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1. INTRODUCTION

In this paper we present an algorithm which
on input a graph G and a positive integer g
finds an embedding of G on a surface on genius
g, 1if such an embedding exists. This algorithm
runs in (V)O(g) steps where v s the number of
vertices of G.

As many other authors (Hefter, Edmonds) have
noted finding a topological embedding can be re-
duced to a purely combinatorial problem. Namely,
a topological embedding of G onto some 2-
dimensional orientable surface determines a cyclic
ordering of the edges at each vertex and any cyc-
lic ordering of the edges at every vertex deter-
mines a class of embeddings of G. We shall, in
the next section make the combinatorial notation
more precise but leave the correspondence between
topological and combinatorial embeddings to the
reader.

We believe that removing the nondiscrete
topological definitions (i.e., the notation or
differentiability, 2-dimensional surface, etc.)
from our formal definitions has a multitude of
advantages. First our goal is to produce an
algorithm which operates on discrete machines and
thus at some point we must remove these notions

anyway. Secondly, demonstrations on proofs in the
amalgam of graph theory and topology have been
riddled with flaws (e.g., 4-color theorem,
planarity algorithms, Jordan curve theorem), and
which, no doubt, this paper also suffers. The
hope is that a combinatorial proof may transcend
these problems. Third, our main goal is not just
to draw graphs on "inner tubes" but to understand
how graph theory, topology and computational com-
plexity interact. We have kept no definitions
sacred and we have redefined the notion of a
graph. We have even rewritten Euler's formula.

2. NOTATIONS AND DEFINITIONS

2.1. Graphs
It will be convenient, for our purposes,

to adopt a somewhat unorthodox definition of
graphs.

The edges of a graph will be finite sets
of points. An edge must contain at least one
point in addition to its extremities. The ex-
tremities of an edge are called vertices. In this
way our definition resembles closely that of a
topological graph (cf Ma [67]), except that our

fThis paner is the result of two different papers submitted to the Conferences: one by the first two
authors and the other one by the third. The two papers being quite different in their approach, it
was difficult, in the short time available, to produce a truly joint paper. As a result this paper

mostly reflects the approach of the first paper.

elsewhere.

TtSupported by NSF Grant No. MCS78-05853.

The details of both these approaches will appear

+++Supported by The Alfred P. Sloan Foundation Grant No. 74-12-5.

©1979 ACM 0-89791-003-6/79/0400-027 $00.75

See page ii



edges are not open segments but ordered finite sets
of points. Two points will be called related if
they are neighbors on the same edge. Formally, we
have the following

A graph G

is a finite set whose elements are

Definition. is a triple (P,V,R) where
(1) p

called points;

(2) Vv is a subset of P whose elements
are called vertices;
(3) R 1is an antireflexive and symmetric

such that
no two vertices are related;

relation on P
(3.1)

(3.2) points in P-V are related to at
most two other points.
Let R' be the restriction of R to P-V.

The reflexive and transitive closure of R' is an

equivalence relation on P-V. Its equivalence
classes will be called the (open) edges of G.
From 3.2) it follows that one can linearly order
(in exactly two different ways) the edges of G.
There are at most two vertices related to the
points of an edge e

e. The set consisting of an edge e together

called the extremities of

with its extremities and will be denoted by e
will be called a closed edge of G and will be
denoted by e.
nect its extremities or to be related to them.

An edge e will be said to con-

The (open) edge e with extremities u and
orientations which will
be denoted by (uv) and (vu).

orientations of the closed edges will be [uv]

v can thus receive two
Likewise, the

and [vu] respectively.

The pair (P,R) defines a simple (or sim-
plicial) graph. A graph G with the property
that every point peP-V is related to exactly
two other points will be called closed. A
graph that is not closed will be called open.

A graph G'=(P',V',R') is a subgraph of G
if P'CP,V'CV and R' is the restriction of R
to P'.

A morphism (or simply a map) from G to
G' (written f:G»G') is defined by giving a map
f:P>P' such that (a) f(v)eV', (b) f(P-V)CP'-V'
and that (c) for any two points p,qeP, pRq im-
plies f(p)Rf(q).

A morphism is surjective if f_ is surjective.

p
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Let G' be a subgraph of G. The comple-
ment of G' in G, G-G' is the graph G"=(P",V",R")
where P'“p -P', V"=yn(P-P'} and R" is the re-
striction of R to P¥. The complement of a closed
The smallest closed subgraph
denoted c1{(G') is called
If G

subgraph is open.
of G containing G'
the closure of €' in G.
then c¢1 (G') is closed.

The reflective and transitive closure of

is closed,

R is an equivalence relation whose equivalence
If G'
is a subgraph of a qraph G, the components of
G-G' are called pieces. The attachments of a

classes are called the components of G.

piece C of G-G'arethe points of G' related to some
point of C
c1(C)-C.

A closed graph G will be called reduced
if no triple (V', P,R) with V'g V is a graph.

A chain C of a graph G is an alternating

An attachment is also a point of

sequence of vertices and edges any two consecu-
If the first
and the last elements of the sequence are

The first
and last vertex of a closed chain are its ex-

tive elements of which are related.

vertices, the chain is called closed.

tremities.
of G. For any chain C, the closure of C will be
denoted by [C].
C is the chain obtained by removing the ex-
tremities of [C].
extremities is a cycle.

A closed chain is a closed subgraph

The open part (C) of a chain

A closed chain with the same

2.2. Embedding of qraphs.

An embedding I of a graph G is simply
a cyclic orientation of the edges associated
with each vertex of G.

A pair (G,I) consisting of a graph and an
embedding will be called an embedded graph,
often denoted GI.

Each edgde e of G has in a natural way
two sides. Formally, if x and y are the two
vertices to an edge e, then the triples (x,e,y)
If e and

e' are edges of x, then the triple (e,x,e') is

and (y,e,x,) are the two sides of e.

a corner of x, sometimes denoted x.



If GI is an embedded graph, e and e'
are two consecutive edges of x with respect to
I then (e,x,e') is an elementary corner of x.
A face of G
consecutive triples are either sides or

We shall Tet XpseeeaX >
denote the cyclic order of XpsennaX, induced
.,xn). Thus, the
faces of an embedded graph are simply cycles.
We shall let f denote the number of faces of an
embedded graph. .

elementary corners.

by the linear order (x],..

Note that this definition only agrees wit
the usual definition when the embeded graph GI
is a connected graph. It is fundamental to our
approach to consider embeddings of disconnected
graphs or which produce disconnected graphs.

As a simple example consider a graph con-
sisting of two disjoint cycles. See Figure 1.

f) 4
P, p

Figure 1.

The graph has 2 vertices, vy and Vs and 2
edges, one containing the points P and Py and
the other containing the points P3 and Pg-
There is only one embedding of this graph since
each vertex is of valence 2 and hence has only
one orientation. This embedding has four faces,
f1,f2,f3 and f4. Notice that the cycles
<vps (PqsPy)> and <vy, (p3,p,)> are two different
faces f2 and f4 respectively.

In order to use Euler's formuia, we must
introduce a term for the number of connected
If G1 is an embedded graph with
e edges,

components.

v vertices, f faces, and p con-
nected components, then the genus g of G]
satisfies the Euler-Poincaré Formula for graphs:
f-e+v=2(pg).
essentially when we review homology.
call this the E-P formula.
teristic is X(GI) =f - e+ v.
We could either

This formula will be proved
We simply
The Euler Charac-

view the E-P formula as a

theorem about the genus of G or as a defini-

I is a minimal cycle of GI such that
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Definition.

tion of the genus of GI‘ We shall formally do
the latter and leave the correspondence with the
topological notion to the reader.

The genus of GI is the g

satisfying the E-P formula.

2.3. Embeddings with Splittings

There are two natural operations on a
graph which we will need, splitting vertices and
identifying vertices. As an example consider the

embedded graph as shown in Figure 2.

Figure 2.

The triples (e1,x,e2) and (e3,x,e4) are
corners of the external face, say, F]. In fact
it is always the case that each cut-point of an
embedded graph lies on the same face at least
twice. A standard procedure is to partition this

graph into 2-connected components -- see Figure 3.

Figure 3.

Note that by the E-P formula the genus
Later, we may want to

We could do this
by simply constructing the embedding in Figure 2.
On the other hand, we could take the left hand
copy of K4 and place it in face Fz and then

has remained unchanged.
reidentify the two copies of x.

reidentify. There are in fact nine ways to
jdentify the two copies of vertex x which
produce planar embeddings. We make this more

precise in the following definitions and lemmas.



Definition. A graph G' and a morphism
f:G'>G is called a vertex split (or simply a
split) of the graph G if f
injective on P-V.

Thus a vertex split G' of G can be thought
of as a graph whose vertices bear the vertices of
G as labels. to G is

the vertices with

is surjective and

The passage from G'
obtained by identifying in G’
the same label.

A pair of vertice {u,v) is an identification
of f if f(u) = f(v).

We may also assume that G' has no isolated
vertices.

Note that if GI is an embedded graph than
I can be 1ifted in a canonical way to an em-
bedding I' of the vertex splitting G' of G.
On the other hand an embedding 1' of G'
induce a more than one embedding of G.

may

Definition. A pair (Gi,f) is an embedding of G
with splitting if Gi is an embedded graph and
(G*,f) is a vertex split of G.

An embedding with splitting corre-
sponds actually to a collection of embeddings of
G. For our purposes all these will turn out to
be equally good.

There are two natural ways to define the
class of embeddings of G (Gi,f).
One is global while the other is procedural.

induced by

For now we shall give only the procedural
definition.

?efinitign. Let GI be some embedded graph and
X and y two elementary corners of GI such
that x # y. We define a new embedded graph
GI/§=§ as follows:

The underlying graph, G/x=y, is just the
usual graph gotten by identifying the vertices
The embedding 1I'
except at vertex x=y where we now define it.
Now I, x, y

x and y. is given by I

and y determine a linear order

of the edges of x and respectively y say
these linear orders are e?,...,eﬁ and

e{,.;.,e{.. The order at x=y will simply be the
cyclic order <e¥,...,eﬁ, e{,...,ei.>. This
operation will be called an identification of
corners.

Using this definition we get the following

bounds on the genus of GI/§=§.
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Lemma 1. The genus of GI/i=y equals

(1) 1 + genus (GI) if x and y are corners
of different faces and x and y are
in the same component of G.

(2) Genus (GI) if x and y are corners of
the same face or x and y are in
different components of G.

Proof. The proof is a simple application of E-P
formula.

We shall say that (Gi,f) induces an
embedding I on G if GI can be gotten from
Gi. by some sequence of identifications of
corners consistent with the identifications of f.
Definition. An embedding with splitting Gi. is
an embedding of G of genus g 1if all induced
embeddings of G are of genus at most g.

The important fact about these definitions
are summarized in the following lemma.

Let G and G' be graphs with
respectively p and p' components. Let G;, be
an embedding with splitting of G and Tet GI be
Then genus

Lemma 2.

an induced embedding of G.
(G;) < genus (61.) + (v'-v) + (p'-p).

As an example of these ideas let
G = K3’3 with vertices XysXpsX3sY1sYosY3 and
edge common to pairs (Xi’yj) for 1<i, j<3.

Figure 4.

Now by making two copies of vertices N
and X3 and associating the edges with the
vertices as in Figure 4 and also cyclicly ordering
the edges as in Figure 4 we get an embedding of
K3,3 of genus 1. Note that there are two ways to
identify corners of ¥ and X3 respectively.
Thus in the sense of Edmonds' this embedding of
K3’3 represents 4 Edmonds' embeddings of K3,3.

An embedded graph Gy is quasiplanar
if no vertex appears more than once on any face.
Note that by successive vertex splittings any
embedding can be transformed into a quasiplanar



embedding. A quasiplanar embedding gotten by

splitting will sometimes be called a fully split
embedding.

From now on, unless we explicitly say other-
wise, all embeddings will be embeddings with
splitting.

3. HOMOLOGY AND BASIC SUBGRAPHS

3.1. Homology

Let L be a subgraph of G.
L is an equally connected subgraph of G

We shall say
if for
if x and y

each pair of points x,y in L
are in the component of G then
in the same component of L. Given an embedding
I of G we can in a natural way view I
embedding of L, which we will denote by Ly

The embedded graph LI is said to span GI if

L is a equally connected subgraph of G and
X(LI) = X(GI). If L; is a minimal span of G
(under the subgraph relation) then L; s called
basic.

x and y are

as an

In this section our goal is to generate
enough homology theory to exhibit basic sub-
graphs of GI and find bounds on the number of
edges and vertices of reduced basic subgraphs.

The edge space is the vector space con-

. GF(2)
Any cycle or chains can
Let
Cy» the cycle space, be the subspace generated
by the cycles of G. Then the cycle space is

Let T be a spanning

sisting of all linear combinations over
of edges of G [Be 76].
be viewed as an element of the edge space.

of dimension e - v + p.
forest of G.
an elementary cycle of G. These cycles form a
basis for C] which we shall call a spanning
forest basis and which will be denoted by ST.
Let
BI’ called the boundary space, be the subspace
of C] which is generated by the faces of GI'
The space BI
is the number of faces.

Now each edge e ¢ G - T determines

Let GI be an embedded graph of genus g.

is of dimension f - p where f

The homology group is
the quotient space Cl/BI = HI where for us, HI
is simply a vector space over GF(2) of dimension
e-v-f+2p.

To obtain Euler's formula we need only the
fact that dim(Hp) is even and set 2g = dim(Hp).
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Lemma 2.

This gives 2g = e - v - f + 2p. If ZeC] let Z
denote the coset of C]/BI containing Z.
For each embedding I

Lemma 1. of G of genus

g there exist 2g cycles {Z]""’ZZg} in the

basis S such that fil,...,zzg} is a basis
of HI'
The proof is a simple induction argument.
Let G be a graph and ST a cycle basis
of G. Let Lk be the union of k cycles, say

Z]""’Zk’ in ST plus the subspanning forest
of T which spans the k cycles in G.
Let LI be a subgraph of GI' If
Z]""’Zk represent a set of linearly independent
elements of H; of some graph G; then (Lk)I
is an embedded graph of genus 2.

This foliows from the combinatorial

definition of an embedding.

Let v, be the valence of vertex i
in Lk' v
Lemma 3. 1.§1(v1.-2) = 2(k-1)
Proof. The left hand equals 2e - 2v.

On the right side we know that dim(C]) of
Lk equals e - v + 1 but we have also constructed
Ly in such a way that dim(C]) = k. So
k=e-v+ 1. Substituting this into the right
hand side we have

2(k-1) = 2(e-v+1-1) = 2e - 2v =

) (vﬁ-Z).
j

1

N~

Lk is a reduced graph with multiple
edges and loops. When we count the distinct em-
bedding of Lk we will view Lk as having

labelled vertices and edges.

Lemma 4. The number of distinct embeddings of
Lk is v
I (v.-1)! < (2k-1)!
. i —
i=1
Proof. The equality follows by the definition of

embedding, while the inequality follows by noting
that Lk has a maximum number of embeddings when
there is but one vertex of valence 2k.
Lemma 5. The number of edges of Lk < 3(k-1).
This follows by noting that the maximum
edges occurs when all vertices have valence < 3.
In this case Lk is a cubic graph with 2{(k-1)
vertices and, therefore, it has 3{k-1) edges.



3.2. What We Learned From Homology.

We have found that given an embedded graph
GI of genus g and a spanning forest T of G
then there exist a basic subgraph ng. We re-
state this as an algorithm:

We shall introduce two procedures namely
pick and guess. The procedure pick (A) is to
arbitrarily or systematically choose some
White guess (A) is to try all
possible elements in A.

element from A.
Procedure: Generate Basic Subgraph (G,g).
(1) Pick a spanning forest T of G.
(2) Guess 2g edges from G-T.
(3) Generate ng from the 2g edges.

(4) Guess an embedding I of ng of genus g.

Now step (2) contributes a factor of

(eég) or O(ezg) to the running time. While (4)
contributes a factor of (4g-1)!. Thus the overall
contribution is a factor of 0((4g)!e29).

4, EXTENSION PROBLEMS
4.1. Extensions

By the last section we can find a basic sub-
graph of GI' In the next two sections we show
how to extend the embedding from a basic sub-
graph to the whole graph.

A partial embedding is a triple (G,LJ,f)
where G 1is a graph and (LJ,f) is an embedding
of some equally connected subgraph L' of
G. Ue will often denote this by (G,L,J). An
extension of a partial embedding (G,LJ,f) is
an embedding (Gi,f) of G such that (a) in a
connical way f' is an extension of f and
1 is an extension of J, and (b) genus
(Gi,f') < genus (LJ,f).
problem is to exhibit an extension if one
exists.

The extension

A quasiplanar extension problem is

an extension problem where LJ is quasi-
planar.

In this section we show how to "prudently"
guess from a partial imbedding (G,LJ)a "partial"
extension J' of J to some intermediary subgraoh
L' such that (G,Lj.) is extendable if and only

if mJj)iseHQMMﬂ&
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4.2. Regions.

A directed cycle E is the boundary of a
region of GI if there exist a spanning sub-
graph L of GI such that E 1is a face of LI'
So if E about the
corners and sides of E. For an embedded graph

is a region then we may talk

the corners of a given embedding are partially
ordered under inclusion and so we may talk about
one corner being contained in another. Given two
corners  x and § of E they partition the
cycie C into two chains §E§ and §E§. We shall
use the notation (ggi) and [igij to denote the
open respectively the closed chain from X to &
If a and b are two sides of E then [aEb]
will denote the closed chain from a to b
The interior of E is

not
including a or b.
simply the subgraph generated by all points of
G-E embedded "in" E.
of the corners and sides of E we can view E

By making multiple copies

plus its interior as an embedded planar graph EI'
We can partially order regions of GI under

containment. And we obtain the convenient fact

that a region E is minimal iff E 1is a face
of GI' A vertex of edge is said to be internal
if it appears more than once on E. We shall say
a face F spans two corners x and y of E

if F has two corners one contained in X and
one contaiqed in A&. A chain Z =E, is faid to
separate x and y if it is attached to (xEy) and
to (}E%).

Lemma 1. If E 1{is a region of GI with corners

x and § then one and only one of the following
conditions are satisfied:
(1) there exist a face which spans ; and &.
(2) There exist a chain which separates X
and &.
Proof. We first show that (1) and (2) are
mutually exclusive. Suppose (1) and (2) are
true. Since there exists a face F from X to
§ we can add a chain C from X to § in F
without affecting the genus of GI' We can also

discard all other elements from the interior of

E except the chain d from condition (2). Now
E plus ¢ and d has but one face which
contradicts E-P formula.

Suppose that condition (1) is false. Llet



F]""’FK be the set of faces generated from
corners contained in x. Now the cycle, in the
cycle space C1, C = .§ Fi contains the corner
X, is contained in E,Iz]and has no corner con-
tained in ; since none of the Fi's do. So
C-F must contain a chain satisfying (2).
Definition. A pair of corners (;,;') of E
from some common vertex x is called a cut-
point of E if there is a face which spans
these two corners. If a ds an internal edge
of E and x 1is a point of a, then we say x
is a cut-point if there is a face which spans the
two corners of x 1involving a. MWe now prove
the general form of the last lTemma.
Theorem 2. If (a,aR) is an internal pair of
region E then one and only one of the following
conditions is satisfied:
(1) E has a cut-point on (a,aR).
(2) There exist two vertex disjoint chains
in E from distinct corners of [aEaR] to
distinct corners of [aREa] .
Proof. If x 1is a cut-point with corners x and

x' then by the previous lemma there exist no
chains from (;EQ') to (;'E;) distinct from x

so in particular there cannot exist 2 vertex dis-
joint chains from aEaR to aREa.

If there do not exist 2 vertex disjoint
chains from [aEaR] to [aREa] then there must be
a point x which separates these two cycles by
Menger's Theorem. Now x must be on a since
a connects the cycles. Let x and x' be the
two corners of x common to a. Applying the
last Temma to x and x' either there is a face
spanning X and X' in which case we are done,
or there is a chain from (;Ri‘) to (;'Ri).

The Tater implies that in fact x is not a
separating vertex.

5. REMOVING INTERNAL EDGES

The last theorem suggest an algorithm for
"removing" internal edge e from region. E with
boundary <e,x,(a),x,eR,y,(b),y>. Let x and §
be the corners of [a] and [b] respectively
containing e. We present this in procedure
form:

Procedure. Remove Internal Edges (G,L,I).

(1) If LI has no internal edges output
(G,L,I). Pick an internal edge e of
some face E of L;. Let <ex(a)xeRy(b)y>
be the boundary of E.

(2) Guess 4 edges (e],ez,e3,e4,s G-L+e)
where e, is attached to 8

e, is attached to y
is attached to

a corner of [a]
distinct from x.
a

€3
ey 1s attached to a corner of [b]
distinct from y.

(3) Guess a corner of [a] and [b] in which
to embed eq and e,

(4) Find in G-L+e using an augmenting path
algorithm, find one of the following:

(a) two vertex disjoint chains from
{e],e3} to {ez,e4}.

(b) Left- and right-most cut points
P],P2 from {el,e3} to {ez,e4}.

(5) If 4(a) is true then remove e from L
and add the two chains to L and embed
them (in the unique way) in E. Go to 8.)

Let L' be the subgraph of G-L
consisting of all pieces with only attach-
ments in [P]ePz] and the chain [P]ePz].
Let S be the subgraph of L' consisting
of those pieces whose attachments are
exactly the set {P],Pz}.

(6) If L' is planar then L<c1(L-L') else if
L'-S is planar then L<cl{L-L$S) else
return with answer "no".

(7) Replace (xeP]) and (Pzey) with the two
disjoint chains from (e1,e3) and (ez,e4)
to P1 and P2 respectively. Embed
these new chains.

(8) Call Remove Internal Edge (G,L,I).

We can analyze the cost of Remove Internal

Edge as follows:

Step (2) will add a factor of O(e4).

While Step (3) will add a factor of O(ez). Now

step (4) costs 0{e) times the number of guesses

so far in the algorithm. But this is bounded

by 0(e) times all guesses. So the procedure

will add at most a factor of 0(e7) steps.

By using this trick as it is we can

"remove"” all the internal edges from L after

one less than the number of internal edges of L.



By adding one more idea we can improve this
number of applications by a factor of 2. 1In

this paper we shall only analyze what happens
without any new ideas. Let Int(F) be the number
of internal edges counted with their multiplicity
Let

= $(Int(F)-1) where the sum is over all

(actually equal to 2) on some face F.
(Int(LI)
faces of LI that contain internal edges.
Lemma 1. Given an extension problem (G,L,I)

then after Int(LI) recursive calls of Remove
Internal Edge to LI the new embedded graph LI
will be free of internal edges.

Proof. Since Internal edges appear in pairs
Int(F) is even and so if Int(LI) = 0 then L,

has no internal edges. Suppose that Int(LI) >0
and e is an internal edge of some face F of
LI‘ If Remove Internal Edge "cuts" e then after
applying the procedure no new internal edge will
be introduced and e will no Tonger be internal.
If Remove Internal Edge replaces e with two
chains then these chains may partition some
internal edge f into two internal edges when
they divide E into two regions E' and E".

So Int(E') + Int(E") < Int(E). But this implies
that Int(LI) z_Int(Li) + 1 where Li is LI after
applying the procedure.

6. PARTITIONING INTERNAL VERTICES

In the last section we discuss how to remove
internal edges from L. Here we describe a
procedure for "removing" internal vertices. A
spanning chain Z of a region E is said to
separate ;1""’;KAif theAattachments of Z
are distinct from XyseeeaXy andA z sepérates
at least two of the corners of ISERRRFS 08

We first generalize Lemma 1 Section 4.
Lemma 1. If F 1is a region of an embedded
graph GI and ;1""’;k’ k > 2 are distinct
corners of F then one of the following
conditions are satisfied.

(1) There exists a face which spans two
corners of ;1""’;k'

(2) There exists a chain which separates

Koeeeaky-
The proof is by induction on k. The
case k = 2 was proved in the previous section.

So suppose that the lemma is true for all k'<k.

Proof.
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We may assume that the corners x aenisX appear
in this order on the boundary of F. Now by the
previous lemma applied to i] and ;2 either
they are spanned by a face in which case the lemma
is proved or else there exists a chain which

separates X and X5- So assume that Z is a

chain that separates ;1 and 22 and let e
and e, be the first and final edggs of Z. So
e is attached to a corner in £x1Fx2) and e,

is attached to a corner in (szx]). Now e; can-
Tot be em?edded in the corners x3,...,§k since
X1 ‘and X, are “consecutive". If e, is also
not embedded in the corners then again the lemma
is proved. So we muit assume that e, is
embedded in corner x; for some 3 <i < K. The
Z divides the Region F into 2 subregions,
Let

F2 be the region containing Xo - Now F2 con-

chain
one containing Xy and one containing Xo-

tains the corners X501 plus the new

X
93
corner defined by e, and X, So by induction we

k=1-1

If condition (1) holds again the lemma

can apply the Temma to F2 with these
corners.
is proved so we may assume that there exists a

If Z' attaches only to the
boundary of F then Z'

separating chain Z°'.
satisfies the lemma. So
again we may assume that Z' has an attachment
Using Z' and part of Z
This

on F and one on Z.
we get a chain satisfying condition (2).

proves the lemma.

Suppose that 21,...
distinct corners of some face F of LI

’ik is a set of
from
an extension problem (G,LI). Our goal is to
successively separate F with either chains or
cuts until the corners are partitioned.
The following procedure produces a
quasiplanar embedding from LI'
Procedure: Partition (G,L,I).
(1) If L; s quasiplanar, output (G,L,1).
(2) Pick a face of F with an internal
vertex, say Xx.



(3) Let i]""’ik be the corners of F

common to x.

Guess 4.1 or 4.2 and execute it.

(4.1) Guess a chain Z which separates

;1""’;k and add Z and its

embedding to EI'A

(4.2) Guess a pair (Xi’xj) which is

spanned by some face F and

X Let
L be the resulting graph.

(5) Partition (G,L,I).

By our Temmas the procedure Partition is

cut L at X; and Xj'

correct. By the next Temma we will achieve an
upper bound on the number of recursive calls the

procedure makes for a given face. Let

<XpsenesXp> be the cyclic ordering of the internal
corners of F induced by F. Consider the
cyclic sequence of vertices KqyeesXp>e Let ¢
be the number of distinct vertices. For c > 2

Tet k be the number of i's such that
For ¢ = 0,1 let k = 2. We
k the number of alternations of

X; # Xi41 modulo n.
shall call
X Using n, c and k we define the
following characteristic.
Let g(F) =
cand k are as above for the internal corners
x> of F. Now let §jGI) = 28(F) where
the sum is over the faces of GI'

Using B we can now bound the number of
recursive calls of Partition:

<X-l,...

Definition. n-c+ %»— 1 where n,

<X-I,...

Lemma 2. The procedure Partition will add at

most B(L]) chains or cuts to L.
Proof. The proof follows arguments similar to
the proceeding lemma. Namely, we first note
that s(HI) = 0 implies that HI is quasi-
planar. Second, we show that the character-
istic is strictly decreasing with each
application of Partition. We leave the details
to either the diligent reader or the final

paper.
7. ANALYSIS OF REDUCTION TO QUASIPLANARITY

In order to obtain a quasiplanar extension
problem from (G,L,I) we shall first apply Remove
Internal Edges and then we will apply Partition.
To analyze the running time it is useful to know
what the effect Remove Internal Edges has on
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B(Ly):
Lemma 1. If (G',L',I') is the output of one
recursive call of Remove Internal Edge (G,L,I)
then B(L'I.) < B(LI) + 1.

Proof. The proof follows arguments similar to
the one used in the preceeding lemmas.

We are now in a position to analyze the
cost of reducing our problem to a quasiplanar
problem.

We analyze this procedure on input (G,L,I)
where L 1is a basic subgraph. By our previous
remarks Remove Internal Edge will contribute a
factor of at most (O(eé))Int L), It can be
shown that Partition will contribute a factor
of 0(e4) for each recursive call. Now Partition
will be called at most s(LI) + Int(LI).
Ly
and therefore Int(LI) = 2e - 1 where e 1is the
number of edges of LI' On the other hand
B(LI) =g(F) =n-c¢c+ %—— 1. We can write n, c,
and k in terms of e and v

Since
is a basic subgraph it has but one face F

as follows.
n=2=2, Cc=yv and k < 2e.
So B(LI) <3 -v-1. By the E-P formula for
LI we have that 2g = e - v + 1.
B(LI) + Int(LI) <4e - 3+ 29. By lemma 5
Section 3 we know that e < 3(2g - 1). Putting
this altogether in a theorem:
Theorem 2. With only a contributing of a factor
of at most O(e]889) to the running time we can
transform a basic extension problem to a
collection of quasiplanar extension problem
(G,L,1) where L has at most 56g edges.

The 569 edges comes from noting that
Remove Internal Edge introduces at most 2 new
edges, while Partition introduces at most one new

edge per recursive call.

8. THE QUASIPLANAR EXTEMSIOM PROBLEM

In this section we give an algorithm which
solves the quasiplanar extension problem (G,L,I)
in time polynomial in eq for fixed e . Note
that the quasiplanar extension problem is MP-
complete [Ga ta, Re tall if viewed only as a
function of eg- Its complexity is open, for

fixed ¢, when viewed only as a function of eg-

Definition. Two embeddings C; and C;, of a

piece C in 'E are similar if the distinct



attachment sides and corners of CI and C

are the same. :
The embeddingsof C in LI

similar embeddings of C 1in LI'
Suppose that (G,L,I) is a quasiplanar ex-

has no internal

are the dis-

tension problem. Since LI
vertices every piece has at most one embedding
in each face. It is not hard to see, using
standard 1inear time planarity algorithms, that
in the quasiplanar case we can determine in
O(e+g) time the embedding of a piece in L-

If some piece C has 3 or more embeddings
then C must be embeddable in 3 or more faces.
Since points of H are of valence 2 they can
appear on at most two faces. By this observation
the attachments of C must be only vertices. So
we can bound the number of pieces of G-H which
can be embedded in more than three ways by
bounding the number of components which have
attachments consisting only of vertices. There
is one degenerate case. This occurs when we have
an unbounded number of components from some
vertex x to some vertex y. To get around this
degenerate case we will define a notation of
2 pieces being similar. This notation is used in
[Re ta2].
Definitjon. Two pieces C and C' of an
extension problem (G,L,I) are said to be
similar if the distinct attachment corners and
sides of C and C' are the same.

Note that, if C and C'
attachments to distinct corners of sides then
they must be dissimilar. On the other hand if
C and C' are attached to at most two distinct

vertices then any embedding of C

have 3 or more

is also

So, the
number of similar classes is essentially the
number of pieces which can be embedded in 3

simultaneously an "embedding" of C'.

or more ways in the quasiplanar case.

Lemma 1. The number of dissimilar pieces of
(G,L,I) whose attachments are only vertices is
at most 6e - 5f where e,f are the number of
edges and faces of LI'

Proof. We count those with 3 or more dissimilar
attachments separately from those with only two.
In the case of 3 or more dissimilar attachments

we shall use the following characteristic. If
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will add a factor of at most gO(g)

L < K <G then a(K;) = EVL(F§ - 2 where the sum

is over faces of K; and VL(F) is the number of
vertices of L on F. If K is
collection of pieces of G-L and a(KI) = 0 then

H plus a

K must contain all the peices which have 3 or
more dissimilar attachments to L. The proof is
by simply noting that a(KI) strictly decreases
by adding a piece of G-L to K. Note that
a(LI) = 2e - 2f.

Consider the case of pieces with 2
dissimilar attachments. There are those pieces
which attach to consecutive corners of a face
and those that do not. For those of the first
type there must be at most 2e. For those of the
second type we use the characteristic
a'(KI) = Z(VL(F) - 3) and a proof similar to the
first case. Note that a'(LI) = 2e - 3f. Thus
our bound (2e - 2f) + 2e + (2e - 3f) = 6e - 5f
is achieved.

Now each piece can be embedded in at most
e ways. So we get that the number of ways of
embedding the pieces of G-L which can be embedded
in 3 or more ways is bounded by O(efeL).

We can sum up what we have shown in this
section by saying that the following procedure
steps to the
embedding algorithm and reduce the quasiplanar
extension problem to an extension problem where
the pieces have at most two embeddings:
Procedure. Quasiplanar (G,L,I)

(1) -Return  if (G,L,I) is a quasiplanar
extension problem.

(2) Determine the pieces C]""’CK of G-H
which can be embedded in more than three
ways. ‘

(3) Guess for each Cian embeddable face F
of L. Embed Ci in F.

(4) Output (G,LlJC]...lJCK,I).
9. 2-CNF AND SIMPLE EXTENSIONS

A simple extension problem is a quasi~
planar extension problem (G,L,I) where each piece
has at most two embeddings in LI' We prove the
following simple fact:

Theorem 1. Simple extension problems are poly-



nomial time reducible to 2-CNF.

Proof. Let (G,L,I) be a simple extension problem

and C],...,CK be the pieces of G-L. We shall

associate a propositional variable X; with each

piece Ci' The assignment of true to X; will

correspond to one embedding of Ci while false

will correspond to the other. One simply needs

to notice that the confliction of two pieces on

a given face is a disjunction of two literal.
Note that we can find an instantiation of a

2-CNF formula in linear time. The formulas are of

size O(kz) where k s the number of pieces.

We write this as a procedure:

2-CNF (G,L,I)

(1) Determine the embedding of the pieces.

(2) Construct the 2-CNF formula ¢

(3) If X 1is an instantiation of

(4) Use X to extend LI to G.

Procedure.

10.  SUMMARY

Putting all the procedures together we can
obtain our genus algorithm.
Procedure. Embedding (G,g)
(1) Generate Basic Subgraph (G.,g), say Ly
(2) Remove Internal Edges (G,L,I).
(3) Partition (G,L,I).
(4) Quasiplanar (G,L,I).
(5) 2-CNF (G,t,I).

We can now analyze the running time of
Embedding. We Tist the multiplicative factors
for each of the steps (1) to (4):

(1) 0((eg).e?®)
(2) and (3) O(e'
(4) 0((569)°%9)

Note that each of these terms is bounded
by (g-v)O(g). We state this as a theorem:
Theorem 1. There exists an algorithm to
determine the genus of graph which runs in
(g-v)O(g) time.

By running Embedding on inputs for

889)

successively larger g we can determine the
genus of a graph.
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