Compact Routing Tables for Graphs of Bounded Genus*

Cyril Gavoille Nicolas Hanusse

June 16, 2000

Abstract

This paper deals with compact shortest path routing tables on weighted graphs with n
nodes. For planar graphs we show how to construct in linear time shortest path routing tables
that require 8n + o(n) bits per node, and O(log**¢n) bit-operations per node to extract the
route, for any constant € > 0. We obtain the same bounds for graphs of crossing-edge number
bounded by o(n/logn), and we generalize for graphs of genus bounded by v > 0 yielding a
size of nlog~y + O(n) bits per node. Actually we prove a sharp upper bound of 2nlogk + O(n)
for graphs of pagenumber k, and a lower bound of nlogk — o(nlogk) bits. These results are
obtained by the use of dominating sets, compact coding of non-crossing partitions, and k-page
representation of graphs.

Keywords: compact data structures, routing tables, shortest path, planar graphs, bounded genus,
k-page embedding

1 Introduction

In point-to-point communication networks a routing function is employed in order to deliver mes-
sages. As networks grow in size, it becomes important to reduce the amount of memory kept in
each node for routing purposes. At the same time, it is essential to route messages along paths
that are as short as possible.

A universal routing scheme is an algorithm which generates a routing function for any given
network. One type of trivial universal routing scheme is based on schemes that keep in each node
a full routing table which specifies an output port for every destination. Though this scheme can
guarantee routing along shortest paths, each router has to store locally nlogd bits of memory,
where d is the degree of the router (i.e., the number of output ports) and n is the number of nodes
in the network. Therefore, this scheme is impractical when dealing with large networks.

1.1 The Model

A routing function R is a distributed algorithm whose role is to deliver messages between nodes of
the network. Specifically, the routing function R uses a pair of integer functions (P, H) where P is
the port function and H is the header function. For any two distinct nodes u and v, R produces
a path u = wug,uq,...,u; = v, a sequence hg, h1,...,h; of headers, a sequence pg,p1,...,pg of

* A preliminary version of this part of this work appears in the proceedings of the ICALP conference in 1999.
tLaBRI, Université Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, France. e-mail:
{gavoille,hanusse} @labri.u-bordeaux.fr



output port numbers, and a sequence ¢, g1, - - -, g, of input port numbers. A message with header
h; arriving at node u; through input port ¢; is given a new header H(u;,q;,h;) = h;+1, and is
forwarded on the output port P(u;,q;, h;) = p;. Thus, we require that for every i € {0,...,k — 1},
H (u;,qi, hi) = hit1, P(u;, ¢, hi) = p; and that the link (u;,u;11) has output port number p; at u;,
and input port number g;+1 at uj+1 (in- and output port number of a same link may differ). On
each router, the input and output ports numbered 0 are associated with the special link between
the router and its host. This allows us to complete the description by imposing the constraints
that go = pr = 0, as well as hy = v, thus fixing the initial header. Since we are interested in
distributed routing schemes, we will express the delivery protocol as a collection of local routing
functions R, = (P,, Hy), one for each node u. Our goal is to find shortest path routing schemes
such that the routing functions generated, R,’s, can be coded with low space complexity (a short
algorithm), and such that the route can be extracted in a fast way.

In this paper we consider routing table schemes only, that is schemes that generate routing
functions that do not change the header along the route, and depend on the destination only.
Namely hg = hy = ... = hy = v (where v is the destination label), and the function P does not
depend on the input port ¢;. Labels of nodes are in the set {1,...,n}, and port numbers of a
node u in the range {1,...,d} where d is the degree of u. The general model is used in [PU8Y]
and in [FG97] to prove lower bounds on the memory size of the routing information needing to be
maintained in each router.

The underlying topology of the network is represented by a weighted graph (weights are non-
negative costs assigned to each edge). All the graphs we consider are simple, i.e., without multi-
edges, undirected and connected. To decrease the size of the routing tables we allow to choose all
the labels (nodes and ports) in advance, keeping the range of {1,...,n} for nodes and {1,...,d} for
ports. If a model prevents from relabeling, the space complexity for a shortest path routing scheme
is ©(n) bits per node for a ring and ©(nlogn) bits per node for the complete graph (cf. [FG97]).
Clearly, for such simple topologies, the complexity drops to O(logn) bits per node after relabeling.

1.2 Centralized vs. Distributed Approach

To avoid the implementation of large routing tables, we can code in each node the whole map of
the network. This allows small data structure if the underlying graph can be described with a
low number of bits. However, even if it is not always doable, this centralized approach has several
drawbacks. First, one need to compute the route with a shortest path algorithm in the router.
That takes at least a linear time in the number of nodes. Standard distributed hypotheses assume
that local computation is insignificant in front of the communication cost. This assertion becomes
unreasonable for the centralized approach. Indeed, given the topology of the graph we need Q(m)
time, where m is the number of edges of the network, to locally compute the shortest route which is
always larger than the length of the route. More fundamentally, such routing algorithm computes
the routing task in time Q(n), where n is the number of nodes of the network, whereas the length
of the input (a node address) is on O(logn) bits. So, the time complexity of this approach is
exponential.

The centralized approach has a second drawback for networks that support compact represen-
tation of their topology. For instance, in [KK96], it is shown that every Cayley graph (a large
class of interconnection networks including: hypercubes, rings, tori, shuffle-exchange, butterflies,
...) supports shortest path distributed routing algorithms using O(log®n) bits only. This result is
based on the representation of groups that can be done compactly since a theoretical enumeration
formula of such groups shows that only few n-node graphs are Cayley graphs. However, no poly-



nomial time bound to extract the route is known. Coding a group can be done with a low number
of bits, whereas the time to find a shortest path, i.e., a shortest decomposition of an element in
its generators, is quite difficult without the construction of the entire graph. More generally, it is
shown in [FG98] that there are some routing functions that can be implemented with a program!
not longer than O(logn) bits in each router. But every implementation of such routing functions
stored in less than n — o(n) bits requires an amount of time and space to compute the function
larger than every constant size stack of exponentials, i.e., greater than

27L

22"

A more practical approach to the routing would store a partial view of the topology of the
network, and would compute the route in polynomial time with respect to the size of the input of
the routing function, i.e., in time logo(l) n.

Concerning distributed routing schemes, it is shown in [GP96] that 2(n log d) bits are necessary
in the worst-case (whereas nlogd are enough). Precisely, this tight lower bounds means that there
are some n-node graphs of maximum degree d, for every 3 < d < en and constant € < 1, such that
for every node and port labeling?, and whatever the shortest path routing function is, the size of
any implementation of this function is of size at least Q(nlogd) bits. However, the average case
is better, since [BHV99] showed that allmost all (unweighted) graphs have shortest path routing
tables of size ©(n) bits per node.

1.3 Planar and Bounded Genus Graphs

Whereas tight bounds exist for general graphs [GP96], no tight bounds exist for planar graphs,
even for the unweighted case. Using the centralized approach, O(n) bits are enough, since it is
well-known that the number of unlabeled connected planar graphs on n nodes is assymptotically
o™ for a constant c. The exact value of ¢ is still unkown, but from [Tut62] one can derive that3
3.24 < logec < 6.25. So we can theoretically specify any planar graph with an index of 6.25n bit
size. More generally, consider a graph G belonging to any recursive family of graphs of cardinality
aN+o(N) N > logn. To route with N +o(NN) bits in a given node u we have to store an enumeration
algorithm A of the family, an index of G in this enumeration, say id(G), a canonical label of wu,
say £(u), and any shortest path algorithm S such as Dijkstra’s algorithm. The size of the table is
bounded by the size of id(G) (N + o(N) bits), the size of £(u) ([logn] bits), and the size of the
algorithms A and S (constant size). The route towards a node labeled £(v) can be extracted in u
as follows: 1) using A and id(G) compute* a data structure for S representing G; 2) Apply S on G
between £(u) and £(v) to compute a shortest route, and return the first edge (or a canonical output
ports number) on this path.

So, asymptotically routing tables of size 6.25n bits are enough with the centralized approach in

planar graphs. Clearly such “minimal” coding of the routing information implies very large time
for local computation of the route. Moreover it applies only for unweighted graphs.

!The result holds for any fixed programming language, say C or FORTRAN.

*Ranges of labels are {1,...,n} for nodes and {1,...,d} for ports.

3In all the paper log n denotes the logarithm in base two of n.

A canonical way to label the nodes of G (and the ports number as well) in order to guarantee consistency in the
labeling consists of assigning the label ¢ to a node which is the ith created node during the generating phase of G by

A.



The point is that an enumeration formula of a set of objects does not give an efficient way to
compute queries fast on individual objects. A priori, the time to extract the ith object from its set
might be the cardinality of the set, larger than 2" for unlabeled planar graphs. A better solution
consists of using efficient and compact encoding of planar graphs. Turdn proposed in [Tur84] a
coding in 12n bits computable in linear time. Jacobson’s coding [Jac89] allows adjacency queries
scanning O(logn) bits only, but with a 36n bit size encoding. Keeler and Westbrook proposed
in [KW95] a more compact encoding in log 12 bits per edge. This leads to a 10.76n bit size
encoding for dense planar graphs®, i.e., when m = 3n — o(n). Recently Munro and Raman [MR97]
proposed a coding supporting O(1) time adjacency queries (in the standard integer model) with a
14n+o0(n) bit size encoding. Finally [CGH™98] improved the previous encoding to 4m/3+5n+o0(n)
bits, i.e., 9n + o(n) bits for dense planar graphs, keeping O(1) time adjacency queries. All these
results imply routing tables of size O(n) bits per node with time in Q(n) to extract the route (for
each source one still needs to run a shortest path algorithm on the whole graph). Note that in the
case of planar graphs, shortest paths from one source can be computed in O(n) time [KRRS94]. In
the best case this leads to compact routing tables of size 9n + o(n) bits with O(n) time to extract
the route. Note that the time is still exponential in the size of the input of the routing function
since the destination addresses are on logn bits.

The genus of a graph G is the smallest integer v such that G embeds in a surface of genus
without edge crossings. Planar graphs can be embedded on a sphere, so v = 0. A p-plane graph
of genus 7 is a graph of genus vy that embeds in a surface of genus v so that all the nodes can be
covered by at most p disjoint faces. For instance, outerplanar graphs are 1-plane graphs of genus 0.

Using a pure compact routing approach, Frederickson and Janardan showed in [FJ88] that every
p-plane graph of genus <y supports shortest path routing tables of compactness at most 3p/2 + .
This means that the routing tables satisfy the property that the set of addresses that use a given
directed edge consists of |3p/2 + -] intervals of consecutive integers (modulo n). Routing tables
of compactness k are also called k-interval routing scheme, and have been introduced by van
Leeuwen and Tan [vLT87]. Such a representation implies for p-plane graphs routing tables of size
O(d(p + ) logn) bits per node of degree d with O(logn) time to extract the route (cf. [Gav99] for
a recent survey of the interval routing technique). Unfortunately, the parameter p of a graph can
be ©(n), even for graphs with v = 0. Frederickson and Janardan also considered general compact
routing schemes for planar graphs with a bound on the average number of bits: O(nl/ 3logn) per
node [FJ89]. However, in this seminal work the context is different since their model allows: 1)
the use of routing paths of length 3 times the distance (not shortest path); 2) longer names, not
taken from {1,...,n}; 3) changing the header of the messages in some intermediate nodes making
the routing paths not necessarily loop-free (whereas routing tables induce simple paths). Moreover,
their average bound does not avoid the worst-case of O(nlogn) bits on some nodes. Finally, no
shortest path routing scheme is known for planar graphs and bounded genus graphs that uses less
than nlogn bits of space in each node and poly-log time.

1.4 Contribution of this Paper

In this paper we show how to route in poly-log time using tables of size at most 8n + o(n) bits
per node for weighted planar graphs. The same bound holds for non-planar graphs that become
planar after removing o(n/logn) edges. We push even further the optimization of the table to
9n — 8d + o(n) bits for nodes of degree d, for d > n/8. Moreover the time to build tables is linear

®This does not mean that the graph is triangulated. Better encodings have been proposed for this particular case.



for each node. Note that our space bound is smaller than all the known encodings of planar graphs
which support “reasonable” time adjacency queries®. Our approach is not centralized. See Table 1
for a summary.

Routing table | Time to extract | Method &

size in bits the route comments
nlogn O(logn) Standard routing tables
(in bit-operations), weighted
6.25n gno® Information-theoretic upper

bound [Tut62], unweighted

9n + o(n) O(n) Compact coding of unlabeled planar
graphs with O(1) time adjacency
queries [CGH"98] and fast shortest
path algorithm [KRRS94], unweighted

8n + o(n) O(log?t¢n) Compact routing tables [This paper]
(in bit-operations), weighted

Table 1: Compact routing tables for planar graphs of n nodes.

By the use of k-page embedding of graphs, we generalize our result to weighted graphs of
genus v > 0. We construct compact routing tables of nlogy + O(n) bits with poly-log time to
extract the shortest route. In the worst-case, ¥ = O(n?) and the size becomes the same order as
the standard routing tables, i.e., O(nlogn) bits. This new quantification of the routing information
clearly shows that embedding and drawing of graph “help” for the routing.

The paper is organized as follows: in Section 2, we define k-page embedding of a graph, and we
introduce a dedicated compact data structure that allows to represent all the routing information
at each node with only O(nlogk) bits: the region-graph. In Section 3, we show how to use the
region-graph to route in poly-log time. In Section 4, we extend our result to bounded genus and
bounded crossing-edge number graphs. In Section 5, we prove a lower bound of Q(n log k) bits for
shortest path routing in graphs of pagenumber k, and we conlude by some remarks.

2 k-page Embedding and the Region-Graph

A k-page embedding of a graph consists of a linear ordering of its nodes drawn in a line and of
a partition of its edges into k pages so that edges residing on the same page do not intersect (see
Figure 1 for an example). Such an embedding is sometimes called book-embedding. See [Bil92] for
a survey.

The pagenumber of a graph G is the smallest integer k such that G has a k-page embedding. It
is NP-hard to compute the pagenumber for general graphs, but there is a linear time algorithm to
compute the pagenumber (and its embedding) of planar graphs. Actually the pagenumber of every
planar graph does not exceed 4, and this is tight [Yan86]. There are also non planar graphs with
pagenumber k < 4. For instance K5 has pagenumber 3. Nevertheless graphs of pagenumber 1 are

SRestricting our attention to encodings which support poly-log time adjacency queries.



outerplanar graphs (including trees), and graphs of pagenumber 2 are subgraphs of Hamiltonian
planar graphs (including series-parallel graphs).

O0——o0 edgeof page 1
O---0 edgeof page 2
o---0 edgeof page3

Figure 1: A planar graph of pagenumber 3 and a 3-page embedding.

The sketch of our routing scheme is the following: we choose the node labeling according to the
k-page embedding of the graph. Then we root in each node a minimum spanning tree. Each tree
rooted in a node u, say T, represents the routing from u towards all the other nodes in the graph.
(Actually our technique works for any spanning tree, not necessary for minimum spanning tree).
Roughly speaking, for a given destination v, the routing task in u consists in selecting the unique
neighbor of u that is an ancestor of v in T. The routing table could be implemented by storing
in extenso T' in u. However, in order to decrease the bit count (and the search time) we store a
compact data structure relative to T, called the region-graph, that allows to perform our task.

2.1 The Region-Graph

Let G be an n-node connected k-page graph with node set V(G) and edge set E(G). We consider
a k-page embedding of G. We assume that V(G) = {1,...,n} such that nodes are linearly ordered
by the k-page embedding of G. We associate with each edge its unique page p, an integer taken
from {1,...,k}. Let up be a node, let d be the degree of ugy, and let T" be an arbitrary spanning
tree rooted at ug (for instance a minimum spanning tree if G is weighted). Once T has been fixed,
T is considered as an unweighted graph. Let us denote by 7" — ug the graph obtained from T' by
removing uo and its incident edges.

T — ug is a forest composed of d connected components. Each connected component of T — ug
is a tree called a region. We denote by R; the ith region of T' — ugy. A region composed of a single



node is called an isolated node. A region that consists of exactly one edge is called an isolated edge.
For each R; we choose a root, denoted by root(R;), defined as follows: the root of a region R; which
is not an isolated edge is the unique node r € V(R;) such that r neighbors ug. The root of an
isolated edge (u,v) is the node min{u,v} (recall that nodes are integers in {1,...,n}). We assume
that the regions are ordered w.r.t. their root, i.e., root(R;) < ... < root(Rg). Our goal is, given a
destination vg, to find the unique region R; such that vy € V(R;). The index i will represent the
output port number returned by the routing function at ug for vy.

For each page p € {1,...,k} let T, be the subgraph of T' — 1y, embedded in the pth page
of the embedding of G. Formally, V(T,) = V \ {uo}, and E(T,) = {(a,b) | (a,b) € E(T —
ug) and (a, b) belongs to the page p}. Note that Ty, for some py, may be empty. Let I” be the set
of nodes of the ith connected component of T},. Given a set I, the local-root w.r.t. I? is the closest
node to ug in (unweighted) T that belongs to I”. Note that the local-root is unique since nodes of
If’ induce a subtree of T}, and therefore a connected subtree of T'.

The region-graph of T, denoted by Rr, is the graph defined as follows: V(Rr) = V' \ {ug},
and E(Rr) = U, U; {(a,b) | a,b € I?,a # b, and b is the local-root of I'}. Figure 2 represents a
spanning tree T" and a region-graph for uy = 7 for the example of Figure 1.

(b)

Figure 2: (a) A spanning tree T rooted in ug = 7, and (b) its region-graph, Ry. The regions are
circled in Ry, and their roots are drawn in black. Note that the root of a region is not always a
neighbor of 4y (e.g., node 12), and that edges of the region-graph may cross w.r.t. the initial node
embedding of G.

Lemma 1 The region-graph Ry is a forest in which each tree spans the same set of nodes than the
connected component of T — uyg.

Proof. If’ is the set of nodes of the ith connected component of T' — uy on the page p. The
subgraph induced by IZP is a subtree of T' — uy. The transformation of 7' — ug into Rr consists of
replacing each induced subtree by another one, precisely by the complete bipartite graph Ki; 1
where ¢ = |I?| and rooted at the local-root w.r.t. I¥. Therefore, each connected component of Ry
is still a tree with the same set of nodes as T' — uy. |



According to Lemma 1, and for simplicity, we call each connected component of Ry a region.
We emphaze that to find ¢ such that vg € V(R;) we can use Ry instead of T'. This will allow us to
save bits, T’ being a labeled tree’. For this search we traverse the data structure (Rr) following the
edges of Ry from vy up to the root of the region of vg. Then, knowing the node r = root(R;) we
show how to guess i, the output port number to route towards vg. For concreteness, if vg = 8, our
walk into Ry will be 8,14,15. Then, being able to detect whether a node =z € {1,...,n} is a root
or not, we can stop the walk and count the number of roots less than r to find 4, the roots being
ordered (hence for vy = 8, we return 6). The goal of the following paragraphs is to show that this
can be done with a compact representation of Ry (and other small precomputed tables) allowing
to complete our task in O(log?*¢n) total time.

2.2 Non-crossing Partitions and Strings of Parentheses

A partition P, U...U P, of an ordered set P is a non-crossing partition if for all a,b,c,d € P such
that a <b < c <d,ifa,c € P;and b,d € Pj, then i = j. Let {P;}; be a non-crossing partition of P
({P;}; stands for the set composed of all the P;’s). For each P; we associate a representative element
of P;, denoted by cl(P;). The representative graph of {P;}; w.r.t. the representative function cl(-)
is the graph Gp defined by: V(Gp) = P, and E(Gp) = Ui{(a,b) | a,b € P;,a # b, and b = cl(P;)}.

Every representative graph has a straightforward 1-page embedding. We associate with Gp a
nested string of parentheses (called a balanced string of parentheses), and defined as follows: for
each element u € P (in order and starting from the minimum), and for each edge (u,v) € E(Gp),
we put a symbol ( if 4 < v, and a symbol ) if u > v. See Figure 3 for an example. Note that in the
string of parentheses we have no information about the location of single elements of the partition.

° ° o o (b)

) C N )) o

Figure 3: (a) A non-crossing partition, {1,2,11} U {3} U {4,6,7,10} U {5} U {8} U {9}, with its
representatives drawn in black, (b) the 1-page embedding of its representative graph, and (c) its
balanced string of parentheses.

We now introduce some definitions and results about several standard operations on strings.
Let S be a string of £ symbols, each symbol being represented by an integer taken from {1,...,s}.
We denote by S[i] the ith symbol of the string, ¢ € {1,...,£}. We denote by |S| the length in bits
of S knowing s. We have, |S| = £logs.

e Given a balanced string of multiple type parentheses S — meaning that every sub-string
induced by a given type of parenthesis is balanced — and given a position 7 in S, let matchg (%)

"The nodes of T are already labeled by the k-page embedding of G, and a spanning tree must be designed for all
the nodes of G. A mapping of nodes of G into a canonical labeling of nodes of T' costs an overhead of ©(nlogn) bits.



denote the function that returns the position j in S of the unique parenthesis matching
with S[i].

e Given a binary string B, let onesp(i) denote the function that returns the number of 1’s up
to and including position i, for i € {1,...,|B|}.

e Given a sorted sequence of integers, A = (a1,...,a¢), 1 < a1 < ... < a; < n, let rank4(a)
denote the function that, for every integer a € {1,...,n}, returns the number of elements
of A smaller or equal than a.

Lemma 2

[MR97, CGH"98] If |S| = n, matchg(-) can be implemented with a table of n + o(n) bits,
and runs in O(1) integer operations. The table consists of coding the string S and extra
information of o(n) bits that can be constructed in O(n) time.

[Mun96, BM99] If |B| = n, onesg(-) can be implemented with a table of n+o(n) bits, and runs
in O(1) integer operations. The table consists of coding the bitmap B and extra information
of o(n) bits that can be constructed in O(n) time.

[FKS84] rank4(:) can be implemented using tlogn + o(tlogn) bits, and runs in O(1) integer
operations. The table consists of coding the sequence A, and extra information of o(tlogn)
bits that can be constructed in O(t) time.

Remark. The above complexity results are mentioned for the standard integer operation model:
each operation on integers of size O(logn) bits costs a constant unit of time. We emphasize that
actually, in the worst-case, logn bits need to be read to achieve the constant time results. How-
ever, an O(t) time complexity in the integer operation model implies an O(tlogn) bit-operations
complexity. So, all the functions of Lemma 2 can be implemented with O(logn) bit-operations.

2.3 Encoding of the Region-Graph

Lemma 3 For every p € {1,...,k}, {I'}; is a non-crossing partition of V '\ {uo}.

Proof. Assume that I? U...U I? is not a non-crossing partition. Then there exist a < b < ¢ <
d € V '\ {uo} such that a,c € I} and b,d € I7, and i # j. Since I} and I} are nodes of two disjoint
connected components of T}, a path connecting a, c and a path connecting b, d can be drawn in the
same page without crossing edges. This is contradiction with a < b < ¢ < d. |

Therefore, the region-graph Rp is the union, over all pages p, of the representative graph of
{I?}; with local-root as representative. This gives also an embedding of Ry in at most k pages.

Let S, be the string of parentheses associated with page p (more precisely, the string of paren-
theses of the graph representative of {I''}; with local-root as representative). Let block,(u), for
every node u, be the sub-string of S, that corresponds to the incident edges of 4 drawn on page p.
Note that block,(u) may be empty.

For every node u of Ry distinct from a root, i.e., u # root(R;) for every i € {1,...,d}, we define
the parent-page of u as the integer p such that the edge (u,v) € E(Ry) is on the page p, where v
is the father of u. The parent-page of a root is not defined.



From Ry we associate a string S of multiple type parentheses defined as follows: (1) in
every string block,(u) rewrite the symbol ( by (,, and the symbol ) by ),. (2) For each non-
isolated node wu, let block(u) be the concatenation of block,(u) over all the pages p in an order
such that the block of the parent-page of u (if it exists) is located first. (3) For every isolated
node u, set block(u) = (;)p, with arbitrary p. (4) Finally, St consists of the concatenation of
block(1)block(2) ... block(u) ... block(n), for every u € V(Ryr).

To complete the coding of Rt we add a bitmap Pr which marks the position of the first symbol
of each block. Formally, Pr[i] = 1 if and only if S7[i] starts block(u) for a suitable node u. See the
example depicted in Figure 4 corresponding to the region-graph of Figure 2.

el

10 11 12 13 4 15 16 17 18 19 20

~ ) 1 1

) C«C) T ) 0 [ o CD C)H)ydH)y I 1)

(0 11000 1 120 1 10 1 10 1 10 1 1 1200 10 1 1 1 1

Figure 4: (a) The 2-page embedding of Ry (local-roots that are not roots are drawn in grey), (b)
the string Sy associated with Ry (for simplicity ( denotes (; and [ denotes (2, similarly for closing
parentheses), and (c) the bitmap Pr.

Lemma 4 Sr and Pr are computable in linear time, and |Sr|+ |Pr| = (n—1—-d+1i)(4+2logk),
where 1 is the number of isolated nodes of Rr.

Proof. Given the k-page embedding of GG, the tables are computable in linear time. We will show
that |Sr| = 2(n — 1 — d + 1) log (2k). Each edge of the region-graph contributes in Sy to a pair of
matching parentheses. Rp has d connected components, and n — 1 nodes. So, Ry hasn —1—d
edges. Moreover, for each isolated node, we add a pair of parentheses. In total, St consists of
at most 2(n — 1 — d + %) symbols over an alphabet of 2k letters (there are at most k types of
parentheses). Similarly, |Pp| =2(n —1—d+1). |

3 Compact Routing with the Region-Graph
We give a first version of the search algorithm in Ry, ROUTE1, we prove its correctness and then

we give its implementation. In a second step, we propose a faster algorithm, ROUTE2, that leads
to our main result. Finally ROUTE3 improves ROUTE2 only when the degree is large.

3.1 A First Search Algorithm: Routel

In the following algorithm, port(r) denotes a function that returns the port number of the root r.
Actually, it corresponds to the number of roots 7/ such that ' < r, since the roots are ordered.

10



Algorithm ROUTEL(ug, vg)
Input: ug: the sender, vy: the destination, vy 7# ug
Output: the integer i such that vy € V(R;)

—_

) Find the position 7 of the first symbol of block(vy) in Sp. Set u := vy.

) Find the position j of the matching parentheses of St[i].

) Find the node u' corresponding to position j.

) If ' = u, return port(u').

) Find the position i’ of the first symbol of block(u').

) Ifi' = j, let I, (resp. l/) be the number of symbols of the first block of u (resp. u').
(6a) If I, =1, = 1, return port(min{u,u'})
(6b) If I, > 1, return port(u), else return port(u’)

(7) If S7[i'] and S7[j] are both in the same page, return port(u').

(8) Set 7 :=14', u:= ', and continue at (2).

TN N N N N N
IS

3.2 Correctness of Routel

Let us show that after running the steps (2) (3) ... (8), either we have found the root of the
connected component of w in Ry, or at Step (8) u' is the father of w in Rp. So, by induction,
ROUTEL returns the root of the region of vg.

Consider Step (4). If ' = u, then u is an isolated node, and by definition v is a root. Consider
Step (6). Since u' # u, i’ # i. Assume i’ = j. Then u' and u have the same parent-page. So,
uw or u' is a root. If I, = I, = 1 then {u,u'} is an isolated edge, and therefore the root is by
definition the minimum of » and u’' (Step (6a)). Otherwise (Step (6b)), the root is the only node
whose first block length is greater than 1. Indeed, only one node of a given I? has several incident
edges (excepted the case of isolated edges captured by Step (6a)): the local-root of w.r.t. IV. At
Step (7), if S7[i'] and St[j] are both of the same page then since i’ # 7, [,y > 1, and therefore u' is
a local-root. But, by construction, roots are exactly those local-roots w.r.t. If such that their first
parenthesis (parent-page) is precisely p. So, u' is a root. Finally, if Step (8) is encountered, v’ is a
father of u, completing the proof of correctness.

3.3 Implementation of Routel

We consider w be any function of n not bounded by a constant. So, n/w = o(n). W.Lo.g. we
assume that wlogn is an integer.

First, let us break St into sub-strings, called sectors, each of wlog n symbols, labeled successively
1,2,...,[n/(wlogn)|. Possibly, the last sector could be of length smaller than wlogn. We construct
two lists of integers, S and S, indexed by sectors. For every sector s, Si[s] contains the node u
such that the first parenthesis of s belongs to u. S3[s] contains the number of roots up to sector s
(s not included). We introduce some basic functions:

e Given a position 7 in Sp, node(i) returns the corresponding node. node(-) can be computed
as follows: node(i) = onesp, (i) + z, where z := 1 if onesp, (i) > ug, and 0 otherwise.

e Given a node u, first(u) returns the position in Sy of the first parenthesis of block(u). It can
be computed as follows: (1) if u = 1 return 1; (2) set s := rankg, (u—1), 7 := (s—1)wlogn+1,
and v’ := S1[s]; (3) while v #w doi:=1i+1, and if Pr[i] = 1, set v’ := v’ + 1; (4) return .

11



e Given a node u, isroot(u) returns true if u is a root, false otherwise. isroot(-) is computed
by traversing the father of u, u’, and then the father of v/, v”. If " = u, then either u or v’
is a root. We conclude that u is a root depending on the length of the first block of u and
u’ respectively. For that we need to call first(-), and to check only the two first parentheses
in S7. In the case of an isolated edge (the lengths are both of size 1) we break the tie and
return true if u < u'.

e Given a node u, port(u) returns the number of roots less than or equal to u. By the ordering
of the regions, it corresponds to the port number of . Using S it can be computed as follows:
(1) compute its corresponding sector s using the first position of u in Sz. Set p := Sy[s]; (2)
starting from the beginning of s and up to the position first(u), we increase p by one for each
root encountered with the function isroot(-). (3) return p.

The lists S and S2 can be constructed in linear time. Using the complexity results of ones(-),
match(-) and rank(-) stated in Lemma 2, we derive:

Lemma 5 The running time in bit-operations is: O(logn) for node(-), O(wlogn) for first(-) and
isroot(+), and O(w?log?n) for port(-).

Let L be the distance between vy and the root of its region in Ry. From the correctness of
ROUTEL and Lemma 5 we have:

Lemma 6 Algorithm ROUTEL runs in O(Lw logn + w? log? n) bit-operations with routing tables of
|St| 4 |Pr| 4 [S1| + |S2| + o(n) bits.

3.4 An O(wlogn) steps Search: Route2

In the time complexity of ROUTE] (Lemma 6), Lwlogn becomes the first order term whenever
L > wlogn. Our goal is to bound the number of traversals of the region of vy, i.e., the number
of steps of ROUTEL. For this purpose we select a set of nodes, D1, satisfying: 1) for every node u
at distance greater than wlogn from its region’s root r in R7, the path from u to r cuts a node
v € Dy such that the distance® between u and v is at most wlogn in Ry. 2) Dy is of size at most
n/(wlogn).

D; can be constructed in linear time using a modified version of Peleg and Upfal’s algo-
rithm [PU8Y] for the construction of wlogn-dominating sets: for each region R;, of height h and
of root r we divide the nodes other than r into levels Ly,..., Ly according to their height in R;,
(L; is the set of nodes at distance 4, i > 1). We merge these sets into wlogn sets C1,...,Cyiogn
be taking C; = ;50 Li+jwlogn- Each C; is a wlogn-dominating set for V/(R;,) \ {r}, and satisfies
our property 1). Because these sets form a complete disjoint partition of V(R;,) \ {r}, at least one
set, say Cj,, is of size at most (|[V(R;,)| — 1)/(wlogn). We merge Cj, with D;. Finally, the total
number nodes in Dy is at most (n — 1 — d)/(wlogn), satisfying our property 2).

Now for each node u € D; we assign the output port number of its root. We store this
information in a list Dy. It suffices to insert a Step (1.5) between Step (1) and (2) of ROUTE] to
obtain ROUTE2:

8Weights are not taken in account. The distance we are dealing with denotes here the minimum number of edges
of a path connecting two nodes.

12



(1.5) If there exists j such that u = D;[j], return Ds[j].

Note that find j in Step (1.5) can be performed in O(logn) bit-operation by a binary search
in a sorted list (sorting D; costs O(n/w) = o(n), a sub-linear time of precomputation). Now, the
number of steps for ROUTE2 is bounded by w logn.

A tree-routing family F on a graph G is a routing table on G such that for every node the
subgraph induced by the set of nodes using the same port is connected. A way to represent a
tree-routing family is to use a collection of trees spanning each of these connected subgraphs. So,
F can be seen as a family of spanning trees. A shortest path routing table is not necessary a
tree-routing family, but shortest path routing tables can be built on every graph with the use of a
minimum spanning tree family.

So, we can state the main result:

Theorem 1 Let G be a k-page graph of n nodes, and let F be any tree-routing family on G. F can
be implemented by routing tables of size at most 2nlog k+4n+o(n) bits per node such that the time
(per node) to extract the route is O(w?log® n) bit-operations, where w is any unbounded function in
n. Moreover, given F and a k-page embedding of G, the routing tables can be constructed in O(n)
time for each node.

Proof. From Lemma 6, the size of the routing tables used by ROUTE2 in each node ug is
|St|+ |Pr| + |S1] + |S2| + |D1| + |D2| + o(n). By applying Lemma 4, |S7| + |Pr| < 2nlogk + 4n,

since the number of isolated nodes is at most the degree of ug. By construction, |Si| = |S2| =
|D1| = |D2| € [n/(wlogn)] - [logn] = O(n/w) = o(n) bits. The wlogn-dominating set guarantees
that the number of steps for ROUTE2 is bounded by wlogn, that completes the proof. |

Note that for small values of k, Theorem 1 does not give the best compact routing scheme.
For instance for k = 1, i.e., for the case of outerplanar graphs, our upper bound gives 4n + o(n)
bits, whereas n + o(n) bits are enough (with still a poly-log time to extract the route) by efficient
implementation of interval routing (cf. [Gav99]). However, as we will see later in Section 5, for
unbounded k the bound of Theorem 1 is optimal up to a factor 2.

3.5 Implementation for Large Degree: Route3

In this paragraph we show how to reduce the size of the tables when the degree of the sender is
large. The main idea is the following: we consider the graph obtained from the region-graph R
by removing all its isolated nodes. Let R’ be this new graph. Given a destination vy distinct from
an isolated node, we rename vy as v, which corresponds to the rank of the node vy for R/ in the
k-page embedding of G. Then, we route applying ROUTE2 on R/, with input vj, and we obtain
a port number for R/, say p’. Finally, we show how to translate p' into the port number in the
original region-graph. We treat isolated nodes in a different way.

Let us consider the bitmap I7 such that I7[u] = 1 if and only if the node u of Ry is an isolated
node. |[Ir| = n — 1 bits. We construct all the tables needed for ROUTE2 in R/.. We make an
exception for the table Dy in which we consider the port number of Ry instead of R/.. This does
not change anything about time and space complexities. Let S}, and P} be the two strings used
for the routing table of R).. By Lemma 4, we have |S%| + |Py| < (n — d)(4 + 2log k).

13



Given a binary string S, and a position 7 in S, let closeg(i) be the function that returns the
largest position j < ¢ such that S[j] = 0. It can be easily implemented with a binary search in
S: if onesg(i) = onesg(i/2) we recursively look for j in the range {1,...,7/2}, and in the range
{i/2,...,1} otherwise. The routing algorithm is the following:

Algorithm ROUTE3(uq, vo)
Input: ug: the sender, vy: the destination, vy # wug
Output: the integer 7 such that vy € V(R;)

(1) Set b := onesy, (vo).

(2) If Ir[vo] = 1, return b + port(closer, (vo)).

(3) Apply ROUTE2 on vy — b. Let u' be the last node considered by ROUTE2, and p’ be
its port number.

(4) If ' is in Dy return p', and return p’ + onesy,.(u') otherwise.

Complezity: The run time is bounded by Step (2) and Step (3) which both run in O(w?log? n)
bit-operations. Note that closer,(-) runs in at most O(log?n) bit-operations, and similarly for
Step (4) to check whether v’ € D;. The size of the routing table is at most |S%.|+ |Pr|+|Ir|+o(n) <
(n —d)(4 4+ 2log k) +n + o(n) bits. Tables S1, Se, D1, Do are of o(n) bit size as stated before.

Correctness: First assume that vy is an isolated node (I7[vg] = 1). Then, it suffices to return
the number of nodes that are roots up to vg. We decompose this value into the number of isolated
nodes up to vy (which are all roots), and the number of roots for the non-isolated node up to .
This is achieved by selecting the largest non-isolated node up to vy with close(-), say z, and by the
use of the function port(z) which by definition returns the number of roots up to z in R/.. Now, if
vo is non-isolated, v, = vy — b represents the vjth non-isolated node of Ry, that is the vjth node
of R'.. So, we can apply ROUTE2, and then we correct the port number by adding the number of
isolated nodes up to the root of v, u'. Note that if «’ is a node of the wlog n-dominating set, we
get the port number without any translation.

It follows:

Theorem 2 Let G be a k-page graph of n nodes, and let F be any tree-routing family on G. F
can be implemented by routing tables of size at most 2(n — d) logk + 5n — 4d + o(n) bits per node
of degree d such that the time (per node) to extract the route is O(w?log?n) bit-operations, where
w is any unbounded function in n. Moreover, given F and a k-page embedding of G, the routing
tables can be constructed in O(n) time for each node.

Theorem 2 improves the main theorem (Theorem 1) when 2n logk+4n > 2(n—d) log k+5n—4d,

i.e., whenever d > n/(4 + 2logk). On the other hand, for small degree the use of routing tables is
better when nlogd < 2nlogk + 4n + o(n), i.e., whenever d < 2% - k2.

4 Applications and Extensions of the Main Result

4.1 Planar and Genus Bounded Graphs

The genus of a graph G is the smallest integer -y such that G embeds in a surface of genus vy without
edge crossings. A surface of genus v is homeomorphic to the sphere with y cross-caps attached.

14



Planar graphs can be embedded on a sphere, so v = 0. Although it is NP-hard to compute the
genus of a graph [Tho89], for each fixed -y there is a linear time algorithm to decide whether G is
of genus vy [Moh96].

[BK79] shows how to build, for every n, a graph of n nodes, 4n — 9 edges, genus y > (n — 3)/3,
and pagenumber £ = 3. However, Malitz showed in [Mal88] that for every graph k = O(,/7), which
is tight by [HI87].

Therefore, from the main theorem we have, choosing w = O(log®/? n):

Corollary 1 Every weighted n-node graph of genus v > 0 has shortest path routing tables of
nlog~y 4+ O(n) bits per node, and with O(log?t€n) bit-operations per node to extract the route, for
every constant € > 0.

Corollary 2 FEvery weighted n-node planar graph has shortest path routing tables of 8n+ o(n) bits
per node, and with O(log?*¢n) bit-operations per node to extract the route, for every constant € > 0.
Moreover the table can be constructed in time O(n) per node.

Proof. It is linear to draw every planar graph G in k pages, where k < 4 is the pagenumber of
G (cf. [Bil92]). It is also linear to find a minimum spanning tree rooted in a given node for planar
graphs [KRRS94]. We complete the proof by applying Theorem 1. |

Note that if d > n/8, by Theorem 2, we can decrease the size of the tables to 9n — 8d + o(n)
for planar graphs.

4.2 Crossing Edges

In this section we are interested in graphs that are almost k-page graphs, which are graphs drawn
into k pages with a limited number of crossing edges. As we will see this extends the notion of
crossing-edge number. Formally, consider an integer £ > 0, a graph G, and a subgraph H of G.
H is a k-page excess for G if the graph obtained from G by removing all (and only) the edges of
H is a k-page graph, i.e., supports a k-page embedding without any crossing edge. A (H, k)-page
embedding of G is an embedding in which only the edges of H cross in the k-page drawing of G.
We introduce the k-ezcess number of G, denoted by Xy (G), as the minimum, taken over all k-page
excess H of G, of the number of edges of any spanning forest of H. (This number corresponds also
to |V(H)| — k(H) where x(H) denotes the number of connected components of H). By definition,
for every k and every G, 0 < Xx(G) < n—1, and X, (G) = 0 if and only if k& > kg, where kg is the
pagenumber of G.

Because the pagenumber of planar graphs is bounded by 4, it is interesting to notice that
X41(G) is a lower bound of the crossing-edge number, that is the smallest number of edges to remove
from G in order to obtain a planar graph (cf. [SSSV98] for a recent survey). The following result
generalizes Theorem 1, and improves the result whenever & (G) = o(n/logn) for some k < k. And
as a corollary, graphs of crossing-edge number bounded by o(n/logn) have shortest path routing
tables of size 8n 4 o(n) bits. Obviously, the next result can be combined with Theorem 2 for large
degree nodes.

Theorem 3 Let G be a graph of n nodes, let k > 0 be an integer, and let F be any tree-routing
family on G. F can be implemented by routing tables of size at most 2nlogk + 4n + 2X;(G) log n +
o(n) bits per node so that the time (per node) to extract the route is O(log?Tn) bit-operations, for
every constant € > 0.

15



Proof. Cousider a (H,k)-page embedding of G for suitable H so that any spanning forest of H
has Xy (G) edges. Consider a node uy of degree d, and the tree of F rooted in ug, T. T — ug is
drawn on at most k pages. Let F be the forest obtained from T by removing all the edges of H.
Let Fy, F1, ..., F, be the ¢+ 1 connected components that compose F. Let us choose u; to be any
node of Fj, 1 € {1,...,c}. Each u; is chosen arbitrary in V(F;) (but preferably choose a neighbor of
ug), but if F; is a single edge, we choose u; = min V' (F;) (as all the nodes are ordered with respect
to the linear ordering induced by the (H, k)-page embedding of G). For convenience, we assume
ug € V(Fp). Finally, we consider the tree T' of root ug obtained from T by adding the edge (ug, u;),
for every i € {1,...,c}.

The idea is to route along T" using the previous compact routing in the region-graph of T, say
Rpi. By construction, 7" — ug has a k-page embedding, and thus Rpv too. The search is valid,
except for node destinations in F; for some ¢ > 1 as there are more regions in Ry than in Rry.
Moreover, the port number is possibly in the range {1,...,c+ d} instead of {1,...,d}. Using two
lists of ¢ integers of {1,...,n}, we show how to correct the routing, that is how to simulate the
search in T" in Rp.

Let U be the list of u;’s, U[i] = u;, and let Py be the list of port numbers in the routing of T’
for each node of U. So, the route along T' from ug to any u; is through the port Py, for every
i € {l,...,c}. As previously, we construct all the tables needed in ROUTE2 for Ry». We make an
exception for the table Dy in which we consider the port number of T instead of Ry». This does
not change anything about time and space complexities.

We consider the following search algorithm:

Algorithm ROUTE4(ug, vo)

(1) If there exists i such that vo = Ul[i], return Pyy;).

(2) Apply ROUTE2 on vy. Let u' be the last node considered by ROUTE2, and p' be its
port number.

(3) If «' is in Dy return p'.

(4) If there exists ¢ such that v’ = U[i], return Pyp;.

(5) Return p’ — ranky (u').

Complexity: Let us choose w = O(logf/ 2pn). The run time is bounded by the time of Step (2),
O(w?log? n) = O(log?>™¢n) bit-operations. Step (1) can be done with a binary search in O(logn)
bit-operations. The same time holds for steps (3-5). Clearly, |U| + |Py| = 2clogn bits. Moreover,
all the extra tables used for ROUTE4 are o(n) bit size and constructible in linear time. Let us show
that ¢ < X (G), so proving that with an extra information of 2X%(G)logn + o(n) bits we can to
make a search. The edges of H that are removed of T' in order to form F' constitute a subgraph
of a spanning forest of H, because T is a tree. Each edge we remove from 7" increases by one the
number of connected components, so in total F' has exactly 1 plus the number of edges of T' that
are in H, i.e., ¢ + 1 connected components. So, ¢ < X;(G).

Correctness: We remark that each wu; is a root of Rypr, since either it neighbors ug, or u; is
minimum if it belongs to an isolated edge in T'. By the correctness of ROUTE2, we have after
Step (2) of ROUTE4 that u' is either a node of the w log n-dominating set, or a root which is either
in U or not. If the root is in U we can conclude by looking up Py, otherwise it suffices to correct
the answer by counting the number of roots in Ry that are u; nodes up to u'. |

16



5 A Lower Bound

At this point we consider the question of whether the bound of Theorem 1 is tight, i.e., if O(nlogk)
bits are necessary to route along a tree-routing family. We show that there are tree-routing families
on k-page graphs such that Q(nlogk) bits are required. Moreover, this lower bound holds in the
particular case of shortest path routing tables on unweighted graphs. Let K, ; denote the complete
bipartite graph on bipartite size p and g respectively.

Theorem 4 For every n large enough, and for every k, 2 < k < n/2, there ezxists a shortest
path tree-routing family F on Ky, g, an n-node k-page graph, such that any implementation of F
requires at least (n — 2k)logk — 3logn bits for a node.

Proof. We use a counting argument based on the number of shortest path routing tables needed
to satisfy the set of all the possible shortest path tree-routing families on Ky ,_;. Actually this
proof can be reformulated using the incompressibility method in Kolmogorov complexity framework
(see [BHV99, GP96] for other examples used for routing complexity lower bounds).

K n—k is an n-node k-page graph since it has a straightforward k-page embedding. Let A =
{a1,...,an—i} be the set of nodes of the largest partition of Ky ,_x, and let B = {b1,...,bs} be
the nodes of the other partition. Let V = AU B. Consider the set M of all (n—k) x (n— k) integer
matrices where the entries are taken from {1,...,k}, except for the diagonal entries that are null.
Note that |M| = k(n—k)(n—k=1),

To each matrix M € M, we associate a tree-routing family FM built as follows: for every
b; € B we choose an arbitrary (but fixed) shortest tree-routing towards all the nodes, i.e., V'\ {b;}.
For every a; € A, we choose the unique shortest tree-routing towards the nodes of B, and towards
every node a; € A\ {a;}, we choose the route through the node b, € B such that a = M; ;. Note
that in the latter case, the set of routes towards V' \ {a;} form a shortest tree-routing. Hence, for
every M, FM is a shortest path tree-routing family on K k,n—k-

Let U = Unrem FM_ For every FM € U, let FM denote the tree-routing rooted at u. Note
that [U| = |[M]|.

Consider any routing scheme S on Ky, ;. ILe., for every tree-routing family F M clfon K kn—k>
S must return a node labeling £V, a port labeling p™, and a routing table RM that implements
FM . More precisely, for every node u € V:

1. M(u) € {1,...,n} is the label of u;

2. pM(u,v) € {1,...,deg(u)}, for v neighbor of u, is the port number of the edge (u,v);

3. RM(u,d), d € {1,...,n}, returns p (u,v), the port of the edge (u,v) such that (u,v) is the
edge of FM leading to the destination labeled d.

We denote by R} the function RM(u,-). Let Lr(M) = (R),..., R} ). Finally, let Lp =
{Lr(M) | M € M}. Because the labeling of the nodes and of the ports are optimized by S after
choosing M, it may happen for two distinct matrices M, M’ € M, that Lgr(M) = Lr(M"). So, in

general |[Lg| < | M| making harder counting. Let us show that

M|

|ILr| > Ry T - (1)

17



Recall that the routing scheme S : FM s (/M pM RM) for every M € M. Let S(U) be the range
of §. We remark that given an arbitrary triple (¢, p, R) € S(U), there is an unique matrix M € M
such that S(FM) = (¢,p, R). To build such a bijection and to find M, it suffices to see that for
every i # j, there exists an unique node b, € B such that R(a;,£(a;)) = p(ai, bs) (the route from
a; to a; is forced through a unique node of B by the tree-routing family F*). Moreover, M; ; = «
by construction.

So, |S(U)| = |U|. Note also that to find M, we have restricted our attention to the nodes of
A only. The number of node labeling /M for A’s nodes is at most n!/(n — |A|)! = n!/k!, and the
number of port labeling p™ for A’s nodes is at most k!l (as their degree is bounded by k). The
number of routing tables RM for A’s nodes is given by |Lg|. It follows that

!
S@) < 7K (La]

proving Eq. (1) since [S(U)| = [U| = |[M]|.
Let M be the shortest implementation® of RY, and let length(7:M) denote its length in bits.
Let Lp(M) = (T24,..., T ). Finally, let £y = {Ly(M) | M € M}. Note that there exists a

a "

bijection!? between the sets L7 and Lg, so |Lr| = |Lg|. Let us show that
AMy € M, 3ug € A, length(T°) > —-log|Lg| - (2)

Indeed, assume that there exists some [/ such that length(7M) < I, for all M € M and u € A. Then

Lr C ({0,134, Thus log |£r| <1 |A|, proving Eq. (2). So, combining Eq. (1) and (2), it turns
out:

1

length(T20) > —

engt ( ug ) |A|

Noting that log |[M| = (n —k)(n—k — 1) logk, |A| = n—k, log(n!) < nlogn, and that k < n/2, we
have

(log IM| — log(n!) — (n — k — 1) log(k!)) .

k-1
length(TM0) > m—kam%k—&fiy%n—cﬁtXOkmw
> (n—2k)logk —3logn .

The bound is independent of the routing scheme S. Therefore, we have showed that for every
routing scheme, there exists a (shortest path) tree-routing family F° and a node ug such that the
shortest implementation of R} requires at least (n — 2k)log k — 3logn bits. |

For unbounded k and k = o(n), the lower bound gives nlogk — o(nlog k), whereas the upper
bound we gave in Theorem 1 is 2nlogk + O(n). So, our upper bound cannot be improved by a
multiplicative factor larger than 2. For planar graphs, we can derive a slightly weaker lower bound
choosing Kj o (a series-parallel graph): this gives n — O(logn) bits, whereas our current upper
bound is 8n + o(n).

Nevertheless, it is still open to find a lower bound that holds routing schemes having the freedom
in the choice of the shortest path tree-routing family, or more generally in the choice of the shortest

path routing table. To our best knowledge, the only lower bound that holds for any shortest path
routing tables is the Q(y/n)-lower bound of [EGP98] for n-node trees.

9All implementations we deal with are assumed to be described in a fixed programming language, so can be
represented by a binary string of a certain length.
0Unfortunately such bijections are uncomputable.

18



References

[BHV99]

[Bil92]

[BK79]

[BM99)]

[CGH*98]

[EGPYS]

[FG97]

[FGY8]

[FJ88]

[FI89]

[FKS84]

[Gav99]

[GPY6]

[HI87]

[Jac89]

H. BUHRMAN, J.-H. HOEPMAN, AND P. VITANYI, Space-efficient routing tables for
almost all networks and the incompressibility method, STAM Journal on Computing, 28
(1999), pp. 1414-1432.

T. BiLskl, Embedding graphs in books: A survey, IEE Proceedings-E, 139 (1992),
pp. 134-138.

F. BERNHART AND P. C. KAINEN, The book thickness of a graph, Journal of Combi-
natorial Theory, 27 (1979), pp. 320-331.

A. BRODNIK AND J. I. MUNRO, Membership in constant time and almost-minimum
space, SIAM Journal on Computing, 28 (1999), pp. 1627-1640.

R. C.-N. CHUANG, A. GARrG, X. HE, M.-Y. Kao, AND H.-I. Lu, Compact encod-
ings of planar graphs via canonical orderings and multiple parentheses, in 25" Inter-
national Colloquium on Automata, Languages and Programming (ICALP), K. Guld-
strand Larsen, S. Skyum, and G. Winskel, eds., vol. 1443 of Lecture Notes in Computer
Science, Springer, July 1998, pp. 1-12.

T. EiLaMm, C. GAVOILLE, AND D. PELEG, Compact routing schemes with low stretch
factor, in 17" Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM PRESS, August 1998, pp. 11-20.

P. FRAIGNIAUD AND C. GAVOILLE, Universal routing schemes, Journal of Distributed
Computing, 10 (1997), pp. 65-78.

P. FRAIGNIAUD AND C. GAVOILLE, A theoretical model for routing complexity, in

5" International Colloquium on Structural Information & Communication Complex-
ity (SIROCCO), Carleton Scientific, July 1998, pp. 98-113.

G. N. FREDERICKSON AND R. JANARDAN, Designing networks with compact routing
tables, Algorithmica, 3 (1988), pp. 171-190.

G. N. FREDERICKSON AND R. JANARDAN, Efficient message routing in planar net-
works, SIAM Journal on Computing, 18 (1989), pp. 843-857.

M. FREDMAN, J. KOMLOS, AND E. SZEMEREDI, Storing a sparse table with O(1) worst
case access time, Journal of the ACM, (1984), pp. 538-544.

C. GAVOILLE, A survey on interval routing, Theoretical Computer Science, 245 (1999).

C. GAVOILLE AND S. PERENNES, Memory requirement for routing in distributed
networks, in 15" Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM PRESS, May 1996, pp. 125-133.

L. HEATH AND S. ISTRAIL, The pagenumber of genus g graphs is O(g), in 19** Annual
ACM Symposium on Theory of Computing (STOC), 1987, pp. 388-397.

G. JACOBSON, Space-efficient static trees and graphs, in 30** Annual Symposium on
Foundations of Computer Science (FOCS), IEEE Computer Society Press, October
1989, pp. 549-554.



[KK96]

[KRRS94]

[KW95]

[Malg8]

[Moh96]

[MR97]

[Mun96]

[PUSY]

[SSSV9S]

[Tho89]

[Tur84]

[Tut62]

[VLT87]

[Yan86]

E. KRANAKIS AND D. KRIZANC, Boolean routing on Cayley networks, in 37¢ In-
ternational Colloquium on Structural Information & Communication Complexity
(SIROCCO), N. Santoro and P. Spirakis, eds., Carleton University Press, June 1996,
pp. 119-124.

P. KLEIN, S. RAO, M. RAUCH, AND S. SUBRAMANIAN, Faster shortest-path algorithms
for planar graphs, in 26* Annual ACM Symposium on Theory of Computing (STOC),
1994, pp. 27-37.

K. KEELER AND J. WESTBROOK, Short encodings of planar graphs and maps, Discrete
Applied Mathematics, 58 (1995), pp. 239-252.

S. M. MALITZ, Genus g graphs have pagenumber O(,/g), in 29" Symposium on Foun-
dations of Computer Science (FOCS), IEEE, ed., October 1988, pp. 458-468.

B. MOHAR, Embedding graphs in an arbitrary surface in linear time, in 28" Annual
ACM Symposium on Theory of Computing (STOC), 1996, pp. 392-397.

J. I. MUNRO AND V. RAMAN, Succinct representation of balanced parentheses, static
trees and planar graphs, in 38" Symposium on Foundations of Computer Science

(FOCS), IEEE, ed., October 1997, pp. 118-126.

J. I. MUNRO, Tables, in 16" FST&TCS, vol. 1180 of Lectures Notes in Computer
Science, Springer-Verlag, 1996, pp. 37-42.

D. PELEG AND E. UPFAL, A trade-off between space and efficiency for routing tables,
Journal of the ACM, 36 (1989), pp. 510-530.

F. SHAHROKHI, O. SYKORA, L. A. SZEKELY, AND I. VRTO, Crossing numbers of

graphs, lower bound techniques and algorithms: A survey, Theoretical Computer Sci-
ence, (1998). To appear. Appears also as Graph Drawing '94, LNCS 894, pp. 131-142.

C. THOMASSEN, The graph genus problem is NP-complete, Journal of Algorithms, 10
(1989), pp. 568-576.

G. TURAN, Succinct representations of graphs, Discrete Applied Mathematics, 8 (1984),
pp- 289-294.

W. T. TUTTE, A census of planar triangulations, Canadian Journal of Mathematics,
14 (1962), pp. 21-38.

J. VAN LEEUWEN AND R. B. TAN, Interval routing, The Computer Journal, 30 (1987),
pp. 298-307.

M. YANNAKAKIS, Four pages are necessary and sufficient for planar graphs, in 18%

Annual ACM Symposium on Theory of Computing (STOC), 1986, pp. 104-108.



