
Nordic Journal of Computing 14(2008), 202–215.

TRACKING MOBILE USERS IN CELLULAR
NETWORKS USING TIMING INFORMATION∗

EVANGELOS KRANAKIS†

School of Computer Science, Carleton University
Ottawa, ON, K1S 5B6, Canada
kranakis@scs.carleton.ca

DANNY KRIZANC
Department of Mathematics and Computer Science
Wesleyan University, Middletown CT 06459, USA

dkrizanc@wesleyan.edu

SUNIL SHENDE
Department of Computer Science,

Rutgers University, Camden, NJ, 08102, USA
shende@camden.rutgers.edu

Abstract. We consider the problem of tracking a mobile user moving through a cellular
network using node queries that provide information as to last time the user visited the
node. Queries are executed in rounds, each round may involvequeries to many nodes
simultaneously, and the user may move at the same time that queries are performed. The
cost measures considered are the number of rounds required to find the user and the total
number of queries made during the execution of the algorithm. We present a number of
algorithms for general networks, as well as upper and lower bounds for specific network
topologies.

ACM CCS Categories and Subject Descriptors: F.2.3 [Analysis of Algorithms and
Problem Complexity]: Tradeoffs between Complexity Measures

Key words: cellular networks, query, round, timing information, tracking

1. Introduction

Cellular networks face the task of tracking mobile users (typically, cell-phone sub-
scribers) traversing the nodes of a given network. To track amobile user a central
server queries in rounds many nodes (typically, base stations) of the network si-
multaneously until it locates the user. In each round any number of nodes can be
queried and it is up to the tracking algorithm to optimize this search. The tracking
problem has been considered extensively in the literature.(See the discussion of
related work below.) For the most part, the solutions involve some compromise

∗This is an expanded and revised version of a paper that appeared in the proceedings of SIROCCO
2003, Carleton Scientific, 2003, J. Sibeyn, ed., pages 223–234.

†Research supported in part by NSERC (Natural Sciences and Engineering Research Council of
Canada) and MITACS (Mathematics of Information Technologyand Complex Systems) grants.

Received December 2007; accepted February 2009.

TRACKING MOBILE USERS 203

between maintaining a central database of the precise location of all mobile users
at any time or querying the nodes of the network whenever a user’s location must
be determined.

The algorithms that query the network assume that nodes provide only one bit of
information, i.e., the presence or non-presence of the userat the location queried.
In such a model, if no further information is provided, any algorithm that finds a
user with certainty must eventually query all of the nodes that could conceivably
contain the user. In this paper, we consider a new “query model” whereby the
nodes maintain a list of users that they have serviced recently and when queried
respond with the time that a user last visited the node. Underthis assumption,
we show query algorithms for user tracking which significantly improve upon the
worst-case complexity of search strategies that use only the standard single bit
response model. Note that we do not assume that other information concerning
a user’s behavior is available (e.g., the probability of being at a particular node)
but such information could be combined with our techniques to obtain even better
results.

1.1 The model

A cellular network is modeled by a synchronous network. Thisis a graphG =
(V,E): V is the set of cells or nodes, andE the set of edges between nodes. Let
n = |V| be the number of vertices,m= |E| the number of edges, andd the maximum
degree of any node. In addition, there is a global clock maintaining synchrony over
the entire network. Originally (i.e., at time 0), the user occupies a certain nodes,
known to a central query algorithm. This could be, for instance, the node at which
the user was last found during a search operation. At each time unit the user may
either stay at its current node or move to an adjacent node. Ata later timet, a
search algorithmbegins searching for the user by querying nodes of the network.
The search algorithm has access to the whole network and can query any number
of nodes at the same time. The algorithm succeeds when it queries the node that
contains the user. In all instances the search ends when the user is found in any
of the nodes queried. The network is synchronous: this meansthat the queries
are executed simultaneously and the user, the nodes and the search algorithm use
identical clocks. Our complexity measures are (1) the number of roundsr taken by
the search algorithm to find the user and (2) the total number of queriesq used in
all rounds. Note that a round takes a unit of time while the user can make one unit
move between two successive rounds.

An important point about the model is that the search algorithm may query any
node of the graph, while, at the same time, the user is moving along vertices of
the graph. In particular when, at a given time instance, the search algorithm has
determined that the position of the user is a certain nodeu, at the next time step the
search algorithm must query not only the nodeu but also all its neighbors in order
to locate the user with certainty.

A query to a node is of the form: “When did the user last visit this node?” The
answer to the query is an integerk indicating that the user last visited the node
k time units ago. If the user has never visited the node this is indicated by some

204 E. KRANAKIS, D. KRIZANC, S. SHENDE

special value, e.g.,k = −1. A number of variations on this model are possible. If
the node only returns 0 to indicate the user is not present or 1to indicate the user
is present we get the model most often studied in the literature. Models in between
these two might be one in which the node is able to remember a user’s last visit
for limited amount of time or for a limited number of users that are not present.
A model stronger than the one considered here might include information of the
form, “the time the user was last seen as well as the cell the user went to upon
leaving”. Note that for constant degree networks, this model would be equivalent
to the one considered here as one could always query a node andall of its neighbors
with only constant overhead. We will consider the first modelabove and we refer
to it as thestandard timed model.

The timing information model as well as the global clock assumption employed
in the paper is not inconsistent with usage in networks of currently established
wireless phone providers. In addition, [5] assume a synchronous model with a
global clock.

1.2 Contributions of the paper

We study the problem of designing search algorithms that minimize both the num-
ber of rounds required to find the user and the total number of queries used over
all rounds. In Section 2, we present three upper bounds that work on arbitrary
topologies. The efficiency of the first depends only on the degree of the graph, the
second uses separator properties of the graph and the third depends on the cutwidth
of the graph. These upper bounds can be adapted to get improved results for spe-
cific topologies. We consider lines, trees, meshes and cliques, as well as arbitrary
planar topologies. Finally, in Section 3, we give lower bounds which show some of
the upper bounds are tight for specific cases. The upper and lower bounds on the
efficiency of tracking algorithms for different network topologies withn nodes and
for the standard timed model are summarized in Table I. In allcases, the search
algorithm begins searcht time units after the last known position of the user and
t ≤ n, while for the lower bound in the case of arbitrary graphs we also assume that
t ≤ δ. Note thatn is the number of vertices,h the height of the tree,d is the max
degree andδ is the diameter of the network.

Throughout the paper we use techniques from (planar) separators and cutwidth in
order to show that simple algorithms provide tight bounds for the cases considered.

1.3 Related work

Searching is related to rendezvous search games (see [1]) and in recent years there
has been relevant algorithmic work from the mobile agent community (e.g., see
[7]) whereby search is accomplished with the aid of mobile agents in a network.
A related version of our problem of tracking mobile users hasbeen investigated
by the graph theory community as acops and robberssearch game under various
models (e.g., see [10] and [9]). Closely related is also the search number of a graph
which goes back to the work of [16]: which is the minimum number of searchers
needed to guarantee that a moving target will be captured by the searchers. (It is

TRACKING MOBILE USERS 205

T I: Upper and lower bounds on the number of queries as a function of the numberr of rounds
given that the search algorithm begins searcht time units after the last known position of the user
andt ≤ n, for various topologies of sizen, whered is the max degree of the network andh the height
of the tree. Note that for a clique,n is upper and lower bound regardless of the number of rounds.

Graph # of Rounds Lower Bound Upper Bound:
Clique Any n n
Line r Ω(r(min{n, t})1/r) O(r(min{n, t})1/r)

Mesh r Ω(min{n, t} 2r

2r−1) O(r(min{n, 2t}) 2r

2r−1)
Tree h d + 1 O(hd)
Planar O(logn) d + 1 O(d

√
n logn)

Arbitrary r max{d + 1, rt1/r } O(rd⌈t/r⌉+1)

always possible to solve the problem by placing a searcher atevery vertex of the
graph–though inefficient). More recent is the work of [13] and [11] on various
relevant search numbers. A survey of graph theoretic perspectives on searching
and sweeping can be found in [2].

The problem of tracking users in cellular networks considered in the current pa-
per originates in research of the wireless networks community. As discussed by [4]
a key requirement for enabling location services is user location and tracking. [3]
consider the problem of concurrent on-line tracking of mobile users for the pur-
pose of providing/locating services, while [6] considers topology based tracking
strategies. Managing the database of mobile user locationsin a distributed manner
for accomplishing an efficient location strategy is an important issue investigated
in [20]. Another class of models assumes that the search is aided by knowledge
of the probability distribution of the location of the mobile in the network. In
this respect, probabilistic location update is consideredin [12], conference calls
with delay constraints in [5] and [18], while [17] provides aframework for loca-
tion uncertainty. An information-theoretic approach whereby the inherent location
uncertainty is being used for tracking users can be found in [8] while a tracking
strategy incorporating a distance-based strategy with a timer, that counts the time
duration since the last location update is proposed in [15].

For the most part, solutions cited above involve maintaining a central database
of the precise location of all users at any time or querying the nodes of the network
whenever a user’s location must be determined. Moreover, the query algorithms
only assume that nodes can provide only the presence or non-presence of the user
at the location queried. The approach of the current paper isto expand this model
by having the nodes store additional timing information of the “last time the mobile
visited the node”; the advantage is that a user can be found faster without having
to query all of the nodes of the network.

206 E. KRANAKIS, D. KRIZANC, S. SHENDE

2. Upper bounds

In this section we present a variety of algorithms that provide upper bounds for
arbitrary graphs, planar graphs, meshes, trees, and lines.

2.1 Arbitrary graphs

We present three algorithms that work on arbitrary topologies. The efficiency of
the first is limited by the maximum degreed of the underlying network.

T 1. Suppose that a user begins moving at time0 from a known location s
of an arbitrary connected graph. There is a search algorithmstarting at time t that
will find the user in at most r rounds with a total of at most O(rd⌈t/r⌉+1) queries.

P. Beginning with the start nodes, in each round the search algorithm queries
all the nodes in a neighborhoodN⌈t/r⌉+1(u) of nodes at distance at most⌈t/r⌉ + 1
from a given nodeu. Initially, u := s. The node is updated with that node in
N⌈t/r⌉+1(u) that has seen the user most recently. At the end of theith round the
user will move to a neighbor of a previously occupied node during thei − 1 round,
while the search algorithm is at a distance of at mostt − i⌈t/r⌉ from the user. So in
r rounds the search algorithm will be at a distance of at mostt − r⌈t/r⌉ ≤ 0 from
the user and the user will be located. In each round at mostO(d⌈t/r⌉+1) nodes are
queried. This completes the proof of Theorem 1.�

Our second algorithm depends on the separator properties ofa graph. An edge
separator of graphG is a setS of edges of the graph that separates the graph into
two or more parts of at mostn/2 nodes each. We define theedge separator function
of the graphG as follows: for any integerk,

FG(k) = max
(induced subgraphGk)

min
(S edge separator ofGk)

|S|, (1)

where the max is taken over all induced subgraphsGk of G with at mostk nodes,
and the min over all edge separatorsS of Gk. We prove the following theorem.

T 2. Suppose that a user begins moving at time0 from a known location s
of an arbitrary connected graph. There is an algorithm that will find the user in at
most O(logn) rounds with a total of at most

2
⌈logn⌉
∑

i=0

i
∑

j=0

FG(n/2 j)

queries, where FG is the edge separator function of the graph G.

P. Let the graph beG = (V,E). In the first round we consider an edge
separator with node setS1 of the graphG of size at most 2FG(n) (i.e, at most 2
nodes per edge in the separator). The search algorithm queries the nodes inS1 and
determines in which component of the graph minus the separator the user lies. In

TRACKING MOBILE USERS 207

the next round the search algorithm queries the set of nodes in S2, whereS2 is the
set of nodes in an edge separator of the component previouslydetermined, along
with the nodes ofS1 (since, in the meantime, the user may have escaped to a node
belonging toS1). We iterate this process and we observe that ifSi is the new set
of nodes queried in thei-th round then the number of queries in thei-th round is
at most|S1| + |S2| + · · · + |Si |. This implies that the total number of queries in all
rounds is at most

⌈logn⌉
∑

i=0

i
∑

j=0

|S j |.

The upper bound stated in the theorem now follows easily fromthe definition (see
Equation 1) of the edge separator function of the graph. Thiscompletes the proof
of Theorem 2.�

We note that a natural generalization of Theorem 2 exists where the graph is
separated intol or more pieces of size at mostn/l, resulting in an algorithm using
O(logl n) rounds and query count given by the corresponding sum of separator
sizes. An example of this approach is given in Theorem 4.

Thecutwidthof a graphG, denoted byc(G), is the smallest integerk such that
then vertices of the graph can be arranged in a linear orderv1, v2, . . . , vn in such a
way that for alli < n there are at mostk edges with one endpoint inv1, . . . , vi and
the other invi+1, . . . , vn (see [19]).

T 3. Suppose that a user begins moving at time0 from a known location s
of an arbitrary connected graph. There is an algorithm that will find the user in at
most O(logn) rounds with a total of at most O(c(G) logn) queries, where c(G) is
the cutwidth of the graph G.

P. Let the cutwidth of the graphG bec := c(G). Therefore there is a linear
orderv1, v2, . . . , vn of the vertices of the graph such that for alli < n there are at
mostc edges with one endpoint inv1, . . . , vi and the other invi+1, . . . , vn. At any
round of the algorithm, we maintain an intervalva to vb in which we are certain the
user lies. Initially,va = v1 andvb = vn. For such an order of the vertices define the
setsA = {va, . . . , v⌊(a+b)/2⌋}, B = {v⌊(a+b)/2⌋+1, . . . , vb}.

The search algorithm queries the setS of nodes consisting of the endpoints of
edges between (i)v1, . . . , va−1 and va, . . . , vb, (ii) va, . . . , vb and vb+1, . . . , vn and
(iii) A andB, plus the nodes. Note that this consists of at most 6c+ 1 nodes. If the
user is among these nodes then we are done. Else, letu ∈ S be the node queried
by the search algorithm that saw the user last. Ifu ∈ A (respectively,B) then in
the next round we can be certain the user will be located inA (respectively, inB).
(Note that the sets (i) and (ii) above insure that the user does not escape during the
current round.) The search continues inductively on an interval of at most half the
size. This implies that the user will be located withinO(logn) rounds usingO(c)
queries per round. This completes the proof of Theorem 3.�

We note that a natural generalization of Theorem 3 exists where the linear order is
divided intol approximately equal parts. The resulting algorithm runs inO(logl n)

208 E. KRANAKIS, D. KRIZANC, S. SHENDE

rounds and usesO(lc(G) logl n) queries. An example of this approach is given in
Theorem 8.

2.2 Planar graphs

As a corollary to Theorem 2 we get the following result for planar graphs with
max degreed.

C 1. Suppose that a user begins moving at time0 from a known location
s of a planar graph of maximum degree d. There is an algorithm that will find the
user in at most O(logn) rounds with a total of at most O(d

√
n logn) queries.

P. We use the planar separator theorem of [14]: Anyn-node planar graph
of maximum degreed has an edge separator of sizeO(d

√
n). The result follows

immediately from Theorem 2. This completes the proof of Corollary 1. �

2.3 Mesh

In this section we give upper bounds for the mesh that improveupon the obvious
application of the general algorithms. We prove the following theorem.

T 4. Suppose that a user begins moving at time0 from a known location s
of an n× n mesh. For any constant r number of rounds there is a search algorithm

that starting at time t will find the user in at most O(rmin{n, 2t}
2r

2r−1) queries.

P. We consider two cases depending on the relative sizes oft + r, n.
Caset + r ≥ n. By querying all of the nodes one can find the user in one round

usingn2 queries. We show how to achieveO(n4/3) queries in two rounds and then
show how to generalize this result to get the claimed result.On round one we query
all nodes on everyn2/3rd row and column and their neighbors, a total of less than
6n4/3 queries. At this point the search algorithm can deduce whichof the resulting
n2/3 × n2/3 submeshes the user is in by following its progress from the submesh
containings and observing which boundaries it crosses when. If all queries are
null then the submesh containings is the correct one. One more round ofn4/3

queries suffices.
To generalize tor rounds, divide them into two sets of rounds, the first round and

the remainingr − 1 rounds and apply the solution for fewer rounds inductively. On
round one we query all nodes on every

n1−1/(2r−1) = n(2r−2)/(2r−1)

row and column (and neighbors), a total of at most 6n2r /(2r−1) queries. At this point
we can deduce on which of the resulting

n(2r−2)/(2r−1) × n(2r−2)/(2r−1)

submeshes the user is in. The remainingr −1 rounds are now executed inductively
on anm×msubmesh containings, wherem= n(2r−2)/(2r−1).

TRACKING MOBILE USERS 209

Caset + r < n. In r rounds the agent cannot reach a point more thant + r
hops away froms. We consider a square mesh withs as its center and with side
2(t + r). Clearly the agent will not leave this mesh duringr rounds. We now run
the algorithm for the previous case withn = 2(t + r). (Note that ifs is near the
edge of the mesh some portion of this mesh may not exist. In this case we run
the algorithm on a “virtual” mesh that includes nonexistentnodes outside of the
actual mesh. Queries to “virtual” nodes are ignored.) The user is then found in

r(2(r + t)
2r

2r−1) queries.
Combining the two cases together we get an upper bound of

O
(

r min{n, 2t}
2r

2r−1

)

on the number of queries.
This completes the proof of Theorem 4.�

Applying Theorem 2 directly to the mesh results in an algorithm that usesO(logn)
rounds andO(n logn) queries. By a slight adjustment we can remove the factor of
logn.

T 5. Suppose that a user begins moving at time0 from a known location s
of an n× n mesh. There is a search algorithm that starting at time t will find the
user in at most O(log min{n, t}) rounds and at most O(min{n, t}) queries.

P. We consider two cases depending on the relative sizes oft + log t, n.
Caset + log t ≥ n. We note that ak × l mesh has an edge separator of size

O(min{k, l}) and the resulting graphs after removing the separator are meshes with
sides min{k, l} and max{k, l}/2. Applying an algorithm analogous to that of The-
orem 2 but at each round rather than querying the separator from the previous
rounds, we enlarge the mesh by logn in order to be certain the user does not es-
cape, we get an algorithm that afterO(logn) rounds andO(n) queries has reduced
the range of the user to a mesh of maximum sideO(logn). One round ofO(log2 n)
queries completes the search.

Caset + log t < n. This can be handled easily by considering a mesh of side
2(t + log t) which is centered ats.

This completes the proof of Theorem 5.�

2.4 Tree

In this section we give upper bounds for trees. Direct application of the results
for arbitrary graphs provide upper bounds but these can be improved somewhat by
taking advantage of the tree topology.

The algorithm of Theorem 1 when adapted to trees of maximum degreed yields
the following theorem.

T 6. Suppose that a user begins moving at time0 from a known location s
of a tree of maximum degree d and height h. There is an algorithm that will find
the user in at most h rounds with a total of at most O(hd) queries.

210 E. KRANAKIS, D. KRIZANC, S. SHENDE

P. The search algorithm starts by querying the root of the treeand its neigh-
bors. If none of these nodes has seen the user then it must be located in the same
subtree rooted at that child of the root as that in which the start nodes is located.
Otherwise, we consider the nodev that has seen the user most recently. Ifv is the
root then the user has been found. Ifv is a child of the root then the user must
be located in the subtree rooted atv. In this last case, we can detach the subtree
rooted atv and iterate the search inductively. In any case, there is a total of at most
h rounds and in each round the search algorithm makes at mostd+ 1 queries. This
completes the proof of Theorem 6.�

The algorithm from Theorem 2 when applied to a constant degree tree results in
an algorithm that requiresO(log3 n) queries to find a user inO(logn) rounds. This
can be improved as we see in the following theorem.

T 7. Suppose that a user begins moving at time0 from a known location s
of a tree of maximum degree d. There is an algorithm that will find the user in at
most O(log d

d−1
n) rounds with a total of at most O(log2

d
d−1

n) queries.

P. We use the fact that a tree of degreed has a single edge that splits the tree
into two pieces neither of which is smaller thann/d. Proceeding as in Theorem 2
using this separator rather than a perfect separator, the theorem follows. (Note that
on each round all previous separator edges must be queried.)This completes the
proof of Theorem 7.�

2.5 Line

In this section we give upper bounds for the line. Applying Theorem 3 yields an
algorithm that finds a user inO(logn) rounds usingO(logn) queries. This algo-
rithm can be generalized to yield an optimal algorithm for any number of rounds
less than logn. In section 3 we show our upper bound is tight. We can show the
following theorem.

T 8. Suppose that a user begins moving at time0 from a known location s
of a line of length n. There is a search algorithm that starting at time t will find the
user in r rounds with a total of O(r ·min{t, n}1/r) queries.

P. We consider two cases depending on the relative sizes of 2t + 2r + 1, n.
Case 2t + 2r + 1 < n. Assume the user started at node 0 and that the line consists

of the nodes 0,±1,±2, . . . ,±n/2. If t < n/2, then at timet it can be at any of the
2t + 1 nodes of the closed interval [−t, t].

The search algorithm is executed in rounds and each round involves querying a
certain number of nodes. In the first round the algorithm queries the set of nodes
{kt(r−1)/r : |k| ≤ t1/r } ∪ {−t, t} and determines an interval, sayI1, of size at most
t(r−1)/r which is most recently occupied by the user. By induction, assume that
in the i-th round the algorithm has determined an interval, sayI i , of size at most
t(r−i)/r which is most recently occupied by the user. Setm := t(r−i)/r . In thei + 1-st
round the algorithm queries a set ofm1/(r−i) equally spaced nodes of the intervalI i

TRACKING MOBILE USERS 211

at distancet(r−i−1)/r from each other. Sincem1/(r−i) = t1/r the number of queries in
this new round isO(t1/r). The user is found at ther-th round by querying all the
nodes of the subintervalIr . It follows thatr rounds withO(t1/r) queries per round
are sufficient to locate the user.

Case 2t + 2r + 1 ≥ n. If 2t + 2r + 1 ≥ n then at timet the user may be located at
any node of the line and a similar proof will work.

This completes the proof of Theorem 8.�

3. Lower bounds

In this section we present lower bounds that show some of our upper bounds are
tight.

3.1 Clique

The following general lower bound is straightforward:

T 9. Suppose that a user begins moving at time0 from a known location s
of an arbitrary graph. Let Ns(t) be the set of nodes reachable from s in t steps. Any
search algorithm starting at time t> 0 requires at least Ns(t) queries in order to
find a node in a single round.�

The above shows that the obvious algorithm of querying all nodes of a clique in
a single round is optimal.

T 10. Searching for a user on a clique requires n queries in a singleround.
�

3.2 Tree

In this section, we give a lower bound for bounded degree trees. The lower bound
implies the algorithm of Theorem 8 is optimal.

T 11. Suppose that a user begins moving at time0 from a known location
s of a tree of size n and maximal degree d. Any search algorithmstarting at time t

and finding the user in r rounds requiresΩ(r · min{t,n}1/r
d) queries.

P. Consider the case wheret < n/2 and consider the greater thant nodes
within distancet of s. By anuncertainty subtreewe mean a subtree any of whose
nodes may be occupied by the user based on the current knowledge of a search
algorithm, i.e., the results of its queries.

C 1. If prior to the execution of the queries at a given round thereis an uncer-
tainty subtree of size at least L and if during a round a total of q queries are made
to nodes of this subtree then after the execution of this round there is an uncertainty
subtree of size at leastLqd.

212 E. KRANAKIS, D. KRIZANC, S. SHENDE

P (C 1). Suppose thatq nodes, in the given subtree are queried. This
divides the subtree intoqd subtrees one of which is of size at leastL

qd. An ad-
versary can always answer the queries so as to leave the search algorithm with an
uncertainty subtree of size at leastL

qd. For example, the queries may be answered
consistent with the user walking directly to the first non-queried node in the large
subtree and waiting there. This completes the proof of Claim1.

Now suppose that an algorithm is executed forr rounds and that at roundi ≤ r
we made exactlyqi queries. In view of Claim 1, at the end of the last roundr, the
uncertainty subtree must be of size at least

t
(q1 ∗ d)(q2 ∗ d) · · · (qr ∗ d)

and the total number of queries isq1 + q2 + · · · + qr . Hence we have to solve the
following optimization problem:

minimize q1 + q2 + · · · + qr ,

subject to (q1 ∗ d)(q2 ∗ d) · · · (qr ∗ d) ≥ t.

It is easy to see that this is minimized whenq1 = q2 = · · · = qr , in which case the
total number of queries is at least

Ω

(

r · t
1/r

d

)

.

If t ≥ n/2 then at timet the user may be located at any node of the tree and a
similar proof will work. This completes the proof of Theorem11.�

3.3 Mesh

We now show that the upper bound of Theorem 4 is tight for any constant number
of rounds. Namely we prove the following result.

T 12. Suppose that a user begins moving at time0 from a known location s
of an n× n mesh. For any constant r, any search algorithm starting at time t and

finding the user in r rounds requiresΩ(min{n, t} 2r

2r−1) queries.

P. We prove the result fort = 2rn and s being the center of the mesh.
The necessary adjustments when eithert > 2rn or t < 2rn and for arbitrarys are
straightforward.

We require the following definitions. For 0< c ≤ n, ann × n c-meshis formed
by taking ann×n mesh, choosing up ton− c nodes and removing them along with
all of the edges in the rows and columns corresponding to these nodes. A row or
column is said to beclean if no nodes (and therefore edges) were removed from
it in forming thec-mesh. By considering the greater than or equal toc clean rows
and columns of the mesh, it is easy to see that ann × n c-mesh has a connected
subgraph withΩ(c2) nodes and diameter less or equal to 2n. Furthermore, if we

TRACKING MOBILE USERS 213

removec′ nodes and corresponding edges in their rows and columns, from a c-
mesh, the result is a (c− c′)-mesh.

We prove the following claim concerningc-meshes.

C 2. Suppose that a user begins moving at time0 from a known location s of
an n× n c-mesh. For any constant r, any search algorithm starting at time t= 2rn

and finding the user in r rounds requiresΩ(c
2r

2r−1) queries.

P. We prove the claim by induction onr. The caser = 1 follows from
Theorem 9. Assume the claim holds for some constant number ofrounds,r − 1.
Divide thec clean rows and columns of thec-mesh into blocks of lengthc

2r−2
2r−1 . The

connected subgraph formed by the intersection (along with connecting edges and

vertices) of theith block of rows and thejth block of columns forms ac
2r−2
2r−1 -mesh

and there arec
2

2r−1 such meshes.
Let q be the number of queries in the first round of the search. Without loss of

generality we can assume thatq < c
2r

2r−1

2 (otherwise the proof of the claim is com-

plete). By an averaging argument, there is ac
2r−2
2r−1 -mesh,A, that receives fewer than

c
2r−2
2r−1

2 queries. We answer all queries of the first round consistent with the user hav-
ing started at time 0 and having walked directly to the nearest non-queried node in
A and having waited there until at total of 2n steps have passed. For queries inside
A we report never having seen the user. We remove all of the nodes of A corre-
sponding to queries along with the edges in their rows and columns. The search
algorithm is now left with the problem of finding the user inr−1 rounds, starting at

time 2(r−1)n on ac
2r−2
2r−1

2 -mesh. By induction, this requiresΩ

(

c
2r

2r−1/2
2r−1

2r−1−1

)

queries

wherer is constant. This completes the proof of Claim 2.�

Takingc = n in the claim completes the proof of Theorem 12.�

3.4 Arbitrary graphs

A lower bound for arbitrary graphs follows easily from the lower bound for the
tree.

T 13. Suppose that a user begins moving at time0 from a known location
s of an arbitrary graph with n nodes of maximal degree d. Any search algorithm

starting at time t and finding the user in r rounds requiresΩ(max{d+ 1, r min{t,n}1/r
d }

queries.

P. The lower boundd+1 follows from the fact that a node of degreed and all
its neighbors may have to be queried in order to locate the user. The lower bound

r min{t,n}1/r
d follows from the lower bound for the tree by considering a spanning tree

of the graph. This completes the proof of Theorem 13.�

214 E. KRANAKIS, D. KRIZANC, S. SHENDE

4. Conclusions

In this paper we considered tradeoffs on the number of rounds and queries for
tracking a user in a network where nodes respond to queries with the time a user
last visited the node. We gave several tracking algorithms for arbitrary networks
and specific topologies, like, planar graphs, lines, meshes, and trees. We also con-
sidered lower bounds for all these types of networks and showed our algorithms
are optimal in several cases. Several interesting problemsremain, in addition to
tightening our bounds. These include variants of the query/answer model we stud-
ied here, that are either more or less restrictive in the information they provide.
Additional twists concern modeling the behavior of possibly faulty information,
e.g., either an upper bound on the number of nodes that may be faulty or nodes
may give incorrect answers to queries with some probability. By using a param-
eter that characterizes the relative speed of the mobiles with respect to the server
query response time can provide interesting problems for further investigation in
Mobile Agent settings. Finally, an interesting question concerns the complexity of
the proposed strategies since they affect the performance of the central server.

Acknowledgements

Many thanks to Paolo Penna for useful conversations on the subject and to the
anonymous referees for their suggestions.

References

[1] A, S.  G, S. 2003. The Theory of Search Games and Rendezvous. Kluwer
Academic Publishers, Norwell, Massachusetts.

[2] A, B. 2006. Searching and Sweeping Graphs: A Brief Survey.Le Matematiche
(Catania) 59, 5–73.

[3] A, B  P, D. 1991. Concurrent Online Tracking of Mobile Users.
In SIGCOMM, 221–233.

[4] B, P  P, V N. 1999. User Location and Tracking in an
In-Building Radio Network. Tech. Report MSR-TR-99-12, Microsoft Research (MSR).

[5] B-N, A. M, G. 2004. Establishing Wireless Conference Calls under Delay
Constraints.Journal of Algorithms 51, 145–169.

[6] B-N, A, K, I,  N, M. 1996. Topology-Based
Tracking Strategies for Personal Communication Networks.MONET 1, 1, 49–56.

[7] B, L., F, P., F, P.,  S, N. 2003. Election and Ren-
dezvous of Anonymous Mobile Agents in Anonymous Networks with Sense of Direction.
In Proceedings of the 9th International Colloquium on Structural Information and Commu-
nication Complexity (SIROCCO), 17–32.

[8] B, A.  D, S. K. 2002. LeZi-Update: An Information-Theoretic Frame-
work for Personal Mobility Tracking in PCS Networks.Wireless Networks 8, 121–135.

[9] C, N E.  C, E L. 2006. Cops, Robber, and Alarms.Ars Combina-
toria 81, 283–296.

[10] C, N E.  N, R J. 2000. Cops, Robber, and Photo Radar.
Ars Combinatoria 56, 97–104.

[11] F, F. V., F, P.,  T, D. M. 2004. The Price of Connectedness in
Expansions. Tech. Report LSI-04-28-R, Departament de Llenguatges i Sistemes Informat-
icas, Universitat Politecnica de Catalunya, Barcelona, Spain.

TRACKING MOBILE USERS 215

[12] J, DG  J, WS. 1998. Probabilistic Location Update for Advanced
Cellular Mobile Networks.IEEE Communications Letters 2, 8–10.

[13] L, A. 1993. Recontamination does not help to search a graph.Journal of the ACM
40, 2, 224–245.

[14] L, R. J. T, R. E. 1979. A Separator Theorem for Planar Graphs.SIAM J.
Appl. Math. 36, 177–199.

[15] N, Z. 2003. Tracking Mobile Users with Uncertain Parameters.Wireless Networks 9,
637–646.

[16] P, T. D. 1978. The Search Number of a Connected Graph. InProc. 9th Southeastern
Conf. on Combinatorics, Graph Theory, and Computing, Utilitas Math. Publ., Winnipeg,
549–554.

[17] R, C  Y, R. 1997. Location Uncertainty in Mobile Networks: a
theoretical framework.IEEE Communications Magazine 35, 2, 94–101.

[18] R, C  Y, R D. 1995. Minimizing the average cost of paging under
delay constraints.Wireless Networks 1, 2, 211–219.

[19] T, D. M., S, M. J.,  B, H. L. 2001. A Polynomial Time Algo-
rithm for the Cutwidth of Bounded Degree Graphs with Small Treewidth. In9th Annual
European Symposium on Algorithms ESA, Volume 2161 ofLNCS, 380–390.

[20] W, J Z. 1993. A fully distributed location registration strategyfor universal
personal communication systems.IEEE Journal on Selected Areas in Communications 11,
6 (Aug.), 850–860.

