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ABSTRACT

We study the optimization of the expected number of bytes that must be transferred by the Web server when a user visits
one of its pages. Given a Web site, we want to find an assignment of hotlinks (shortcuts) that minimizes the expected data
transfer, i.e., the average amount of bytes to be downloaded in order to reach one of its pages. We propose an
optimization algorithm and perform simulations in real and random Web sites. The simulations reveal that the average
data transfer can be reduced by at least 11% and as much as 30%.
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1. INTRODUCTION

One factor that slows down Web performance is the inevitable downloading of information that does not
interest users. This problem happens to anyone who surfs the Web searching for information. For example,
suppose we are on page v and want to get the information located in page w. Among the hyperlinks of v,
however, there is no hyperlink (v, w) that takes us directly to w. Inevitably, we have to “download” other
pages until we find a page x with the desired hyperlink (x, w). Given a Web site, we want to find an
assignment of hotlinks (shortcuts) that minimizes the expected data transfer, i.e., the necessary amount of
bytes to be downloaded to reach one of its pages.

Previous work concerned the problem of improving Web performance by optimizing the average number of
steps required to reach the pages of a Web site. As a consequence of minimizing the number of steps, we
certainly would reduce the amount of irrelevant information that needs to be transferred, yet, that would not
be the aim. In this paper we study the assignment of hotlinks for optimizing the average data transfer. We
restrict the problem to assigning at most one hotlink per node.



2. NOTATION AND TERMINOLOGY

A good way of measuring the access cost of a Web site is to consider the average data transfer generated for
reaching a Web page. Under this perspective, we define the weight (in bytes) of a page v, wv, as its own size
plus the size of its embedded files. The access weight of a page v, w(v), is equal to the sum of the weights of
the pages contained in the shortest path between the home page and v. Consider a tree T  with root r and m
leaves (numbered 1,2,…, m), obtained by performing a breadth first search of a Web site starting from the
home page r. Page v is a descendant of page u if there is a path of hyperlinks going from u to v in T, and we
say that v is at a higher level than u.

Every node u of the tree has a weight wu associated to it. To reach the Web page at u from the home page
we must download all the Web pages in the path from the home page to u. Hence, if Π(r, u) is the shortest
path from the home page r to u then we have that the access weight, wu, at u is given by the formula
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Without loss of generality, we may normalize the costs wv.
At the same time, we have the access probabilities pu at the nodes. This access probability is the

frequency with which the node u may be visited from the home page. We have that
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The access cost of page v is c(v) = w(v) ⋅ pv.
The expected data transfer for accessing a random leaf page from the root of a tree T with a probability

distribution p on its leaves is given by the following equation.
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A hotlink h = (x, y), is an extra hyperlink that provides a shortcut from page x to page y, such that y is a
descendant of x. We say that the hyperparent of y is x.

Given a hotlink assignment H = {h1,..., hk} over T, the resulting Web site is denoted TH. Define ΠH(r, u)
as the path from r to u in TH. Let wH(u) denote the access weight of page u in TH. The gain of H over the
expected data transfer of T is denoted G(H). We have the following:
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The weighted hotlink assignment problem consists in maximizing Equation 1 by assigning at most one
hotlink per page. This problem has been proven to be NP-hard for the case of directed acyclic graphs (Vargas
Martin, 2002). Vargas Martin also studies a variation of the problem consisting of assigning at most k
hotlinks per page.



3. ALGORITHM weighted-greedyBFS

In order to solve the weighted hotlink assignment problem, one is tempted to pursue a similar idea to that of
Kranakis et al., 2001 in order to find a balanced partitioning of the tree. Inevitably this will also lead to a
recursive algorithm like the one presented by Kranakis et al. A complete mathematical analysis of the
problem is presented by Vargas Martin, 2002 and Czyzowicz et al., 2003. In this section we present a
heuristic algorithm called weighted-greedyBFS.

Algorithm weighted-greedyBFS described in Algorithm 1, operates in the same way as algorithm
greedyBFS presented by Czyzowicz et al., 2001. The difference between these two algorithms is that the
former attempts to maximize Equation 1 in terms of data transfer, whereas the latter in terms of number of
hops. Algorithm weighted-greedyBFS assigns hotlinks iteratively in breadth first search order beginning with
the home page. Consider a hotlink (s, t). In each iteration of the algorithm, s corresponds to the next node in
breadth first search order, and t corresponds to the descendant of s that maximizes the gain, but that is not a
descendant of a node x, which is at a higher level than s and already has an incoming hotlink. Function
next_in_BFS_order returns each node of the tree in breadth first search order, starting from the home page.
The algorithm stops when no more hotlinks can be assigned.

Algorithm 1 weighted-greedyBFS( T )
1. H = φ          // H is initially empty, and it will hold the set of hotlinks that is returned in Step 3.
2. while( ( s = next_in_BFS_order ) ≠ φ )

2.1. t = v : v maximizes Equation 1; and v is a descendant of s; and v does not have a hyperparent; and
v is not a descendant of a node x, which is at a higher level than s and already has a hyperparent.

2.2. if t ≠ φ  then H = H ∪ {(s, t)}
3. return H

4. SIMULATIONS AND CASE STUDY

In this section we use simulations to evaluate algorithm weighted-greedyBFS. The algorithm is evaluated on
three different kinds of structures: random Web sites, real Web sites with an unknown access probability
distribution, and an actual Web site with a known access probability distribution.

Czyzowicz et al., 2001 study the simulation of a random Web site along with the popularity of its pages.
In these simulations, we need to assign file sizes (in bytes) to the pages of the random Web sites. Recall that
the size of a page is equal to its own size plus the size of its embedded files. We associate a random size to
each page and obtain 95% confidence intervals for all the results that we present. Vargas Martin, 2002,
validates the correctness of the simulations by showing that the file sizes of the random Web sites actually
resemble the theoretical file sizes distribution.

4.1 Web sites used for simulation

For the simulations, we use the same kind of Web sites discussed by Czyzowicz et al., 2001, namely, random
Web site trees and real Web sites. To test algorithm weighted-greedyBFS we need to enhance those Web sites
by associating weights to the Web pages. The weight of a Web page represents the size in bytes of the Web
page plus its embedded files, e.g., images, audio, etc. An interesting question arises: What is the distribution
of file sizes on the Web?

Arlitt and Williamson, 1997 carefully analyse the traffic of a Web server. They prove experimentally that
the file size distribution is heavy tailed (see Resnick, 1997 for a background of heavy tail models). The
assertion of Arlitt and Williamson was confirmed by Crovella and Bestavros, 1997, who show
experimentally that file sizes greater than about 1,000 bytes can be well modeled with a Pareto distribution.
Barford and Crovella, 1998 show experimentally that file sizes can be modeled with a hybrid distribution.
Files of “small” size can be well modeled with a lognormal distribution, whereas “big” files can be modeled



with Pareto distribution. According to Barford and Crovella, the body of the distribution is modeled with
lognormal distribution for values smaller than 133 KBytes. Downey, 2001, creates a model that suggests that
file sizes are modeled only by a lognormal distribution. Mitzenmacher, 2002, points out why the arguments
of Downey yield only a lognormal distribution. Mitzenmacher corroborates the results of Barford and
Crovella and suggests a double Pareto distribution for the body of the curve and a Pareto distribution for the
tail.

Assuming that the model proposed by Barford and Crovella, 1998, is correct, we create a file size
distribution as follows:
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where wv is the size in bytes of page v and its embedded files. The values of µ, σ and α are taken from the
observations of Barford et al., 1999 on the requests of over 40,000 files from over 500 users in 1998. The
values of k and the cutoff point are calculated to fit the results of Barford et al., 1999 who observe that 83%
of the files fall in the body of the distribution. The values used in Formula 2 are displayed in Table 1.

Table 1. Parameters used in Formula 2

Parameter Value
µ 7.796
σ 1.625
k 8,863
α 1.47

cutoff point 10,790

For the case of random Web sites, we assign weights to the pages in a random fashion, according to the
distribution of Formula 2.

The straightforward solution for getting the actual weights of real Web sites would be to download the
entire Web sites, however this action would require enormous storage capacity. One alternative would be to
process the information contained in the log files, however the log files are usually undisclosed to the public.
Therefore we use random file sizes. We search the number of embedded files on every page and for each of
them we withdraw a size from the distribution given by Formula 2.

4.2 Results of the simulations

We simulate the operation of algorithm weighted-greedyBFS on random Web sites. The maximum proportion
of gain on the access cost is 30%, whereas the minimum is 11%.

4.2.1 Algorithm weighted-greedyBFS evaluated on random Web sites

The results of the simulations are plotted in Figure 1. We plot the average proportion of gain that can be
attained by the algorithm. The average proportion of gain has a 95% confidence interval of at most ±2.27.
Observe that the gain of the algorithm oscillates between narrow intervals, indicating that the size of the tree
does not greatly affect the performance.



Figure 1. Gain obtained by applying weighted-greedyBFS to randomly generated Web sites of size 1,000 to 15,000. The
average proportion of gain has a 95% confidence interval of at most ±2.27

4.2.2 Algorithm weighted-greedyBFS evaluated on real Web sites

We show the results of the simulations in Figure 2. The average number of nodes in the sample of Web sites
is 9,669.2. Observe that the proportion of gain stabilizes after assigning less than 500 hotlinks, which is
roughly 10% of the average number of Web pages.

Figure 2. Average gain obtained by applying weighted-greedyBFS to actual Web sites. The x axis are plotted in
logarithmic scale base 2. The average proportion of gain for each of the eleven Web sites has a 95% confidence interval

of at most ±7.40

4.2 Case study

We are able to test our algorithms on the scs.carleton.ca domain because we have all the necessary
information, i.e., the hyperlink structure, access logs, and file sizes.

The case study is conducted in a similar way as by Czyzowicz et al., 2001. In this case, we need to
associate real weights to the Web pages. The weight of a Web page is its own size plus the size of its
embedded files (in bytes).



Figure 3 illustrates the proportion of gain obtained by the algorithm. The scs.carleton.ca domain contains
798 pages. Observe that the maximum gain of the algorithm is achieved at |H| = 53 << 798, which represents
less than 10% of the number of pages in the site.

Figure 3. Gain attained by algorithm weighted-greedyBFS in the scs.carleton.ca domain. The domain contains 798 pages
and the maximum gain is attained at |H| = 52 hotlinks, which indicates that we can get good gain with just a “few”

hotlinks

5. CONCLUSION

We studied the optimization of the expected number of bytes that must be transferred by the Web server
when a user visits one of its pages. We found that the data transfer can be reduced by at least 11% and as
much as 30%. It would be interesting to see to what extent users actually use the hotlinks in order to
determine the real reduction in data transfer once the hotlinks are inserted into the Web pages.
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