiments.
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deviation, maximum and minimum Z-score10 for each investigated class of

RNA. For Table 1, we computed Z-scores with respect to random RNA of the

same expected dinucleotide frequency, using Algorithm 3, while in Table 2

we computed Z-scores with respect to random RNA of the same (exact) din-

ucleotide frequency using the provably correct Altschul-Erikson Algorithm

4. Since we correct an assertion of [Workman and Krogh, 1999] concerning

tRNA, we implemented their method of computing p-values and list in Table

2 the p-values for all investigated classes of RNA. As an additional test of

our assertion that structural RNA11 has lower folding energy than random

RNA of the same dinucleotide frequency (as generated by Algorithm 4), Fig-

ure 5 graphs p-scores against Z-scores for nonstructural RNA, while Figure

6 graphs p-scores against Z-scores for all structural RNAs. Note that Figure

5 is similar to Figure 2 of [Workman and Krogh, 1999], although we addi-

tionally compute separate Z-scores for 5′ UTR, 3′ UTR and cds regions of

mRNA as well as whole mRNA, and we use the Altschul-Erikson algorithm

to generate random RNA. Figure 6 furnishes additional evidence that tRNA

and other structural RNA has lower folding energy than random RNA of

the same dinucleotide frequency.

All classes of structurally important RNA, which we investigate, show

a significantly lower folding energy than random RNAs of the same dinu-

cleotide frequency, using both Algorithms 3 and 4. In contrast, for entire

mRNA, as well as in 5′ UTR, 3′ UTR and cds of mRNA, the folding energy is

10Z-score is often used as a statistical measure of deviation from the mean in units of
standard deviation. See Section on Materials and Methods for formal definition.

11By structural RNA, we mean naturally occurring classes of RNA, whose functionality
depends on the native state, where we identify the native state with the minimum free
energy secondary structure if the structure is not experimentally determined.
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approximately that of random RNA of the same (both expected and exact)

dinucleotide frequency. Figures 1 and 2 present histograms of Z-score data

for all RNA classes, where Z-scores were computed with respect to random

RNA of the same expected dinucleotide frequency as generated by Algo-

rithm 3. Figures 3 and 4 present similar histograms, differing only in that

Z-scores were computed with respect to random RNA as computed by Al-

gorithm 3 in the former and by Algorithm 4 in the latter. A web server and

Python source code for our implementation of this algorithm is available at

the previously given Clote Lab web site. In the section on Results (explained

in more detail in the section on Materials and Methods), we introduce the

new concept of asymptotic Z-score, and state a new theorem, whose proof is

given in the Appendix. This theorem postulates that for every complete set

of dinucleotide frequencies ~qxy, there exist values µ(~qxy) (asymptotic mean

minimum free energy per nucleotide) and σ(~qxy) (asymptotic standard devi-

ation of minimum free energy per nucleotide), with the following properties.

If x0, x1, x2, . . . is a sequence of random variables generated by a first order

Markov process from the dinucleotide frequencies ~qxy, then the limits

lim
n→∞

E[mfe(x0, . . . , xn)]

n
= µ(~qxy)

and

lim
n→∞

√

E[(mfe(x0, . . . , xn))2] − E[mfe(x0, . . . , xn)]

n2
= σ(~qxy)

both exist and depend only on ~qxy.

We can now pre-compute a table of values µ(~qxy) and σ(~qxy) for all com-

plete sets ~qxy of dinucleotide frequencies, where dinucleotide frequencies are

specified up to (say) two decimal places. Given RNA nucleotide sequence
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a1, . . . , an, compute the dinucleotide frequencies ~qxy of a1, . . . , an. The

asymptotic minimum free energy Z-score, defined by
mfe(a1,...,an)/n−µ(~qxy)

σ(~qxy) ,

can be computed by one application of Zuker’s algorithm with input a1, . . . , an,

together with table look-up of the pre-computed (approximations) of µ(~qxy),σ(~qxy).

Figure 7 displays both Z-scores and asymptotic Z-scores for all windows of

size 32 in the artificial genome constructed by planting RNA SECIS element

fruA in the middle of random RNA of the same expected mononucleotide

frequency. In this figure, Z-scores were computed using the Altschul-Erikson

dinucleotide shuffle Algorithm 4, and asymptotic Z-scores were computed by

Algorithm 7. Note, although we are unsure why this is the case, that there

is a greatly improved signal to noise ratio in using asymptotic Z-scores com-

pared to Z-scores.

3 Discussion

In [Seffens and Digby, 1999] it was observed that mRNA has lower folding

energy than random RNA of the same mononucleotide frequency, which

latter is obtained by permuting nucleotide positions. Later, [Workman and

Krogh, 1999] made an important observation that preserving dinucleotide

frequency is critical, because of the nature of base stacking free energies,

and that mRNA cannot be distinguished from random RNA of the same

dinucleotide frequency with respect to folding energy. Workman and Krogh

additionally asserted that it appeared, according to their limited data set of

5 tRNAs, that the same was true of tRNA.

Our computation of both Z-scores and p-scores on the much larger data

set of 530 tRNAs from the tRNA database of M. Sprinzl, K.S. Vassilenko,
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J. Emmerich, and F. Bauer, at url

http://www.staff.uni-bayreuth.de/~btc914/search/.

corrects the statement of Workman and Krogh concerning tRNA. More gen-

erally, by considering tRNAs, type III hammerhead ribozymes, SECIS se-

quences, srpRNAs, snRNAs, etc., we show that structural RNA has lower

folding energy than random RNA of the same dinucleotide frequency. Our

careful tabulation of Z-scores may prove useful in future work involving a

moving window, genome scanning algorithm, where one might attempt to

detect particular structural RNA by looking at regions whose Z-score is close

to that listed in Table 2.

It is known that tRNA has certain modified nucleotides; for example,

aspartyl tRNA from S. cerevisiae with PDB identity number 1ASY includes

two dihydrouridines, three pseudouridines, one 5-methylcytidine, and one

1-methylguanosine. For this paper, we replaced all modified nucleotides

as annotated in Sprinzl’s database by unmodified nucleotides (e.g. dihy-

drouridine is replaced by uridine) and subsequently applied RNAfold to the

resulting tRNA sequences. It seems likely that computed energies of tRNA

might differ from their experimentally determined energies, and that such a

discrepancy would similarly influence predicted energies of randomizations

of tRNA. This might explain the relatively high Z-scores and p-values of

tRNA, when compared to other structural RNA classes.

While [Workman and Krogh, 1999] had considered whole mRNA, we

additionally considered 5′ UTR, 3′ UTR, and cds of the same mRNA ana-

lyzed in those investigated by Workman and Krogh. Tables 1 and 2 provide

evidence that these mRNA subclasses do not have lower folding energy than
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random RNA of the same dinucleotide frequency, though it should be noted

that Table 5 shows negative Z-scores of −0.250845 [resp. −0.214827] for 3′

UTR [resp. cds] of mRNA, suggesting a slightly discernable signal in both

the 3′ UTR and cds of mRNA. (For a recent review see [Wilkie et al., 2003].)

A possible explanation for the statistically insignificant signal in the 3 ′ UTR,

which contains regulatory elements, is that these structural, regulatory el-

ements are short and dispersed in the UTR, which in many cases may be

very long. Figures 1 2, 3, 4 present superposed histograms of Z-scores for

the RNAs analyzed. The general trend is a shift towards negative values in

the curves associated with structural RNAs; Z-score curves obtained using

both Algorithms 3 and 4 are quite similar, though the small discrepancy

between algorithms in the case of 3′ UTR regions of mRNA suggests that

one should prefer the use of 4, if possible.

Work of [Seffens and Digby, 1999] and of [Workman and Krogh, 1999]

together provide strong evidence that the mononucleotide shuffle Algorithm

2 and 0th order Markov chain Algorithm 1 should never be used when com-

puting Z-scores. The slight discrepancy between Table 1 and 2 for 3′ UTR

regions of mRNA suggests that Algorithm 4 should be used if possible over

Algorithm 3, when computing Z-scores.

Additionally, based on new mathematical results concerning asymptotic

comportment of random RNA (see the Appendix), we define the concept of

asymptotic Z-score (see Definition 6 in Section on Materials and Methods),

and show how to radically reduce the computation time for moving win-

dow, whole genome algorithms which compute Z-scores of window contents.

Rather than computing Z-scores on the fly for each window’s randomized
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contents, we use table look-up for precomputed asymptotic Z-scores and

call Zuker’s algorithm only once, rather than tens or hundreds of times,

per window. Our approach, combined with the O(NL2) genome-scanning

version12 of Vienna RNA Package RNAfold (see [Hofacker et al., 2004]), per-

mits O(NL2) genome-scanning asymptotic Z-score computations of whole

genomes.13

Asymptotic Z-scores are computed with respect to large random RNA

sequences (in the current paper, we used sequences of length 1000 nt.) of

the same expected dinucleotide frequency as that of window contents using

Algorithm 3, unlike computations of Z-scores in [Seffens and Digby, 1999],

[Le et al., 1990a], [Rivas and Eddy, 2000] which used random RNA sequences

of the same size as that of the moving window, generated by Algorithm 2.

Though we have no explanation at the present, in all cases we have observed

a greater signal to noise ratio in using asymptotic Z-scores to detect RNA

genes (data not shown). This is indeed the case for Figure 7, which plots Z-

scores and asymptotic Z-scores for 32 nt. windows of artificial data obtained

by planting SECIS element fruA CCUCGAGGGGAACCCGAAAGGGACCCGAGAGG in

the middle of random RNA of compositional frequency A = 0.28125, C =

0.28125 G = 0.40625 and U = 0.03125 (i.e. of same compositional frequency

as that of fruA). Our preliminary work on asymptotic Z-score raises the hope

of effectively using this approach along with other heuristic filters to detect

12For a genome of length N , successive applications of Zuker’s algorithm to window
contents of size L requires time O(NL

3). By re-using partial computations from previous
window contents, Hofacker et al. describe an improvement to O(NL

2).
13In this paper, we present a proof of concept. In work in progress, we are computing

dinucleotide frequencies, within 2 decimal places, of viral and bacterial genomes and are
computing tables necessary for for a general application of our method, to be reported
elsewhere.
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RNA of interest.

4 Materials and Methods

For expository reasons, in this section, we describe the computer experi-

ments we performed for tRNA. Additional experiments on mRNA, SECIS

elements, hammerhead type III ribozymes, etc. were set up identically.

Unless otherwise stated, we generated 1000 random RNAs per (real) RNA

sequence, for each experiment. Using the mono- and dinucleotide frequen-

cies for tRNA from Table 1, we generated random RNAs for each of the

530 tRNA in the database of [Sprinzl et al., 1998] according to two meth-

ods, which we respectively dub First-order Markov (Algorithm 3) and Din-

ucleotide Shuffle (Algorithm 4), and computed the mfe using RNAfold. The

method First-order Markov generates random RNAs as a first-order Markov

chain, and was considered in [Workman and Krogh, 1999], though it is un-

clear whether they generated the first nucleotide using sampling (as we do),

or using uniform probability of A,C,G,U.

Algorithm 1 (Sampling from 0th order Markov chain) Input: An RNA

sequence a = a1, . . . , an.

Output: An RNA sequence x1, . . . , xn of the same expected mononu-

cleotide frequency as a1, . . . , an.

1. Compute the mononucleotide frequency F1(a) of a = a1, . . . , an; thus

F1(a)[A] = qA, F1(a)[C] = qC , F1(a)[G] = qG, F1(a)[U ] = qU .

2. for i = 1 to n

x = random in (0,1)
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if x<qA return ’A’

else if x<qA + qC return ’C’

else if x<qA + qC + qG return ’G’

else return ’U’

In their computation of Z-scores, Rivas and Eddy [Rivas and Eddy,

2000] considered the following mononucleotide shuffle.

Algorithm 2 (Mononucleotide Shuffle) Input: An RNA sequence a1, . . . , an.

Output: An RNA sequence x1, . . . , xn of the same (exact) mononucleotide

frequency as a1, . . . , an.

1. generate a random permutation σ ∈ Sn

for i = 1 to n

xi = aσ(i)

Recall that [Seffens and Digby, 1999] observed negative Z-scores having

large absolute value, when computing Z-scores of mRNA using Algorithm 2,

while [Workman and Krogh, 1999] computed Z-scores approximately equal

to 0 when computing Z-scores of mRNA using Algorithm 3.

Algorithm 3 (Sampling from first order Markov chain) Input: An

RNA sequence a1, . . . , an.

Output: An RNA sequence x1, . . . , xn of the same expected dinucleotide

frequency as a1, . . . , an.

1. Compute the mono- and dinucleotide frequency of a1, . . . , an.
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2. Generate x1 by sampling from mononucleotide frequency.

3. Generate remaining nucleotides x2, . . . , xn by sampling from the con-

ditional probabilities Pr[Y |X], where Pr[Y |X] equals the dinucleotide

frequency that nucleotide Y follows X divided by mononucleotide fre-

quency of nucleotide X.

Algorithm 4 (Dinucleotide Shuffle [Altschul and Erikson, 1985]) Input:

An RNA sequence a1, . . . , an.

Output: An RNA sequence x1, . . . , xn of the same (exact) dinucleotide

frequency as a1, . . . , an, where x1 = a1, xn = an; moreover, the Altschul-

Erikson algorithm even produces the same number of dinucleotides of each

type AA,AC,AG,AU,CA,CC, etc.

1. For each nucleotide x ∈ {A,C,G,U}, create a list Lx of edges x → y

such that the dinucleotide xy occurs in the input RNA.

2. For each nucleotide x ∈ {A,C,G,U} distinct from the last nucleotide

xn, randomly choose an edge from the list Lx. Let E be the set of

chosen edges (note that E contains at most three elements).

3. Let G be the graph, whose edge set is E and whose vertex set consists

of those nucleotides x,y such that x → y is an edge in E. If there is

a vertex of G which is not connected to the last nucleotide an, then

return to (2).

4. For each nucleotide x ∈ {A,C,G,U}, permute the edges in Lx − E.

Append to the end of each Lx any edges from E which had been

removed.
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5. For i = 1 to n−1, generate xi+1 by taking the next available nucleotide

such that xi → xi+1 belongs to the list Lxi
.

The proof of correctness of the Altschul-Erikson dinucleotide shuffle algo-

rithm depends on well-known criteria for the existence of an Euler tour in a

directed graph. See [Altschul and Erikson, 1985] for details of Algorithm 4

and its extensions.

Before describing our experiments, we need to recall that the Z-score of

a number x with respect to a sequence s1, . . . , sN of numbers is defined by

x−µ
σ , where µ resp. σ is the average resp. standard deviation of s1, . . . , sN .

In [Workman and Krogh, 1999], p-values associated with Z-scores are com-

puted as the ratio N
D , where the numerator N is the number of Z-scores

of random RNAs which exceed the Z-score of a fixed mRNA, and D is the

number of Z-scores considered (see [Workman and Krogh, 1999] for details

and an explicit graph of Z-scores versus p-values for mRNA). Following the

method of Workman and Krogh, we compute p-values and plot Z-scores and

associated p-values for all classes of RNA investigated, where random RNA

sequences were obtained by the Altschul-Erikson method.

We now describe our experiments. Lengths in Sprinzl’s collection [Sprinzl

et al., 1998] of 530 tRNAs range from 54 to 95. For each tRNA, we generated

1000 random RNAs of the same expected dinucleotide frequency (using Algo-

rithm 3) and 1000 random RNAs of the same dinucleotide frequency (using

Algorithm 4). For each tRNA, we computed the Z-score of its minimum free

energy (mfe) using version 1.5 of Vienna RNA Package RNAfold with respect

to the mfe of the corresponding 1000 random RNAs, separately using Al-

gorithm 3 and Algorithm 4 to generate the random sequences. We followed
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the same procedure for each class of RNA we investigated: 530 tRNAs from

Sprinzl’s database, 5 SECIS elements from A. Böck of Ludwig-Maximilians-

Universität München (personal communication), 114 hammerhead type III

ribozymes, 53 U1 and 62 U2 small nucleolar spliceosomal RNAs, 94 sig-

nal recognition particle RNAs (srpRNAs). The hammerhead ribozymes,

U1, U2 and srpRNAs sequences were taken from their respective Rfam seed

alignment [Griffiths-Jones et al., 2003]. Moreover, we considered the same

mRNAs previously considered by [Seffens and Digby, 1999] and [Workman

and Krogh, 1999]; here, due to the sequence length of mRNAs, we generated

only 10 random RNAs per mRNA. Seffens and Digby considered 51 mRNAs;

Workman and Krogh considered a subset of 46 mRNAs, previously in-

vestigated in [Seffens and Digby, 1999] and explained their reasons for not

including 5 spurious mRNAs considered by Seffens and Digby. We were

not able to find 5 of these mRNAs in the latest GenBank release (namely

HUMIFNAB, HUMIFNAC, HUMIFNAH, SOYCHPI, XELSRBP); there-

fore we included in the analysis 41 mRNAs, for which we considered the

whole length mRNA, and separately the 3′ and 5′ untranslated regions (3′

UTR and 5′ UTR) and the coding sequence (cds) alone.

We now describe a new concept of asymptotic Z-score, motivated by a

new theorem concerning an asymptotic limit result for the mean and stan-

dard deviation of minimum free energy per nucleotide for random RNA.

This result, formalized in Theorem 5, is proved in detail in the Appendix.

Let F2 = {qxy : x, y ∈ {A,C,G,U}} be any complete set of dinu-

cleotide frequencies; i.e. 0 ≤ qxy ≤ 1 for all x, y ∈ {A,C,G,U} and
∑

x,y qxy = 1, where the sum is taken over all x, y ∈ {A,C,G,U}. Define
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F1 = {qx : x ∈ {A,C,G,U}} to be the corresponding set of mononucleotide

frequencies; i.e. qx =
∑

u qux, where the sum ranges over u ∈ {A,C,G,U}.

We may at times say that the mononucleotide distribution F1 is induced

by the complete dinucleotide distribution F2; moreover, we may use the

notation ~qxy to abbreviate F2, and ~qx to abbreviate F1.

Theorem 5 . Let ~qxy be a complete set of dinucleotide frequencies, let ~qx be

the induced set of mononucleotide frequencies, and let X denote the infinite

sequence of random variables x0, x1, x2, . . . such that x0 has the distribution

~qx, and for all i, xi+1 has the distribution given by the conditional probabil-

ities Pr[xi+1 = x] =
qu,x

Pr[xi=u] . For all 0 ≤ s ≤ t, define random variables

Xs,t = mfe(xs, . . . , xt−1), where mfe denotes minimum free energy as mea-

sured by Zuker’s algorithm. Then the limits

lim
n→∞

E[mfe(x0, . . . , xn)]

n
=

E[X0,n]

n
= µ(~qxy)

and

lim
n→∞

√

E[X2
0,n] − (E[X0,n])2

n2
= σ(~qxy)

both exist and depend only on ~qxy.

Though the proof gives no information on rate of convergence, convergence

appears to be fast (data not shown), and hence we can compute an ap-

proximation for the asymptotic mean, denoted by µ(~qxy), [resp. standard

deviation, denoted by σ(~qxy)] per nucleotide of the minimum free energy

of random RNA generated by a first-order Markov chain from dinucleotide

frequencies ~qxy.
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1. Compute minimum free energies for m random RNAs, each of length n

nucleotides, as generated by Algorithm 3. In Figure 7, we used m = 50

and n = 1000.

2. Compute the mean and (sample) standard deviation for this collection,

and divide both values by n so as to normalize these values with respect

to sequence length.

Since m,n must be fixed for this computation, we denote the approxi-

mate mean by µ(~qxy,m, n), and the approximate standard deviation by

σ(~qxy,m, n). Thus, if s1, . . . , sm is a collection of m random RNA sequences,

each si has length n and is generated by Algorithm 3 from dinucleotide fre-

quencies ~qxy, then

µ(~qxy,m, n) =

∑m
k=1 mfe(si)/m

n

σ(~qxy,m, n) =

√

Pm
k=1

mfe2
(si)

m−1 −
(

Pm
k=1

mfe(si)
m

)2

· m
m−1

n
.

We now define as follows the asymptotic, normalized mfe Z-score, with re-

spect to random RNA of dinucleotide frequencies ~qxy. Given RNA sequence

s of length n0 (generally n0 is much less than n), compute the dinucleotide

frequencies ~qxy of s, and define

Z2
m,n(s) =

mfe(s)/n0 − µ(~qxy,m, n)

σ(~qxy,m, n)
.

Notice that when n0 = n, we obtain the usual definition of Z-score, where

randomization is performed with Algorithm 3.

As earlier noted, one should respect dinucleotide frequencies when per-

forming Z-score computations. Taking this into account, we now define
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the asymptotic, normalized mfe Z-score, with respect to random RNA of

dinonucleotide frequency ~qxy as follows.

Definition 6 Given RNA sequence s of length n0 (generally n0 � n), com-

pute the dinucleotide frequencies ~qxy of s. Define

Z2
m,n(s) =

mfe(s)/n0 − µ( ~qxy,m, n)

σ( ~qxy,m, n)

This concludes the description of asymptotic Z-scores. Figure 7 illustrates

the approach on small artificial data involving the SECIS element fruA. In

future work, we plan to make available pre-computed tables of µ( ~qxy,m, n),

σ( ~qxy,m, n) for n = 1000, m = 50 over a range of dinucleotide frequencies

found in windows of viral and bacterial genomes. Though not yet available,

we can now describe an algorithm to efficiently compute asymptotic Z-scores

in a moving window scanning algorithm on a whole genome.

Algorithm 7 Input: An entire genome g1, . . . , gN , and window size n0.

Output: Values (i, zi), where 1 ≤ i ≤ N −n0+1 is the starting position for

the ith window, and zi is the asymptotic Z-score of the (reverse complement)

of the ith window.

for i = 1 to N − n0 + 1

s = reverse complement of gi, . . . , gi+n0−1

compute mfe(s)

compute dinucleotide frequencies ~qxy of s

for x, y ∈ {A,C,G,U}

qxy = int(100 ∗ qxy)/100
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find µ( ~qxy,m, n), σ( ~qxy,m, n) by table look-up

return zi =
mfe(s)/n0−µ( ~qxy ,m,n)

σ( ~qxy ,m,n)

Note that the instruction qxy = int(100 ∗ qxy)/100 truncates each dinu-

cleotide frequency qxy to 2 decimal places. By using arrays with indirect

addressing, table look-up does not require linear or logarithmic time, but

rather unit time. Since Zuker’s algorithm is applied only once, for each

window, the run time of Algorithm 7 is O(Nn3
0). By using the genome-scan

version of RNAfold (see [Hofacker et al., 2004]), we can reduce the run time

of Algorithm 7 to O(Nn2
0).
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Appendix

In this section, we state and prove Theorem 5, which provides the mathe-

matical justification for our algorithm to compute (approximate) asymptotic

Z-scores. The following theorem, due to Kingman [1973], provides the exis-

tence of a limit for certain types of subadditive stochastic processes.

Theorem 8 (Kingman [1973]) Let Xs,t, for nonnegative integers 0 ≤

s ≤ t, denote a family of doubly-indexed random variables which satisfy

the following.

1. Xs,t ≤ Xs,r + Xr,t for all s < r < t.

2. The joint distribution of Xs,t is the same as that of Xs+1,t+1 for all

0 ≤ s ≤ t.

3. There exists K < 0 such that the expectation E[X0,n] = µn exists and

satisfies µn ≥ K · n, for all natural numbers n.

Then there exists λ, for which limn→∞ E[X0,n]/n = λ.

Kingman’s theorem has applications ranging from Ulam’s problem concern-

ing the asymptotic expected length of the longest increasing sequence14 in

a random permutation σ ∈ Sn Kingman [1973], to problems concerning

restriction enzyme coverage Waterman [1995]. While Kingman’s theorem

proves the existence of an asymptotic limit λ, it can be a very difficult open

problem to determine the precise value of λ for concrete cases.

Let ~qxy denote any complete set {qxy : x, y ∈ {A,C,G,U}} of din-

ucleotide frequencies; i.e. 0 ≤ qxy ≤ 1 for all x, y ∈ {A,C,G,U} and

14i.e. 1 ≤ i1 < i2 < · · · < ik ≤ n such that σ(i1) < σ(i2) < · · · < σ(ik)
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∑

x,y qxy = 1, where the sum is taken over all x, y ∈ {A,C,G,U}. De-

fine ~qx denote the set {qx : x ∈ {A,C,G,U}} of induced mononucleotide

frequencies; i.e. qx =
∑

u qux, where the sum ranges over u ∈ {A,C,G,U}.

We say that the mononucleotide distribution ~qx is induced from the complete

dinucleotide distribution ~qxy.

Theorem 9 . Let ~qxy be a complete set of dinucleotide frequencies, let ~qx be

the induced set of mononucleotide frequencies, and let X denote the infinite

sequence of random variables x0, x1, x2, . . . such that x0 has the distribution

~qx, and for all i, xi+1 has the distribution given by the conditional probabil-

ities Pr[xi+1 = x] =
qu,x

Pr[xi=u] . For all 0 ≤ s ≤ t, define random variables

Xs,t = mfe(xs, . . . , xt−1), where mfe denotes minimum free energy as mea-

sured by Zuker’s algorithm. Then the limits

lim
n→∞

E[mfe(x0, . . . , xn)]

n
=

E[X0,n]

n
= µ(~qxy)

and

lim
n→∞

√

E[X2
0,n] − (E[X0,n])2

n2
= σ(~qxy)

both exist and depend only on ~qxy.

Proof To prove the existence of the first limit stated in Theorem 9, we

claim that the collection of doubly-indexed random variables Xs,t satisfies

the three conditions of Kingman’s subadditive ergodicity Theorem 8.

By analysis of the pseudocode of Zuker’s algorithm, it is clear that

minimum free energy of RNA is subadditive, and hence condition (1) holds.

Indeed in the Turner energy model Matthews et al. [1999], stacking free

energies and loop energies are additive, hence the minimum free energy of
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the concatentation xs, . . . , xt−1 of subsequence xs, . . . , xu−1 and subsequence

xu, . . . , xt−1 satisfies mfe(xs, . . . , xt−1) ≤ mfe(xs, . . . , xu−1)+mfe(xu, . . . , xt−1).

Here is a concrete example:

mfe(ACGUACGUACGU) = −1.20

mfe(CAGUCCAUUUGGG) = −0.90

mfe(ACGUACGUACGUCAGUCCAUUUGGG) = −2.20

To show that condition (2) holds, we first claim that for all nonnegative

integers s, Pr[xs = x] = Pr[x0 = x] = qx, for any given x ∈ {A,C,G,U}.

This is done by induction on s. When s = 0, this is by definition of x0.

Assume that Pr[xs = x] = Pr[x0 = x] = qx, and consider xs+1. Then

Pr[xs+1 = x] =
∑

u

Pr[xs = u] · Pr[xs+1 = x|xs = u]

=
∑

u

Pr[xs = u] ·
Pr[xs = u, xs+1 = x]

Pr[xs = u]

=
∑

u

Pr[xs = u, xs+1 = x]

= qx

where the last equality follows from the definition of induced mononucleotide

frequency qx. It thus follows by induction that Pr[xs = u] = qu, for all

natural numbers s and all u ∈ {A,C,G,U}. Since the sequence x0, x1, x2, . . .

of random variables follows a first order Markov condition, clearly Pr[xs+1 =

y|xs = x] = Pr[xs′+1 = y|xs′ = x] holds for all natural numbers s, s′, and so

by induction on n, we have

Pr[xs = a0, . . . , xs+n = an] = Pr[xs′ = a0, . . . , xs′+n = an]
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and hence the doubly indexed random variable Xs,t has the same joint dis-

tribution as that of Xs+1,t+1, for all natural numbers 0 ≤ s ≤ t. Thus

condition (2) of Kingman’s theorem is satisfied.

We now turn to establish condition (3) of Kingman’s theorem. For

fixed n, E[X0,n] = µn must exist, since the sample space Ω = {A,C,G,U}

is finite, all probability distributions for n fixed are finite, and we consider

only finitely many random variables x0, . . . , xn. Let K0 be the minimum

value, −3.42 kcal/mol, over all base stacking free energies from Turner’s

current rules Xia et al. [1999] – e.g. see Stacking enthalpies in kcal/mol

from M. Zuker’s web site

http://www.bioinfo.rpi.edu/~zukerm/rna/energy/

Note that base stacking free energies are all negative, hence we are choosing

that base stacking free energy whose absolute value is largest. Except for

the (negative) base stacking free energies, all other energies (hairpin, bulge,

internal loop, multiloop) are positive. The nearest neighbor energy model

with Turner’s experimentally measured energies Matthews et al. [1999] is

additive and there are at most n/2 base pairs in an RNA sequence of length

n + 1 (going from 0 to n), hence K0 · n/2 ≤ µn for all n. It follows that

(3) holds, and hence the existence of limit limn→∞
E[mfe(x0,...,xn)]

n = µ(~qxy)

depending only on ~qxy follows by application of Kingman’s theorem.

To prove the existence of the second limit stated in Theorem 9, let

K = 3.42 = −K0, and define random variables Zs,t = K(t − s) + Xs,t, and

Ys,t =
Z2

s,t

t − s
=

(K(t − s) + mfe(xs, . . . , xt−1))
2

t − s
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for all 0 ≤ s ≤ t. We will show that the collection Ys,t, for all 0 ≤ s ≤ t,

satisfies conditions (1),(2),(3) of Kingman’s ergodicity theorem. To prove

the subadditivity condition (1), i.e. that Ys,t ≤ Ys,r + Yr,t for all 0 ≤ s ≤

r ≤ t, fix 0 ≤ s ≤ r ≤ t, and temporarily let

A = Zs,t = K(t − s) + Xs,t

B = Zs,r = K(r − s) + Xs,r

C = Zr,t = K(t − r) + Xr,t

m = r − s

n = t − r

m + n = t − s.

Now

0 ≤ (nB − mC)2

0 ≤ n2B2 + m2C2 − 2mnBC
2mnBC ≤ n2B2 + m2C2

mnB2 + mnC2 + 2mnBC ≤ n(m + n)B2 + m(m + n)C2

mnB2+mnC2+2mnBC
mn(m+n) ≤ n(m+n)B2+m(m+n)C2

mn(m+n)
B2+C2+2BC

m+n ≤ B2

m + C2

n
(B+C)2

m+n ≤ B2

m + C2

n .

Replacing B,C,m, n by the values they denote, we have shown that
(Zs,r+Zr,t)2

t−s ≤

Z2
s,r

r−s +
Z2

r,t

t−r . Since we have already established that Xs,t ≤ Xs,r + Xr,t, it

follows that K(t − s) + Xs,t ≤ K(r − s) + Xs,r + K(t − r) + Xr,t, hence

Zs,t ≤ Zs,r + Zr,t. Since Zs,t ≥ 0, Zs,r ≥ 0, Zr,t ≥ 0, it follows that

Z2
s,t ≥ (Zs,r + Zr,t)

2.15 Thus

Z2
s,t

t − s
≤

Z2
s,r

r − s
+

Z2
r,t

t − r
15In order to obtain this last inequality, we needed Zs,t ≥ 0. This is the reason for

working with Zs,t, rather than Xs,t.
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and hence Ys,t ≤ Ys,r + Yr,t. This establishes subadditivity condition (1).

The proof that the joint distribution of Ys,t is the same as that of

Ys+1,t+1 for all 0 ≤ s ≤ t is as in our treatment of Xs,t and Xs+1,t+1. This

establishes condition (2) of Kingman’s theorem.

Finally, since Ys,t =
Z2

s,t

t−s ≥ 0, condition (3) of Kingman’s theorem holds,

so by application of Kingman’s theorem, it follows that the limit

lim
n→∞

E[Y0,n]

n
= ζ(~qxy)

exists and depends only on complete dinucleotide frequencies ~qxy. Note that

lim
n→∞

E[Y0,n]

n
= ζ(~qxy)

= lim
n→∞

E[(Kn + X0,n)2/n]

n

= lim
n→∞

E[K2n]

n
+

2KE[X0,n]

n
+

E[X2
0,n]

n2

= K2 + 2Kµ(~qxy) + lim
n→∞

E[X2
0,n]

n2
.

Define λ(~qxy) = ζ(~qxy) − K2 − 2Kµ(~qxy). It follows that

lim
n→∞

E[X2
0,n]

n2
= λ(~qxy).

Now the variance of X0,n satisfies V ar[X0,n] = E[X2
0,n]− (E[X0,n])2, so

dividing by n2 and taking square roots of both sides of the equality, we have

σ(~qxy) = lim
n→∞

√

E[X2
0,n] − (E[X0,n])2

n2

=

√

lim
E[Y0,n]

n
−

(

lim
E[X0,n]

n

)2

=
√

λ(~qxy) − µ2(~qxy).

This completes the proof of Theorem 9.
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Table 1: Z-score statistics for structural RNA compared to random RNA of
the same expected dinucleotide frequency using Algorithm 3.
RNA type Number of sequences Mean Stdev Max Min
tRNA 530 -1.348202 0.611164 0.269411 -3.124041
Hammerhead III 114 -2.053881 0.664340 -0.001203 -3.387384
SECIS 5 -3.800337 0.883944 -2.832499 -5.237905
srpRNA 94 -2.037159 1.030724 0.010698 -4.961649
U1 53 -1.083326 0.547852 0.012102 -2.508698
U2 62 -2.243978 0.599099 0.920614 -3.479369
mRNA whole length 41 0.090522 0.783253 1.667423 -1.711233
mRNA 3′ UTR 41 0.152680 0.646208 0.870732 -2.132468
mRNA 5′ UTR 41 0.183972 0.628083 0.893692 -1.940810
mRNA cds 41 -0.209889 0.681839 1.268412 -2.218905

Table 2: Z-score and p-value statistics for structural RNA compared to
random RNA of the same dinucleotide frequency using Algorithm 4.
RNA type Number of sequences Mean Stdev Max Min p-value
tRNA 530 -1.591106 0.889903 0.732033 -4.034804 0.123123
Hammerhead III 114 -3.188341 0.870615 -1.202616 -5.34491 0.007526
SECIS 5 -4.736209 1.122621 -3.48201 -6.944927 0.0
srpRNA 94 -3.564441 2.139954 -0.099144 -9.254801 0.045528
U1 53 -1.750205 0.930827 0.156993 -4.041211 0.101509
U2 62 -4.224552 1.215934 -1.83139 -7.068373 0.002468
mRNA whole length 41 -0.180843 1.619402 2.90517 -4.207065 0.478049
mRNA 3′ UTR 41 -0.111613 1.021312 1.483879 -3.198117 0.526512
mRNA 5′ UTR 41 0.17506 1.092026 1.862059 -2.97943 0.459195
mRNA cds 41 -0.132962 1.646607 3.284421 -3.739057 0.514634
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Figure 1: Histograms of Z-scores of minimum free energy (mfe) of RNA classes
versus 1000 random RNAs of the same expected dinucleotide frequency using Algo-
rithm 3. The curves, in left to right order correspond to signal recognition particle
(srp) RNA, U2 small nucleolar particle, Hammerhead type III rybozime, 530 tR-
NAs from Sprinzl’s database, U1 small nucleolar particle and the 41 whole length
mRNA considered in Workman and Krogh [1999]. Structurally important RNAs
have Z-score curves shifted toward negative values with respect to the curve for
mRNA.
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Figure 2: Histograms of Z-scores of minimum free energy (mfe) of RNA classes
versus 1000 random RNAs of the same expected dinucleotide frequency using Algo-
rithm 3. The curves, in left to right order correspond to 530 tRNAs from Sprinzl’s
database, and to coding sequence (cds), 3′ untranslated region (UTR), 5′ UTR and
whole length mRNA of the 41 mRNAs considered in Workman and Krogh [1999].
Different regions of the mRNAs show similar curves, centered around the 0.



P. Clote et al. 37

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-12 -10 -8 -6 -4 -2  0  2  4

Fr
eq

ue
nc

y

Z-score

"Hammerhead Type III"
"mRNA"
"tRNA"
"SRP"

"U1"
"U2"

Figure 3: Histograms of Z-scores of minimum free energy (mfe) of RNA classes
versus 1000 random RNAs of the same expected dinucleotide frequency using Algo-
rithm 4. The curves, in left to right order correspond to U2 small nucleolar particle,
signal recognition particle (srp) RNA, Hammerhead type III rybozime, U1 small
nucleolar particle, tRNAs from Sprinzl’s database and the 41 whole length mRNA
considered in Workman and Krogh [1999]. As in Figure 1, structurally important
RNAs have Z-score curves shifted toward negative values with respect to the curve
of mRNA.
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Figure 4: Histograms of Z-scores of minimum free energy (mfe) of RNA classes
versus 1000 random RNAs of the same expected dinucleotide frequency using Algo-
rithm 4. The curves, in left to right order correspond to 530 tRNAs from Sprinzl’s
database, whole length mRNA considered in Workman and Krogh [1999], coding
sequences (cds), 3′ untranslated region (UTR) and 5′ UTR.
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Figure 5: Z-score and p-value correlation for non-structural RNAs.
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Figure 6: Z-score and p-value correlation for structural RNAs.
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Figure 7: A plot of Z-scores and asymptotic Z-scores for 32 nt.
windows of artificial data obtained by planting SECIS element fruA

CCUCGAGGGGAACCCGAAAGGGACCCGAGAGG in the middle of random RNA of compo-
sitional frequency A = 0.28125, C = 0.28125 G = 0.40625 and U = 0.03125 (i.e. of
same compositional frequency as that of fruA). For each size 32 window, Z-scores
were computed with respect to 25 random RNAs of length 32, obtained by applying
Algorithm 4 to the current window contents; thus each randomization of current
window contents had the same dinucleotide frequency as that of the corresponding
current window contents. Asymptotic Z-scores were computed by table look-up of
pre-computed means and standard deviations of 50 random RNAs, each of length
1000, having the same expected dinucleotide frequency as that of current window
contents (only within two decimal places), as computed by Algorithm 3. We com-
puted and stored all dinucleotide frequencies (only up to 2 decimal places), and
pre-computed Z-scores with respect to much larger (1000 nt. versus 32 nt.) ran-
dom RNA. Justification for this approach follows from an asymptotic limit stated
in the text.
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Figure 8: A plot of asymptotic Z-scores for 32 nt. windows of artificial data
obtained by planting SECIS element fruA at position 1000 in random RNA of
compositional frequency A = 0.28125, C = 0.28125 G = 0.40625 and U = 0.03125
(i.e. of same compositional frequency as that of fruA). Asymptotic Z-scores were
computed by table look-up of pre-computed means and standard deviations of only
10 random RNAs, each of length 1000, having the same expected dinucleotide
frequency as that of current window contents (only within two decimal places), as
computed by Algorithm 3. We computed and stored all dinucleotide frequencies
(only up to 2 decimal places), and pre-computed Z-scores with respect to much
larger (1000 nt. versus 32 nt.) random RNA.


