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Abstract

We study conflict-free colorings, where the underlying set systems arise in geometry.
Our main result is a general framework for conflict-free coloring of regions with low
union complexity. A coloring of regions is conflict-free if for any covered point in the
plane, there exists a region that cover it, with a unique color (i.e., no other region
covering this point has the same color). For example, we show that we can conflict-free
color any family of n pseudo-discs with O(logn) colors.

1 Introduction

In this paper, we study coloring problems related to frequency-assignment problems in cel-
lular networks. In geometric setting, the problems are of the following two types:

CF-coloring of regions: Given a finite family S of n regions of some fixed type (such
as discs, pseudo-discs, axis-parallel rectangles, etc), what is the minimum integer k,
such that one can assign a color to each region of S, using a total of at most k colors,
such that the resulting coloring has the following property: For each point p € Upesb
there is at least one region b € S that contains p in its interior, whose color is unique
among all regions in S that contain p in their interior (in this case we say that p is
being ‘served’ by that color). We refer to such a coloring as a conflict-free coloring of
S (CF-coloring in short).

CF-coloring of a range space: A given set P of n points in R? and a set R of
ranges (for example, the set of all discs in the plane) define a so-called range space
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(P,R). Given such a range space, what is the minimum integer k, such that one can
color the points of P by k colors, so that for any r € R with P Nr # (), there is at
least one point ¢ € P Nr that is assigned a unique color among all colors assigned to
points of P Nr (in this case we say that r is ‘served’ by that color). We refer to such
a coloring as a conflict-free coloring of (P, R) (CF-coloring in short).

The study of such problems, which was originated in [ELRS03] and [Smo03], was mo-
tivated by the problem of frequency-assignment in cellular networks. Specifically, cellular
networks are heterogeneous networks with two different types of nodes: base stations (that
act as servers) and clients. The base stations are interconnected by an external fixed back-
bone network. Clients are connected only to base stations; connections between clients and
base stations are implemented by radio links. Fixed frequencies are assigned to base stations
to enable links to clients. Clients, on the other hand, continuously scan frequencies in search
of a base station with good reception. The fundamental problem of frequency-assignment
in cellular networks is to assign frequencies to base stations so that every client, located
within the receiving range of at least one station, can be served by some base station, in the
sense that the client is located within the range of the station and no other station within
its reception range has the same frequency. The goal is to minimize the number of assigned
frequencies since the frequency spectrum is limited and costly.

Suppose we are given a set of n base stations, also referred to as antennas. Assume,
for simplicity, that the area covered by a single antenna is given as a disc in the plane.
Namely, the location of each antenna (base station) and its radius of transmission is fixed
and is given (the transmission radii of the antennas are not necessarily equal). Even et al.
[ELRS03] have shown that one can find an assignment of frequencies to the antennas with a
total of at most O(logn) frequencies such that each antenna (a base station) is assigned one
of the frequencies and the resulting assignment is free of conflicts, in the preceding sense.
Furthermore, it was shown that this bound is worst-case optimal. Thus, Even et al. have
shown that any family of n discs in the plane has a CF-coloring with O(logn) colors and
that this bound is tight in the worst case. Furthermore, such a coloring can be found in
polynomial time. The approach used in [ELRS03] relies strongly on the fact that the regions
under consideration are discs.

In this paper, we improve and extend the results of [ELRS03] combining more involved
probabilistic and geometric ideas. Our main result, which is delegated to Section 3.1, is a
general probabilistic algorithm which CF-colors any set of n “simple” regions (not necessarily
convex) whose union has “low” complexity, using a “small” number of colors. (The quoted
terms are interrelated, in a manner stated more precisely in Section 3.1.) In particular,
we show that if the regions under consideration have a union of near linear complexity,
then they can be CF-colored using polylogarithmic number of colors. This holds for pseudo-
discs [KLPS86], convex a-fat shapes [ES00], and (a, §)-covered objects [Efr99]. This provides
the first non-trivial and near-optimal bounds for one of the problems that motivated the work
of Even et al. [ELRS03]. In practice, cellular antennas are directional, and the region of
influence of an antenna is a circular sector with central angle of 60°. Since such sectors are
fat and convex, our results thus imply that those regions have a conflict-free coloring using
a polylogarithmic number of colors.



In Section 3.2, we refine the results of Section 3.1, deriving better bounds for some special
cases. We show that any set of n axis-parallel rectangles in the plane can be CF-colored with
O(log?n) colors. We note that the assumption that the rectangles be axis-parallel cannot be
removed, for otherwise one can construct a set R of n rectangles in which any CF-coloring
of R needs n colors.

In Section 4 we study the problem of CF-coloring of range spaces, where the underlying
ranges are axis-parallel rectangles in the plane, and show that any n points can be CF-colored
with O(y/n) colors with respect to axis-parallel rectangles (recall that in this new version we
color the points of P with respect to a family of ranges, whereas in the preceding problem
we colored the given regions). Using a different approach, we also obtain non-trivial upper
bounds on the number of colors needed in any CF-coloring of a range space consisting of n
points in IR? whose ranges are axis-parallel boxes. We also study the special case when all
the given points form the regular \/nx+/n-grid and show that in this case one can color the
points with O(logn) colors and that this bound is worst-case optimal. This bound holds for
any dimension. Namely for any fixed d one can color the points of the d-dimensional regular
n'/? x ... x n'/? grid with O(logn) colors with respect to axis-parallel boxes. In fact, we
show that the constant in the big ‘O’ notation does not depend on the dimension d. We
note that, without the assumption that the rectangles are axis-parallel, the problem becomes
uninteresting. Indeed, any planar set P of n points in general position (i.e., no three are co-
linear) needs n colors in any CF-coloring of P with respect to arbitrarily oriented rectangles.

Finally, in Section 5, we generalize the notion of CF-coloring of range spaces and of
regions to what we call k-CF-coloring. That is, in the case of coloring a range space, we say
that a range is ‘served’ if there is a color that appears in the range (at least once and) at
most k times, for some fix prescribed parameter k. A similar generalization of k-CF-coloring
a set of regions is also studied. For example, we show that there is a range space consisting
of m points for which any CF-coloring needs n colors but there exists a 2-CF-coloring with
O(y/n) colors (and a k-CF-coloring with O(n'/*) colors for any fixed k > 2). We also show
that any range space (P,R) (not necessarily in geometry) with a finite VC-dimension e,
can be k-CF-colored with O(log|P|) colors, for reasonably large k. This relaxation of the
model is applicable in the wireless scenario since the real interference between conflicting
antennas (i.e., antennas that are assigned the same frequency and overlap in their coverage
area) is a function of the number of such antennas. This suggests that if for any given
point, there is some frequency that is assigned to at most a “small” number of antennas
that cover this point, then this point can still be served using that frequency because the
interference between a small number of antennas is low. This feature is captured by the
notion of k-CF-coloring.

2 Preliminaries

We briefly introduce some notations and tools used in this paper. In the following, P denotes
a set of n points in IR?, and R denotes a set of ranges (for example, the set of all discs in
the plane). A range space S is a pair (X, R), where X is a (finite or infinite) set and R is a
(finite or infinite) family of subsets of X. If A is a subset of X then IIx(A) = {rnA:r e R}
is the projection of R on A. In this paper, we focus on range spaces that arise naturally in



combinatorial and computational geometry. One such example is the space S = (R H),
where H is the set of all halfspaces in IR?. For a finite set of points P in IR? and a (finite or
infinite) collection R of ranges, we abuse the notation slightly and refer to the pair (P, R)
as a range space, referring in fact to the range space (P, Il (P)).

The “Delaunay” graph G = G(P,R) is the graph whose vertex set is P and whose edges
are all pairs (u,v) for which there exists a range r € R such that rN P = {u,v}. We denote
a range realizing an edge (u,v) € G by r,,. When R is the set of all discs in the plane and P
is a finite set of points with no four of them co-circular, the “Delaunay” graph of the range
space (P, R) coincide with the classical definition of the Delaunay triangulation of P.

A coloring f: P — {1,...,k} is a conflict-free coloring of (P, R) (CF-coloring in short),
if for any r € R, such that P Nr # (), there exists a color 4, for which there is a point
p € PN, such that f(p) = 7, and no other point of P N is assigned the color i. Any range
r for which this property holds (regardless of whether the coloring is conflict free) is said to
be served by the coloring. We refer to the minimum number of colors needed to CF-color
(P,R) as the conflict-free (or CF)-chromatic number of (P, R).

For a set R of ranges in IR, let k,p:(n, R) denote the maximum number of colors needed
for the given set R, over all sets of n points in RY.

A range space (P,R) is called monotone if for any P, C P and for each r € R with
|r N Py| > 2 there exists a range r’ € R such that ' NP =2, and " NP, CrNP. Itis
easy to verify that this property holds when R is the set of all axis-parallel rectangles in the
plane.!

Even et al. have shown that the problem of CF-coloring a family S of n discs in the plane
can be reduced to that of CF-coloring a range space (P, R) where P is a set of n points in
R? and R is the set of all half-spaces.

A natural approach (used in [ELRSO03]) for conflict-free coloring of a monotone range-
space (P,R), is to pick a large independent set Ly in G(P,R), color all the points of L; by
a single color, and repeat this process on (P \ Li,R). We summarize this approach in the
following algorithm:

Algorithm 1 CFcolor(P,R): CF-color a set P with respect to a set of ranges R.
1 < 0: 7 denotes an unused color
P~ P
while P, # 0 do
Increment: ¢ «— 7+ 1
Find an independent set P/ C P; of G(P;,R):
We elaborate subsequently on the implementation of this step.
Color: f(x) «— i, Yx € P/
7. Prune: P, — P\ P/
8: end while

>

Let L; C P denote the set of points in P colored with i by Algorithm 1. We refer to L;
as the ith layer of (P, R).

!The interested reader might try to prove this property for the case where R is the set of all discs in the
plane.



Lemma 2.1 [ELRSO03]| The coloring of a monotone range space (P,R) by Algorithm 1 is
a valid CF-coloring of (P,R).

Proof: Consider a range r € R, such that |[PNr| > 2. Let ¢ be the maximal color
assigned to points of P lying in r. Let P; C P be the set of input points at the beginning of
the ith iteration, i.e., the set just before color ¢ has been assigned. Note that L; C P; and
L;Nr = P;Nr (since i is the maximal color in r). Clearly, if | N L;| = 1 then r is served
and we are done.

Thus, we only have to consider the case |r N L;| > 1. However, by the monotonicity
property (applied to the subset P;), it follows that there exists a range r’ such that: (i)
" NP =2,and (ii) ¥ NP, CrNP,=rnL,.

This means that the two points of 7’ N L; form an edge in the graph G(P;,R). This
however contradicts the fact that L; is independent in G(P;, R), and thereby completes the
proof of the lemma. ™

To realize the usefulness of Lemma 2.1, consider the following result of [ELRS03]: Let
P be a set of n points and let R be the set of all discs in the plane. Then the chromatic
number of (P, R) is O(logn). The proof follows immediately from the fact that (P, R) is
monotone and Lemma 2.1, as G(P, R) is just the Delaunay graph of P, which is planar (see
e.g., [BKOS00]), and as such it has an independent set of size at least n/4 (by the four
colors theorem). It follows, that P has a decomposition into O(logn) layers and hence the
chromatic number of (P,R) is O(logn). (It was also shown in [ELRS03] that there exists a
set P of n points in the plane for which any CF-coloring of (P, R) needs Q(logn) colors, and
therefor this bound is worst case tight. Recently Pach and Téth [PT03] have shown that
any set P of n points in the plane needs §2(logn) colors in any CF-coloring of (P, R).)

We summarize this technique in the following lemma.

Lemma 2.2 Let R be a set of ranges in R?, so that for any finite set P, the range space
(P,R) is monotone.
(i) If the Delaunay graph G(P,R) contains an independent set of size at least «|P|, for

some fized 0 < a < 1, then kop(n, R) < log(ll(;%'

(i) If G(P,R) contains an independent set of size Q(|P|'™°), for some fized 0 < € < 1,
then kope(n, R) = O(nc).

Proof: The assumption in part (i) of the lemma implies that in the ith iteration of
Algorithm 1 we color at least «|P;| points of P; with the color i. This means that if we start
with a set of n points, the number of iterations is at most 1 ol ;C;g o Similarly, part (ii)
of the lemma follows by observing that the number of iterations nee(fed by Algorithm 1 is
bounded by O(n). u

We need the following technical definition and lemma, for subsequent sections.

Definition 2.3 For a finite set V', a k-uniform hypergraph H on V is a pair of the form
(V,E), where E is a set of subsets of V, such that each set in E is of size k (those are the
hyperedges of H). The degree of a vertex v € V' is the number of sets (i.e., hyperedges) of F
that contain v.

A set A CV is called an independent set if no hyperedge of E is contained in A.



Figure 1: A set § of discs and an admissible subset S (depicted shaded).

Lemma 2.4 (i) Let G be a simple graph on n vertices with average degree §. Then G
contains an independent set of size Q(n/J).

(ii) Let H be a k-uniform hypergraph with n vertices and average degree 6. Then H contains
an independent set of size Q(n/5Y/*=1).

Both facts are easy exercises in graph theory (see, e.g., [AS00]);

3 CF-Coloring of Regions

In this section, we consider the problem of CF-coloring of regions, and present one of the main
results of this paper. We introduce a general approach that yields near-optimal bounds on
the CF-chromatic number of any finite collection of regions with “low” (usually near-linear)
union complexity. Our approach can also be applied to a general geometric range space (not
necessarily monotone) whose Delaunay graph has “low” complexity.

3.1 CF-Coloring of Regions with Low Union Complexity

Let R be a family of regions in the plane, such that the complexity of the union of any n
regions of R is at most U (n). In the following, we assume that ¢ (n) is a near-linear function.
This holds for pseudo-discs [KLPS86] and («, 3)-covered objects [Efr99]. See below for more

precise statement of those bounds.

Definition 3.1 For a set S of n regions of R, a subset S C 8 is admissible (with respect to
S), if any p € US, satisfies one of the following two conditions:

1. There is only one region of S that covers D.
2. There exists r € S\ S, such that p € r.

See Figure 1.

Remark: Note, that an admissible set is also an independent set in the corresponding De-
launay graph G = (S, Es), where Eg = {e e € bg,le| = 2} and &g = {Cbg(p) ‘p € ]RQ},
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Figure 2: The range space depicted is (V, Ey/), where V is the set of circles {1,2,3,4,5,6}
and every face of the arrangement A(V') induces a subset in @y, which is the subset of circles
of V' covering this face. Clearly, the range {1,2,3} € ®y but the ranges {1, 2}, {2,3}, {3,1}
are not in ®y since there is no face in the arrangement that is covered only by those pairs
of circles. Thus, the range space (V, ®y) is not monotone. In particular, the set {1,2,3}
is independent in the graph G(V, Ey) while it is not admissible, and as such the coloring
depicted, which is clearly illegal (in the conflict-free sense), is one that Algorithm 1 might
output.

ds(p) = {7" ‘r eS,pe r}. Indeed, in the graph G every two regions rq,79 that cover a

common point, which is not covered by any other region, are connected by an edge in G.
Thus, it can not be that both r; and r, belong to an admissible set. Interestingly, there may
exist an independent set in G(S, Es) which is not admissible; see Figure 2.2 As a matter
of fact, the range space (S, ®s) is not necessarily monotone, and thus coloring the range
space (S, Ps) using Algorithm 1 is not necessarily valid, as testified by the example shown
in Figure 2.

Assume that we are given an algorithm A that computes, for any set of regions S, a
non-empty admissible set A(S). We can now use the algorithm A to CF-color the given
regions: (i) Compute an admissible set S = A(S), and assign to all the regions in S the
color 1. (ii) Color the remaining regions in S\ S recursively, where in the ith stage we assign
the color i to the regions in the admissible set. We denote the resulting coloring by Ca(S).

Lemma 3.2 Given a set of regions S, the coloring Ca(S) is a valid conflict-free coloring of
S.

Proof: The proof is similar to that of Lemma 2.1. [ ]

Remark: As a matter of fact, the coloring Ca (S) has the stronger property that every point
p in US is served by the maximal color among the colors of regions that contain p.

Lemma 3.3 Let R be a set of n regions and let U(m) denote the mazimum complezity of
the union of any m regions of R. Let A(R) denote the arrangement of the boundary curves

2We are indebted to Shai Zaban for suggesting this example.



of the regions in R. Then the number of faces of the arrangement A(R) that are contained
inside at most k regions of R (denoted by F<(R)) is bounded by O(k*U(n/k) + n).

Proof: We may assume that the regions of R are in general position, in the sense that
no three distinct boundaries pass through a common point. This can be enforced by a
slight perturbation of the curves, which does not decrease F<i(R). Let S<x(R) be the set
of vertices of the arrangement 4(R) that lie in the interior of at most k regions of R. By
the probabilistic analysis of Clarkson and Shor [CS89], we have |S<;(R)| = O(k*U(n/k)).
We charge a face f contained in at most k regions to its lowest vertex, if 0f has vertices.
Thus, the only faces unaccountable for by this charging scheme are the faces that have no
vertices on their boundary. However, it is easy to check that the number of such faces is
only O(n), as we can charge such a face to the region of R that forms its outer boundary.
Thus F<x(R) = O(S<1(R) +n) = O(K*U(n/k)) + n). m

In what follows, we assume that U (m) > m for any m and that U(m)/m is a monoton-
ically non-decreasing function, so the bound in Lemma 3.3 is in fact O(k*U(n/k)) in this
case.

Lemma 3.4 Let R be a set of n regions in the plane, so that the boundaries of any pair of
them intersect in a constant number of points, and let U(m) denote the mazimum complexity
of the union of any m regions of R. Then there exists an admissible set S C R with respect

to R, such that |S| = Q(n?/U(n)).

Proof: Let A = A(R) be the arrangement of the regions of R. Place an arbitrary point
inside each face of the arrangement A and let P denote the resulting point set.

Let x be a random coloring of the regions of R, by two colors, black and white, where
each region is colored independently by choosing black or white with equal probabilities. A
point p € P is said to be unsafe if all the regions of R that contain p are colored black. Let
Py be the set of unsafe points of P. Let R be the set of all regions of R which are colored
black by x. We construct a graph G over R g, connecting two regions 7,7’ € Rpg by an edge
if there is an unsafe point p € Py that is contained inside both r and 7.

Let e(G) and v(G) denote, respectively, the number of edges and of vertices in G. We
claim that, with constant probability, v(G) > n/3 and e(G) = O(U(n)).

Clearly, the condition |Rp| = v(G) > n/3 holds with high probability (which tends to
1 when n increases) by the Chernoff inequality (see [AS00]). As for the second claim, for
a point p € P, let d(p) denote the number of regions of R that contain it. Clearly, the
probability that p is unsafe is 1/29®). If p is unsafe, there are (dgp)) pairs of regions of Rp

whose intersections contain p, so p induces (d(zp )) edges in G. Let X, be the random variable
having value 0 if p is safe, and (d(zp)) if p is unsafe. Clearly, e(G) < ZpGP X,. Thus, using
linearity of expectation and Lemma 3.3, we have

d(p) n Z—Q n 2,2
Ele(G)] < ZE[Xp] = Z (2d2(p)) =0 Z Z 7 :0(2121/{(”/2').@)
pel dZ()pE)];I = dl()pe)]iz =
= O(. %u(@) = O(U(n)).



Thus, by the Markov inequality, it follows that there is a constant ¢, such that
Prie(G) > c-U(n)] < 1/4.

It follows that, with constant probability, G has at least n/3 vertices, and its average
degree is at most 6¢ - U(n)/n. Thus, by Lemma 2.4 (i), G contains an independent set of
size Q(n?/U(n)). Let R’ be this independent set. It is easy to verify that R’ is admissible
with respect to R. Indeed let f be a face of A(R) that is contained in at least two regions
ri,79 € R’, and let p be its representing point. Then p must be safe, so p, and thus f is
contained also in a white region, which clearly does not belong to R'. ]

Lemma 3.5 The admissible set guaranteed by Lemma 3.4 can be computed in randomized
expected O(U(n)logn) time.

Proof: Note that the proof of Lemma 3.4 is constructive. Assume a model of computation
as in [SA95] in which computing the intersection points of any pair of regions in R, and a
few similar operations, can be performed in constant time.

To construct G, first we compute a random coloring y of the regions of R by black and
white. Let w be the number of white regions. Next, randomly permute the regions of R, so
that all the white regions (according to x) appear before the black regions of R. This can be
done by randomly permuting the white regions and randomly permuting the black regions,
independently, and concatenating the two permutations. Let 7m denote this permutation.
Note that 7 is a random permutation chosen uniformly from the set of all permutations of
the elements of R. Let r; denote the ith region of R according to 7.

We need to compute all the unsafe points (i.e., faces which are covered only by black
regions) in A(R). This can be facilitated by computing C;, which is the vertical decomposi-
tion of the complement of the union of the first ¢ regions of R, for « = 1,...,w. Formally,
C; is the vertical decomposition of IR? \ (Ui_,74), for i = 1,...,w. We construct C,, by
using randomized incremental construction. At the ith step, we maintain C;, which is com-
puted from C;_; by inserting into it the region r;. This involves removing vertical trapezoids
of C;_; that are covered by r;, splitting trapezoids that intersect the boundary of r;, and
merging trapezoids that are adjacent and have common ceiling and floor curves. We stop as
soon as we computed C,. See [SA95, Mul94] for further details on randomized incremental
constructions.

For every trapezoid A € C; the algorithm also maintains its “conflict-list” which is the list
of all regions of R intersecting the interior of A, for ¢ = 1,...,w. Using those conflict-lists,
we compute the arrangement A of the black regions that intersect A, for every trapezoid
A € C,. Next, we perform a traversal of this arrangement, and for every face of Aa, we
generate the relevant edges in G.

Now that the graph G is available, computing the admissible set in G can be done by a
greedy independent set algorithm, which picks the vertex v of lowest degree in GG, add it to the
output set, and remove v and its neighbors from G and recurse on the remaining subgraph.
One can verify that this algorithm computes an independent set in G of size Q((v(G))?/e(G)),
where v(G) and e(G) is the number of vertices and edges of G, respectively. Thus, yielding
the required admissible set.



We next bound the expected running time of this algorithm. It is easily seen that the
number of vertical trapezoids in C; is O(U (7)), and by the Clarkson-Shor probabilistic analysis
[Mul94, Lemma 5.5.1], the expected average length of a conflict-list of C; is O(n/7). Using
backward analysis (see; e.g., [SA95, Mul94]), the probability of a trapezoid of C; to be created
in the ith iteration is O(1/i). Putting everything together, we have that the expected time
to construct C,, is

o(§12-) (82 (52 ot ven.

=1 =1 =1

since we assumed that U(i)/i is a monotone non-decreasing function.

Similarly, the expected time to compute the arrangement of the black regions inside each
a vertical trapezoid A € C,, takes O(I3) time, where A is the size of the conflict-list of A.
Using Clarkson-Shor analysis [Mul94, Lemma 5.5.1] again, it follows that the total expected
time to compute this arrangement is O(U(n)). Thus, it is now straight forward to construct
the graph G from it. Again, computing G takes

AT [0 <u<w)(ﬁ)4>] — OU(n))

w
AECy

E

time, using the Clarkson-Shor analysis [Mul94, Lemma 5.5.1] for the last and final time in
this proof, and observing that w > n/3 with high probability.
The greedy independent set algorithm can be implemented in linear time in the size of
the graph, and as such the running time of the algorithm is dominated by the other stages.
Note, that if the admissible set generated by the algorithm is too small, the algorithm is
run again until it succeeds. ]
We now present several applications of Lemma 3.4 and Lemma 3.5.

Definition 3.6 ([KLPS86]) A family R of Jordan regions in the plane is called a family
of pseudo-discs if the boundaries of each pair of them intersect at most twice.

Theorem 3.7 Let R be a family of n pseudo-discs. Then R admits a CF-coloring with
O(logn) colors. Such a coloring can be constructed in randomized expected O(nlogn) time.

Proof: The complexity of the union of any m regions of R is O(m) (see [KLPS86]).
Plugging this fact into Lemma 3.4, we have that R contains an admissible set S with respect
to R of size Q(n). Applying Lemma 3.2, and arguing as in the proof of Lemma 2.2, we have
that R admits a CF-coloring with O(logn) colors. u

Definition 3.8 ([Efr99]) A planar object ¢ is («, 3)-covered if the following holds: (i) ¢ is
simply connected, and (ii) for any point p € dc we can place a triangle A fully inside ¢, such
that p is a vertex of A, each angle of A is at least «, and the length of each edge of A is at
least 3 times the diameter of c.

Theorem 3.9 Let C be a collection of n (a, 3)-covered regions in the plane, of finite de-
scription complexity, such that the boundaries of each pair of regions of C' intersect in at most
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s points. Then C has a conflict-free coloring using O(Bsy2(n)log® nloglogn) colors, where
Bsi2(n) = Agia(n)/n and where Agi2(n) is the maximum length of an s-order Davenport-
Schinzel sequence from n symbols, see; e.g., [SA95]. This coloring can be computed in ran-
domized expected O(n logo(l) n) time, in an appropriate model of computation.

Proof: In this case, U(n) = O(Asy2(n)log®(n)loglogn) by the result of [Efr99]. Thus, by
Lemma 3.4, C' has an admissible set of size

n? n? n
Q o) : ~Q ! .
U(n) Asi2(n)log” nloglogn Bsi2(n)log” nloglogn

Applying the algorithm described in Lemma 3.2, and arguing as in Lemma 2.2, it follows
that we have a conflict-free coloring of C' using

O(Bs12(n) log® nloglogn)

colors. -

3.2 CF-coloring of Simple Geometric Regions in the Plane
3.2.1 Conflict Free Coloring of Axis-Parallel Rectangles

Lemma 3.10 Let R be a set of n axis-parallel rectangles, all intersecting the y-axis. Then
there is a CF-coloring of R with O(logn) colors, which can be constructed in randomized
expected O(nlogn) time.

Proof: Tt is easy to verify that the complexity of the union of m such rectangles is O(m).
Hence, the result follows immediately from Lemma 3.4 and Lemma 3.2. [

Theorem 3.11 Let R be a set of n axis-parallel rectangles. Then there is a CF-coloring of
R using O(log®n) colors.

Proof: Let £ be a vertical line, such that at most n/2 rectangles of R lie fully to the left of
¢, and at most n/2 rectangles of R lie fully to its right. Let Rg, Ry, R denote respectively
the sets of rectangles crossed by ¢, lying fully to its left, and lying fully to its right. By
Lemma 3.10, we can CF-color the set Ry with O(logn) colors. We color recursively R, and
R, using the same set of colors in both subproblems, but keeping this set disjoint from the
set used to color Rg. This gives rise to a coloring of R with a total of O(log®n) colors, which
is easily seen to be a CF-coloring. [ ]

Again, the proof is constructive, and leads to an O(nlog® n)-randomized expected time
algorithm for computing the coloring.

3.2.2 Conflict Free Coloring of Half Planes

Theorem 3.12 There exists a collection H of n half-planes, for which (logn) colors are
needed in any CF-coloring of 'H.

11



Proof: We use a standard dual transformation that maps a line [ to a point [* and a point
p to a line p*, such that p lies above (resp., below) [ if and only if the line p* lies above (resp.,
below) the point [*. It is easily verified that any CF-coloring of a set H = {lf, o U of
n positive half-planes is equivalent to that of a CF-coloring of a range space (P, R), where
P ={l},...,1:} is the set of dual points of the boundary lines of the half-planes in H, and
R is the set of all negative half-planes. Thus, it suffices to show that for any integer n,
there exists a set P of n points in the plane such that any CF-coloring of P with respect to
negative half-planes needs at least 2(logn) colors. Such a construction can be obtained by
placing n points on the parabola y = x?; see, e.g., [ELRS03]. [
Remark: It easily follows from the results of Even et al. [ELRS03] that O(logn) colors
always suffice for CF-coloring n half-planes.

Similar constructions show that there exists a collection R of n axis-parallel rectangles
for which Q(logn) colors are needed in any CF-coloring of R. This still leaves a logarithmic
gap with the upper bound of Theorem 3.11.

In the context of range spaces, similar constructions of a set of n points in the plane show
that in any CF-coloring of the given points, {2(logn) colors are needed when the ranges are
axis-parallel rectangles.

4 CF-Coloring of Range Spaces

In this section we consider the “dual” problem of CF-coloring of points with respect to
regions rather than coloring regions with respect to points.

4.1 Axis-Parallel Rectangles

In this section, we deal with the problem of conflict-free coloring of points in the plane, where
the ranges are axis-parallel rectangles.

Theorem 4.1 For the set B* of all azis-parallel rectangles in the plane, we have kyy(n, B*) =
O(v/n).

Proof: Let P be a set of n points in the plane, and let G = G(P, B?) denote the corre-
sponding Delaunay graph. Note that the ranges that realize the edges of G can be taken to
be those rectangles that have two points of P as opposite vertices and are otherwise disjoint
from P. If there is a point p € P with degree > 21/n in G, then there are two opposite quad-
rants around p that contain together at least y/n neighbors of p in G(P, B?). See Figure 3.
Suppose, without loss of generality, that these are the upper-right and the lower-left quad-
rants. The neighbors of p in each of the quadrants form a monotone decreasing sequence.
Choosing every other element in each sequence yields an independent set in G of size at
least y/n/2. Otherwise, all the points of p have degree < 24/n in G. However, in this case,
Lemma 2.4 (i) implies that there is an independent set in G of size Q(y/n). By Lemma 2.2
(ii), (P, B?) can be CF-colored using O(y/n) colors. n

Remark: Noga Alon, Timothy Chan, Janos Pach and Geza Té6th [PT03] have independently
noticed that the result of Theorem 4.1 can be slightly improved by a polylogarithmic factor,
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Figure 3: A point p and the neighbors of p in two opposite quadrants in the graph G(P, B?).
The doubly-circled points form an independent set in this graph.

using more involved graph-theoretic arguments [AKS98, PT03]. Their main observation is
that the Delaunay graph G(P, B?) has sparse neighborhoods. Namely, for any point p, the
subgraph of G induced by the set N, of the neighbors of p has size O(|N,|). The result of
[AKS98] implies that if a graph G has maximum degree 6 and has ‘sparse neighborhoods’
then G contains an independent set of size Q(n%). Choosing 6 = y/nlogn we have: If
G contains a point with degree more than 9, then by the above analysis G' contains an
independent set of size (). Otherwise, by the sparse neighborhood property of G we have
that G contains an independent set of size Q(n%) = Q(0). A simple modification of the
proof of Lemma 2.2 (4i) implies that the number of layers into which P can be decomposed

is O(\/%). By Lemma 2.1, (P, B%) can be CF-colored using O(\/%) colors.

Substantially improving the result of Theorem 4.1 is the main open problem that we pose
in this paper, as we currently have only a trivial lower bound of Q(logn).

Using a somewhat different approach, we next give an alternative proof of Theorem 4.1,
which generalizes to higher dimensions.

Theorem 4.2 Let B¢ be the set of all axis-parallel boves in R, Then kop(n, BY) = O (n1_1/2d_1> .

Note that for d = 2 we obtain the same bound as in Theorem 4.1.

Proof: Let P be a set of n points in R?, and denote the coordinates by z1, ..., z4. Let
P, be the ordered sequence of the points of P according to their xi-coordinate. At the ith
stage, for e = 2,...,d, let P; be the longest monotone subsequence of P;_;, according to their
x;-coordinates. By the Erdés-Szekeres Theorem (see, e.g., [Wes01]) there exists a monotone

subsequence of P,_; of length Q(w\Pi_ﬂ).
Thus, P; is a sequence of Q(nl/ 2d_1> points which is monotone in all coordinates (in

each coordinate it can be either increasing or decreasing). It is easy to verify that if we
pick every other point in this sequence, we obtain an independent set in G(P,B?) of size

|Py|/2 = Q(nl/zd_l>. We thus conclude, by Lemma 2.2 (i4), that kyy(n, BY) = O(nlfl/QCH).

13



[

It is easy to construct the CF-coloring provided by Theorem 4.2 in time O(n logn):
There are O(n'~'/2""") iterations, in each of which we compute (d — 1) times a longest
monotone subsequence, which can be done in O(nlogn) time.

In contrast to the rather weak bounds of Theorem 4.1 and Theorem 4.2, we next show
that the special case where P is a grid admits a CF-coloring of (optimal) logarithmic size.

2—1/24-1

Definition 4.3 The grid G(n,d) is the Cartesian product {1, ce Lnl/dj }d.

In the following, we use the fact that if two integer numbers have the same number of
trailing zeros in their binary representation, then there must be a number between them
that have a larger number of trailing zeros in its the binary representation. Thus, we can
use the number of trailing zeros in the binary representation as a the color assigned to an
integer, when coloring consecutive integers.

Lemma 4.4 Let T = B' be the set of intervals on the real line and let cf(i) be the function
defined on the positive integers and returning j+ 1 if 27 is the largest power of 2 that divides
1.

Then the conflict-free chromatic number of (G(n,1),Z) is 1 + |logn|, it is realized by
cf(+), and this bound is tight. Furthermore, for an interval I = [i,j], the color that appears
exactly once in I N G(n,1) is the largest number in the set {cf(i),cf(i+1),...,cf(j)}.

Proof: We only prove the lower bound. The other claims can be easily verified. Let f(-)
be any conflict-free coloring of G(n,1) = {1,...,n}, using the minimum number of colors.
Let h(m) be the minimum number of colors used by f(-) for coloring an interval of length
m.

Consider the color appearing exactly once in the coloring f(-) of the interval I = [1,n].
Namely, there is an ¢ € I such that f(i) # f(j), for all j € I, j # i. Let I, = [1,i — 1]
and I, = [i + 1,n], and assume, without loss of generality, that |I.| > |I;|. Clearly, we have
h(n) = h(|I]) > 1+ h(|I.]) = h([(n —1)/2]) + 1. By induction, it is now easy to prove that
h(n) > [logn] + 1. u

Lemma 4.5 The conflict-free chromatic number of (G(n,d), BY) is at most 1 + |[logn].

Proof: For i = (i,...,1q) € G(n,d), we define its color to be f(i) = ijl cf(i;) — (d —1).
Let R be any axis-parallel box, and let N; be the set of integers in the projection of R onto
the jth axis. Note that, for j = 1,...,d, c¢f(N,) has a unique maximum in this range, by
Lemma 4.4. Let 4 be the index that realizes it. Clearly, f(i') is the maximum value achieved
by f(-) on R, where i’ = (i{,145,...,d,;). Furthermore, no other point of R N G(n,d) realizes
this value. Thus f(-) provides the required conflict-free coloring. To complete the proof, note
that the value of f(-) is bounded from above by d(1+ |log(|n'/?])|) = (d—1) < 1+ [logn].
[

Lemma 4.5 is tight for d = 1 and d = [logn]. For other values of d, one can show a
lower bound of |logn]| —d. To see this, consider any CF-coloring of G(n, d), and let p be the
point with a unique color in the whole grid. Then there is a box that avoids p and contains
almost half of the points of G(n,d). Analyzing carefully the number of points remaining in
this box, and using induction, we obtain the asserted lower bound.
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Figure 4: The region S(p,¢).

4.2 Random Point Set Inside a Square

In the following, let & denote the unit square in the plane. In this section, we consider the
conflict-free coloring of a point-set generated by picking points uniformly and independently
out of Y. The ranges considered are axis-parallel rectangles.

Lemma 4.6 Let Py, P, C U be two random point-sets of cardinality m each, assume that
Py was conflict-free colored using x colors, and let n be a parameter such that m <n. Then
Py U Py can be conflict-free colored using x + O(log®n) colors, with high probability.

Proof: Clearly, if m = O(log®n), then the claim trivially holds. Otherwise, let ¢ =
O((logn)/m). By e-net theory [HW8T7], P; is an e-net for rectangles inside the unit square
under the measure of area, with high probability. Namely, any axis parallel rectangle of area
larger than e, contains a point of P;.

For a point p € U, let

S(p,e) = {q

area(rect(p, q)) < &?}

be the set of points that form rectangles of area at most ¢ with p, namely ¢ € S(p,e) iff
|qe — Pa| - |@y — py| < €, see Figure 4. Furthermore,

! 1 ]
A = area(S(p,e)) < 4(52 +/ Edyz:) = O(alog —) = O( Ognlog m ) :
o=y T € m logn

Clearly, E []S (p,e)N Pg\} = Am, and by the Chernoff inequality,

elogn Am
PI‘|:|S(p, E) N P2| 2 Am(l + logn)} S ((1 + log n)(1+logn)>

logn O(logn)
€ < e—clogznloglogn < n—clognloglogn
= (T + log n) (o) = = !

where ¢ is an appropriate constant.
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Let G5 be the graph defined over the points of P, connecting two points of P, if the
diagonal rectangle they define has area smaller than €. Consider a point p € P, clearly, all its
neighbors in Gy, must lie inside S(p, ), and by the above discussion, with high probability,
the number of neighbors of p in G5 is bounded by

v = O(Amlogn) = O((a log %) mlogn) = O(log3 n).

In particular, G5 can be colored using v + 1 colors. Let f(-) be the coloring of P, U P,
resulting from coloring the points of P; by their given colors, and coloring P, by additional
O(log® n) colors, as specified by the coloring of Gs.

We claim that f(-) is a conflict-free coloring of Py U P;. Indeed, let R C U be an arbitrary
axis-parallel rectangle. If RN Py # (), then we are done, because the given coloring of P; is
conflict-free. Furthermore, if area(R) > €, then it contains a point of P;, as P; is an e-net.

Thus, it must be that area(R) < e, RNP; = ), and RN P, # (). However, by construction
of Gy, all the pairs of points of R N P, are connected in Gq, thus f(-) assigns all of them
unique colors.

It follows that f(-) is a conflict-free coloring of P; U P, with high probability. [ ]

Theorem 4.7 Let P be a set of n points picked randomly and uniformly out of the unit
square U. Then, with high probability, for the range space formed by axis parallel rectangles,
the set P has a conflict-free coloring using O(log4 n) colors.

Proof: Order P in an arbitrary order, and let P; be the first 2¢ points of P. Now,
repeatedly apply Lemma 4.6 to P;\ P,_y and P4, fori=1,..., [logn]. [

Observe, that the property of having an empty axis parallel rectangle is uniquely defined
by the ordering of the given points in each coordinate. It follows, that instead of picking
points randomly in the unit square, we can just generate the points by picking a random
permutation 7 of 1,...,n, and placing the ith point at (z,7(¢)). One can modify the proof
of Theorem 4.7 so that it holds also in this setting. This results in an identical result with
a combinatorial proof instead of a geometric one.

5 Relaxing the Notion of Conflict-Free Coloring

In this section we generalize the notion of CF-coloring of a range space and show a relation
between the problem of CF-coloring a range space and its VC-dimension. We also generalize
the notion of CF-coloring of regions. To simplify the presentation, we ignore in this section
the issue of algorithmic construction of the coloring. Nevertheless, all upper bounds in this
section are constructive, and can be easily computed in polynomial time.

5.1 k-CF-coloring of a range-space

Definition 5.1 k-CF-coloring of a range space: Let (P, R) be a range space in R4 A
function x : P — {1,...,i} is a k-CF-coloring of (P, R) if for every r € R with r NP # ()
there exists a color j such that 1 < [{p € PNr|x(p) =j}| < k; that is, for every possible
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nonempty range r there exists at least one color j such that j appears (at least once and)
at most k£ times among the colors assigned to points of P Nr.

Let kopt(n, k, R) denote the minimum number of colors needed for a k-CF-coloring of
(P, R), maximized over all sets P of size n.
Note that a 1-CF-coloring of a range space is just a CF-coloring.

5.1.1 CF-Coloring of Balls in Three Dimensions

Lemma 5.2 Let R be the set of balls in three dimensions. Then kop(n, R) = n. The same
holds for the set R of halfspaces in RY, for d > 3.

Proof: Take P to be a set of n points on the positive portion of the moment curve
v ={(t,t3,t3)|t > 0} in R®. It is easy to verify that any pair of points p, ¢ € P are connected
in the Delaunay triangulation of P [Eri03], implying that there exists a ball whose intersection
with P is {p,q}. Thus, all points must be colored using different colors.

The second claim follows by lifting P into the standard paraboloid in IR* by the map
(z,y,2) — (z,9,2,2% + 3> + 2%). A ball in R? is mapped to a halfspace in R* so that a
point p lies in the ball if and only if its image lies in the halfspace. It follows that n colors
are necessary in any CF-coloring of the image of P. This clearly extends to any dimension
d> 4. ]

Theorem 5.3 Let R be the set of all balls in R*. Then koy(n, k, R) = O(n*/*), for any
fized constant k > 1.

Proof: The proof technique is a generalization of the ideas introduced in Section 2.
Indeed, let P be any set of n points in IR®, and construct a (k + 1)-uniform hypergraph
H = (P,€), where & is the collection of all subsets of P of size k + 1 that are realizable by
a range in R. By the Clarkson-Shor technique, it is easy to see that |£| = O(n?), where
the constant of proportionality depends on k. Thus, the average degree of H is O(n) and
therefore, by Lemma 2.4 (i), there exists an independent set P’ C P of size Q(n!~'/*).
(Note that independence means that any ball that contains at least k + 1 points of P’, must
also contain a point from P\ P’; this equivalence follows by an appropriate extension of the
monotonicity property of balls.) We can color all points of P’ by a single color, say 1, and
iterate on P\ P, similar to Algorithm 1. Thus, the total number of colors we use is O(n'/¥).
It is easy to see (similar to Lemma 2.1) that this coloring is a valid k-CF-coloring of (P, R).
[

5.2 k-CF-Coloring of Range Spaces with Finite VC-Dimension

Definition 5.4 Let S = (X, R) be a range space. The Vapnik-Chervonenkis dimension (or
VC-dimension) of S, denoted by VC(.5), is the maximal cardinality of a subset P’ C P such
that {P' Nrlr € R} = 27 (such a subset is said to be shattered). If there are arbitrarily
large shattered subsets in X then VC(S) is defined to be co. See [AS00, PA95] for discussion
of VC-dimension and its applications.
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There are many range spaces with finite VC-dimension that arise naturally in combinatorial
and computational geometry. One such example is the range space S = (R%, H,), where Hy
is the family of all (open) halfspaces in RY. Any set of d 4+ 1 affinely independent points
is shattered in this space, and, by Radon’s theorem, no set of d + 2 points is shattered.
Therefore VC'(S) = d+1. As a matter of fact, all range spaces used in this paper have finite
VC-dimension.

Since all the range spaces studied in this paper have finite VC-dimension, and since some
of them can be CF-colored only with n colors, there is no direct relationship between a finite
VC-dimension of a range space and the existence of a CF-coloring of that range space with
a small number of colors. In this subsection we show that such a relationship does exist, if
we consider k-CF-coloring with a reasonably large k.

We first introduce a general framework for k-CF-coloring of a range space S = (X, R).

Definition 5.5 A subset X' C X is k-admissible with respect to S if for any range r € R
with [ N X'| > k we have r N (X \ X’) # 0.

Note that, assuming a monotonicity property of the ranges in R (i.e., if a subset S is
realizable by a range, then its has a subset of size k which is realizable by some range in R),
a k-admissible set is simply an independent set in the hypergraph (X, £), where £ is the set
of all hyperedges consisting of k£ 4+ 1 elements of X that can be realized by a range in R.

Assume that we are given an algorithm A that computes, for any range space S = (X, R),
a non-empty k-admissible set X' = A(S). We can now use the algorithm A to k-CF-color
the given range space: (i) Compute an admissible set X’ = A(S), and assign to all the
elements in X’ the color 1. (ii) Color the remaining elements in X \ X’ recursively, where in
the 7th stage we assign the color ¢ to the points in the resulting k-admissible set. We denote
the resulting coloring by Ca(.5).

The proof of the following lemma is similar to that of Lemma 2.1, and is omitted.

Lemma 5.6 Given a range space S = (X, R), the coloring Ca(S) is a valid k-conflict-free
coloring of S.

Lemma 5.7 Let S = (X, R) with | X| = n be a finite range space with VC-dimension d. For
any k > d there exists a k-admissible set X' C X with respect to S of size Q(nlf(dfl)/k).

Proof: Any coloring of X is valid as far as the small ranges of R are concerned; namely,
those are the ranges that contain at most & points. Thus, let R’ be the set of ranges of R of
size larger than k. By Sauer’s Lemma [Sau72] we have that |R/| < |R| < n®.

Next, we randomly color X by black and white, where an element is being colored in
black with probability p, where p would be specified shortly. Let I be the set of points of X
colored in black. If a range r € R’ is colored only in black, we remove one of the points of r
from I. Let I’ be the resulting set. Clearly, I’ is a k-admissible set for (X, R).

Furthermore, by linearity of expectation, the expected size of I’ is at least

pn — Z p|r\ > pn — Z pk+1 > pn _pk—i-lnd'
reR/ reR/
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Setting p = ((k; + 1)nd_1)_1/k, we have that the expected size of I’ is at least pn — p*+1n? =

pn(l—1/(k+1)) = Q(n'~=V/F)  as required. u
For the case of geometric range spaces, one might be able to get better bounds than the
one guaranteed by Lemma 5.7. See Theorem 5.3 for such an example.

Theorem 5.8 Let S = (X, R) with | X| = n be a finite range space with VC-dimension d.
Then for k > dlogn there exists a k-CF-coloring of S with O(logn) colors.

Proof: By Lemma 5.7 the range space S contains a k-admissible set of size at least n/2.
Plugging this fact to the algorithm suggested by Lemma 5.6 completes the proof of the
theorem. [ ]

As remarked above, Theorem 5.8 applies to all the range spaces studied in this paper.
Note also, that Lemma 5.7 gives us a trade off between the number of colors and the threshold
size of the coloring. As such, the bound of Theorem 5.8 is just one of a family of such bounds
implied by Lemma 5.7.

5.3 k-CF-Coloring of Regions

Definition 5.9 k-CF-coloring of regions: Let R be a collection of regions in RY. A
function y : R — {1,...,i} is a k-CF-coloring of R if for every point p € UR there exists a
color j such that 1 < [{r € R|p € r, x(r) = j}| < k; that is, for every possible point p in the
union of R there exists at least one color j such that j appears (at least once and) at most
k times among the colors assigned to the regions of R that contain p.

As above, we note that a 1-CF-coloring of a set of regions R is just a CF-coloring of R.

Consider a CF-coloring of a set of balls in IR®. Note that the union of a set of n balls
can have Q(n?) complexity and one cannot apply the technique developed in Section 3.1 to
obtain non-trivial bounds on the number of colors needed for a 1-CF-coloring of such a set of
balls, or other regions with high union complexity. However, as we will show in this section,
one can obtain non-trivial bounds on the number of colors needed for k-CF-coloring a set of
regions in IR® with near-quadratic union complexity, for any k& > 2. The approach that we
use generalizes to any fixed dimension.

Let R be a family of regions in IR*, such that the complexity of union of any n regions of
R is at most U(n). In the following, we assume that U(n) is a monotone increasing function

of n and that U(n) = Q(n?). This holds for balls with U(n) = ©(n?) (see, e.g., [SA95]).

Definition 5.10 For a set S of n regions, a subset S C S is k-admissible with respect to
S, if any p € US satisfies one of the following two conditions:

1. There are at most k regions of S that cover D.
2. There exists r € S\ S, such that p € 7.

Assume that we are given an algorithm A that computes for any set S of regions in a
given family a non empty k-admissible set A(S) with respect to S. We can then use the
algorithm A for k-CF-coloring the given regions as follows: (i) Compute a k-admissible set

S = A(S) with respect to S, and assign to all the regions in S the color 1. (ii) Color the
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remaining regions in S\ S recursively, using colors > 2. We denote the resulting coloring by

Ca(S).
Lemma 5.11 Given a set of regions S, the coloring Ca(S) is a valid k-CF-coloring of S.

The proof is similar to that of Lemma 2.1 and Lemma 3.2. The following result extends
Lemma 3.3 to three dimensions.

Lemma 5.12 Let R be a set of n regions in R of constant description complexity and let
U(m) denote the mazimum complezity of the boundary of the union of any m regions of R,
with U(m) = Q(m?). Then the number F<;(R) of 3-dimensional cells of the arrangement
A(R) that are contained in at most i regions of R is O(i’U(n/7)).

Proof: Let S<;(R) be the set of vertices of the arrangement A4(R) (of the boundary
surfaces of the regions in R) that lie in the interior of at most i regions of R. By the
Clarkson-Shor technique [CS89], we have |S<;(R)| = O(i*U(n/i)). We charge a cell con-
tained in at most ¢ regions to its lowest vertex, assuming it has a vertex. Thus, the only
cells unaccountable for by this charging scheme are the cells that have no vertices on their
boundary. However, it is easy to check that the number of such cells is bounded by O(n?).
Thus

Foi(R) = O(S<i(R) +n?) = O(*U(n/i) + n?) = O(*U(n/i)),

by our assumptions on U(n). u

Lemma 5.13 Let R be a set of n regions in R*, and let U(m) denote the mazimum com-
plexity of the union of any m regions of R, such that U(m) = Q(m?) and U(-) is mono-
tone increasing. Then there exists a k-admissible set S C R with respect to R, such that

)?‘ — Q(nlﬂ/’“/u(n)l/k),

Proof: The proof follows closely the ideas of the proof of Lemma 3.4 with a slight twist.
Let A = A(R) be the arrangement of the (boundary surfaces of the) regions of R. Place an
arbitrary point inside each (three-dimensional) cell of the arrangement A and let P denote
the resulting point set.

Let x be a random coloring of the regions of R, by two colors, black and white, where
each region is colored independently by choosing black or white with equal probabilities. A
point p € P is said to be unsafe if all the regions of R that contain p are colored black. Let
Py be the set of unsafe points of P. Let R be the set of all regions of R which are colored
black by x. We construct a (k+ 1)-uniform hypergraph H over R g, whose set of hyperedges
consist of all (k + 1)-tuples of regions r1,...,rt1 € Rp for which there is an unsafe point
p € Py in ﬂ?illrj.

Let e(H) and v(H) denote respectively, the number of hyperedges and of vertices of H.
We claim that, with constant probability, v(H) > n/3 and e(H) = O(U(n)).

Clearly, the condition |Rg| = v(H) > n/3 holds with high probability by the Chernoff
inequality (see, e.g., [AS00]). Similar to the proof of Lemma 3.4, the probability that p is
unsafe is 1/24%) where d(p) is the number of regions containing p. If p is unsafe, there

are (‘;Sf’l)) (k 4 1)-tuples of regions of R whose intersection contains p, so p induces (‘;gﬂ))

hyperedges in H. Let X, be the random variable having value 0 if p is safe, and (25’_”1)) if p
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is unsafe. Clearly, e(H) < Zpe p Xp. Thus, using linearity of expectation and Lemma 5.12,
we have

(25?1)) - k1
B <Y EY) = 3 ool > Y 5
pEP ey =
d(p)>k+1 d(p)—i
- -3 N nkta
- O i:;lz Un/i) - 5 =0 iZ;I > Un) | =0Un)).

Thus, by the Markov inequality, it follows that there is a constant ¢, such that
Prie(H) > c-U(n)] < 1/4.

It follows that, with constant probability, H has at least n/3 vertices, and its average
degree is at most (k + 1)3c-U(n)/n. Thus, by Lemma 2.4 (ii), H contains an independent
nlt1/k
M(n)l/kz
k-admissible with respect to R. This completes the proof of the lemma. [ ]

Note that when U(n) = O(n?) we have a k-admissible set of size Q(n!'=/¥).

set of size () m = Q( ) It is easy to verify that any such independent set is

Theorem 5.14 Let R be a set of n balls in R>. For any k > 2, there exists a k-CF-coloring
of R with a total of at most O(n*/*) colors.

Proof: By Lemma 5.13 there exists a k-admissible set R’ with respect to R of size
Q(nl_l/ *). Plugging this fact into the algorithm suggested by Lemma 5.11 completes the
proof. [ ]

Remark: A closer inspection of the analysis of the proof of Lemma 5.13 shows that the
lemma generalizes to any dimension d > 3, provided that we assume that U(m) = Q(m?=1).

Theorem 5.15 Let R be a set of n regions in R with the property that the complexity of
the union of any m regions of R is at most U(m), where U(m) = Q(m?) and is monotone

~

S

increasing. Then there exists a k-admissible set S C R with respect to R, such that

Q<n1+1/k/u<n)1/k)’

Remark: The condition that U(m) = Q(n?"!) can be dropped, using a more careful analysis,
based on the Clarkson-Shor technique. We omit details of this improvement.

6 Conclusions
We proved several results on conflict-free coloring of points and regions. There are numerous

problems for further research suggested by our results. In particular, the main open problems
we pose in this paper for further research are:
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1. Substantially improve the bounds on the CF-chromatic number of points in the plane
with respect to axis-parallel rectangles.

2. Improve the bounds on the k-CF-chromatic number of points, with respect to balls, in
IRd,fordZSandeZ

3. Improve the bounds on the number of colors needed for k-CF-coloring of n balls in IR?,
for d > 3 and k£ > 2.

4. Develop deterministic algorithms for conflict-free coloring. One natural approach is to
try to use discrepancy [Cha00, Mat99].

5. Develop kinetic coloring framework for moving points (or regions in the dual case).

6. Develop a dynamic coloring framework for supporting the more general case where
points (or regions in the dual case) can be inserted and deleted.

Acknowledgments

The authors would like to thank Pankaj Agarwal, Noga Alon, Boris Aronov, Timothy Chan,
Jeff Erickson, Guy Even, Janos Pach, Rom Pinchasi and Micha Sharir for helpful discussions
of the problems studied in this paper. In particular, the authors would like to thank Micha
Sharir for his invaluable and helpful comments on preliminary versions of this paper.

References

[AKS98] N. Alon, M. Krivelevich, and B. Sudakov. Coloring graphs with sparse neighbor-
hoods. J. Comb. Theo. Ser. B, 77:73-82, 1998.

[AS00] N. Alon and J. H. Spencer. The probabilistic method. Wiley Inter-Science, 2nd
edition, 2000.

[BKOS00] M. De Berg, M. Van Kreveld, M. H. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 2nd edition,
2000.

[Cha00]  B. Chazelle. The Discrepancy Method. Cambridge University Press, 2000.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in computa-
tional geometry, I1. Discrete Comput. Geom., 4:387-421, 1989.

[Efr99] A. Efrat. The complexity of the union of («, 3)-covered objects. In Proc. 15th
Annu. ACM Sympos. Comput. Geom., pages 134-142, 1999.

[ELRS03] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-free colorings of simple
geometric regions with applications to frequency assignment in cellular networks.
SIAM J. Comput., 33(1):94-136, 2003.

22



[Eri03]

[ES00]

[HWS7]

[KLPSS6]

[Mat99]

[Mul94]

[PA95]

[PT03]

[SA95]

[Sau72]

[Smo03]

[Wes01]

J. Erickson. Nice point sets can have nasty delaunay triangulations. Discrete
Comput. Geom., 30(1):109-132, 2003.

A. Efrat and M. Sharir. On the complexity of the union of fat convex objects in
the plane. Discrete Comput. Geom., 23:171-189, 2000.

D. Haussler and E. Welzl. e-nets and simplex range queries. Discrete Comput.
Geom., 2:127-151, 1987.

K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translation al motion amidst polygonal obstacles. Discrete Comput.
Geom., 1:59-71, 1986.

J. Matousek. Geometric Discrepancy. Springer, 1999.

K. Mulmuley. Computational Geometry: An Introduction Through Randomized
Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

J. Pach and P.K. Agarwal. Combinatorial Geometry. John Wiley & Sons, New
York, NY, 1995.

J. Pach and G. Téth. Conflict free colorings. In Discrete and Computational
Geometry, The Goodman-Pollack Festschrift. Springer Verlag, Heidelberg, 2003.

M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York, 1995.

N. Sauer. On the density of families of sets. J. Combin. Theory Ser. A, 13:145—
147, 1972.

S. Smorodinsky. Combinatorial Problems in Computational Geometry. PhD the-
sis, School of Computer Science, Tel-Aviv University, Tel Aviv, Israel, 2003.

D. B. West. Intorudction to Graph Theory. Prentice Hall, 2ed edition, 2001.

23



