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Abstract

We give upper bounds for the probability that a random word of a given length contains

at least one letter from each member of a given collection of sets of letters. We �rst show a

correlation inequality that bounds the probability of the conjunction of a number of pairwise

dependent events. The bound takes into account only pairs of events that are positively

correlated, yielding signi�cantly tighter bounds in some interesting cases.
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1 Introduction

Let � be a �nite non-empty alphabet with n letters, and let A = (A

i

)

i=1;:::;r

be a collection

of non-empty subsets of �. An m-letter random word w on the alphabet � is a sequence of

m letters from � selected at random independently, uniformly and with replacement. We give

upper bounds on the probability that a random word contains at least one letter from each of

the sets A

i

; i = 1; : : : ; r. More speci�cally, if p

i

is the probability that w contains at least one

letter from A

i

and if q

ij

is the probability that w contains no letter from A

i

[A

j

, then our upper

bounds are expressed as a product of p

1

� p

2

� � �p

r

with a correlation factor that is a function

only of the p

i

s and the sum

P

i�j

q

ij

, where i � j denotes that the intersection A

i

T

A

j

6= ;

and that i 6= j. Notice that p

i

= 1� (1� (jA

i

j=j�j))

m

and q

ij

= (1� (jA

i

[A

j

j=j�j))

m

:

Our motivation comes from the work in [4] concerning the satis�ability problem of random

Boolean formulas, where the question of bounding the probability that a random formula is

not satis�ed by a given collection of truth assignments was encountered.

For each i = 1; : : : ; r, let E

i

be the event of at least one letter from A

i

occuring in w. Let

also 1

:E

i

be the indicator variable for the complement of E

i

, i.e. 1

:E

i

(w) = 0, if w contains a

letter from A

i

, and 1

:E

i

(w) = 1, otherwise. Then, obviously, w contains a letter from each of

the A

i

s i�

P

i

1

:E

i

(w) = 0. Observe now that all pairs of events E

i

and E

j

are dependent. This

is so even in the extreme case where all A

i

are pairwise disjoint. Therefore, it is unlikely that

we can apply Cherno� bounds to bound the probability of

P

i

1

:E

i

(w) = 0, as Cherno� bounds

assume independence among the events E

i

. Similarly with the Schmidt, Siegel, and Srinivasan

method [5], where it is assumed that the events are k-wise independent, for k � r. Neither

Janson's inequality [3], even in its general form presented in Spencer's book [6], can be applied

directly, as the conditions that must be assumed are not true in our case. More crucial though

than the fact that the necessary assumptions for Janson's inequality do not hold is that this

inequality, when applicable to a collection of events J

i

; i = 1; : : : ; r, gives an upper bound for

Pr[^

i

J

i

] which is a product of

Q

i

Pr[J

i

] together with a correlation factor that is a function

of the sum

P

i;j

Pr[:J

i

^:J

j

], where this sum is taken over all possible pairs J

i

and J

j

(i 6= j)

of dependent events. As in our case all pairs of events are dependent, Janson's inequality,

even if it were directly applicable, would yield an upper bound with a large correlation factor.

In this paper, we prove a variant of Janson's result which is applicable to the word problem

we consider. This variant also has the nice property that when applied to the word problem

gives a bound where the correlation factor involves only the sum

P

i�j

q

ij

. In other words, we

reduce the range of the sum to pairs of events for which A

i

T

A

j

6= ; and thus we get a smaller

correlation factor.

The intuition behind our improvement is the following: a pair of events E

i

and E

j

for

which A

i

T

A

j

= ; is nonpositively correlated, i.e., Pr[E

i

^E

j

] � Pr[E

i

]Pr[E

j

]. Therefore it is

plausible that we can avoid having such a pair contribute to the correlation factor of Janson's

inequality. On the other hand, when A

i

T

A

j

6= ;, then there is a \strong positive component"

in the correlation of E

i

and E

j

, so such pairs must contribute to the correlation factor.

In the next section we will formally describe and prove a correlation inequality, which, as

we subsequently prove in Section 3, is applicable in the case of the word problem. In the latter

section, we will also give our upper bounds.
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2 A Correlation Inequality

We start with a de�nition:

Definition 1 Let J = fJ

i

: i = 1; : : : ; rg be a �nite collection of events in an arbitrary

probability space. We say that J

j

is nonpositively correlated to J

i

under any conjunction of

conditions from J i� for any conjunction S of events from J ,

Pr[(J

i

j J

j

) j S] � Pr[J

i

j S]:

Notice that it is not in general true that if J

j

is independent from J

i

, then J

j

is nonpositively

correlated to J

i

under any conditions, as the independence may be destroyed under certain

conditions. It is also easy to see that if J

j

is nonpositively correlated to J

i

under any conjunction

of conditions from J , then so is J

i

to J

j

.

Now for each i, let P

i

be any subset of f1; : : : ; i�1g such that for any j 2 f1; : : : ; i�1gnP

i

,

J

j

and J

i

are nonpositively correlated under any conjunction of conditions from J . Let

� =

X

i

X

j2P

i

Pr[:J

i

^ :J

j

];

and let � be such that 1 � � � Pr[J

i

], for all i. Also let � =

P

i

Pr[:J

i

]. Then the following

holds.

Theorem 1

Pr[^

i

J

i

] �

 

Y

i

Pr[J

i

]

!

� e

�=(1��)

: (1)

Moreover, if � � �(1� �), then

Pr[^

i

J

i

] � e

�

�

2

(1��)

4�

: (2)

Proof Notice that, unlike the case of Janson's inequalities as presented in [6], we do not

make any correlation assumptions about the events J

i

. For the proof, we start with the �rst

inequality. Since,

Pr[^

i

J

i

] =

Y

i

Pr[J

i

j ^

j=1;:::;i�1

J

j

];

we will try to �nd an upper bound for Pr[J

i

j ^

j=1;:::;i�1

J

j

]. We �rst notice that

Pr[J

i

j ^

j=1;:::;i�1

J

j

] � Pr[J

i

j ^

j2P

i

J

j

]: (3)

To prove the last inequality, say, without loss of generality, that J

i�1

is nonpositively correlated

to J

i

under any conjunction of conditions from J , and notice that by de�nition it follows that

Pr[J

i

j J

1

� � �J

i�1

] � Pr[J

i

j J

1

� � �J

i�2

]; repeat this as necessary to get inequality (3).

Therefore it is enough to �nd an upper bound for Pr[J

i

j ^

j2P

i

J

j

], or alternatively a lower

bound for Pr[:J

i

j ^

j2P

i

J

j

]. But Pr[:J

i

j ^

j2P

i

J

j

] � Pr[:J

i

^ ^

j2P

i

J

j

].

The rest of our proof follows the steps of the corresponding proof in [6] (page 82). By

inclusion-exclusion

Pr[:J

i

^ ^

j2P

i

J

j

] � Pr[:J

i

]�

X

j2P

i

Pr[:J

i

^ :J

j

]:
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Taking complements, we conclude that

Pr[J

i

j ^

j=1;:::;i�1

J

j

] � Pr[J

i

] +

X

j2P

i

Pr[:J

i

^ :J

j

]:

Therefore, by the choice of �, we conclude that

Pr[J

i

j ^

j=1;:::;i�1

J

j

] � Pr[J

i

]

0

@

1 +

1

1� �

X

j2P

i

Pr[:J

i

^ :J

j

]

1

A

:

Multiplying out the last inequalities and using the fact that 1 + x � e

x

, we obtain the �rst

inequality of the theorem. The second one may be proved by repeating verbatim the corre-

sponding proof in [6] (page 83). Only a word of caution for the factor 4 that appears in the

denominator of the exponent of e in inequality (2): this factor is there because of the non-

symmetric form in which we wrote the range of the sum in the de�nition of �. For the same

reason, inequality (1), contrary to the corresponding Janson's inequality in [6], does not have

the factor 2 in the denominator of the exponent of e. 2

3 The Bounds

We �rst prove the following theorem about the family of events E

i

; i = 1; : : : ; r de�ned in the

Introduction.

Theorem 2 If A

i

1

T

A

i

2

= ; then the events E

i

1

and E

i

2

are nonpositively correlated for any

conjunction of conditions from fE

i

: i = 1; : : : ; rg.

Proof Let S be an arbitrary conjunction of events in the family of the E

i

s. To make the

notation simpler, the conditioned on S probability of an event X will be denoted by Pr

S

[X ].

We also denote by E

l

i

the event that there is a letter from the set A

i

at the lth position of the

word. Clearly, :E

i

= ^

m

l=1

:E

l

i

. We have to prove that Pr

S

[E

i

1

jE

i

2

] � Pr

S

[E

i

1

], assuming the

corresponding sets A

i

1

and A

i

2

are disjoint. The inequality to be proved is equivalent to:

Pr

S

[E

i

2

j:E

i

1

] � Pr

S

[E

i

2

] (4)

Assume �rst that that S, which is a set of m-tuples from the alphabet �, is a Cartesian product

S

1

� � � � � S

m

, where the S

l

s (l = 1; : : : ; m) are subsets of the alphabet �. For an arbitrary

position l in the word, let x

l

= Pr

S

l

[E

l

i

2

] and let y

l

= Pr

S

l

[E

l

i

2

j:E

l

i

1

]. Since the sets A

i

1

and A

i

2

are disjoint, y

l

= Pr

S

l

[E

l

i

2

j:E

l

i

1

] = Pr

S

l

[E

l

i

2

^ :E

l

i

1

]=Pr

S

l

[:E

l

i

1

] = x

l

=Pr

S

l

[:E

l

i

1

], and

therefore y

l

� x

l

. Now observe that:

Pr

S

[:E

i

2

j:E

i

1

] =

Pr

S

[:E

i

2

^ :E

i

1

]

Pr

S

[:E

i

1

]

=

Pr

S

[^

m

l=1

:E

l

i

2

^ ^

m

l=1

:E

l

i

1

]

Pr

S

[^

m

l=1

:E

l

i

1

]

=

Pr

S

[A

c

i

2

\A

c

i

1

� � � � � A

c

i

2

\ A

c

i

1

]

Pr

S

[A

c

i

1

� � � � � A

c

i

1

]

=

�

m

l=1

Pr

S

l

[A

c

i

2

\A

c

i

1

]

�

m

l=1

Pr

S

l

[A

c

i

1

]

= �

m

l=1

Pr

S

l

[:E

l

i

2

j:E

l

i

1

] = �

m

l=1

(1� y

l

):

4



Above we made use of the identity

Pr

S

1

�����S

m

[X

1

� � � � �X

m

] = �

m

l=1

Pr

S

l

[X

l

];

which holds for arbitrary subsets S

l

and X

l

of � and follows by trivial set-theoretic manipula-

tions.

From the above series of equalities it follows that Pr

S

[E

i

2

j:E

i

1

] = 1 ��

m

l=1

(1� y

l

). Also,

Pr

S

[E

i

2

] = 1� �

m

l=1

(1� x

l

). Since we have proved that y

l

� x

l

, 8l = 1; : : : ; m, inequality (4)

follows.

Now assume that S is not necessarily a Cartesian product. Any arbitrary S however is the

pairwise disjoint union of Cartesian products (e.g., it is the pairwise disjoint union of singletons,

and a set having as its only element an m-tuple is the Cartesian product of singletons with

elements in �). The theorem now immediately follows from the following claim that holds in

any probability space:

Claim: For any events X; Y , and Z such that Z is the pairwise disjoint union of of a family

of events Z

1

; : : : ; Z

r

, if 8j = 1; : : : ; r;Pr

Z

j

[X ] � Pr

Z

j

[Y ], then Pr

Z

[A] � Pr

Z

[B].

The proof of the above claim follows by trivial set-theoretic manipulations. 2

In the framework of our problem, let � =

P

i�j

Pr[:E

i

^ :E

j

]. Recall that i � j means

that A

i

T

A

j

6= ;. It does not mean that E

i

and E

j

are dependent (after all, in our case, all

pairs of events are dependent). Also let � be such that 1 � � � Pr[E

i

], for all i. Moreover,

let � =

P

i

Pr[:E

i

]. It is easy to see by standard indicator variable arguments that � is the

expected number of sets A

i

that the random word avoids. Finally, recall that p

i

denotes the

probability that the random word contains at least one letter from A

i

. Then

Theorem 3 The probability that the random word contains at least one letter from each set

A

i

is bounded above by

p

1

� � �p

r

e

�=[2(1��)]

:

Also if 2� � �(1� �), then this probability is bounded above by

e

�

�

2

(1��)

2�

:

Proof The theorem follows by a direct application of Theorems 1 and 2. Note that the range

of the sum in � is now written in a symmetric way, so \the current" � is half of the � in

Theorem 2. 2

From the above theorem it follows immediately that:

Corollary 1 If the sets A

i

are pairwise disjoint then the probability that the random word

contains at least one letter from each set A

i

is bounded above by p

1

� � �p

r

:

4 Discussion

It is not hard to bound the probability of a random word containing at least one letter from

each A

i

by the so called \second moment method." Indeed, we already mentioned in the

Introduction that if X is the random variable

P

i

1

:E

i

(w), then the probability of w containing

at least one letter from eachA

i

is equal toPr[X = 0]. By Chebyshev's inequality (see, e.g., page

5



40 in [1]), Pr[X = 0] � var[X ]=(E[X ])

2

. But var[X ] =

P

i

var[1

:E

i

] +

P

i 6=j

cov[1

:E

i

; 1

:E

j

].

Also, it can be easily seen that

var[1

:E

i

] � E[1

:E

i

]; (5)

and that

cov[1

:E

i

; 1

:E

j

] = Pr[:E

i

^ :E

j

]�Pr[:E

i

]Pr[:E

j

]: (6)

Finally if for a pair E

i

and E

j

the corresponding sets A

i

and A

j

are disjoint, then it is immediate

that cov[1

:E

i

; 1

:E

j

] � 0. On the other hand, in all cases and in particular when A

i

and A

j

intersect we have that cov[1

:E

i

; 1

:E

j

] � Pr[:E

i

^ :E

j

]. From the last two inequalities and

also by inequalities (6) and (5), we conclude that

var[X ] �

X

i

Pr[:E

i

] +

X

i;j:A

i

T

A

j

6=;

Pr[:E

i

^ :E

j

] = �+ �:

Therefore by Chebyshev's inequality, the probability that w contains at least one letter from

each A

i

is at most (1=�) + (�=�

2

). However, our bounds are better in many cases, as, for

example, in inequality (2) of Theorem 1, where the expression �=�

2

appears negated and

inverted in the exponent, which is much better than having it as is.
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