
Local Algorithms for

Topology Control in Ad Hoc

Networks

Evangelos Kranakis_

School of Computer Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.

Research supported in part by NSERC (Natural Science and Engineering Research

Council of Canada and MITACS (Mathematics of Information Technology and Complex

Systems)

and

Jorge Urrutia

Instituto de Matematicas, Universidad Nacional Autonoma de Mexico,

Area de la investigacion cientifica, Circuito Exterior, Ciudad 

Universitaria,

Coyoacan 04510, Mexico, D.F. Mexico.

_



Local Algorithms for Topology 

Control in Ad Hoc

Networks

Abstract

We survey recent techniques for local topology control in location 

aware Unit Disk Graphs. including local algorithms for Routing, 

Traversal, Planar Spanners, Dominating and Connected Dominating 

Sets, and Vertex and Edge Coloring. In addition to investigating trade-

offs for these problems, we discuss open problems that will play an 

important role in the future development of the subject. 

1 INTRODUCTION

Ad hoc wireless networks consist of a collection of hosts of limited 

power communicating with each other over a wireless medium without 

any pre-designed or fixed infrastructure. Topology control refers to the 

problem of maintaining a stable and connected infrastructure among 

the hosts of an ad hoc network. Effective use of topology control can 

reduce energy consumption and increase the capacity of the network, 

due to reduced contention to access the wireless channels. This is 



accomplished by having nodes in a wireless multi-hop network define 

collaboratively the network topology by forming the proper neighbor 

relation under certain criteria.

      Despite the fact that communication tasks must be resolved only 

by consulting nearby hosts, algorithmic solutions must solve global 

computational tasks, involving, e.g., the computation of dominating 

and independent sets, vertex and edge colorings, and spanners. 

Practical considerations inspire the additional requirement for 

algorithms to be local in the sense that each node of the network 

should make decisions based only on the information obtained from 

nodes located a constant (independent of the size of the network) 

number of steps away from it. Local topology control is vital for 

heterogeneous network environments affected by mobile hosts, 

variable neighbor density, and dynamic reconfigurations. Network 

stability must be attained by devising local algorithms for solving 

traditional communication tasks like the computation of forwarding 

tables for routing and broadcasting, node and edge colorings for 

scheduling and channel assignment.

     The present article surveys recent results on local, constant 

approximation, deterministic algorithms for accomplishing topology 

control in Unit Disk Graphs (UDGs) with location aware nodes. In more 

detail, we introduce important background information in Section 2 and 

discuss routing and traversal in Subsections 3.1 and 3.2, respectively, 



planar spanners in Subsection 3.3, dominating and connected 

dominating sets in Subsection 3.4, and vertex and edge colorings in 

Subsection 3.5. For all the algorithms described we also provide known 

trade-offs between required locality, processor memory and processing 

as well as optimality of the object constructed.

2 BACKGROUND

Algorithms devised for traditional wire-line systems are not always 

adequate in ad hoc networking. In dynamically changing ad hoc 

networks, participating hosts cannot be assumed to have knowledge of 

the entire system. In addition, it is often impractical or even impossible 

to explore the whole network prior to executing an algorithm since by 

the time the entire system has been examined a new change may 

have occurred that was not taken into account.

       In this setting, locality emerges as an important concept. In local 

algorithms it is required that the status of a node depends only on the 

nodes at most a constant number (independent of the size of the 

network) of edges (hops) away from it. Introduced by (Linial [1992]), 

this model has the advantage that each node in the network need only 

be aware of the existence of other parts of the network that are only a 

constant (usually small) number of hops away from it. Algorithmic 

design based on locality guarantees stability (changes in the network 



outside a constant neighborhood do not influence the computation), 

consistency of solutions regardless of the order of execution, and 

constant termination time of the proposed algorithm. This approach 

was further investigated in the work of (Naor and Stockmeyer [1995]) 

which investigated constant-time solutions for labeling problems and 

the book of (Peleg [2000]) which proposes a locality-sensitive approach 

to distributed computing.

     Nodes in wireless networks have limited transmission range and 

communication between two nodes depends on their Euclidean 

distance. A standard model of wireless network is the Unit Disk Graph 

(UDG) which consists of nodes with identical transmission range, say 

one unit. In this graph, two nodes are adjacent if and only they are 

within range of each other. Many graph-theoretic problems do not 

admit local algorithms, even when restricted to the class of UDGs. To 

overcome this limitation an important assumption concerns location 

awareness, whereby nodes are assumed to know their geographic 

positions obtained either from a GPS receiver or from virtual 

coordinates assigned by another source. Location awareness in 

conjunction with locality is an important paradigm for the design of 

efficient algorithms in ad hoc networks. Several networking problems 

become solvable in the local setting when the network is location 

aware. In this case the graph is embedded in the plane and each node 

knows its geographic position. Algorithms for location aware networks 



are sometimes easier to design and they may lead to better time 

complexities and/or approximation bounds.

3 ISSUES IN TOPOLOGY CONTROL

In this section we discuss how locality in conjunction with location 

awareness can be used to provide algorithms suitable for topology 

control in wireless ad hoc networks.

3.1 Routing

Face routing is a technique that was first proposed in (Kranakis et al. 

[1999]) in order to discover routes in a geometrically embedded planar 

subdivision. Given a source s and a destination t it discovers a route by 

traversing only the faces crossed by the straight line   γ formed by the 

nodes s and t. After each face traversal it advances to a new face of 

the planar subdivision. It is guaranteed to succeed because each face 

traversal reduces the (geometric) Euclidean distance of the current 

position to the target. The important feature of this algorithm is locality 

in the route discovery process. At each step (see Figure 1)) progress is 

made along a face of the subdivision and it is irrelevant what happens 

in the remaining part of the graph as long as it remains connected. 



Figure 1: Discovering a route between s and t in a planar graph.

Moreover, to succeed one never has to remember anything more than 

the straight line from s to t and the current position, information that is 

easily acquired on-line by a GPS.

     Because of the importance of face routing for wireless networking, 

efforts have been made to extend this result to richer classes of 

networks. It is therefore worth mentioning (Chavez et al. [2006b]) 

which discusses route discovery with constant memory in oriented 

planar geometric networks (Eulerian and Outer-planar), as well as the 

work of (Kranakis et al. [2006]) which discusses on-line routing in 

quasi-planar graphs (a class of graphs with distinct faces which allow 

edge crossings only within faces). There is also some recent work to 

specific three dimensional representations of graphs. For example

(Kranakis et al. [2006]) studies routing in polyhedral geometrically 

embedded graphs, (Fraser [2007]) extends face routing to geometric 



graphs of genus one (i.e., embedded on a torus), and (Durocher et al. 

[2008]) extends face routing to three dimensional graphs delimited by 

two parallel planes at distance 1/√2.

3.2 Traversal

Network traversal is a technique widely used in networking for visiting 

every node of a network, using a small number of steps when required 

to process the nodes, edges, faces, etc, of a network in some order. 

For example, it may involve reporting each node, edge, and face of a 

planar graph exactly once, in order to apply some operation to each. 

As such it can be used to discover network resources, implement 

security policies, and report network conditions. Traversal can be used 

to discover routes between two hosts, but in general it will be less 

efficient than routing since it cannot guarantee that its discovery 

process will be restricted to employing only information relevant to 

routing. 

     Although DFS (Depth First Search) of the primal nodes and edges or 

dual faces and edges of the graph is the usual approach followed for 

implementing traversal, usually it cannot be implemented without 

using mark bits on the nodes, edges, or faces, and a stack or queue. 

The traversal technique from (Chavez et al. [2006b]) is applicable to 

the class of quasi-planar networks (this is a class of subdivisions of the 



plane in which we allow many edges to cross each other). The general 

idea of the algorithm is to define a total order on all edges thus giving 

rise to a unique predecessor for every quasi-face (a closed walk in the 

subdivision). The predecessor relationship imposes a virtual directed 

tree. The algorithm will search for the root of this tree and then will 

report quasi-faces of the graph in DFS order on the tree. For this, a 

well-known tree-traversal technique is used in order to traverse the 

tree using O(1) additional memory.

3.3 Planar spanners

Enabling face routing provides important motivation for the design of 

algorithms that construct spanners (i.e., planar subgraphs) of UDGs. To 

be useful in an ad hoc network setting, algorithms for constructing 

spanners should be local. Additional important characteristics of such 

spanners should include connectivity (basic requirement for message 

delivery), low degree (eases channel allocation and frequency 

assignment problems and/or time multiplexing constraints), stretch 

factor (maximal ratio of the length–hops or Euclidean–of the shortest 

path in the subgraph with respect to the length of the shortest path in 

the original graph, and cost (total length of the edges of the subgraph–

can also use squares of lengths–as compared to the length of the edge 

in the MST.

     The Gabriel Graph (Bose et al. [2001]) was one of the first such 



spanners; two nodes keep their link if and only if the disk having as 

diameter the line with the two nodes as end-points contains no other 

node from the network (see Figure 2). The Local Minimum Spanning 

Tree (Li et al. [2004]) produces a planar spanner by having each node 

construct the minimum spanning tree of its distance k neighborhood; a 

link between two nodes remains in the spanner if and only if it belongs 

to the distance k spanning trees of both nodes. An extension of this 

result to Quasi Unit Disk Graphs (see Barriere et al. [2003]) is given in 

(Chavez et al. [2006a]). A similar idea also works

Figure 2: In the Gabriel test nodes A,B forward packets to each other 

via node C.

for Local Delaunay Triangulations, since in this case a triangle is 

defined by three vertices whose circle contains no other points from 



the point-set.

     Half-Space Proximal (Chavez et al. [2006c]) is another class of 

subgraphs of the UDG whereby each vertex determines the closest 

vertex and excludes all vertices lying on the other side of the bisector 

of the line formed by these two nodes; it then iterates until no node is 

left uncovered. The resulting graph is a spanner but unlike the Yao 

graph, the Half-Space Proximal does not require globally consistent 

orientation by the nodes. Some of its nice properties include 

connectivity, constant stretch-factor, and maximum degree

five.

3.4 Dominating and connected dominating sets

Consider a graph G. A set D of vertices dominates a vertex u if there is 

a vertex v in D such that {u, v} is an edge. The set D is called a 

dominating set for G if it dominates every vertex in G. A set D is called 

a minimum dominating set for G if it is a dominating set with minimum 

cardinality. We call a dominating set a connected dominating set if the 

subgraph induced by its vertices is connected. The minimum 

dominating set problem is concerned

with finding such a dominating set.

     Dominating sets are used as a backbone infrastructure and help 

maintain network stability, power conservation, limit interference, and 

reduce the number of nodes that contain routing information in ad hoc 



networks. This is accomplished by organizing the nodes in clusters. 

One vertex in each cluster takes the role of a leader (often called 

cluster-head) and the other vertices in the cluster are assigned to this 

cluster-head (see Figure 3).  

Figure 3: Dominating sets and cluster formation.

Thus the cluster-heads form a dominating set and are responsible for 

the communication of the members of the cluster. In order to be able 

to send messages from one cluster to another the cluster-heads form a 

connected graph which results in a connected dominating set.

     Despite the fact that dominating set and connected dominating set 



problems are NP-hard, polynomial-time approximation schemes have 

recently been constructed for UDGs. The resulting approximation 

bounds, although they appear to be better when restricted to the class 

of UDGs, apply mainly to the non-local setting where all the nodes 

have complete knowledge of the entire network. Extending the main 

idea of (Czyzowicz et al. [2008a]) on tiling the plane (Wiese and 

Kranakis [2008]) give a polynomial time approximation scheme for 

dominating and connected dominating sets of UDGs.

     The main idea of the algorithm is to tile the plane with hexagons 

each assigned a class number. For some hexagons h we construct a 

set Th  that contains all nodes in h and the nodes in a certain 

surrounding area. These sets Th  are disjoint and have certain 

properties that ensure an approximation ratio which is as close to 1 as 

we wish. The sets Th  are constructed by iterating over the class 

numbers of the hexagons. First we cover hexagons of class 1 by

computing sets Th  for all hexagons h of class 1. Assume that all 

hexagons of class i have already been covered. We proceed to cover 

all hexagons of class i + 1 whose vertices have not been completely 

covered so far by computing sets Th  for those hexagons. We stop when 

all vertices in all hexagons have been covered. Moreover, the number 

of iterations does not exceed the total number of classes. Finally we 

compute for all sets Th  the minimum dominating set D(Th). We output 

as D the union of the sets D(Th). The processing time that each vertex 



needs to determine whether or not it is part of the computed set is 

bounded by a polynomial in the number of vertices which are a 

constant number of hops away from it.

3.5 Vertex and edge coloring

Graph coloring problems have numerous applications in scheduling 

and channel assignment. Frequency channel assignment is modeled by 

a graph in which two vertices are connected by an edge if the 

broadcasting units of their respective nodes interfere and therefore 

have to be assigned different channels. Since channels in the 

frequency band are limited and expensive resources the aim is to 

minimize the total number of used frequencies.

     In (Czyzowicz et al. [2008b]) a local algorithm for 7-coloring planar 

subgraphs of UDGs is presented by using elaborate tilings of the plane. 

Each vertex can compute its color in a 7-coloring of the planar graph 

using only information on the subgraph located within at most a 

constant number (in our case h = 201) of hops away from it. The 

algorithm does not need to determine locally either what the different 

connected components are or even what are the local parts of a 

component connected somewhere far away and the complexity 

depends on the size of the data acquired within the specified

number of hops.



Figure 4: Forming a wedge graph at vertex u with k = 4 and l = 3.

In (Czyzowicz et al. [2007]) a local algorithm is presented for edge 

colouring (l, k)-edge/wedge subgraphs of UDGs, for all integers l, k. 

These are geometric graphs (see Figure 4) such that for some positive 

integers l, k the following property holds at each node u: if we partition 

the unit circle  centered at u into 2k equally sized wedges then each 

wedge can contain at most l points different from u. An important 

parameter in the algorithm is the horizon distance d: a given node u 

never needs to be aware of the location of nodes beyond its horizon, as 

measured by the euclidean distance from u. The basic 2k + 1 edge 

coloring algorithm for (l, k)-edge/wedge subgraphs of UDGs, which is 

presented in this paper, uses a local horizon distance 7.81·lk.



4 CONCLUSION

We discussed techniques for local topology control in location aware 

Unit Disk Graphs. Our survey included recent local algorithms for 

Routing, Traversal, Planar Spanners, Dominating and Connected 

Dominating Sets, and Vertex and Edge Coloring. In addition to 

investigating trade-offs for the previously mentioned issues, several 

remaining open problems will play important role in the future 

development of the subject. These include solutions for three 

dimensional ad hoc hoc networks, study of power assignments

in the physical interference model and the inclusion of realistic models 

of mobility.
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KEY TERMS AND THEIR DEFINITIONS

1. Eulerian Graph: A directed graph such that for every vertex its in-

degree equals its out-degree.

2. GPS: Geographic Positioning System.

3. Local Algorithm: A communication algorithm whereby messages 



need only propagate a constant number of hops independent of the 

size of the network.

4. Location Aware Network: A wireless network where all hosts 

know their geometric location.

5. Minimum Spanning Tree: A spanner of a graph which has no 

cycles and has minimum weight among all such spanners.

6. Outer-planar Graph: A planar graph all of whose vertices lie on a 

cycle.

7. Planar Graph: Geometric representation of a graph so that no two 

edges cross.

8. Planar Face: A cycle in a planar graph with no internal edges.

9. Planar Spanner: A connected planar subgraph of a graph which 

spans all the vertices of the graph.

10. Stretch Factor of a Spanner: The worst case ratio of the length 

of a minimum path between two nodes in the graph divided by the 

length of a minimum path between these two same nodes in the 

spanner.

11. Traversal: An exploration technique for visiting every node (or 

link) of a network.

12. UDG (Unit Disk Graph): A graph consisting of wireless hosts with 

identical transmission range.


