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Abstract. We consider the problem of tracking a mobile user movingulgioa cellular
network using node queries that provide information as #b feme the user visited the
node. Queries are executed in rounds, each round may ingoigges to many nodes
simultaneously, and the user may move at the same time tlesieguare performed. The
cost measures considered are the number of rounds reqaifedlitthe user and the total
number of queries made during the execution of the algorithive present a number of
algorithms for general networks, as well as upper and loveemls for specific network
topologies.

ACM CCS Categories and Subject Descriptors:  F.2.3 [Analysis of Algorithms and
Problem Complexity]: Tradets between Complexity Measures
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1. Introduction

Cellular networks face the task of tracking mobile userpi¢lly, cell-phone sub-
scribers) traversing the nodes of a given network. To tractohile user a central
server gqueries in rounds many nodes (typically, base sigtiof the network si-
multaneously until it locates the user. In each round anybemof nodes can be
queried and it is up to the tracking algorithm to optimizestbeéarch. The tracking
problem has been considered extensively in the literat(Bee the discussion of
related work below.) For the most part, the solutions ineabome compromise
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between maintaining a central database of the preciseidocat all mobile users
at any time or querying the nodes of the network whenever gsuseation must
be determined.

The algorithms that query the network assume that nodesderanly one bit of
information, i.e., the presence or non-presence of theaistre location queried.
In such a model, if no further information is provided, angaithm that finds a
user with certainty must eventually query all of the nodes ttould conceivably
contain the user. In this paper, we consider a new “query thadeereby the
nodes maintain a list of users that they have serviced rigcantd when queried
respond with the time that a user last visited the node. Utidsrassumption,
we show query algorithms for user tracking which signifidainnprove upon the
worst-case complexity of search strategies that use omystandard single bit
response model. Note that we do not assume that other infiemmeoncerning
a user’s behavior is available (e.g., the probability ofnigeat a particular node)
but such information could be combined with our techniquestitain even better
results.

1.1 The model

A cellular network is modeled by a synchronous network. Tikia graphG =
(V,E): Vis the set of cells or nodes, afitlthe set of edges between nodes. Let
n = |V| be the number of vertices) = |E| the number of edges, anidhe maximum
degree of any node. In addition, there is a global clock naiiig synchrony over
the entire network. Originally (i.e., at time 0), the usecgies a certain nodg
known to a central query algorithm. This could be, for ins&rthe node at which
the user was last found during a search operation. At eadhuimit the user may
either stay at its current node or move to an adjacent nodea later timet, a
search algorithimbegins searching for the user by querying nodes of the n&twor
The search algorithm has access to the whole network andusag gny number
of nodes at the same time. The algorithm succeeds when iieguiae node that
contains the user. In all instances the search ends wherstitasufound in any
of the nodes queried. The network is synchronous: this mdaisthe queries
are executed simultaneously and the user, the nodes anddtasalgorithm use
identical clocks. Our complexity measures are (1) the nurabmundsr taken by
the search algorithm to find the user and (2) the total numbgueriesq used in
all rounds. Note that a round takes a unit of time while the aae make one unit
move between two successive rounds.

An important point about the model is that the search algorithay query any
node of the graph, while, at the same time, the user is movmgavertices of
the graph. In particular when, at a given time instance, gdach algorithm has
determined that the position of the user is a certain np@ge the next time step the
search algorithm must query not only the nadeut also all its neighbors in order
to locate the user with certainty.

A query to a node is of the form: “When did the user last visi$ thode?” The
answer to the query is an integkrindicating that the user last visited the node
k time units ago. If the user has never visited the node thisdgated by some
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special value, e.gk = —1. A number of variations on this model are possible. If
the node only returns O to indicate the user is not presenttoriridicate the user
is present we get the model most often studied in the litezatdodels in between
these two might be one in which the node is able to remembeeigsuast visit
for limited amount of time or for a limited number of users ttlaae not present.
A model stronger than the one considered here might inclofegration of the
form, “the time the user was last seen as well as the cell tee went to upon
leaving”. Note that for constant degree networks, this rhedrild be equivalent
to the one considered here as one could always query a no@d ahds neighbors
with only constant overhead. We will consider the first maalebve and we refer
to it as thestandard timed model

The timing information model as well as the global clock asption employed
in the paper is not inconsistent with usage in networks ofenily established
wireless phone providers. In addition, [5] assume a symaiue model with a
global clock.

1.2 Contributions of the paper

We study the problem of designing search algorithms thaimike both the num-
ber of rounds required to find the user and the total numbemwuefigs used over
all rounds. In Section 2, we present three upper bounds tbat wn arbitrary
topologies. Theféiciency of the first depends only on the degree of the graph, the
second uses separator properties of the graph and the gpahds on the cutwidth
of the graph. These upper bounds can be adapted to get ingpreselts for spe-
cific topologies. We consider lines, trees, meshes andediqas well as arbitrary
planar topologies. Finally, in Section 3, we give lower badsimhich show some of
the upper bounds are tight for specific cases. The upper avef loounds on the
efficiency of tracking algorithms for éierent network topologies withnodes and
for the standard timed model are summarized in Table |. Icadles, the search
algorithm begins searchtime units after the last known position of the user and
t < n, while for the lower bound in the case of arbitrary graphs ¥8e assume that
t < 6. Note thatn is the number of vertices) the height of the tree] is the max
degree and is the diameter of the network.

Throughout the paper we use techniques from (planar) seepai@nd cutwidth in
order to show that simple algorithms provide tight boundslie cases considered.

1.3 Related work

Searching is related to rendezvous search games (see {llij) aecent years there
has been relevant algorithmic work from the mobile agent roomity (e.g., see
[7]) whereby search is accomplished with the aid of mobilerdag in a network.
A related version of our problem of tracking mobile users basn investigated
by the graph theory community ascaps and robbersearch game under various
models (e.g., see [10] and [9]). Closely related is also &aech number of a graph
which goes back to the work of [16]: which is the minimum numbgsearchers
needed to guarantee that a moving target will be capturethdgearchers. (Itis
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Taste |I: Upper and lower bounds on the number of queries as a fumctfithe number of rounds
given that the search algorithm begins sedrtime units after the last known position of the user
andt < n, for various topologies of size, whered is the max degree of the network anthe height
of the tree. Note that for a clique,is upper and lower bound regardless of the number of rounds.

Graph # of Rounds| Lower Bound Upper Bound:
Clique Any n n

Line r Q(r(min{n, t))'") | O(r(min{n, t})¥'")
Mesh r Q(min{n, t}272'—_1) O(r(min{n, 2t})272'—_1)
Tree h d+1 O(hd)

Planar O(logn) d+1 O(d+/nlogn)
Arbitrary | r maxd + 1, rt¥"} | O(rd™"+1y

always possible to solve the problem by placing a searchevealy vertex of the
graph—though in@cient). More recent is the work of [13] and [11] on various
relevant search numbers. A survey of graph theoretic petisps on searching
and sweeping can be found in [2].

The problem of tracking users in cellular networks consden the current pa-
per originates in research of the wireless networks comtywuAs discussed by [4]
a key requirement for enabling location services is useation and tracking. [3]
consider the problem of concurrent on-line tracking of nielisers for the pur-
pose of providingocating services, while [6] considers topology basedkirar
strategies. Managing the database of mobile user locaiticaslistributed manner
for accomplishing anféicient location strategy is an important issue investigated
in [20]. Another class of models assumes that the searcldeddyy knowledge
of the probability distribution of the location of the maobiln the network. In
this respect, probabilistic location update is considarefll2], conference calls
with delay constraints in [5] and [18], while [17] providedramework for loca-
tion uncertainty. An information-theoretic approach wéigr the inherent location
uncertainty is being used for tracking users can be foun@jmhile a tracking
strategy incorporating a distance-based strategy witartithat counts the time
duration since the last location update is proposed in [15].

For the most part, solutions cited above involve maintgjrancentral database
of the precise location of all users at any time or queryirgribdes of the network
whenever a user’s location must be determined. Moreovergtlery algorithms
only assume that nodes can provide only the presence ormsesce of the user
at the location queried. The approach of the current paperespand this model
by having the nodes store additional timing informationtaf tlast time the mobile
visited the node”; the advantage is that a user can be fowterfavithout having
to query all of the nodes of the network.
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2. Upper bounds

In this section we present a variety of algorithms that pteviipper bounds for
arbitrary graphs, planar graphs, meshes, trees, and lines.

2.1 Arbitrary graphs

We present three algorithms that work on arbitrary topaegiThe #iciency of
the first is limited by the maximum degreeof the underlying network.

TueoreMm 1. Suppose that a user begins moving at tiorfeom a known location s
of an arbitrary connected graph. There is a search algoritttarting at time t that
will find the user in at most r rounds with a total of at mogr@"/"*1) queries.

Proor. Beginning with the start nodg in each round the search algorithm queries
all the nodes in a neighborhodd, 1,1(u) of nodes at distance at mgsfr] + 1
from a given nodeu. Initially, u := s. The node is updated with that node in
Nt/r1+1(u) that has seen the user most recently. At the end ofttheound the
user will move to a neighbor of a previously occupied nodemduthei — 1 round,
while the search algorithm is at a distance of at miesi[t/r] from the user. Soin

r rounds the search algorithm will be at a distance of at rmest[t/r] < 0 from
the user and the user will be located. In each round at @¢#t/'1+1) nodes are
queried. This completes the proof of Theorenil.

Our second algorithm depends on the separator propertiaggdph. An edge
separator of grapls is a setS of edges of the graph that separates the graph into
two or more parts of at most/2 nodes each. We define thdge separator function
of the graphG as follows: for any integek,

Fe(k) = (1)

) max min S|,
(induced subgrapBy) (S edge separator @3y)

where the max is taken over all induced subgrah®f G with at mostk nodes,
and the min over all edge separat@®f Gy. We prove the following theorem.

THEOREM 2. Suppose that a user begins moving at tirfeom a known location s
of an arbitrary connected graph. There is an algorithm thdt find the user in at
most (log n) rounds with a total of at most

[logn] i

2 ; ,Z:;j Fo(n/2))

queries, where g is the edge separator function of the graph G.

Proor.  Let the graph b& = (V,E). In the first round we consider an edge
separator with node s&; of the graphG of size at most Bg(n) (i.e, at most 2
nodes per edge in the separator). The search algorithmegube nodes i8; and
determines in which component of the graph minus the sepaifa user lies. In
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the next round the search algorithm queries the set of nodgs, whereS; is the

set of nodes in an edge separator of the component previdestymined, along
with the nodes o0, (since, in the meantime, the user may have escaped to a node
belonging toS1). We iterate this process and we observe th&; iis the new set

of nodes queried in theth round then the number of queries in tikth round is

at most|S1| + |Sy| + - - - + |Sj|. This implies that the total number of queries in all

rounds is at most
flogn i

> 2|S,-|.

i=0

The upper bound stated in the theorem now follows easily fitoerdefinition (see
Equation 1) of the edge separator function of the graph. dtispletes the proof
of Theorem 2

We note that a natural generalization of Theorem 2 existsreviiee graph is
separated intb or more pieces of size at mastl, resulting in an algorithm using
O(log, n) rounds and query count given by the corresponding sum cdraggr
sizes. An example of this approach is given in Theorem 4.

The cutwidth of a graphG, denoted byc(G), is the smallest integéds such that
then vertices of the graph can be arranged in a linear ovgern, ..., Vv, in such a
way that for alli < nthere are at modt edges with one endpoint in,...,Vv; and
the other invi,1, ..., Vn (see [19]).

Tueorem 3. Suppose that a user begins moving at tirfeom a known location s
of an arbitrary connected graph. There is an algorithm thdt find the user in at
most (flog n) rounds with a total of at most (G) logn) queries, where (€) is
the cutwidth of the graph G.

Proor. Let the cutwidth of the grap® bec := ¢(G). Therefore there is a linear
ordervy, Vo, ..., Vy, Of the vertices of the graph such that for ek n there are at
mostc edges with one endpoint m, . ..,Vv; and the other irvi,1,...,v,. At any
round of the algorithm, we maintain an intervglto v, in which we are certain the
user lies. Initially,v, = v1 andv, = v,,. For such an order of the vertices define the
SetsA = {Va, ..., Vi@a+b)/2/} B = {V(a+b)/2)+1 - - - » Vbl

The search algorithm queries the §bf nodes consisting of the endpoints of
edges between (¥1,...,Va-1 @andva,...,Vp, (i) Va,...,Vp andvp,1,...,Vy and
(iif) AandB, plus the nodes. Note that this consists of at most6 1 nodes. If the
user is among these nodes then we are done. Else,de$ be the node queried
by the search algorithm that saw the user lastu § A (respectively,B) then in
the next round we can be certain the user will be locatel frespectively, inB).
(Note that the sets (i) and (ii) above insure that the uses doéescape during the
current round.) The search continues inductively on amiateof at most half the
size. This implies that the user will be located witl@@og n) rounds usingd(c)
gueries per round. This completes the proof of Theorem 3.

We note that a natural generalization of Theorem 3 existseuie linear order is
divided intol approximately equal parts. The resulting algorithm run®flog, n)
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rounds and use®(Ic(G) log, n) queries. An example of this approach is given in
Theorem 8.

2.2 Planar graphs

As a corollary to Theorem 2 we get the following result formaa graphs with
max degreal.

CoroLLARY 1. Suppose that a user begins moving at tirfeom a known location
s of a planar graph of maximum degree d. There is an algorithat will find the
user in at most Qog n) rounds with a total of at most @+/nlogn) queries.

Proor. We use the planar separator theorem of [14]. Awyode planar graph
of maximum degreel has an edge separator of si2éd /n). The result follows
immediately from Theorem 2. This completes the proof of Qarg 1. o

2.3 Mesh

In this section we give upper bounds for the mesh that impuman the obvious
application of the general algorithms. We prove the follogvtheorem.

TueoreM 4. Suppose that a user begins moving at tirfeom a known location s
of an nx n mesh. For any constant r number of rounds there is a seagbrighm

that starting at time t will find the user in at mos{i@in{n, 2t} 7 1) queries.

Proor. We consider two cases depending on the relative sizes ofn.

Caset +r > n. By querying all of the nodes one can find the user in one round
usingn? queries. We show how to achie@n*/3) queries in two rounds and then
show how to generalize this result to get the claimed re€uitround one we query
all nodes on every?3rd row and column and their neighbors, a total of less than
6n*2 queries. At this point the search algorithm can deduce wbicdhe resulting
n?/3 x n?/3 submeshes the user is in by following its progress from therash
containings and observing which boundaries it crosses when. If all ggeare
null then the submesh containirgjis the correct one. One more round rf3
queries sffices.

To generalize to rounds, divide them into two sets of rounds, the first rourdi an
the remaining — 1 rounds and apply the solution for fewer rounds inductivéin
round one we query all nodes on every

iY@ -1) — @-2)/(2'-1)
row and column (and neighbors), a total of at mast 6% -1 queries. At this point
we can deduce on which of the resulting
A -2/@-1) y (@ -2)/@-1)

submeshes the user is in. The remainingl rounds are now executed inductively
.. r r
on anm x msubmesh containing, wherem = n(® -2/(2 -1),
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Caset + r < n. Inr rounds the agent cannot reach a point more tharr
hops away froms. We consider a square mesh wilas its center and with side
2(t + r). Clearly the agent will not leave this mesh duringounds. We now run
the algorithm for the previous case with= 2(t + r). (Note that ifsis near the
edge of the mesh some portion of this mesh may not exist. fnddse we run
the algorithm on a “virtual” mesh that includes nonexisteatdes outside of the
actual me§h. Queries to “virtual” nodes are ignored.) Ther isthen found in
r2(r + t)z?z-_l) queries.

Combining the two cases together we get an upper bound of

O(r min{n,2t}272r—_1)

on the number of queries.
This completes the proof of Theoremd.

Applying Theorem 2 directly to the mesh results in an aldgpnithat use©(log n)
rounds andd(nlogn) queries. By a slight adjustment we can remove the factor of
logn.

TueorEM 5. Suppose that a user begins moving at tirfeom a known location s
of an nx n mesh. There is a search algorithm that starting at time L fivil the
user in at most Qog min{n, t}) rounds and at most @nin{n, t}) queries.

Proor. We consider two cases depending on the relative sizes @dgt, n.

Caset + logt > n. We note that & x | mesh has an edge separator of size
O(min{k, I}) and the resulting graphs after removing the separator ashas with
sides midk, I} and maxk,1}/2. Applying an algorithm analogous to that of The-
orem 2 but at each round rather than querying the separaior the previous
rounds, we enlarge the mesh by lo@n order to be certain the user does not es-
cape, we get an algorithm that af®flog n) rounds andd(n) queries has reduced
the range of the user to a mesh of maximum €geg n). One round ofd(log? n)
queries completes the search.

Caset + logt < n. This can be handled easily by considering a mesh of side
2(t + logt) which is centered &t

This completes the proof of Theorem.

2.4 Tree

In this section we give upper bounds for trees. Direct apgiim of the results
for arbitrary graphs provide upper bounds but these can pedved somewhat by
taking advantage of the tree topology.

The algorithm of Theorem 1 when adapted to trees of maximugnegel yields
the following theorem.

TueoreM 6. Suppose that a user begins moving at tirfeom a known location s
of a tree of maximum degree d and height h. There is an algoritat will find
the user in at most h rounds with a total of at mogh@) queries.
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Proor. The search algorithm starts by querying the root of the aregits neigh-
bors. If none of these nodes has seen the user then it mustdtedon the same
subtree rooted at that child of the root as that in which the stodes is located.
Otherwise, we consider the nodéhat has seen the user most recently i the
root then the user has been found.vlis a child of the root then the user must
be located in the subtree rootedvatin this last case, we can detach the subtree
rooted atv and iterate the search inductively. In any case, there itahdbat most
hrounds and in each round the search algorithm makes atano$tqueries. This
completes the proof of Theorem 8.

The algorithm from Theorem 2 when applied to a constant defyes results in
an algorithm that require®(log® n) queries to find a user i®(logn) rounds. This
can be improved as we see in the following theorem.

THEOREM 7. Suppose that a user begins moving at tirfeom a known location s
of a tree of maximum degree d. There is an algorithm that widl the user in at
most G{Iogag_1 n) rounds with a total of at most(]l)gzag_1 n) queries.

Proor. We use the fact that a tree of degokkas a single edge that splits the tree
into two pieces neither of which is smaller thafd. Proceeding as in Theorem 2
using this separator rather than a perfect separator, gdoedmn follows. (Note that
on each round all previous separator edges must be quefidis)completes the
proof of Theorem 7o

2.5 Line

In this section we give upper bounds for the line. Applyinge@tem 3 yields an
algorithm that finds a user i®(log n) rounds usingd(logn) queries. This algo-
rithm can be generalized to yield an optimal algorithm foy anmber of rounds
less than log. In section 3 we show our upper bound is tight. We can show the
following theorem.

TueoreM 8. Suppose that a user begins moving at tiorfeom a known location s
of a line of length n. There is a search algorithm that stagtat time t will find the
user in r rounds with a total of @ - min{t, n}*’") queries.

Proor. We consider two cases depending on the relative sizes+022+ 1, n.

Case 2+ 2r + 1 < n. Assume the user started at node 0 and that the line consists
of the nodes 01, +2,...,+n/2. If t < n/2, then at timd it can be at any of the
2t + 1 nodes of the closed intervat, t].

The search algorithm is executed in rounds and each roumdve® querying a
certain number of nodes. In the first round the algorithm gsethe set of nodes
(ktt=D/" - 1k < tY7} U {~t,t} and determines an interval, s&y; of size at most
t(-D/" which is most recently occupied by the user. By inductiorsuase that
in thei-th round the algorithm has determined an interval, sapf size at most
t=)/" which is most recently occupied by the user. Bet= t(~)/", In thei + 1-st
round the algorithm queries a setrot/ ) equally spaced nodes of the interval
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at distanca(--1/" from each other. Since/"~) = t¥/" the number of queries in
this new round i€O(t¥"). The user is found at theth round by querying all the
nodes of the subintervay. It follows thatr rounds withO(t'/") queries per round
are stficient to locate the user.

Case 2+ 2r+1>n. If 2t + 2r + 1 > nthen at time the user may be located at
any node of the line and a similar proof will work.

This completes the proof of Theorem8.

3. Lower bounds

In this section we present lower bounds that show some of ppemubounds are
tight.

3.1 Clique

The following general lower bound is straightforward:

Tueorem 9. Suppose that a user begins moving at trfeom a known location s

of an arbitrary graph. Let N(t) be the set of nodes reachable from s in t steps. Any
search algorithm starting at time O requires at least Kt) queries in order to
find a node in a single roundy

The above shows that the obvious algorithm of querying allesoof a clique in
a single round is optimal.

Tueorem 10. Searching for a user on a clique requires n queries in a singlad.
i

3.2 Tree

In this section, we give a lower bound for bounded degreestrébe lower bound
implies the algorithm of Theorem 8 is optimal.

Tueorem 11. Suppose that a user begins moving at tirfeom a known location
s of a tree of size n and maximal degree d. Any search algostanting at time t

. . . . i 1 .
and finding the user in r rounds requir€xr - ™57y queries.

Proor. Consider the case whete< n/2 and consider the greater thamodes
within distancet of s. By anuncertainty subtregve mean a subtree any of whose
nodes may be occupied by the user based on the current krgevidda search
algorithm, i.e., the results of its queries.

CLamv 1. If prior to the execution of the queries at a given round thsran uncer-
tainty subtree of size at least L and if during a round a totied| gueries are made
to nodes of this subtree then after the execution of thisddiere is an uncertainty
subtree of size at leag.
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Proor (CLamm 1). Suppose thaf] nodes, in the given subtree are queried. This
divides the subtree intqd subtrees one of which is of size at quﬁt An ad-
versary can always answer the queries so as to leave thénsdgarithm with an
uncertainty subtree of size at Ieea%t For example, the queries may be answered
consistent with the user walking directly to the first noreqed node in the large
subtree and waiting there. This completes the proof of Claim

Now suppose that an algorithm is executedrfoounds and that at rourid< r
we made exactlyg; queries. In view of Claim 1, at the end of the last rounthe
uncertainty subtree must be of size at least

t
(G * d)(q2 * d) - - (qr * d)

and the total number of queriesds + ¢ + - - - + .. Hence we have to solve the
following optimization problem:

minimize qu+ 2+ -+ G,
subjectto @y« d)(gz «d)---(gr = d) > t.

It is easy to see that this is minimized whegn= g, = - - - = g, in which case the
total number of queries is at least
tl/l’
Qfr-—|.
%)

If t > n/2 then at time the user may be located at any node of the tree and a
similar proof will work. This completes the proof of Theorett. o

3.3 Mesh

We now show that the upper bound of Theorem 4 is tight for amgtant number
of rounds. Namely we prove the following result.

THeoreM 12. Suppose that a user begins moving at thriem a known location s
of an nx n mesh. For any constant r, any search algorithm startingraett and

finding the user in r rounds requirgd(min{n, t}2 7_1) queries.

Proor.  We prove the result fot = 2rn and s being the center of the mesh.
The necessary adjustments when either2rn ort < 2rn and for arbitrarys are
straightforward.

We require the following definitions. For @ ¢ < n, ann x n c-meshs formed
by taking am x n mesh, choosing up t@— ¢ nodes and removing them along with
all of the edges in the rows and columns corresponding teethedes. A row or
column is said to beleanif no nodes (and therefore edges) were removed from
it in forming thec-mesh. By considering the greater than or equal ¢eean rows
and columns of the mesh, it is easy to see thah an cmesh has a connected
subgraph with(c?) nodes and diameter less or equal to Eurthermore, if we
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removec’ nodes and corresponding edges in their rows and columns, &o-
mesh, the result is & ¢ ¢’)-mesh.
We prove the following claim concerningmeshes.

CrLamv 2. Suppose that a user begins moving at tibrfeom a known location s of
an nx n c-mesh. For any constant r, any search algorithm startinggnae t= 2rn

and finding the user in r rounds requrréx(cif_l) queries.

Proor. We prove the claim by induction on The case = 1 follows from
Theorem 9. Assume the claim holds for some constant numbmwﬂ;s,r -1
Divide thec clean rows and columns of tleemesh into blocks of Iengtb%:_i. The
connected subgraph formed by the intersection (along vatimecting edges and

vertices) of thdath block of rows and thgth block of columns forms a%;:_i—mesh

and there arez~1 such meshes.
Let g be the number of queries in the first round of the search. Withass of
2I’

generality we can assume thapk E (othervvise the proof of the claim is com-
pIete) By an averaging argument, there al -mesh A, that receives fewer than

€21 queries. We answer all queries of the first round consistéthttve user hav-
ing started at time 0 and having walked directly to the ndares-queried node in
A and having waited there until at total of 8teps have passed. For queries inside
A we report never having seen the user. We remove all of theshotl& corre-
sponding to queries along with the edges in their rows andnens. The search
algorithm is now left with the problem of finding the userinl rounds, starting at

'2 o or-1

time 2¢ —1)non aC2 -mesh. By induction, this require3 07_/22r I 1) queries

wherer is constant. This completes the proof of Claim=2.

Takingc = nin the claim completes the proof of Theorem 12.

3.4 Arbitrary graphs

A lower bound for arbitrary graphs follows easily from themver bound for the
tree.

Tueorem 13. Suppose that a user begins moving at tirfeom a known location
s of an arbitrary graph with n nodes of maximal degree d. Ararcealgorithm
starting at time t and finding the user in r rounds requifeégnaxd + 1, rM}
queries.

Proor. The lower boundl + 1 follows from the fact that a node of degréand all
its neighbors may have to be queried in order to locate the U$e lower bound
r Nt follows from the lower bound for the tree by considering arspag tree
of the graph. This completes the proof of Theorem33.
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4. Conclusions

In this paper we considered tradesoon the number of rounds and queries for
tracking a user in a network where nodes respond to querigstheé time a user
last visited the node. We gave several tracking algorithonsafbitrary networks
and specific topologies, like, planar graphs, lines, mesiiebtrees. We also con-
sidered lower bounds for all these types of networks and sdosur algorithms
are optimal in several cases. Several interesting problemsin, in addition to
tightening our bounds. These include variants of the gaeswer model we stud-
ied here, that are either more or less restrictive in thermgdion they provide.
Additional twists concern modeling the behavior of possitalulty information,
e.g., either an upper bound on the number of nodes that magulty br nodes
may give incorrect answers to queries with some probabilty using a param-
eter that characterizes the relative speed of the mobilds respect to the server
query response time can provide interesting problems fithéu investigation in
Mobile Agent settings. Finally, an interesting questionaarns the complexity of
the proposed strategies since théget the performance of the central server.
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