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I .  INTRODUCTION 

In th is  paper we present an algorithm which 

on input a graph G and a pos i t ive integer g 

f inds an embedding of G on a surface on genius 

g, i f  such an embedding ex is ts .  This algorithm 

runs in (v) Otg)" " steps where v is the number o f  

vert ices of G. 

As many other authors (Hefter, Edmonds) have 

noted f ind ing  a topological embedding can be re- 

duced to a purely combinatorial problem. Namely, 

a topological embedding of  G onto some 2- 

dimensional or ientable surface determines a cyc l i c  

ordering of  the edges at each vertex and any cyc- 

l i c  ordering of the edges at every vertex deter- 

mines a class of embeddings of  G. We sha l l ,  in 

the next section make the combinatorial notat ion 

more precise but leave the correspondence between 

topological and combinatorial embeddings to the 

reader. 

We believe that removing the nondiscrete 

topological de f in i t i ons  ( i . e . ,  the notation or 

d i f f e r e n t i a b i l i t y ,  2-dimensional surface, e tc . )  

from our formal de f in i t i ons  has a mult i tude of  

advantages. F i rs t  our goal is to produce an 

algorithm which operates on discrete machines and 

thus at some point we must remove these notions 

anyway. Secondly, demonstrations on proofs in the 

amalgam of graph theory and topology have been 

r iddled with flaws (e.g. ,  4-color  theorem, 

p lanar i ty  algorithms, Jordan curve theorem), and 

which, no doubt, th is  paper also suf fers.  The 

hope is that a combinatorial proof may transcend 

these problems. Third,  our main goal is not j us t  

to draw graphs on " inner tubes" but to understand 

how graph theory, topology and computational com- 

p lex i t y  in terac t .  We have kept no de f in i t i ons  

sacred and we have redefined the notion of a 

graph. We have even rewr i t ten Euler 's formula. 

2. NOTATIONS AND DEFINITIONS 

2.1.. Graphs 

I t  w i l l  be convenient, for  our purposes, 

to adopt a somewhat unorthodox de f i n i t i on  of 

graphs. 

The edges of  a graph w i l l  be f i n i t e  sets 

of  points.  An edge must contain at least one 

point in addi t ion to i t s  extremit ies.  The ex- 

t remi t ies of  an edge are cal led vert ices.  In th is  

way our de f i n i t i on  resembles c losely that of a 

topological graph (c f  Ma [67]) ,  except that our 

tThis paper is the resu l t  of two d i f fe ren t  papers submitted to the Conferences: one by the f i r s t  two 
authors and the other one by the th i rd .  The two papers being quite d i f fe ren t  in t he i r  approach, i t  
was d i f f i c u l t ,  in the short time avai lab le ,  to produce a t r u l y  j o i n t  paper. As a resu l t  th is  paper 
mostly re f lec ts  the approach of  the f i r s t  paper. The deta i ls  o f  both these approaches w i l l  appear 
elsewhere. 
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edges are not open segments but ordered f i n i t e  sets 

of  points. Two points w i l l  be cal led related i f  

they are neighbors on the same edge. Formally, we 

have the fo l lowing 

Definition. A graph G is a t r ip le  (P,V,R) where 

( I)  P is a f i n i t e  set whose elements are 

called points; 

(2) V is a subset of P whose elements 

are called vertices; 

(3) R is an antiref lexive and symmetric 

relation on P such that 

(3.1) no two vertices are related; 

(3.2) points "in P-V are related to at 

most two other points. 

Let R' be the restr ict ion of R to P-V. 

The reflexive and transi t ive closure of R' is an 

equivalence relation on P-V. Its equivalence 

classes w i l l  be called the (open) edges of G. 

From 3.2) i t  follows that one can l inear ly order 

(in exactly two dif ferent ways) the edges of G. 

There are at most two vertices related to the 

points of an edge e called the extremities of 

e. The set consisting of an edge e together 

with i ts extremities and wi l l  be denoted by 

w i l l  be called a closed edge of G and wi l l  be 

denoted by e. An edge e w i l l  be said to con- 

nect i ts extremities or to be related to them. 

The (open) edge e with extremities u and 

v can thus receive two orientations which w i l l  

be denoted by (uv) and (vu). Likewise, the 

orientations of the closed edges w i l l  be [uv] 

and [vu] respectively. 

The pair (P,R) defines a simple (or sim- 

p l i c ia l )  graph. A graph G with the property 

that every point p~P-V is related to exactly 

two other points w i l l  be called closed. A 

graph that is not closed w i l l  be called open. 

A graph G ' : (P ' ,V ' ,R ' )  is a subgraph of  G 

i f  P[P,V'CV and R' is the res t r i c t i on  of  R 

to P' 

A morphism (or simply a map) from G to 

G' (wr i t ten f:G+G') is defined by giving a map 

f:P÷P' such that (a) f(v)~V', (b) f(P-V)CP'-V' 

and that (c) for any two points p,q~P, pRq im- 

plies f(p)Rf(q). 

A morphism is surjective i f  fp is surjective. 

Let G' be a subgraph of G. The comple- 

ment of  G' in G, G-G' is the graph G"=(P",V",R") 

where p'Lp_p', V"=VA(P-P') and R" is the re- 

s t r i c t i on  of R to P". The complement of a closed 

subgraph is open. The smallest closed subgraph 

of G containing G' denoted c l (G')  is cal led 

the closure of C' in G. I f  G is closed, 

then cl (G') is closed. 

The re f l ec t i ve  and t rans i t i ve  closure of 

R is an equivalence re la t ion  whose equivalence 

classes are cal led the components of G. I f  G' 

is a subgraph of a graph G, the components of 

G-G' are cal led oieces. The attachments of a 

piece C of  G-G'arethe points of G' related to some 

point of  C An attachment is also a point of 

cl (C)-C. 

A closed graph G w i l l  be cal led reduced 

i f  no t r i p l e  (V',  P,R) with V'~ V is a graph. 

A chain C of  a graph G is an a l ternat ing 

sequence of  vert ices and edges any two consecu- 

t i ve  elements of  which are related. I f  the f i r s t  

and the las t  elements of the sequence are 

vert ices,  the chain is cal led closed. The f i r s t  

and las t  vertex of a closed chain are i t s  ex- 

t remi t ies.  A closed chain is a closed subgraph 

of G. For any chain C, the closure of C w i l l  be 

denoted by [C]. The open part (C) of a chain 

C is the chain obtained by removing the ex- 

t remit ies of  [C]. A closed chain with the same 

extremit ies is a cycle. 

2.2. Embedding of graphs. 

An embeddin~ I of  a graph G is simply 

a cyc l ic  o r ien ta t ion  of the edges associated 

with each vertex of G. 

A pair  (G,I) consist ing of a graph and an 

embedding w i l l  be cal led an embedded graph, 

often denoted G I .  

Each edge e of  G has in a natural way 

two sides. Formally, i f  x and y are the two 

vert ices to an edge e, then the t r i p l es  (x,e,y)  

and (y ,e ,x , )  are the two sides of e. I f  e and 

e' are edges of x, then the t r i p l e  (e ,x ,e ' )  is 

a corner of x, sometimes denoted x. 
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I f  G I is an embedded graph, e and e' 

are two consecutive edges of x wi th respect to 

I then ( e , x , e ' )  is an elementary corner o f  x. 

A face of  G I is a minimal cycle of  G I such that  

consecutive t r i p l e s  are e i t he r  sides or  

elementary corners. We shal l  l e t  <x I ,  . . . .  Xn> 

denote the cyc l i c  order of x I . . . . .  x n induced 

by the l i n e a r  order (x I . . . . .  Xn). Thus, the 

faces of  an embedded graph are simply cycles. 

We shal l  l e t  f denote the number of  faces of  an 

embedded graph. 

Note that  th is  d e f i n i t i o n  only agrees wi th 

the usual d e f i n i t i o n  when the embeded graph G I 

is a connected graph. I t  is fundamental to our 

approach to consider embeddings o f  disconnected 

graphs or which produce disconnected graphs. 

As a simple example consider a graph con- 

s i s t i ng  o f  two d i s j o i n t  cycles. See Figure I .  
f2 f4 

v. l v 2 

Figure I .  

The graph has 2 ver t i ces ,  v I and v 2, and 2 

edges, one conta in ing the points Pl and P2 and 

the other  conta in ing the points P3 and P4" 

There is only one embedding o f  th is  graph since 

each ver tex is o f  valence 2 and hence has only 

one o r i e n t a t i o n .  This embedding has four  faces, 

f l , f 2 , f 3  and f4" Notice that  the cycles 

<v I ,  (p l ,P2)> and <v 2, (p3,P4)> are two d i f f e r e n t  

faces f2 and f4 respec t i ve ly .  

In order to use Euler 's  formula,  we must 

introduce a term fo r  the number of  connected 

components. I f  G 1 is an embedded graph wi th 

v ver t i ces ,  e edges, f faces, and p con- 

nected components, then the genus g o f  G 1 

s a t i s f i e s  the Euler-Poincar~ Formula fo r  9raphs: 

f - e + v = 2(p-g) .  This formula w i l l  be proved 

essen t i a l l y  when we review homology. We simply 

ca l l  th is  the E-P formula, The Euler Charac- 

t e r i s t i c  is x(G I )  = f - e + v. 

We could e i t he r  view the E-P formula as a 

theorem about the genus o f  GI or  as a d e f i n i -  

t ion  o f  the genus o f  G I .  We shal l  f o rma l l y  do 

the l a t t e r  and leave the correspondence wi th the 

topo log ica l  not ion to the reader. 

D e f i n i t i o n .  The genus o f  G I is the g 

sa t i s f y i ng  the E-P formula. 

2.3. Embeddings wi th S p l i t t i n g s  

There are two natural  operat ions on a 

graph which we w i l l  need, s p l i t t i n g  ver t ices and 

i d e n t i f y i n g  ver t i ces .  As an example consider the 

embedded graph as shown in Figure 2. 

Figure 2. 

The tr ip les (el,x,e 2) and (e3,x,e 4) are 

corners of the external face, say, F I .  In fact 

i t  is always the case that each cut-point of an 

embedded graph l ies on the same face at least 

twice. A standard procedure is to part i t ion this 

graph into 2-connected components -- see Figure 3. 

Figure 3. 

Note that  by the E-P formula the genus 

has remained unchanged. Later ,  we may want to 

r e i d e n t i f y  the two copies o f  x. We could do th is  

by simply const ruct ing the embedding in Figure 2. 

On the o ther  hand, we could take the l e f t  hand 

copy o f  K 4 and place i t  in face F 2 and then 

r e i d e n t i f y .  There are in fac t  nine ways to 

i d e n t i f y  the two copies o f  ver tex x which 

produce planar embeddings. We make th is  more 

precise in the f o l l ow ing  d e f i n i t i o n s  and lemmas. 
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Definition. A graph G' and a morphism 

f:G'-~G is called a vertex sp l i t  (or simply a 

spl i t )  of the graph G i f  f is surjective and 

injective on P-V. 

Thus a vertex sp l i t  G' of G can be thought 

of as a graph whose vertices bear the vertices of 

G as labels. The passage from G' to G is 

obtained by identifying in G' the vertices with 

the same label. 

A pair of vertice (u,v) is an identi f icat ion 

of f i f  f(u) = f(v). 

We may also assume that G' has no isolated 

vertices. 

Note that i f  G I is an embedded graph than 

I can be l i f t ed  in a canonical way to an em- 

bedding I '  of the vertex spl i t t ing G' of G. 

On the other hand an embedding I '  of G' may 

induce a more than one embedding of G. 

Definition. A pair (G~,f) is an embedding of G 

with spl i t t ing i f  G~ is an embedded graph and 

(G',f) is a vertex sp l i t  of G. 

An embedding with spl i t t ing corre- 

sponds actually to a collection of embeddings of 

G. For our purposes al l  these wi l l  turn out to 

be equally good. 

There are two natural ways to define the 

class of embeddings of G induced by (G~,f). 

One is global while the other is procedural. 

For now we shall give only the procedural 

definit ion. 

Definition. Let G I be some embedded graph and 

x and y two elementary corners of G I such 

that x P y. We define a new embedded graph 

Gi/x= ~ as fo l lows:  

The underlying graph, G/x=y, is j us t  the 

usual graph gotten by iden t i f y ing  the vert ices 

x and y. The embedding I '  is given by I 

except at vertex x=y where we now define i t .  

Now I ,  x, and y determine a l i nea r  order 

of the edges of x and respect ively y say 
x e x these l i nea r  orders are e I . . . . .  k and 

e~,... ,e~,. The order at x=y wi l l  simply be the 
x x 

cyclic order <e I . . . . .  e k, e~ . . . . .  e~,>. This 

operation wi l l  be called an identi f icat ion of 

corners. 

Using this definit ion we get the following 

bounds on the genus of  Gl/X=V. 

Lemma I .  The genus of GI/~= # equals 

( I )  1 + genus (G I)  i f  x and y are corners 
^ 

of d i f f e ren t  faces and x and y are 

in the same component of G. 

(2) Genus (G I)  i f  x and y are corners of 

the same face or x and y are in 

d i f f e ren t  components of G. 

Proof. The proof is a simple appl icat ion of E-P 

formula. 

We shal l  say that  (G{, f )  induces an 

embedding I on G i f  G I can be gotten from 

G~, by some sequence of  i den t i f i ca t i ons  of 

corners consistent with the i den t i f i ca t i ons  of f .  

De f in i t i on .  An embedding with s p l i t t i n g  G~, is 

an embedding of  G of genus g i f  a l l  induced 

embeddings of G are of genus at most g. 

The important fact  about these de f in i t i ons  

are summarized in the fo l lowing lemma. 

Lemma 2. Let G and G' be graphs with 

respect ively p and p' components. Let G{, be 

an embedding with s p l i t t i n g  of G and l e t  G I be 

an induced embedding of G. Then genus 

(Gi) ~ genus (G~,) + (v ' -v )  + (p ' -p ) .  

As an example of  these ideas l e t  

G = K3, 3 with vert ices Xl ,X2,x3,Yl ,Y2,y 3 and 
edge common to pairs ( x i ,Y j )  for  l ~ i ,  j~3. 

Yl x2 Y3 

NOW by making two copies of ver t ices Yl 

and x 3 and associat ing the edges with the 

vert ices as in Figure 4 and also c y c l i c l y  ordering 

the edges as in Figure 4 we get an embedding of 

K3, 3 of genus I .  Note that  there are two ways to 

i den t i f y  corners of Yl and x 3 respect ively.  

Thus in the sense of  Edmonds' th is  embedding of 

K3, 3 represents 4 Edmonds' embeddings of  K3, 3. 

An embedded graph G I is quasiplanar 

i f  no vertex appears more than once on any face. 

Note that  by successive vertex s p l i t t i n g s  any 

embedding can be transformed in to  a quasiplanar 
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embedding. A quasiplanar embedding gotten by 

spl i t t ing wi l l  sometimes be called a fu l ly  sp l i t  

embgdding. 

From now on, unless we expl ic i t ly  say other- 

wise, al l  embeddings wi l l  be embeddings with 

spl i t t ing. 

3. HOMOLOGY AND BASIC SUBGRAPHS 

3.1. Homology 

Let L be a subgraph of G. We shall say 

L is an equall X coppected s ub~raph of G i f  for 

each pair of points x,y in L i f  x and y 

are in the component of G then x and y are 

in the same component of L. Given an embedding 

I of G we can in a natural way view I as an 

embedding of L, which we wi l l  denote by L I- 

The embedded graph L I is said to span G I i f  

L is a equally connected subgraph of G and 

x(L I) = x(Gi). I f  L I is a minimal span of G I 

(under the subgraph relation) then L I is called 

basic. 

In this section our goal is to generate 

enough homology theory to exhibit basic sub- 

graphs of G I and find bounds on the number of 

edges and vertices of reduced basic subgraphs. 

The edge space is the vector space con- 

sisting of al l  l inear combinations ove r  GF(2) 

of edges of G [Be 76]. Any cycle or chains can 

be viewed as an element of the edge space. Let 

~ l '  the cycle space, be the subspace generated 

by the cycles of G. Then the cycle space is 

of dimension e - v + p. Let T be a spanning 

forest of G. Now each edge e c G - T determines 

an elementary cycle of G. These cycles form a 

basis for C l which we shall call a spanning 

forest basis and which wi l l  be denoted by S T . 

Let G I be an embedded graph of genus g. Let 

B I ,  called the boundary space, be the subspace 

of C l which is generated by the faces of G I- 

The space B I is of dimension f - p where f 

is the number o f  faces. The hgmology group is 

the quot ien t  space Ci/B I : H I where fo r  us, H I 

is simply a vector  space over GF(2) o f  dimension 

e - v - f + 2p. 

To obta in  Euler 's  formula we need only the 

fac t  that  dim(H I)  is even and set 2g = dim(Hl) .  

This gives 2g = e - v - f + 2p. I f  Z~C 1 let  

denote the coset of Cl/B I containing Z. 

Lemma I.  For each embedding I of G of genus 

g there exist 2g cycles {Z l . . . . .  Z2g} in the 

basis S T such that ~ l  . . . . .  Z2g } is a basis 

of  H I . 

The proof  is a simple induct ion argument. 

Let G be a graph and S T a cycle basis 

o f  G. Let L k be the union o f  k cycles,  say 

Z 1 . . . . .  Z k, in S T plus the subspanning fo res t  

o f  T which spans the k cycles in G. 

Lemma 2. Let L I be a subgraph o f  G I .  I f  

Z 1 . . . . .  Z k represent a set o f  l i n e a r l y  independent 

elements o f  H I o f  some graph G I then (Lk) I 

is an embedded graph o f  genus 2. 

This fo l lows from the combinator ia l  

d e f i n i t i o n  o f  an embedding. 

Let v i be the valence of ver tex i 

in L k. v 

Lemma 3. i ~ l ( V i - 2 )  = 2 (k - l )  

Proof. The l e f t  hand equals 2e - 2v. 

On the r i gh t  side we know that  dim(C I )  o f  

L k equals e - v + 1 but we have also constructed 

L k in such a way that  dim(C I )  = k. So 

k = e - v + I .  Subs t i tu t ing  th is  in to  the r i g h t  

hand side we have 
V 

2 (k - l )  = 2 ( e - v + l - l )  : 2e - 2v : E ( v i - 2 ) .  
i= l  

L k is a reduced graph wi th mu l t i p l e  

edges and loops. When we count the d i s t i n c t  em- 

bedding o f  L k we w i l l  view L k as having 

l abe l l ed  ver t i ces  and edges. 

Lemma 4. The number of  d i s t i n c t  embeddings o f  

L k is v 

( v i - l ) !  ~ (2k - l ) !  
i= l  

Proof. The equa l i t y  fo l lows by the d e f i n i t i o n  o f  

embedding, whi le  the i nequa l i t y  fo l lows by not ing 

that  L k has a maximum number o f  embeddings when 

there is but one ver tex o f  valence 2k. 

Lemma 5. The number of  edges o f  L k S 3 ( k - l ) .  

This fo l lows by not ing that  the maximum 

edges occurs when a l l  ver t i ces  have valence S 3. 

In th is  case L k is a cubic graph wi th 2 (k - l )  

ver t i ces  and, the re fo re ,  i t  has 3 (k - l )  edges. 
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3.2, What We Learned From Homology. 4.2. Regions. 

We have found that given an embedded graph 

G I of genus g and a .(;panning forest T of G 

then there exist a basic subgraph L2g. We re- 

state this as an algorithm: 

We shall introduce two procedures namely 

pick_ and 9uess. The procedure pick (A) is to 

a rb i t ra r i l y  or systematically choose some 

element from A. While guess (A) is to t ry  al l  

possible elements in A. 

Procedure: Generate Basic Subgraph (G,g). 

(1) Pick a spanning forest T of G. 

(2) Guess 2g edges from G-T. 

(3) Generate L2g from the 2g edges. 

(4) Guess an embedding I of L2g of genus g. 

Now step (2) contributes a factor of 
e=v (2g) or O(e 2g) to the running time. While (4) 

contributes a factor of (4g- l ) ! .  Thus the overall 

contribution is a factor of O((4g)!e2g). 

4. EXTENSION PROBLEMS 

4.1. Extensions 

By the las t  section we can f ind a basic sub- 

graph of G I .  In  the next two sections we show 

how to extend the embedding from a basic sub- 

graph to the whole graph. 

A par t ia l  embedding is a t r i p l e  (G,Lj , f )  

where G is a graph and (L j , f )  is an embedding 

of some equally connected subgraph L' of 

G. We w i l l  often denote this by (G,L,J). An 

extension of a par t ia l  embedding (G,Lj , f )  is 

an embedding (G~,f) of G such that (a) in a 

connical way f '  is an extension of f and 

I is an extension of J, and (b) genus 

(G~,f ' )  ~ genus ( L j , f ) .  The extension 

problem is to exh ib i t  an extension i f  one 

exists.  A quasiplanar extension problem is 

an extension problem where Lj is quasi- 

planar. 

In th is section we show how to "prudently" 

guess from a par t ia l  imbedding (G,L~)a "pa r t i a l "  

extension J' of  J to some intermediary subgra~h 

L' such that (G,Lj,)  is extendable i f  and only 

i f  (G,Lj) is extendable. 

A directed cycle E is the boundary of a 

region of G I i f  there exist a spanning sub- 

graph L of G I such that E is a face of L I- 

So i f  E is a region then we may talk about the 

corners and sides of E. For an embedded graph 

the corners of a given embedding are par t ia l ly  

ordered under inclusion and so we may talk about 

one corner being contained in another. Given two 

corners x and y of E they part i t ion the 

cycle C into two chains xEy and yEx. We shall 

use the notat ion ( ~ )  ~ and [xEy] to denote the 

open respect ively the closed chain from x to 

I f  a and b are two sides of E then [aEb] 

w i l l  denote the closed chain from a to b not 

including a or b. The i n t e r i o r  of E is 

simply the subgraph generated by a l l  points of 

G-E embedded " in"  E. By making mul t ip le  copies 

of the corners and sides of E we can view E 

plus i ts  i n t e r i o r  as an embedded planar graph E I .  

We can p a r t i a l l y  order regions of G I under 

containment. And we obtain the convenient fact  

that a region E is minimal i f f  E is a face 

of G I .  A vertex of edge is said to be internal  

i f  i t  appears more than once on E. We shall say 

a face F spans two corners x and y of E 

i f  F has two corners one contained in x and 

one contained in y. A chain Z ~E  1 is said to 

separate x and y i f  i t  is attached to (xEy) and 

to GE ) 
Lemma I .  I f  E is a region of G I with corners 

x and y then one and only one of the fo l lowing 

condit ions are sa t i s f ied :  

( I )  there ex is t  a face which spans x and y. 

(2) There ex is t  a chain which separates x 

and y. 

Proof. We f i r s t  show that ( I )  and (2) are 

mutually exclusive. Suppose ( I )  and (2) are 

true. Since there exists a face F from x to 
^ 

y we can add a chain C from x to y in F 

without a f fec t ing the genus of Gi. We can also 

discard a l l  other elements from the i n t e r i o r  of 

E except the chain d from condit ion (2). Now 

E plus c and d has but one face which 

contradicts E-P formula. 

Suppose that condit ion ( I )  is fa lse.  Let 
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F 1 . . . . .  F K be the set of  faces generated from 

corners contained in x. Now the cycle,  in the 

cycle space C I ,  C = ~ F i contains the corner 

x, is contained in E,i=land has no corner con- 
^ 

tained in y since none of  the F. 's do. So 
1 

C-F must contain a chain sa t i s fy ing  (2). 

De f in i t ion .  A pai r  of  corners ( x , x ' )  of  E 

from some common vertex x is cal led a cut- 

poigt of  E i f  there is a face which spans 

these two corners. I f  a is an internal  edge 

of E and x is a point  of a, then we say x 

is a cut -point  i f  there is a face which spans the 

two corners of x invo lv ing a. We now prove 

the general form of  the las t  lemma. 

Theorem 2. I f  (a,a R) is an internal  pa i r  of  

region E then one and only one of  the fo l lowing 

condit ions is sa t i s f i ed :  

( I )  E has a cut -po in t  on (a,aR). 

(2) There ex is t  two vertex d i s j o i n t  chains 

in E from d i s t i n c t  corners of [aEa R] to 

d i s t i n c t  corners of [aREa] . 

Proof. I f  x is a cut -po in t  with corners x and 

x' then by the previous lemma there ex is t  no 

chains from (xEx') to (x'Ex) d i s t i n c t  from x 

so in par t i cu la r  there cannot ex is t  2 vertex d is-  

j o i n t  chains from aEa R to aREa. 

I f  there do not ex is t  2 vertex d i s j o i n t  

chains from [aEa R] to [aREa] then there must be 

a point  x which separates these two cycles by 

Menger's Theorem. Now x must be on a since 

a connects the cycles. Let x and x'  be the 

two corners of  x common to a. Applying the 

las t  lemma to x and x' e i ther  there is a face 

spanning x and x'  in which case we are done, 

or there is a chain from (xRx') to (x 'Rx). 

The la te r  implies that in fact  x is not a 

separating vertex. 

5. REMOVING INTERNAL EDGES 

The las t  theorem suggest an algorithm for  

"removing" internal  edge e from reg ion  E with 

boundary <e,x , (a) ,x ,eR,y , (b) ,y> .  Let x and y 

be the corners of [a]  and [b]  respect ively 

containing e. We present th is  in procedure 
form: 

Procedure. Remove Internal Edges (G,L, I ) .  

( I )  I f  L I has no internal  edges output 

(G,L, I ) .  Pick an internal  edge e of 

some face E of  L I .  Let <ex(a)xeRy(b)y> 

be the boundary of  E. 

(2) Guess 4 edges (el,e2,e3,e4,~ G-L+e) 

where e I is attached to 

e 2 is attached to y 

e 3 is attached to a corner of  [a] 

d i s t i n c t  from x. 

e 4 is attached to a corner of [b] 

d i s t i n c t  from y. 

(3) Guess a corner of  [a] and [b] in which 

to embed e 3 and e 4. 

(4) Find in G-L+e using an augmenting path 

a lgor i thm,  f ind one of the fo l low ing :  

(a) two vertex d i s j o i n t  chains from 

{e l ,e  3} to {e2,e4}. 
(b) Lef t -  and right-most cut points 

Pi,P2 from {e l ,e  3} to {e2,e4}. 
(5) I f  4(a) is true then remove e from L 

and add the two chains to L and embed 

them ( in  the unique wayl in E. Go to 8.)  

Let L' be the subgraph of G-L 

consist ing of  a l l  pieces with only attach- 

ments in [PieP2] and the chain [PieP2]. 

Let S be the subgraph of  L' consist ing 

of those pieces whose attachments are 

exact ly the set {Pi,P2}. 

(6) I f  L' is planar then LK-cI(L-L') else i f  

L'-S is planar then L+cI(L-L+S) else 

return with answer "no". 

(7) Replace (xeP I )  and (P2eY) with the two 

d i s j o i n t  chains from (e l ,e  3) and (e2,e4) 

to P1 and P2 respect ively.  Embed 

these new chains. 

(8) Call Remove Internal Edge (G,L, I ) .  

We can analyze the cost of Remove Internal  

Edge as fo l lows:  

Step (2) w i l l  add a factor  of O(e4). 

While Step (3) w i l l  add a factor  of O(e2). Now 

step (4) costs O(e) times the number of guesses 

so far  in the algorithm. But th is  is bounded 

by O(e) times a l l  guesses. So the procedure 

w i l l  add at most a factor  of  O(e 7) steps. 

By using th is  t r i c k  as i t  is we can 

"remove" a l l  the internal  edges from L a f te r  

one less than the number of in ternal  edges of L. 
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By adding one more idea we can improve th i s  
number o f  app l i ca t ions  by a f ac to r  o f  2. In 

th is  paper we shal l  on ly  analyze what happens 

wi thout  any new ideas. Let In t (F)  be the number 

o f  in te rna l  edges counted wi th t h e i r  m u l t i p l i c i t y  

(ac tua l l y  equal to 2) on some face F. Let 

( I n t ( L l )  = z ( I n t ( F ) - l )  where the sum is over a l l  

faces o f  L I tha t  contain in te rna l  edges. 

Lemma I .  Given an extension problem (G,L, I )  

then a f t e r  In t (L  I )  recurs ive ca l l s  of Remove 

In terna l  Edge to L I the new embedded graph L I 

w i l l  be f ree o f  i n te rna l  edges. 

Proof. Since In terna l  edges appear in pa i rs  

In t (F)  is even and so i f  In t (L  I )  = 0 then L I 

has no in te rna l  edges. Suppose tha t  In t (L  I )  > 0 

and e is an in te rna l  edge o f  some face F of  

L I .  I f  Remove In terna l  Edge "cuts" e then a f t e r  

apply ing the procedure no new in te rna l  edge w i l l  

be introduced and e w i l l  no longer be i n t e r n a l .  

I f  Remove In terna l  Edge replaces e wi th  two 

chains then these chains may p a r t i t i o n  some 

in te rna l  edge f i n to  two in te rna l  edges when 

they d iv ide  E in to  two regions E' and E". 

So I n t (E ' )  + In t (E" )  < In t (E) .  But th i s  impl ies 

tha t  In t (L  I )  ~ In t (L i l )  + 1 where L~ is L I a f t e r  

apply ing the procedure. 

6. PARTITIONING INTERNAL VERTICES 

In the l a s t  sect ion we discuss how to remove 

in te rna l  edges from L. Here we describe a 

procedure f o r  "removing" in te rna l  ver t i ces .  A 

spanning chain Z o f  a region E is said to 

separate x I . . . . .  xK^ i f  the^attachments o f  Z 

are d i s t i n c t  from x I . . . .  ,x K and Z separates 
^ 

at l eas t  two o f  the corners o f  x I . . . . .  x K. 

We f i r s t  genera l ize  Lemma 1 Section 4. 

Lemma I .  I f  F is a region o f  an embedded 

graph G I and x I . . . . .  x k, k ~ 2  are d i s t i n c t  

corners o f  F then one o f  the f o l l ow ing  

condi t ions are s a t i s f i e d .  

! I )  There ex is ts  a face which spans two 

corners o f  X l , . , . , x  k. 

(2) There ex is ts  a chain which separates 
^ 

X l , . . . , x  k • 
Proof. The proof  is by induct ion on k. The 

case k = 2 was proved in the previous sect ion.  

So suppose that  the lemma is t rue fo r  a l l  k '<k. 

We may assume that  the corners Xl . . . . .  Xk appear 
in th i s  order on the boundary o f  F. Now by the 

lemma appl ied to ~I and x2 e i t h e r  previous 

they are spanned by a face in which case the lemma 

is proved or  else there ex is ts  a chain which 

separates x I and x21 So assume that  Z is a 

chain that  separates x I and x 2 and l e t  e l 

and e 2 be the f i r s t  and f i n a l  edges o f  Z. So 
^ ^ 

e I is attached to a corner ^in !XlFX 2) and e 2 

is attached to a corner in (x2FXl) .  Now e I can- 

not be embedded in the corners x3 . . . . .  Xk since 

Xl and x2 are "consecut ive" .  I f  e 2 is also 

not embedded in the corners then again the lemma 

is proved. So we must assume tha t  e 2 is 
^ 

embedded in corner x i f o r  some 3 < i < K. The 

chain Z d iv ides the Region F in to  2 subregions, 

one conta in ing x I and one conta in ing x 2. Let 

F 2 be the region conta in ing x 2. Now F 2 con- 

ta ins  the corners x 2 . . . . .  x i_  1 plus the new 

corner def ined by e 2 and x i .  So by induct ion we 

can apply the lemma to F 2 wi th  these k = i - 1 

corners. I f  cond i t ion  ( I )  holds again the lemma 

is proved so we may assume tha t  there ex is ts  a 

separat ing chain Z' I f  Z' attaches only to the 

boundary o f  F then Z' s a t i s f i e s  the lemma. So 

again we may assume that  Z' has an attachment 

on F and one on Z. Using Z' and par t  o f  Z 

we get a chain s a t i s f y i n g  cond i t ion  (2). This 

proves the l emma. 

x 1 

2 ^ x 

Suppose tha t  Xl . . . . .  Xk is a set o f  

d i s t i n c t  corners o f  some face F o f  L I from 

an extension problem (G,L i ) .  Our goal is to 

successively separate F wi th e i t h e r  chains or 

cuts un t i l  the corners are p a r t i t i o n e d .  

The fo l l ow ing  procedure produces a 

quasip lanar  embedding from L I .  

Procedure: P a r t i t i o n  (G ,L , I ) .  

( I )  I f  L I is quas ip lanar ,  output  (G ,L , I ) .  

(2) Pick a face o f  F wi th  an i n te rna l  

ver tex ,  say x. 
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(3) Let Xl . . . . .  Xk be the corners o f  F 

common to x. 

(4) Guess 4.1 or  4.2 and execute i t .  

(4.1)  Guess a chain Z which separates 

x I . . . . .  x k and add Z and i t s  

embedding to ~ I ' ^  

(4.2) Guess a pa i r  ( x i , x  j )  which is  

spanned by some face F and 

cut L a t  x i and x j .  Let 

L be the r e s u l t i n g  graph. 

(5) P a r t i t i o n  ( G , L , I ) .  

By our lemmas the procedure P a r t i t i o n  is 

co r rec t .  By the next lemma we w i l l  achieve an 

upper bound on the number of  recurs ive  c a l l s  the 

procedure makes f o r  a given face. Let 

<x I . . . . .  Xn> be the cyc l i c  o rder ing  of  the i n te rna l  

corners o f  F induced by F. Consider the 

c y c l i c  sequence o f  ve r t i ces  < X l , . . . , X n  >. Let c 

be the number o f  d i s t i n c t  ve r t i ces .  For c > 2 

l e t  k be the number of  i ' s  such t ha t  

x i t x i+ 1 modulo n. For c : 0 , I  l e t  k = 2. We 

shal l  ca l l  k the number o f  a l t e r n a t i o n s  o f  

<x I . . . .  ,Xn>. Using n, c and k we def ine  the 

f o l l ow ing  c h a r a c t e r i s t i c .  

Let ~(F) = n - c + ~ -  I where n, D e f i n i t i o n .  

c and k are as above f o r  the i n te rna l  corners 

<x I . . . . .  Xn> o f  F. Now l e t  ~(G I )  = s~(F) where 

the sum is over the faces o f  G I .  

Using B we can now bound the number of  

recurs ive  c a l l s  o f  P a r t i t i o n :  

Lemma 2. The procedure P a r t i t i o n  w i l l  add at  

most B(L I )  chains or  cuts to L I .  

Proof.  The proof  fo l lows arguments s i m i l a r  to 

the proceeding lemma. Namely, we f i r s t  note 

t ha t  ~(H I )  = 0 imp l ies  tha t  H I is quasi -  

p lanar .  Second, we show tha t  the charac te r -  

i s t i c  is s t r i c t l y  decreasing w i th  each 

a p p l i c a t i o n  o f  P a r t i t i o n .  We leave the d e t a i l s  

to e i t h e r  the d i l i g e n t  reader or  the f i n a l  

paper. 

7. ANALYSIS OF REDUCTION TO QUASIPLANARITY 

In order to obtain a quasiplanar extension 

problem from (G,L,I) we shall f i r s t  apply Remove 

Internal Edges and then we w i l l  apply Par t i t ion.  

To analyze the running time i t  is useful to know 

what the ef fect  Remove Internal Edges has on 

~(Li): 
Lemma I .  I f  ( G ' , L ' , I ' )  is the output of one 

recursive cal l  of  Remove Internal Edge (G,L,I) 

then B(L ' i , )  ~ B(L I) + I .  

Proof. The proof follows arguments s imi lar  to 

the one used in the preceeding lemmas. 

We are now in a posit ion to analyze the 

cost of reducing our problem to a quasiplanar 

problem. 

We analyze this procedure on input (G,L,I) 

where L is a basic subgraph. By our previous 

remarks Remove Internal Edge w i l l  contribute a 
. 7 , , In t (L  I ) 

factor of at most (O(eG)) . I t  can be 

shown that Part i t ion w i l l  contribute a factor 

of  O(e 4) for  each recursive ca l l .  Now Par t i t ion 

w i l l  be cal led at most B(L I) + In t (L l ) .  Since 

L I is a basic subgraph i t  has but one face F 

and therefore Int(L I) = 2e - l where e is the 

number of  edges of L I.  On the other hand 

B(L I)  = B(F) = n - c + ~ -  I .  We can wr i te n, c, 

and k in terms of e and v as fol lows. 

n = 2e, c = v and k < 2e. 

So B(L I) E 3e - v - I .  By the E-P formula for  

L I we have that 2g = e - v + I .  

B(L I) + Int(L I) ~4e - 3 + 2g. By lemma 5 

Section 3 we know that e ~ 3(2g - l ) .  Putting 

this altogether in a theorem: 

Theorem 2. With only a contr ibuting of a factor 

of at most O(e 188g) to the running time we can 

transform a basic extension problem to a 

col lect ion of  quasiplanar extension problem 

(G,L,I) where L has at most 56g edges. 

The 56g edges comes from noting that 

Remove Internal Edge introduces at most 2 new 

edges, while Part i t ion introduces at most one new 

edge per recursive ca l l .  

8. THE QUASIPLANAR EXTE~ISION PROBLEM 

In t h i s  sect ion we give an a lgo r i thm which 

solves the quas ip lanar  extension problem (G ,L , I )  

in t ime polynomial  in e G fo r  f i xed  e L . Note 

tha t  the quas ip lanar  extension problem is tIP- 

complete [Ga t a ,  Re t a l l  i f  viewed only as a 

func t ion  of  e G. I t s  complex i ty  is  open, f o r  

f i xed  g, when viewed only  as a func t ion  of  e G. 

D e f i n i t i o n .  Two embeddings C I and C I ,  o f  a 

piece C in E are s i m i l a r  i f  the d i s t i n c t  
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attachment sides and corners o f  C I and C I ,  

are the same. 

The embeddin~of C in L I are the d is-  

s i m i l a r  embeddings o f  C in L I .  

Suppose that  (G,L, I )  is a quasip lanar ex- 

tension problem. Since L I has no in te rna l  

ver t ices every piece has at most one embedding 

in each face. I t  is not hard to see, using 

standard l i n e a r  time p l a n a r i t y  a lgor i thms,  tha t  

in the quasip lanar  case we can determine in 

O(e+g) time the embedding o f  a piece in L I .  

I f  some piece C has 3 or more embeddings 

then C must be embeddable in 3 or  more faces. 

Since points o f  H are o f  valence 2 they can 

appear on at most two faces. By th is  observat ion 

the attachments o f  C must be only ver t i ces .  So 

we can bound the number o f  pieces o f  G-H which 

can be embedded in more than three ways by 

bounding the number o f  components which have 

attachments cons is t ing only o f  ve r t i ces .  There 

is one degenerate case. This occurs when we have 

an unbounded number o f  components from some 

ver tex x to some ver tex y. To get around th i s  

degenerate case we w i l l  def ine a no ta t ion  o f  

2 pieces being s i m i l a r .  This no ta t ion  is used in 

[Re ta2] .  

D e f i n i t i o n .  TWo pieces C and C' o f  an 

extension problem (G,E.,I) are said to be 

s i m i l a r  i f  the d i s t i n c t  attachment corners and 

sides o f  C and C' are the same. 

Note tha t ,  i f  C and C' have 3 or more 

attachments to d i s t i n c t  corners o f  sides then 

they must be d i s s i m i l a r .  On the other hand i f  

C and C' are attached to at  most two d i s t i n c t  

ver t i ces  then any embedding o f  C is a lso 

simultaneously an "embedding" of  C' So, the 

number o f  s i m i l a r  classes is e s s e n t i a l l y  the 

number o f  pieces which can be embedded in 3 

or more ways in the quasip lanar case. 

Lemma I .  The number o f  d i s s i m i l a r  pieces o f  

(G,L, I )  whose attachments are only ver t i ces  is 

at  most 6e - 5f  where e , f  are the number of  

edges and faces o f  L I .  

Proof. We count those wi th 3 or  more d i s s i m i l a r  

attachments separate ly  from those wi th only two. 

In the case o f  3 or  more d i s s i m i l a r  attachments 

we shal l  use the f o l l ow ing  cha rac te r i s t i c .  I f  

L < K < G then ~(K I )  = SVL(Fi - 2 where the sum 

is over faces o f  K I and VL(F) is the number o f  

ver t ices o f  L on F. I f  K is H plus a 

c o l l e c t i o n  o f  pieces o f  G-L and ~(K I )  = 0 then 

K must contain a l l  the peices which have 3 or 

more d i s s i m i l a r  attachments to L. The proof  is 

by simply not ing tha t  ~(K I)  s t r i c t l y  decreases 

by adding a piece o f  G-L to K. Note that  

~(L I )  = 2e - 2f .  

Consider the case o f  pieces wi th 2 

d i s s i m i l a r  attachments. There are those pieces 

which at tach to consecutive corners o f  a face 

and those that  do not. For those o f  the f i r s t  

type there must be at most 2e. For those o f  the 

second type we use the c h a r a c t e r i s t i c  

~ ' (K I )  = Z(VL(F) - 3) and a proof  s i m i l a r  to the 

f i r s t  case. Note tha t  ~ ' (L  I)  = 2e - 3f .  Thus 

our bound (2e - 2f) + 2e + (2e - 3f) = 6e - 5f  

is achieved. 

Now each piece can be embedded in at most 

e L ways. So we get tha t  the number of  ways o f  

embedding the pieces o f  G-L which can be embedded 

in 3 or more ways is bounded by O(e~eL). ~ 

We can sum up what we have shown in th i s  

sect ion by saying that  the fo l l ow ing  procedure 

w i l l  add a f ac to r  o f  at most gO£g)" ' steps to the 

embedding a lgor i thm and reduce the quasip lanar  

extension problem to an extension problem where 

the pieces have at most two embeddings: 

Procedure. Quasiplanar (G,L, I )  

( I )  -Return i f  (G,L, I )  is a quasip lanar  

extension problem. 

(2) Determine the pieces C 1 . . . . .  C K o f  G-H 

which can be embedded in more than three 

ways. 

(3) Guess fo r  each Clan embeddable face F 

of  L. Embed C i in F. 

(4) Output (G ,LUC i . . .  UCK,I) .  

9. 2-CNF AND SIMPLE EXTENSIONS 

A simple extension problem is a quasi-  

p lanar extension problem (G,L, I )  where each piece 

has at  most two embeddings in L I .  We prove the 

fo l l ow ing  simple fac t :  

Theorem I .  Simple extension problems are po ly-  
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nomial time reducible to 2-CNF. 

Proof. Let (G, [ , I )  be a simple extension problem 

and C I ,  . . . .  C K be the pieces of G-L. We shall 

associate a propositional variable x i with each 

piece C i ,  The assignment of true to x i w i l l  

correspond to one embedding of C i while false 

w i l l  correspond to the other. One simply needs 

to notice that the conf l ic t ion of two pieces on 

a given face is a disjunction of two l i t e r a l .  

Note that we can f ind an instant ia t ion of a 

2-CNF formula in l inear  time. The formulas are of 

size O(k 2) where k is the number of pieces. 

We wri te th is as a procedure: 

Procedure. 2-CNF (G,L,I) 

( I )  Determine the embedding of the pieces. 

(2) Construct the 2-CNF formula 

(3) I f  X is an instant ia t ion of 

(4) Use X to extend L I to G. 

I0. SUMMARY 

Putting a l l  the procedures together we can 

obtain our genus algorithm. 

Procedure. Embedding (G,g) 

( I )  Generate Basic Subgraph (G,g), say L I .  

(2) Remove Internal Edges (G,L,I) .  

(3) Par t i t ion (G,L,I) .  

(4) Quasiplanar (G,L,I) .  

(5) 2-CNF (G , [ , l ) .  

We can now analyze the running time of 

Embedding. We l i s t  the mu l t i p l i ca t i ve  factors 

for  each of the steps ( I )  to (4): 
( I )  O((eg).e 2g) 
(2) and (3) O(e 188g) 

(4) 0((56g) 336g) 

Note that each of these terms is bounded 

by (g.v) O(g). We state this as a theorem: 

Theorem I .  There exists an algorithm to 

determine the genus of graph which runs in 
(g'v) O(g) time. 

By running Embedding on inputs for 
successively larger g we can determine the 
genus of a graph. 
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