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It is NP-compete to tell, given a graph G and a natural number k, whether G 
has genus k or less. 0 1989 Academic Press. Inc. 

1. INTRODUCTION 

The genus g(G) of a graph G is the smallest number g such that G can 
be embedded on the orientable surface of genus g. Given a graph G and a 
natural number k one may ask: Is g(G) I k? This problem, called the 
graph genus problem, is one of the remaining basic open problems, listed by 
Garey and Johnson 121, for which there is neither a polynomially bounded 
algorithm nor a proof that the problem is NP-complete. For k fixed, Filotti 
ei al. [l] described a polynomially bounded algorithm for the graph genus 
problem. Such an algorithm also follows from the Robertson-Seymour 
theory on minors [5]. The author [6] proved that a given embedding is of 
minimum genus provided all the noncontractible cycles are longer than all 
facial walks. [6] also contains both a polynomially bounded algorithm for 
deciding if a given embedding has this property and also a polynomially 
bounded algorithm for deciding if a 2-connected graph has an embedding 
of this type. 

However, we shall here prove that the graph genus problem is NP-com- 
plete. We show that the problem of deciding if the independence number 
a(G) (that is, the cardinal&y of a largest set of pairwise nonadjacent 
vertices in the graph G) is greater than k (a problem which is known to be 
NP-complete [2]) can be reduced, in polynomial time, to the graph genus 
problem. The reduction is as follows: We let G’ be obtained from G by 
replacing each edge xy by a large double wheel. That is, we delete xy and 
add a long cycle C and all edges between C and {x, y }. We let G” be 
obtained from G’ by adding a new vertex and joining it to a vertex in each 
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of the new cycles. Then we prove that G” has genus q - a(G), where q is 
the number of edges of G. No knowledge of embeddings will be assumed. 

2. BASIC PROPERTIES OF EMBEDDINGS 

We shall treat embeddings purely combinatorially as in [6]. A graph has 
no loops or multiple edges. A multigraph may have multiple edges but no 
loops. A rotation system of multigraph with vertex set { ui, u2,. . . , u,} is a 
collection II = { 7ri, or,, . . . , T,,} such that vi is a cyclic permutation of the 
edges incident with vi. An embedded multigraph is a pair (G, II) where G is 
a connected multigraph and II is a rotation system of G. We shall refer to 
(G, II) as the II-embedding of G. 7ri is called the II-clockwise orientation 
around vi. A r-facial walk is a sequence x,, e, xi e, . . * x,-r e,-, x, 
(which we abbreviate as x0 x1 * * * x,) of vertices and edges, where the 
indices are expressed modulo r and ei is an edge joining xi and xi+i for 
i = 0,l ,***9 r - 1. Moreover, if xi = uj, then ni(ei-i) = e,. The II-genus 
g(G, II) of the II-embedding is defined by Euler’s formula 

n-q+f=2-2g(G,II) 

where n, q and f are the number of vertices, edges and II-facial walks, 
respectively. The genus g(G) is the minimum of the genera taken over all 
embeddings of G. This purely combinatorial definition of embedding and 
genus can easily be shown to be equivalent with the usual topological 
definition (see, e.g., [3]). If H is a connected subgraph of the corrected 
multigraph G, then an embedding II of G induces an embedding of H 
which we shall also refer to as II. Now H can be obtained from G by 
successively deleting edges and endvertices such that each multigraph in the 
sequence is connected. After each operation, the H-genus is either un- 
changed or decreased by 1. Hence 

(1) g(G, II) is a nonnegative integer and, for any subgraph H of G, 

g(K n) 2 g(G n). 

In particular, 

0 I g(H) I g(G). 

Similarly, we may consider an embedding II of G and add a new edge e 
between two distinct vertices u, u. By “inserting” e in the clockwise 
orientation around u and u, respectively, we either increase or decrease the 
number of facial walks by one. If u and u are on the same II-facial walk 
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W, then we may add e such that W U {e} is partitioned into two facial 
walks in G U {e}. Hence 

(2) g(G) I g(G U {e}) I g(G) + 1. Furthermore, the first inequality 
is an equality if G has an embedding of genus g(G) such that u and u are 
on the same facial walk. 

Since g(T) = 0 for any spanning tree of G, (2) implies 

(3) g(G) I q - n + 1. 
In general, (3) is a poor upper bound for g(G). However, we shall 

describe a general family of graphs for which an inequality analogous to (3) 
becomes an equality. 

If W is a (closed) II-facial walk, then we define the length m of W as 
the number of edges in W, where an edge is counted twice if it is traversed 
in both directions in W. We define the excess of W to be m - 3. The 
II-facial excess fe( ll, G) of G is the sum X(m - 3) taken over all II-facial 
walks. Since 2q = Zm, Euler’s formula implies 

(4) fe(II, G) = 6g(G, Il) - 6 + 3n - q. 
We say that a cycle C in a connected graph G is induced if it has no 

chords (i.e., edges joining nonconsecutive vertices on C) and nonseparating 
if G - V(C) (i.e., the graph obtained from G by deleting all vertices of C 
and their incident edges) is connected. Now (4) implies the following crucial 
result : 

(5) If the connected graph G has an embedding of facial excess p, and 
C is an induced nonseparating cycle in G of length at least p + 4, then 

g(G - v(C)) < g(G). 
Proof of (5). Let II be an embedding of G of genus g(G). By (4), 

fe(II,G) sp. 
Let the notation be such that C: u1u2.. . u,u,, where r 2 p + 4. We say that 
an edge incident with vi is on the left side of C if it is one of the edges 
7ri(e), Iri2(e), . . . ,7r[-’ (e), where e is the edge vivi-i and r,‘(e) = uiui+i. 
An edge incident with ui which is not on C and not on the left side is said 
to be on the right side of C. Since fe(II, G) I p and C has length 2 p + 4, 
C is not contained in a II-facial walk. Therefore, there are edges on the left 
side and edges on the right side of C. We “cut” C into two cycles as 
follows: We add to G a cycle C’: v;v; . . . v$;. If e = viu is an edge on the 
right side of C we delete e and add instead the edge e’ = u;u which we 
refer to as the “same edge” as e. (Since C is induced, tl is not on C.) The 
resulting graph is denoted by G’. We modify II into an embedding ll’ of 
G’ in the obvious way: II and II’ agree for vertices in G except that in II’, 
the successor of ui vi + i around vi is vivi- i. The II’-orientation around u; is 
the same as the II-orientation around v except that the successor of v;u;-i 
is z~jv:+~. Since C is induced and nonseparating, G’ is connected. Every 
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II-facial walk in G is a II’-facial walk in G’ (except that some occurrences 
of vi may be replaced by uf). In addition, both C’ and (the reverse of) C 
are II’-facial walks in G’. Hence 

g(G’, II’) = g(G, II) - 1. 

BY (l), 

g(G - V(C)) = g(G’ - (V(C) U V(C’))) I g(G’) 

and hence 

g(G - V(C)) I g(G’, II) = g(G, II) - 1 < g(G). 0 

3. REDUCING THE VERTEX INDEPENDENCE PROBLEM TO THE 
GENUS PROBLEM 

The inequality of (5) enables us to construct a large class of graphs for 
which we can calculate the genus. If u and u are distinct vertices in a 
connected graph G, then we may form the disjoint union of G and a cycle 
C of length of m and add all edges between {u, u} and C. We say that the 
resulting graph G’ is obtained from G by adding a double wheel of order m 
between u and u. If the edge e = uu is present, then we say that G’ - e is 
obtained from G by replacing e by a double wheel of order m. 

(6) If G is a connected graph with n vertices and 4 edges and G’ is 
obtained by adding a double wheel of order m 2 5q - 3n + 10 between 
two distinct vertices u and u in G, then 

g(G’) = g(G) + 1. 

Proof of (6). Let II be an embedding of G of genus g(G). By (3) and 
(4), 

fe(II,G) I 5q - 3n. 

Let e,, ez (resp. e3, e4) be two consecutive edges in the II-clockwise 
ordering around u (resp. u). Let C: utuz . . . u,ur be the cycle in G’ - V(G). 
We modify the embedding II of G into an embedding II’ of G’ as follows: 
II’ agrees with II except that et, uui, au*, . . ., UU,, e2 and e3, UU,, 
uu,,,- i, . . . , uui, e4 are sequences in the II’-clockwise orientation around u 
and u, respectively. In addition, the II’-clockwise orientation around ui is 
up, ~~z.+-~, uiu, ui~i+l for i = 1,2,. . . , m (where the indices are expressed 
modulo m). All II-facial walks of G are II’-facial walks except those two 
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which contain e,, e2 and e3, e4, respectively. These two II-facial walks 
(which may be the same) are enlarged by the edges q, uiu,, u,u and 
uu,,u,ui, qu, respectively. All edges on or incident with C (except ui u,,J 
are in II’-facial walks of length 3. 

Let n, q, f be the number of vertices, edges, and II-facial walks, respec- 
tively, of G. Let n’, q’, f’ be the corresponding numbers for G’ and II’. 
Then 

n’ = n + m, q’ = q + 3m, f’=f+2m-2. 

Hence 

g(G’, II’) = g(G, II) + 1 = g(G) + 1 

and 

g(G) I g(G’) I g(G) + 1. 

Since 

fe( II’, G’) = fe( II, G) + 6 I 5q - 3n + 6 

it follows from (5) that 

g(G) = g(G’ - v(C)) < dG’)- 

Hence g(G’) = g(G) + 1. 0 

We now prove a result with some analogy to (3). 

(7) Let G be a connected graph with n vertices and q edges and let F 
be a forest (i.e., a graph with no cycle) in G. Let G’ be the graph obtained 
from G by replacing each edge of G outside F by a double wheel of order 
m, where m 2 3n2. Then 

g(G’) = q - n + 1. 

Proof: Let T be a spanning tree containing F and let T’ be obtained 
from T by replacing each edge of T outside F by a double wheel of order 
m. It is easy to see that T’ has a planar (i.e., genus zero) embedding such 
that the facial excess is at most 3n - 6. (T has an embedding of genus zero 
with facial excess 2(n - 1) - 3 and whenever an edge of T is replaced by a 
double wheel the facial excess is increased by one.) Now G’ is obtained 
from T’ (which is connected) by successively adding double wheels. Since 
the facial excess of T is at most 3n - 6 and the facial excess is increased by 
6 whenever we add a double wheel as in the proof of (6), and since we add 



GENUS IS NP-COMPLETE 573 

to T’ at most 1 0 - (n - 1) double wheels we conclude that the current 

graph has facial excess at most 3n - 6 + 6( 9) - 6( n - 1) = 3n2 - 6n. 
Since m 2 3n2, we conclude as in the proof of (6) that the genus is 
increased by 1 whenever we add a double wheel of order m to T’. Hence 

g(G’) = q - n + 1. 0 

We are now ready for the construction which relates the genus g(G) to 
the independence number a(G), i.e., the maximum cardinality of a set of 
pairwise nonadjacent vertices in G. 

(8) Let G be any connected graph with n vertices and q edges. Let G’ 
be obtained by replacing every edge of G by a double wheel of order 
3(n + 1)2. Let G” be obtained from G’ by adding a new vertex u and 
joining u to one vertex of each cycle in G’ - V(G). Then 

g(G”) = q - a(G). 

Proof of (8). First we shall describe an embedding of G” of genus at 
most q - a(G). We apply (7) (with F = 0) in order to find an embedding 
II of G’ of genus q - n + 1. Consider now a II-facial walk IV. Either W is 
a triangle in a double wheel or else W is composed of d(u) triangles 
belonging to d(u) distinct double wheels containing the vertex u in G, 
where d(u) is the degree in G of u. (This follows from a close inspection of 
the proof of (6) (7). First we verifiy, for example, by induction on the 
number of vertices of T’, that T’ has a planar embedding such that each 
facial walk containing a vertex u of G is either a triangle in a double wheel 
or consists of a collection of traingles, one from each double wheel in T 
containing u. Then we show that this facial structure can be preserved when 
we successively add double wheels to T’ in order to get G’.) In the latter 
case W has the length 34~). Thus the facial excess of II is C,, ,(,,(3d(u) 
- 3) = 6q - 3n < 3n2. Now let S be a set of a(G) independent vertices of 
G. For each vertex u in V(G) \ S we consider the II-facial walk W, 
consisting of d(u) traingles containing u. We add to G’ a new vertex u’ and 
join it to one vertex (distinct from u) in each of these d(u) triangles. Since 
the neighbours of u’ are on the same II-facial walk, an easy extension of the 
remark preceding (2) shows that II can be modified to an embedding of the 
same genus of the graph obtained from G’ by adding u’ and its incident 
edges. We do this for every vertex u in V(G) \ S. By (2), adding an edge 
increases the genus by at most one. Clearly, the contraction of that edge 
does not increase the genus further. Hence identifying two vertices increases 
the genus by at most one. So, if we identify all the new vertices u’ added to 
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G’ into one vertex u, then the resulting graph H has an embedding of 
genus at most g(G’, II) -t n - cw(G) - 1 2 q - cw(G). 

Since every edge of G is incident with a vertex of V(G) \ S, it follows 
that H contains G” as a subgraph. Hence 

g(G”) I g(H) s q - a(G). 

Now let II’ be an embedding of G” of genus g(G”). By the above upper 
bound on g(G’) and (4) we have 

fe(JJ’, G”) 5 5q - 12 + 3t1 < 3n2 - 12. 

Hence no cycle C in G’ - V(G) is contained in a II’-facial walk. Consider 
the II’-facial walk W containing the edge from u to C. Since W does not 
contain C, W contain s a vertex u(C) which is not in C but in the double 
wheel containing C. The remark preceding (2) shows that II’ can be 
modified to an embedding of G u {au(C)} of genus g(G”). We add the 
edge uv(C) for every cycle C in G’ - V(G). The resulting graph H’ has 
genus g(G”), and H’ contains the graph H” obtained from G’ by adding 
the vertex u and joining it to all vertices of the form v(C). Let Y denote the 
set of vertices of the form u(C) and put y = JY I. Since each edge of G is 
incident with a vertex of Y, the set V(G) \ Y is independent in G and has 
therefore cardinality I cr(G). Hence y = (Y ( 2 n - a(G). Note that H” 
can be obtained by first joining u to y vertices of G and then replacing the 
edges of G by double wheels of order 3(n + 1)2. We now apply (7) (with F 
consisting of the edges incident with U) to conclude that 

g(H”) = (q +y) - (n + 1) + 12 q - a(G). 

Hence 

g(G”) = g(H’) 2 g(H”) 2 q - a(G) 

and the proof is complete. cl 

Since the graph G” is obtained in polynomial time from G and since it is 
NP-complete to decide if a(G) 2 k (where G is any graph and k is any 
natural number), we conclude 

THEOREM. The following problem is NP-complete: Given a graph G and a 
natural number k. Decide if g(G) 5 k. 

If G is a graph and k is a natural number, then we may form a new 
graph H by adding a set S of k new independent vertices each of which is 
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joined to all vertices of G. Now the statements (i) and (ii) below are 
equivalent : 

(i) LX(G) > k; 

(ii) S is not a maximum independent set in H. 

The proof of (8) shows that is we know a set S of k independent vertices in 
G, then we obtain an embedding of G” of genus q - k. Hence it is 
NP-complete to decide if a given embedding is of minimum genus. A 
natural approach to this problem is to modify the clockwise orientation 
locally. Gross and Tucker [3] observed that there exist nonminimum-genus 
embeddings which cannot be modified to embeddings of smaller genus just 
by modifying the clockwise orientation around one (well-chosen) vertex. We 
point out that it is not even sufficient to modify the clockwise orientation 
around 10” well-chosen vertices. Consider the type of graph G indicated in 
Fig. 1 embedded on the torus which we think of as rectangle whose 
opposite sides are identified. This graph G is planar. But in every planar 
embedding of G all the facial walks are cycles of length 3 or 3n/4, where 
n = IV(G) (. So, in order to obtain a planar embedding of G it is necessary 
to modify the embedding of Fig. 1 around some vertex of every 4-cycle. 
That is, at least n/4 vertices will be affected. Gross (private communica- 
tion) has informed the author that an iteration of the construction in 
Example 3.5.1 in [3] also results in a graph that requires arbitrarily many 
rotation changes to reach the global minimum. 

Miller [4] asked if a polynomially bounded algorithm for determining the 
genus of a 3-connected graph implies a polynomially time algorithm for all 
graphs. If G is a 2-connected graph, then the graph G” in (8) is 3-con- 
netted. Since the problem: “Is ar(G) < k?” is NP-complete for 2-connected 
graphs it follows that the graph genus problem is NP-complete also when 
restricted to 3-connected graphs. This answers Miller’s question in the 

FIGURE 1. 
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affirmative. Also, our proof gives the stronger result that it is even NP-com- 
plete to decide if a given embedding of a 3-connected graph is of minimum 
genus. 
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