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Abstract

Consider a simple polyhedron P, possibly non-convex,
composed of n triangular regions (faces), in which each
region has an associated positive weight. The cost of
travel through each region is the distance traveled times
its weight. We present and experimentally study sev-
eral algorithms to compute an approximate weighted
geodesic shortest path, #'(s,t), between two points s
and ¢ on the surface of P. Our algorithms are simple,
practical, less prone to numerical problems, adaptable
to a wide spectrum of weight functions, and use only el-
ementary data structures. An additional feature of our
algorithms is that execution time and space utilization
can be traded off for accuracy; likewise, a sequence of
approximate shortest paths for a given pair of points
can be computed with increasing accuracy (and execu-
tion time) if desired. Dynamic changes to the polyhe-
dron (removal, insertions of vertices or faces) are easily
handled. The key step in these algorithms is the con-
struction of a graph by introducing Steiner points on the
edges of the given polyhedron and compute a shortest
path in the resulting graph using Dijkstra’s algorithm.
Different strategies for Steiner point placement are ex-
amined. Our experimental results obtained on Trian-
gular Irregular Networks (TINs) modeling terrains in
Geographical Information Systems (GIS) show that a
constant number of Steiner points per edge suffice to
obtain high-quality approximate shortest paths. The
time complexity of these algorithms for TINs (obtained
using real data and randomly generated data) which we
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experimentally investigated is O(nlogn).

Our analysis bounds the approximate shortest path
cost, @'(s,t), by 7(s,t) + Wmae - ||, where 7(s,t) de-
notes the geodesic shortest path between s and ¢ on the
boundary of P, [, is the longest edge and wy,q, 1s the
maximum weight of the faces of P, respectively. The
worst case time complexity is bounded by O(n®). We
present an alternate algorithm, using graph spanners,
that runs in O(n3logn) worst case time and reports an
approximate path such that 7'(s,t) < 8(7(s,t) + Wmag -
llc]), where 8 > 1 is a constant. Already, for planar sub-
divisions, the best known algorithm for computing exact
geodesic weighted shortest path runs in O(n®logn) time
and using O(n*) space, due to Mitchell and Papadim-
itriou [12]. We are not aware of any adequately docu-
mented algorithm for computing approximate weighted
shortest paths.

1 Introduction

Shortest path problems are among the fundamental prob-
lems studied in computational geometry. In this paper,
we consider the problem of computing a shortest cost
path between two points s and ¢ on a polyhedral sur-
face P. The surface is composed of triangular regions
(faces) in which each region has an associated positive
weight indicating the cost of travel in that region. This
problem arises in numerous applications in areas such as
robotics, traffic control, search and rescue, water flow
analysis, road design, navigation, routing, geographi-
cal information systems. Most of these applications de-
mand simple and efficient algorithms to compute ap-
proximate shortest paths as opposed to a complex algo-
rithm that computes an exact path. Polyhedra arising
in these applications approximate real surfaces and thus
an approximate path will typically suffice. Our interest
is also motivated by our research and development on
a parallel system for GIS and spatial modeling.



Research work on computing a shortest geodesic path
on unweighted polyhedral surfaces began with the spe-
cial case of convex polyhedra [14, 17]. Approximate
computations of Euclidean paths on unweighted poly-
hedra have recently been reported by [1, 7]. The compu-
tation of Euclidean shortest paths on non-convex poly-
hedra has been investigated by [3, 11, 15, 19]; cur-
rently, the best known algorithm due to Chen and Han
[3] runs in O(n?) time. * The best known algorithm
for the query problem, where both source and destina-
tion are unknown, requires O(n®m!+%), for § > 0 and
1 < m < n?, to answer queries in O((n/m'*)logn)
time [2].

Mitchell and Papadimitriou [12] introduced the “wei-
ghted region problem” and presented an algorithm that
computes a shortest weighted cost path between two
points in a planar subdivision; it requires O(n®logn)
time in the worst case. They state that their algorithm
applies to non-convex polyhedral terrains with modifi-
cations. (See the survey paper by Mitchell and Suri [13]
for several results on shortest path problems.)

Motivated by the practical importance of these prob-
lems and very high complexities for computing exact
shortest paths, we investigate algorithms for comput-
ing approximated shortest paths. In this paper we pro-
pose several simple and practical algorithms (schemes)
to compute an approximated weighted shortest path
@' (s,t) between two points s and ¢ on the surface of a
(possibly, non-convex) polyhedron P. The accuracy of
the approximation varies with the length of the longest
edge I, of P and the maximum weight w4, of the
faces of P. We present two variations on the algo-
rithm. The first ensures that |7'(s,t)| < |7(s, )|+ Wmaz-
|lc|. The second, based on graph spanners, ensures that
|7'(s,t)| < B(|7(s,t)] + Wmaz - |le]) for some fixed con-
stant § > 1. Our experimental results indicate that the
schemes presented here perform very well in practice
and guarantee excellent results for polyhedra in which
|7(s,t)] >> |le|- The typical running time for our al-
gorithms is O(nlogn) although the worst case running
times for our algorithms are O(n%) and O(n3logn), re-
spectively.

Our methodology for computing approximate short-
est paths in unweighted TINs involves computing the
sequence of faces through which the approximate path
passes and then constructing the path by performing
a “sleeve computation”. In some cases the set of faces
intersected by our approximate shortest path is identi-

*Very recently, Varadarajan and Agarwal [19] propose an
algorithm that computes an unweighted approximated path
which is at most 13 times the actual path length and requires
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O(n3 logs n) time and produces a path that is at most 15 times
the optimal.
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Figure 1: A worst case example

cal to that of the actual shortest path, and hence the
“sleeve computation” reports the actual shortest path.

2 Shortest Path Approximations

2.1 A Simple Approach

Given a polyhedron P, we could compute a graph G
(with edge weights) as follows. The vertices in G corre-
spond to the vertices of P and there is an edge between
two vertices in G if the corresponding vertices in P are
connected by an edge.

For simplicity, assume that the source, s, and the
target, ¢, are vertices of P. Let n(s,t) be composed of a
sequence of k adjacent straight line segments s1, so, ..., Sg.
The cost of a segment s;,1 < j < k passing through
face f;,1 < i < n is assumed to be wy; - |s;|. Similarly,
an approximated path is denoted by 7'(s,t) with cost
|7'(s,t)| and segments s}, s, ..., Sk

7'(s,t) can be computed using Dijkstra’s algorithm
[5]. This scheme confines the path to traveling on edges
of P, the quality of the approximation depends on the
given triangulation, which could be bad in the worst
case (see Figure 1). The approximated path #'(s,?)
with &’ links may have length &’ - |l.| and this could be
much larger than |7 (s,?)|.

2.2 Our Approximation Algorithms

We improve on the previous scheme by introducing Stei-
ner points on the edges of the polyhedron. The set of
vertices of G will now consist of vertices and Steiner
points of P. We designed several strategies for placing
vertices and edges in the graph Gj this distinguishes the
schemes examined here.



2.2.1 Fixed Scheme

We add m Steiner points evenly along each edge of P,
for some positive integer m. For each face f;,1 <i<n
of P, compute a subgraph G; as follows. The Steiner
points, along with the original vertices of f;, become
vertices of G;. Connect a vertex pair vq, vy of G; to
form an edge of G; if and only if a) v, and vy represent
Steiner points that lie on different edges of f; or b) v,
and vy represent Steiner points that are adjacent on the
same edge of f;. The weight on a graph edge is the
Euclidean distance between v, and v times the weight
of f;. Denote G; as a complete graph although some
edges are missing (i.e., those connecting vertices of non-
adjacent Steiner points of the same polyhedral edge). A
graph G is then computed by forming the union of all
G,’, 1 S i S n.

The approximated shortest path in P is computed
by first determining a shortest path in G using Dijk-
stra’s algorithm and then transforming this path to a
corresponding path in P. It can easily be shown that
all edges of G lie on the surface of P. Hence, any path
in G (i.e., our approximation) must also be a path on
the surface of P.

In order to analyze the cost of an approximated path,
we first consider how each segment of a shortest path is
approximated. If we compute a path «'(s,¢) in G that
passes through the same sequence of faces as w(s,?),
then the following claim is made:

Claim 1 We can approximate a segment s;,1 < j <k
of m(s,t) passing through face f;,1 < ¢ < n with an
edge s; of G; such that wy; -[s}| < wy;-[sj| +wyi- nLI_T_ll,
where m is the number of Steiner points added to each
edge of the face f;.

Proof: Each edge is divided into m + 1 intervals which
have length at most nLIell. From the properties of weigh-
ted paths as described by Mitchell and Papadimitriou
[12], it follows that s; either crosses f; completely as
shown in Figure 2 or it travels along an edge of f; (i.e.,
they show that the weighted shortest path obeys Snell’s
law of refraction and bends only at the edges of P).
Assume that s; begins at a point @ inside an interval of
an edge of f; and ends at the point b inside an interval
of another edge (possibly the same one) of f;. Without
loss of generality assume that 5; begins at an interval
endpoint (i.e., a Steiner point), say ¢, that is closest to a
and ends at an interval endpoint, say d, which is closest
to b. Now if ¢ and d are on different edges we know
that there is a Steiner edge joining them. If they lie
on the same edge, then there exists a series of adjacent
collinear Steiner edges joining them, and we view these

Figure 2: A weighted shortest path segment s; that
crosses a face.

. . ,
collinear edges as a single segment .

In Figure 2, the triangle inequality ensures that [s}| <
|ea| + |sj| + |bd|. Since we chose the closer interval end-

points, then |ca| < m and |bd| < m Hence

I
. 1
m+ 1 (1)

s3] < lsil +
Now, multiplying by wy, we have

|l |
m+1

(2)

wy, - |8y < wy, - |si| +wy, -

In the case where a segment of the path travels along
an edge of P, we know that [¢a| and |bd| have the same
bounds as in 2. It is easily shown that equations 1 and
2 still hold. The proof also applies to the first and last
segments of #(s,?) in which s and ¢ may be internal to
faces.O

Lemma 1 There exists an approximated path #'(s,?)

in P such that |7'(s,t)| < |#(s, )| + nlzl—ill k- Wnag-

Proof: Let #'(s,t) be an approximated path with k
segments that passes through the same sequence of faces
as w(s,t). We write: |n(s,t)| = Ele(wfsl - |si|) and
|7'(s,t)| = Ele(wfsl - |si|) where wy, is the weight
of the face that s; passes through. By applying the
results of Claim 1 to each segment of w(s,¢) we have:

k k le
Sici(wr, - 1si) < Xicy(wy,, - lsil +wy,, - Help).
We can rewrite this as

I k
|7'(s,8)] < In(s, )] + sy - S50 ().
Since wy, < Wmag for all f,, by definition, then

|Ze|
m-+1

I7(, D] < [7(, D]+~ k- e (3)



Since a shortest weighted path on P may cross an
edge O(n) times, we obtain the following theorem:

Theorem 1 Using the fixed scheme, we can compute
an approximation #'(s, ) of the weighted shortest path
7(s,t) between two points s and ¢ on a polyhedral sur-
face P such that |7'(s,t)| < |7(s, )| + Wmaz - |le|, where
le is the longest edge of P and w4, is the maximum
weight of any face of P. Moreover, we can compute this
path in O(n®) time.

Proof: We know (from Mitchell and Papadimitriou
[12]) that a shortest weighted path on P may cross an
edge O(n) times. Hence, a weighted shortest path may
have O(n?) segments. In Lemma 1, set ¥ = n? and
m = n?, then we obtain:

|7Tl(57t)| S |7T(57t)| + Wmaz * |le|- (4)

Using the fixed scheme, each edge contributes O(n?)
graph vertices and each face contributes O(n*) graph
edges. Thus, the algorithm requires O(n?®) space for
graph vertices and O(n®) space for graph edges. Dijk-
stra’s shortest path algorithm takes O(n®) time on this
graph, using a fibonacci heap. O

2.2.2 Interval Scheme

In the fixed scheme, we made an assumption in our
analysis that each edge crossed by the shortest path
was of length |l.|. In practice there are many edges of
‘P with small length compared to |l.| (we have examined
edge-length histograms for all of our data). This means
that the addition of m Steiner points to the smaller

edges resulted in very small intervals with length much
[Ze]

less than meT

We can improve the fixed scheme by forcing the in-
tervals between adjacent Steiner points on an edge to be
of length nLl_T_ll. As a result, we can typically reduce the

number of Steiner points added per edge considerably.

Since the maximum length of an interval is at most
nljill, the proofs of Claim 1 and Lemma 1 still apply
and hence Theorem 1 holds for the interval scheme. Al-
though, the worst case analysis is the same for both
schemes, the reduction of Steiner points has the advan-
tage of reducing the number of graph vertices and edges
that are created and processed by the graph shortest

path algorithm.

2.2.3 Spanner Schemes

The time complexities of the previous two schemes can
be further improved as described next; though the ap-

Figure 3: The spanner edges added from a vertex v;
with 6 = 30°.

proximation achieved is not as good. Intuitively, we
should be able to eliminate some edges joining Steiner
points without a drastic reduction in our approximation
factor. We eliminate these edges by using the notion of
a spanner. Let G;,1 < i < n be the complete graph
formed by applying the edge decomposition scheme on
a face f; of P with m Steiner points per edge. G; has
3(m + 1) vertices and 3(m + 1)? edges (including those
along the face boundaries). We construct a 3-spanner
of G; and call it G}. The vertices of G} are the vertices
of G; which we sort in CCW order around any interior
point of f; to form a sorted list Var.

Let C be the set of 2-d cones with apex at v;,1 < j <
3(m+1) and the conical angle § = % for p > 4. For each
vertex v; perform a radial sweep of the vertices v,, (j +
1mod(3(m+1)) < r < (j—143(m+1))mod(3(m+1)).
During this sweep compute the vertex v;,;, that has
minimal distance to v; in each of the p cones and add
an edge to G} connecting v; and vm;, (see Figure 3).

Results of Clarkson [4], ensure that G is a 3-spanner

for G; where 8 = m. Since G} is a [-spanner

with O(m) vertices, it has O(m) edges. We create a

similar spanner for each face of P individually and then
A

merge each G},1 < i < n to form the union G’. The
approximate shortest path 7'(s, ) is computed by com-

puting a shortest path in G'.

Claim 2 A segment s;,1 < j < k of 7(s,t) passing
through f; can be approximated by a path p; in G

le
such that wy, - [p;| < 8- wy, - |sj|+ 8- wy, - n|1-|—|1’

m is the number of Steiner points added per edge.

where

Proof: From Claim 1 it follows that wy, - |sj| < wy, -

[sj]|+wy, - nl”l,lill for some segment s’ in G;. From the def-

inition of G}, it follows that s} can be approximated by
a path p; in G; such that [p;| < 3-[s}|. By substituting




this into the result of Claim 1,

' l
wy, - |pﬁ_]| Swy, - |sjl < wy, - Isjl 4wy, mlj—|1 )
Hence,
|le|
wy - |pil S Bewp sl + Brwp 7 (6)

Lemma 2 By applying the S-spanner scheme to P us-
ing m Steiner points per edge, an approximate path
7'(s,t) is obtained for which |#'(s,t)| < B(|7(s,t)| +

le
n|1—+|1 . ]C . wmaz).

Proof: The proof uses the results of Claim 2 and the
techniques of Lemma 1. Let #'(s,t) be the approxi-
mated path with k subpaths pq, pa, ..., pr that passes
through the same faces as s1, sz, ..., s of 7(s,t) respec-
tively. From the definition of the path cost it follows
that

|m(s,t)| = iy (wy,, - |si]) and
k
|7'(s, 1) = Ei:1(wfs, “|pil)-

By applying the results of Claim 2 to each segment of
7(s,t) we have

k k le
S (g, - |pil) < Tiy (B wy,, -lsil + 8wy, - ).
Rewrite this as

|7 (s, )] < B(Im(s, )] + L=k S8 (wy,))

Since wy,, < Wmag for all f;, by definition, then

|le]
m-+1

7' (s, 1) < B(|7(s, )| + k- wmaz). (7)

Theorem 2 An approximate weighted shortest path
@' (s,t) between two points s and ¢ on a polyhedron of
n faces can be computed in O(n3logn) time such that
|7'(s,t)| < B(|7(s,t)| + Wmaz - |le]), B > 1, where I, is
the longest edge of P and wpqz is the maximum weight
of any face of P.

Proof: The correctness follows from Lemma 2. We ap-
ply the f-spanner scheme to obtain G} for each face f;
of P where 1 < i < n. Using O(n?) Steiner points per
edge, each subgraph G’ contains O(n?) graph vertices
and each vertex has a constant (depending upon 3) de-
gree since G} is a spanner. Each G} is computed by
applying a radial sweep to each vertex in order to add
its incident edges. Using a simple approach, this sweep
could take O(n?) time per vertex. However, since there

are a constant number of cones (& 2p), we can divide
O(n?) vertices into an equal number of partitions. Since
these vertices are sorted radially, we can apply a binary
search for each of the cones to obtain the partitions in
O(logn) time. For each partition, we can again apply
a binary search to obtain the closest vertex (vmsn) in
O(logn) time as well. Since there are a constant num-
ber of partitions, each of the O(n?) vertices can be pro-
cessed in O(logn) time and hence G} can be computed
in O(n?logn) time. Since there are n faces, G’ can be
computed in O(n3logn) time. A shortest path in G’
can be computed by using Dijkstra’s algorithm (with a
Fibonacci heap) and it runs in O(n>log n) time. No fur-
ther improvement on the graph construction is stated
as the cost matches that of Dijkstra’s shortest path al-
gorithm. O

2.2.4 Sleeve Based Schemes

The scheme discussed next applies only to unweighted
polyhedra. We first compute the approximate short-
est path 7'(s,t) either using the fixed or the interval
scheme. We then determine a sleeve by unfolding the
faces along the edge sequence of 7'(s,t) and compute
the shortest path that lies within this sleeve. We have
implemented an algorithm similar to the algorithm of
Guibas and Hershberger [6] and have applied this to our
approximated path. (We omit the details of our sleeve
computation due to space constraints from this ver-
sion.) Section 3 shows that these approximated paths
are much more accurate with this additional compu-
tation at a negligible increase in execution time. In
most of our cases, the edge sequence of the approx-
imated path is identical to that of an exact shortest
path. The sleeve computation then produces the exact
shortest path.

There is no efficient algorithm for computing short-
est paths in weighted sleeves. For the weighted case
however, we can perform a second approximation based
on the outcome of the first. To do this, we select a buffer
of faces from P to be used in the computation of the
second approximation by selecting all faces that were
“passed through” by the first approximated path. If this
approximated path passed through a vertex, we add all
incident faces of this vertex to the buffer. We then ap-
ply the approximation scheme on the buffer faces with
an increased number of Steiner points per edge. As a
result, we obtain a refined path. The refinement can be
repeated as many times as desired.



2.3 Implementation Related Issues

A Variation of Dijkstra’s Algorithm: In place
of using Dijkstra’s shortest path graph algorithm, we
implemented a known variation of the algorithm. In this
scheme we associate an additional weight to each vertex,
namely its Euclidean distance to the target vertex. In
this algorithm, at any iteration, the least cost vertex
which we choose is the one which minimizes the sum
of its cost from the source vertex plus the Euclidean
distance to the target vertex, over all possible vertices.

Space Complexity: In applications, the space re-
quirements for algorithms on TINs are often important.
To address this, in any of our schemes, we can store the
graph as it pertains to Steiner points implicitly. In an
iteration of Dijkstra’s algorithm, adjacency information
can be computed on the fly with little penalty.

Numerical Issues: Suri [18] points out that the Chen
and Han algorithm [3] based on unfolding is sensitive
to numerical problems. This is due to the fact that 3D
rotations are performed and errors accumulate along
the paths and geometric structures computed. In our
schemes the paths go through vertices or Steiner points
(with the exception of the variation using as final step
a sleeve computation); thus reducing the accumulation
of numerical errors.

3 Experimental Results

A natural subclass of non-convex polyhedra is a Tri-
angular Irreqular Network or TIN which has triangular
faces. A TIN is often constructed from a triangulated
point set in the plane in which each point is assigned a
height. In Geographic Information Systems, Cartogra-
phy and related areas, shortest path problems arise fre-
quently on terrains which are often modeled using TINs
as shown in Figure 4. Due to their practical relevance,
and in the context of our R&D [8], our experimental
results are for TINs although the algorithms presented
here also apply to any non-convex polyhedra.

One of the main difficulties in presenting experimen-
tal results is to choose benchmark TINs. It is con-
ceivable that different TIN characteristics could affect
the performance of an algorithm. We have attempted
to accommodate different characteristics by perform-
ing our tests with TINs that have different sizes (i.e.
number of faces), height characteristics (i.e. smooth or
spiky (modeled by accentuating the heights)), and data
sources (i.e. random or sampled from Digital Elevation
Models (DEM)). Table 1 shows the attributes of the
TINs that we’ve tested. TINs with stretched heights
were created by multiplying their heights by five.

Figure 4: A weighted shortest path on a terrain in which
traveling on water is expensive.

FACES [ STRETCHED HEIGHTS [ DATA SOURCE |

1012 NO DEM
1012 YES DEM
5000 NO RANDOM
5000 YES RANDOM
10082 NO DEM
10082 YES DEM

Table 1: The various TINs and their attributes.

For each TIN, we computed a set of 100 random
vertex pairs. We then tested each of the approximation
schemes as shown in Table 2. We give the id of each
scheme as they appear in the graphs. For each test,
we computed the path cost between each of the 100
vertex pairs and then obtained an “average path cost”
for these pairs. The tests were performed in iterations
based on the number of Steiner points per edge. Each
scheme was tested for both weighted and non-weighted
scenarios (with the exception of the sleeve computations
which were only computed in the unweighted case; a
second approximation using a buffer was applied in the
weighted case).

For the weighted domain, we use the same TINs and

LEGEND ID SCHEME SLEEVE or BUFFER

INT INTERVAL NO
FIX FIXED NO
INTSLV INTERVAL YES
FIXSLV FIXED YES

Table 2: The different approximation schemes.



we assign a weight to each face as the slope of the face.
Thus, steeper faces have higher weight. Each edge of
the TIN is given weight equal to the minimum of its
adjacent faces. We determined experimentally that the
spanner schemes provide slightly worse approximations
and do not provide adequate improvement in running
time; we omit the graphs here. Our analysis for the
approximation, bounds the number of Steiner points
by O(n?) per edge in the worst case, this is far from the
values required in our test suites using typical TINs.

3.1 Path Accuracy

We first ran tests on a terrain where the weight was ho-
mogeneous throughout all faces, i.e., we examined the
Euclidean shortest path problem. The graphs in Fig-
ure 6 depict the results of these tests for variations of
our approximation schemes. We can see that by using
only a small number of Steiner points per edge, the ap-
proximated path length quickly converges to the actual
path length (as computed using Chen and Han algo-
rithm [3]). The graph shows that only a small number
of Steiner points (i.e., 6) per edge suffice to obtain close-
to-optimal approximations. Furthermore, the path ac-
curacy observed is far better than the theoretical bound
derived. The graphs also illustrate that the additional
sleeve computation helps to obtain even more accurate
approximations. Therefore, the best of our unweighted
schemes is the interval scheme with the sleeve compu-
tation (IntSlv).

The graphs on the right of Figure 6 represent the ap-
proximations we obtained on the TINs with the heights
of the vertices multiplied by a factor of 5. The graphs
show that the results remain very good in that the ap-
proximate path length converges after only a few Steiner
points per edge are added. We do see however, that
the convergence is not as quick. This is mainly due
to the fact that Steiner points are placed further apart
along the now longer edges. Therefore it requires more
Steiner points to reduce the interval size to that of the
flatter TIN. The interval scheme performs better than
the fixed scheme, since interval scheme favors placement
of Steiner points on longer edges and longer edges are
more likely to be crossed by the set of our random paths.

3.2 Computation Time

Since we are adding only a constant number of Steiner
points on the average per edge, the running time of our
algorithms is O(nlogn). In general, the algorithms’
running times depend on the number of Steiner edges
since we are evoking Dijkstra’s graph shortest path al-
gorithm.

The graphs of Figure 7 depict the running time for
our 10,082 face TIN. We can see that our algorithms
are substantially faster than Chen and Han[3]. The
main reason is that our algorithms do not require any
complex data structures nor do they perform expensive
computations (i.e., 3D rotation and unfoldings). We
precompute the graph G and then perform a search for
each query; a query is for a pair (source, destination),
and we measure the time it takes to answer a query.
From the graphs, we can see that the time required for
the additional sleeve computation is negligible.

3.3 Weighted Paths

One problem in determining the accuracy of the algo-
rithm in the weighted scenario is that we do not have
an implementation of any algorithm that determines
the actual shortest weighted path. The graphs of Fig-
ure 8 show the accuracy obtained through experimen-
tation. As with the unweighted case, our path costs
converge to some value after only a few Steiner points
were added per edge. We therefore conjecture, that the
cost of the paths converge similar to the unweighted
scenario. From the graphs we can see that the second
approximation based on the buffer technique provides
a similar increase in accuracy as with the unweighted
sleeve computations.

Since our algorithm is the same for unweighted and
weighted scenarios, we obtained almost identical run-
ning time as shown in Figure 9. We can see however,
that the second approximation resulted in a significant
increase in computation time with respect to the in-
crease shown for the unweighted sleeve computations.
This increase is mainly due to the construction of a new
refined graph which is necessary for each query.

4 Conclusion and Future Work

Shortest path problems belong to a class of geomet-
ric problems that are fundamental and of significant
practical relevance. While realistic shortest path prob-
lems frequently arise in applications where the cost of
travel is not uniform over the domain, the time, space
and implementation complexities of existing algorithms
even for the planar case are extremely large which mo-
tivates our study of approximation algorithms. Our ex-
perimental results show that high-quality approxima-
tions can be obtained with very good run-times. More
precisely, we have provided empirical results showing
that typical terrain data requires only a few (constant)
Steiner points per edge. This reduces the running time
to O(nlogn) in practice which is orders of magnitude



smaller than the best known exact shortest path algo-
rithm. The solutions are simple and of practical value.

We also theoretically establish bounds on the ap-
proximation quality and give worst-case bounds on the
run-time of our algorithms.

For the unweighted scenario, we compared our ac-
curacy to that of Chen and Han [3] and gave results
indicating that our algorithm performs up to 50 times
faster with a mimimum observed speedup of 14 times
and produces nearly identical path results. We claim
that our algorithm is efficient w.r.t. accuracy versus
running time and is simple to implement. Our algo-
rithm is of particular interest also for the case of queries
with unknown source and destination.

Currently, we are investigating scenarios that involve
other realistic weights taking into consideration physi-
cal properties of vehicles (see Figure 5 ). We are also
working on other schemes and a parallel implementa-
tion of our algorithms.

Figure 5: Shortest weighted path taking into consider-
ation the maximum slope a vehicle can travel, as well
as the turning angle.
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