Parallel Neighbourhood Modelling *f

D. Hutchinson, M. Lanthier, A. Maheshwari,

D. Nussbaum, D. Roytenberg, and J.-R. Sack
PARADIGM Group, School of Computer Science
Carleton University, Ottawa, Ont., Canada K1S 5B6
<http://www.scs.carleton.ca/gis>

1 Introduction

It has been observed that in recent years Geographi-
cal Information Systems(GIS) and Spatial Information
Systems have gone through substantial changes with re-
spect to users, problems, problem domains, and data.
The GIS community is rapidly expanding to include
users from different sectors of the economy; along with
this come different demands regarding the type, re-
quired speed, scope and scale of applications. Users in
decision making positions require rapid, close to instan-
taneous responses even to complex queries. In addition,
users today have access to an unprecedented amount of
high resolution and high-quality data through scanners,
satellites, range finders, medical equipment and other
devices.

The effect of these changes is a rapid and huge in-
crease in the computational demands placed on GIS.
Processing a large raster often takes hours or even days;
(processing a large raster, say of size 6000x6000 cells,
at a speed of 1000 cells per second, would take 10
hours). Lengthy computation times in different applica-
tions have been reported as stated e.g., in [22]. To keep
up with the computational demands without sacrifice
(i-e., reduction in resolution or scope of model), par-
allel computing appears to be the only solution. Par-
allel hardware is readily available at a good price-to-
performance ratio (in the small to medium range).

Several researchers and groups have used or advo-
cated parallelism for GIS. This includes the work de-
scribed in [13, 17, 10, 5, 25, 23, 14, 47, 6, 19, 42, 38, 36,
37, 22, 31, 43, 46, 13].

Faust et al. [18] state that “the real issues in comput-
ing in the next decade involve innovations that will al-

*This R&D project is supported by ALMERCO Inc. and the Nat-
ural Sciences and Engineering Research Council of Canada.

TPart of this work has been presented at SPAA’96 [26] as a research
summary.

low relatively unsophisticated users to access the power
of the computer hardware, without having to become ex-
perts in programming and computer operating systems.
The tools for GIS should become easier to use ...
and at the same time be able to take advantage of the
new advances in hardware and software technology.”

While parallelism in GIS appears to be necessary,
the task of providing parallelism is highly challenging,
requiring novel ideas and specialized knowledge from
areas of computer science outside GIS. Our primary re-
search and development objective is to enable users,
researchers and developers within GIS to use parallel
computers without paying the high price of having to
deal with the complex issues inherent to it (we provide
transparent parallelism).

Here we report on our first major milestone to-
wards achieving this objective: the design and pro-
totype implementation of an environment for paral-
lel raster-based NEighbourhood MOdelling (NEMO).
NEMO is primarily intended for (but not necessarily
restricted to) coarse-grained parallelism with a limited
number of processors.

2 NEMO

Before we discuss the NEMO system, we define neigh-
bourhood modelling. Let g;; be a cell in an m x n raster
corresponding to the location of a point in a geographic
terrain (each cell stores one or more attributes, e.g., ur-
ban, rural). Cell g;; may be time variant (denoted by
gi;j(t) for time t). We define the neighbourhood N(g;;) of
a cell g;; to be a set of cells in the raster associated with
gij- Typically, N(gi;) includes all of the cells which are
within the vicinity of g;;. Neighbourhood modelling in-
volves performing one or more operations on each raster
cell and its neighbourhood. The operation performed is
a function which calculates a new value for a cell or its

neighbourhood based on the attributes stored in the cell
and the cells in its neighbourhood.

Neighbourhood modelling applications fall into
three main categories: neighbourhood analysis, cel-
lular automata and propagation. NEMO is not
tailored to any specific application. Rather, it is
designed to support applications falling under the
umbrella of these three raster neighbourhood mod-
elling categories. =~ NEMO encompasses these cat-
egories through corresponding neighbourhood mod-
elling drivers (Section 2.1.1): Neighbourhood Analysis
Driver(ND), Cellular Automata Driver(CD) and Prop-
agation Driver(PD). Two additional client-server com-
ponents (Section 2.1.2): Display Manager(DM) and
Raster Database Manager(RDM) handle all data I/0
and visualization issues. A communication layer is used
to connect the host to the processors of the parallel ma-
chine (see Figure 1).

Our model of computation is Multiple Instruction
Multiple Data (MIMD) using a distributed memory ar-
chitecture. Our present implementation is on an AVX
II manufactured by ALEX Informatique, Canada.

Since the display and I/O components are designed
as separate modules, applications are portable to differ-
ent architectures. In addition, the communication layer
can be configured in a number of different ways. Cur-
rently, NEMO uses a mesh configuration to interconnect
the processors since it is more natural for the three cat-
egories of neighbourhood modelling considered.

2.1 System Components Overview

Although the three application drivers differ in func-
tionality, the principles under which they operate are
similar. The drivers accept as input: one or more
raster images (where each raster image may have one
or more attributes associated with each cell), a user-
defined neighbourhood function, and a local neighbour-
hood definition. Using the client-server components,
the application drivers load the data into the parallel
machine (tiling the data as necessary), activate user-
defined neighbourhood functions on each raster-cell,
output the results to the database and/or display the
resulting data.

The main difference between the three drivers is the
order in which the cells are processed; the implications
of this for the implementation are substantial. The cel-
lular automata and neighbourhood analysis drivers pro-
cess the cells in an arbitrary order whereas the propa-

HOST

NEIGHBOURHOOD
DM FUNCTIONS RDM
SERVER (I) SERVER
==| DRIVERS <=

| COMMUNICATION LAYER |

A

v
DM , RDM DM , RDM
CLIENTS CLIENTS

o o

NEIGHBOURHOOD) NEIGHBOURHOOD)
FUNCTIONS FUNCTIONS
NODE 1 NODE n

Figure 1: NEMO system overview.

gation driver processes the cells in a user-specified order
(defined at run time). For instance, consider a neigh-
bourhood function N(g;;) that operates on a raster cell
gij- The differences between the three families can be
illustrated via pseudo code:

Neighbourhood Analysis
FOR (each cell g;; - arbitrary order) DO

N(gij)

Cellular Automata
FOR (each generation - sequentially) DO
FOR (each cell g;; - arbitrary order) DO

N(gi5)

Propagation
FOR (next cell g;; in priority queue) DO
N(gij)

The two client-server components communicate with
the user’s application via the drivers. The parallel ma-
chine processors act as clients from which raster data
can be requested, displayed and/or stored. The DM
allows graphical data to be displayed from the ap-
plication, and also provides a dynamic zooming and
scrolling interface to the displayed data. The RDM al-
lows reading and writing of raster data that reside on
the host machine. All interaction (I/O requests) be-
tween the host machine and the parallel machine takes
place through the communication network (using mes-
sage passing).

2.1.1 Neighbourhood Modelling Drivers

Neighbourhood Analysis Driver (ND) - Neigh-
bourhood analysis involves executing one, or a series
of distinct, single pass neighbourhood functions on a
raster. It encompasses neighborhood modelling as a
whole. Applications in this category which we have im-
plemented include several image processing operations
and cartographic modelling using Tomlin’s “Map Alge-
bra” [45, 9, 35]. Li [32] discusses issues regarding the
implementation of map algebra in a data parallel pro-
gramming language. Three general families of neigh-
bourhood operations are identified in the ND design,
differing primarily in the amount of intra-raster com-
munication required:

e Point-wise operations - cell by cell combination
of rasters (e.g., map overlay) which requires no
communication between processors.

e Local neighbourhood operations - transformation
of each cell according to some function of its neigh-
boring cells’ values. It requires limited communi-
cation, typically between neighbouring processors
(e.g., image processing operations such as noise re-
duction and edge enhancement).

e Global operations - computations involving an ar-
bitrary number of cells of a raster which require ex-
tensive data communication (e.g., calculating ag-
gregate statistics for a raster such as a colour his-
togram). These operations provide the most inter-
esting challenges to transparent parallelism.

Cellular Automata Driver (CD) - The CD is a
general tool supporting the development of cellular au-
tomata (CA) applications. The CD processes all cells
(with their respective neigbourhoods) in a raster one
at a time in arbitrary order. Each cell in a cellular
automaton can be in one of several predefined states.
When processed, a cell may change its state depending
on its current state and the state of its neighbouring
cells. The CD processes the raster(s) one generation at
a time; a generation is the collection of cells at some
discrete time. The next generation is obtained by pro-
cessing each cell of the current generation once. After
a cell has been processed its new state is saved for the
next generation. Upon completion of a generation the
CD starts to process the next generation. The CD stops
when the desired number of generations is reached.

CA were introduced by Codd [12] (made famous
through Conway’s “Game of Life” [21]) as an elegant
mathematical model for a class of processes operating
in discrete time and space. GIS modelling/simulation

using CA has been described for forest growth [30] and
dieback [29], forest fires [2, 11], forest infestation [24],
earthquakes [1, 4] [33], and avalanches [39]. Bonfatti et
al. show a CA that models the propagation of tides over
a lagoon [7]. Itami [27] has studied CA for residential
site selection (using Tomlin’s map analysis package).
More recently [28], he has studied the incorporation of
CA into a GIS system, including Tomlin’s map algebra.
Batty and Xie [3] use CA to model urban growth and
form. Brinch Hansen [8] describes a model program
for parallel execution of cellular automata adapted to a
simple forest fire model.

Tobler[44] introduces the notion of cellular geogra-
phy in which he classifies different CA models covering
a wide range of applications and generalizations. The
CD is intended for general cellular automata GIS ap-
plications. It supports all of the models proposed by
Tobler.

Propagation Driver (PD) - The propagation model
is designed to process applications which operate on the
active border principle in which only a subset of cells
need be processed at a given time. Although propaga-
tion can be emulated with cellular automata and vice
versa, it is better to separate the two families to increase
performance. For example, if propagation is emulated
with cellular automata, then it would take a full gener-
ation (i.e., complete processing of the raster) in order to
advance the active border. In the PD, instead of mod-
ifying the attributes of the center cell g;; in the local
neighbourhood (as in the CD), the center cell g;; may
affect the attributes of its neighbours.

For example, in a forest fire only the areas near the
fire front (i.e., the active border) are of interest and
must be processed. All other areas do not require pro-
cessing at this moment. Since only a portion of the
raster is active at any given time, it is more efficient.
Other applications include producing cost surfaces or
calculating propagation functions such as noise propa-
gation [41].

2.1.2 Client Server Components

The client-server components of NEMO take care of I/O
communication aspects between the host computer and
the internal processors. To retrieve/output data or to
display a raster, each processor operates, as though it
was a sequential machine and not a processor in a par-
allel environment. Each component has two subcompo-
nents: a communication component allowing the par-
allel processors to transparently interact with the host

and a set of library functions executing the requests is-
sued by the processors.

Display Manager (DM) - The DM controls all as-
pects of displaying raster images and application re-
sults. It provides a flexible environment for data dis-
play while freeing the user from having to handle any of
the issues that relate to data display (e.g., scaling, clip-
ping and geo-referencing). It provides dynamic viewing
of application data by allowing continuous updating of
raster images on the screen. The DM also provides syn-
chronization mechanisms that allow data to be collected
before it is displayed.

Raster Database Manager (RDM) - The RDM
manages the raster database by servicing all I/O re-
quests. The RDM provides a client server environment
where the processors are the clients and the RDM is the
server. It controls and manipulates a central database
which, at present, is stored on the host system on one
or more disks. The nature of NEMO has allowed us
to choose a “shared external memory” model over “dis-
tributed memory model” in order to avoid data and
cache coherence problems and to avoid common dead-
lock situations.

2.2 Parallel Issues

While parallel computers are becoming widely available,
the development and implementation of (complex) al-
gorithmic techniques to exploit the features of parallel
architectures is very challenging. Parallel algorithms
present a host of issues that are independent of neigh-
bourhood modelling, which must be addressed in order
to efficiently implement a parallel neighbourhood mod-
elling system. NEMO’s primary objective of providing
transparent parallelism relieves the burden of these par-
allel issues from the user. The main issues are as follows:

e DataI/O

e Data Visualization

e Architecture and Machine Independence
e Communication Bottlenecks

e Causality Errors

e Load Balancing

e Data Coherence

e Deadlock and Simulation Termination

Efficient handling of these issues requires knowledge
of parallel machines and algorithms. It would only hin-
der the efforts of a GIS application designer if he/she
had to deal with them. Thus, NEMO handles most of
these issues in a manner which is independent of the ap-
plication itself (provided that the application falls under
one or more of the three modelling families mentioned
earlier). As a result, the user works with a system that
“acts” like a sequential GIS, with the exception that ap-
plications run faster. NEMO is able to hide all parallel
details through the use of the application drivers and
the client-server components. Due to space constraints,
we will discuss two techniques that we use to help alle-
viate parallel issues of load balancing, causality errors

and data I/0O.

2.2.1 Causality Errors and Load Balancing

In this section we describe our solution to causality er-
rors, load balancing and visualization that arise during
parallelization. Causality errors arise when a processor
in a parallel simulation does not wait for up-to-date in-
put but rather processes the data and advances its local
simulation time ahead of the global minimum simula-
tion time. Due to changes in the data it must backtrack
from its current simulation time and repeat the compu-
tation. Causality errors are bound to happen in the
PD due to its operational nature - the shortest path
principal. For example: two forest fires may occur si-
multaneously in two different locations - fire A spreads
at a speed of 50km/h while fire B spreads at 10km/h.
If two processors process different forest fires without
knowledge of each other, then the processor which pro-
cesses fire B will have to repeat its computation when it
receives the data of fire A. Broadcasting the global sim-
ulation time in the network is not viable since it would
reduce the performance of the parallel computer to that
of a sequential machine, or worse.

Since each processor receives different portions of the
raster, the amount of computation will vary depending
on the data. For example, in fire propagation, a sec-
tion of data representing forested regions would require
more computation than regions containing water. Also,
in many PD and CD applications the operations on the
data effect only a relatively small number of cells which
may be clustered (e.g., in a forest fire the activity will
occur only on the boundary of the fire). Load balanc-
ing is required to ensure that the computation is evenly
distributed among processors.

Another key issue is the animation of the simulation.
In many cellular automata and propagation modelling

applications the progress of the simulation is just as
important as the final output (result). For example, in
a forest fire, we are not only interested in determining
what areas have burnt but also in the spreading be-
haviour of the fire.

We have overcome these issues by introducing a fold-
ing technique. The folding is an efficient mapping of
spatial data to processors. For 2D data, the folding di-
vides the raster into many small tiles, but instead of
mapping the tiles to the processors cyclically, it maps
the tiles to the processors by folding the raster like an
accordion in the X and Y directions (see Figure 2). The
2D folding has the following advantages:

e Reduction of Causality Errors - the 2D folding
significantly reduces the number of causality errors
that occur in the system while allowing the sim-
ulation to progress in parallel. As a result of the
2D folding, each processor in the parallel computer
has different sections (pieces) of the spatial data.
Thus, as the simulation progresses, each processor
will have several active sections (sections contain-
ing cells that must be processed) from different lo-
cations. It can then compare the simulation time
among all the sections and process the cells with
the minimum simulation time. This allows the PD
to implicitly broadcast the simulation time among
the processors without sending messages (allowing
each processor to have a current simulation time
very close to the global simulation time).

e Load Balancing - In many PD and CD appli-
cations the active cells (cells to be processed) are
not uniformly distributed throughout the raster.
This results in areas which have clusters of ac-
tive cells. The finer partitioning of the 2D fold-
ing allows the clustered data to be redistributed
among all processors. Although raster partition-
ing into smaller sections is a common technique in
parallel spatial processing, the 2D folding provides
us with the additional advantage of reducing the
distance that messages must travel in the system.
The communication pattern of NEMO is mainly
among neighbouring processors. The 2D folding
ensures that processors containing adjacent sec-
tions of the raster are also adjacent in the parallel
computer. This reduces the distance that a mes-
sage must travel in the system to one link.

2.2.2 Data I/O and Visualization

In many GIS applications, rasters have a very large
amount of data which cannot be kept completely in
memory. This may cause a problem when data is to

Figure 2: A folding sequence showing how a raster is
mapped to 4 processors. The raster is shown as a grid
of 8x8 blocks in A. B to E show how the raster is folded
onto the 4 processors. F-H shows the unfolding back to
the 8x8 grid. I shows the final mapping of the blocks.

be displayed in a dynamic fashion (such as allowing
zooming or scrolling). The host machine of NEMO only
stores and displays the raster data that fits in the win-
dow. Since there may not be enough memory to hold
the entire raster on the host machine, we distribute the
raster data and store it among the processors of the
parallel machine. Whenever the raster data is to be
displayed, each processor sends its portion to the host
machine for display. Due to the large amount of raster
data, each processor clips and samples the data before
sending it to the host. This requires each processor
to have the dimension, offset and zoom ratio of each
window. In order to provide a transparent interface
to the windowing system, NEMO creates an additional
“helper” process on each processor which handles com-
munication with the host machine for all display re-
quests. When windows are opened by an application,
the appropriate data (i.e., dimension etc.) is sent to
the helper process on each processor for registration.
Each helper process keeps a buffer containing the most
recently displayed data. When a resize, zoom or scroll
event occurs, the DM requests the last displayed data
from each of the processors which send the appropri-
ately clipped and sampled data back to the host for a
display update. An interesting effect of this technique

is that data is displayed in pieces, which is analogous
to filling in pieces of a jigsaw puzzle.

3 Applications on Top of NEMO

As we have shown in previous sections the NEMO sys-
tem itself is not an application but rather an envi-
ronment for developing neighbourhood related applica-
tions. A large variety of applications can be developed
and executed on top of NEMO (each of the drivers is
designed as a development tool for a range of neigh-
bourhood models). We have developed the following
applications:

e Image processing applications (including edge de-
tection and skeleton finding)

e Cartographic modelling using map algebra
(see [16])

e Forest fire modelling (see Figure 6,7)
e Earthquake modelling
e Response time modelling (see Figure 3)

e Generation of weighted cost surfaces
(see Figure 5)

e Ice tracking (see Figure 8)

Due to space constraints we restrict ourselves to dis-
cussing a simple example of an emergency response time
modelling application. We show that the amount of
work that the user must do in order to create a new
application on top of NEMO is minimal and requires
no special knowledge of parallelism.

3.1 Emergency Response Time Modelling

This application computes the area (city region) which
can be reached by emergency vehicles (e.g., fire depart-
ment) within a predetermined maximum allowable re-
sponse time. For simplicity the problem can be de-
scribed as follows: Given the locations of the emergency
stations, find: for each station the area that it must ser-
vice in case of an emergency; the expected arrival time
for each region in the city; areas that cannot be covered
by any of the selected emergency stations within the
response time.

The emergency vehicles in this example can travel at
a speed of 80 km/h on main roads and at a speed of 15
km/h off the main roads. In addition to the speed, each
station can be assigned a weight factor which reduces or
increases the travel time. The maximum allowable re-
sponse time is 10 minutes. The input rasters are a road

F Emergency BResponse 5

Figure 3: Snapshot of the emergency response time
modelling simulation. The regions that can be reached
from 5 stations within the allowed response time are
shown in different shades of grey.

map of the city and a digital elevation model map. The
output is a raster with two attributes per cell. The first
attribute is the id of the station that should respond
to any emergency call within the area and the second is
the travel time to this location. Figure 3 shows a screen
snapshot for this example at an intermediate stage in
which the travel time to certain areas from five emer-
gency stations has already been computed.

3.2 Performance Results

Figure 4 shows the speed-up (measured as (time for
1 processor) / (time for p processors)) results for the
ERTM example for 5 stations using 3 rasters of size
1472 x 1472 for a total of 23MB of data. The graph
shows that the ERTM application achieves very good
speed-up.

The efficiency of the applications that we have de-
veloped ranges from 50% to 90% of the optimal for all
ranges of processors measured. Since there is a direct
link between the speed-up and the amount of time it
takes to process a single cell (depending on its neigh-
bourhood), the nature of the application is the most
important factor affecting performance. Since NEMO
is a general purpose tool and is not geared towards any
application in particular, all fine tuning is dynamic with

ERTM Speedup
16 T T T T

- - - -
ERTM Speedup =<
Optimal Speedup-—+-

Speedup
®
T

6 8
Number of Processors

Figure 4: Speed-up results of the emergency response
time modelling example.

respect to the application. We are further continuing
to explore this dynamic relationship between compu-
tation and communication which will allow NEMO to
efficiently execute a wide variety of applications.

3.3 Writing a New NEMO Application

NEMO is designed for general purpose use and to ac-
commodate new neighbourhood applications easily. To
meet our main objective, transparent parallelism, and
to allow the user to concentrate on his/her application,
the system requires the user to provide only a handful
of functions that will be linked to NEMO. For ERTM,
which is an application built on the propagation driver,
the following set of five functions is required:

e Modelling Function - This is the core func-
tion of the neighbourhood model. Here the be-
havior and the nature of the model are defined.
This function determines the direction of spread,
its rate and the effect of the cell on its neighbour-
ing cells. Most of the user’s effort will be incor-
porated in this function. In the ERTM applica-
tion when this function is activated, it determines
for each of the neighbouring cells, the arrival time
of the rescue team. The function calculates the
additional travel time by first computing the ad-
ditional distance (between the center cell and its
neighbour) based on the DEM map and then com-
puting the time needed to cover this distance (on
or off road travel). If the rescue team can reach the
neighbouring cell faster than the previously stored
time, the function replaces the arrival time and
the servicing station and notifies the PD about
the changes.

e Initialization Function - This is the first func-
tion which is called by the propagation driver. The
user, via this function, provides the PD with all
the information it needs to start the modelling.
Examples are the neighbourhood size, the rasters
needed, the neighbourhood function, the cell and
time comparison functions and when to stop the
simulation. In addition to the information re-
quired by the driver, the user can initialize his/her
own private data structures which are needed for
the application and then inform the PD about
their existence.

e Simulation Time Comparison Function -
The PD processes the cells in a prioritized order,
such that the cell with the minimum time is the
next one to be processed. Each of the cells is as-
signed a “time” which is defined by the applica-
tion. Thus, in order to determine the processing
order of the cells the PD must be able to compare
the “time” associated with the cells. Since the
“time” is known only to the application, this func-
tion is required to compare the simulation time.
In the case of the ERTM example, the “time” con-
sists of two keys: the travel time it takes to reach
the cell (primary key) and the id of the station
(secondary key).

e Cell Comparison Function - This function
is required in order to allow the PD to operate
in a parallel environment. The guiding princi-
ple behind the PD is the priority queue concept.
Namely, the cell with the minimum time is pro-
cessed next. However, since the PD operates in
an asynchronous mode it may happen that a cell
A is a neighbour of two other cells which are pro-
cessed by two different processors. Hence, the PD
must determine which of the two copies of A con-
tains the minimum time. To do so, the PD re-
quires that the application, which has the notion
of “time” and the content of the cell, will compare
the two cells.

e Termination Function - This function is called
by the PD when the simulation is complete. It
allows the application to clean up (i.e., to close
any open files free the memory etc.).

Four out of the five above functions are required in
any general purpose propagation tool. The only addi-
tional function is the cell comparison function which
is needed as a result of parallelism constraints. Al-
though the user must write this additional function,
all notion of parallelism and the parallelism issues are
hidden from the application. This allows the user to
concentrate on his/her model and improve the quality

of the model instead of “wasting” his/her valuable time
on the parallelization of the model (since all paralleliza-
tion tasks and other inherent issues are being dealt with

by NEMO).

4 Conclusion and Current Research Activ-
ities

The NEMO system described in this paper is a parallel
GIS for raster-based neighbourhood modelling. NEMO
enables the scientific community to harness the power
of parallel computers while avoiding the issues inherent
to parallelism. NEMO has been delivered to our indus-
trial partner, ALMERCO Inc., for subsequent commer-
cial development.

In the process of implementing NEMO, we developed
several tools including a graphical performance analyzer
[34] and a simulator for the parallel AVX machine [40]

Currently we are developing two general systems for
modelling and processing of spatial data:

e ATLANTIS - a general purpose parallel vector
based GIS.

e Parallel Spatial Modelling Environment -
an integrated open parallel environment for pro-
cessing, manipulating, storing and visualizing of
spatial data. The target domains for the system
include areas where spatial data arise e.g., GIS, re-
mote sensing, image processing, medical comput-
ing, and robotics.

Acknowledgments

The authors of this paper are indebted to K. Clarke,
now U. C. at Santa Barbara, and Mike Wotton, Forestry
Canada for providing insights into and understanding
of the two fire models developed by them. We thank
W. Bitterlich now with E.S.R.I. for interesting discus-
sions and ALEX Informatique, Canada for technical
support. Finally, we thank the other members of the
PARADIGM group at Carleton University for their sup-
port and for many useful discussions.

References

. Bak, C. Tang, Earthquakes as a self-organized critica
1] P. Bak, C. Tang, Earthquak ls ized critical
phenomenon, J. Geophys. Res. 94, 1989, pp. 15635-15637.

[2] P. Bak, K. Chen, A forest-fire model and some thoughts on
turbulence, Phys. Lett. A 147(5-6), 1990, pp. 297-299.

[3] M. Batty, Y. Xie, From Cells to Cities, Environment and
Planning B, Planning and Design, Vol. 21, 1993, pp. S31-
S48.

[4] Y. Ben-Zion, J.R. Rice, Earthquake Failure Sequences Along
a Cellular Fault Zone in a Three-Dimensional Elastic Solid

Containing Asperity and Nomnasperity Regions, Journal of
Geophysical Research, Vol. 98, No. B8, 1993, pp. 14109-
14131.

[5] M. Bern, D. Eppstein and S.-H. Teng, Parallel construction
of quadirees and quality triangulations, 1993.

[6] G.E. Blelloch, J.J. Little, Parallel solutions to geometric
problems on the scan model of computation, Proc. 1988 int.
Conference on Parallel Processing, pp. 218-222, 1988.

[7] F.Bonfatti, G. Gadda, P.D. Monari, Simulation of Dynamic
Phenomena by Cellular Automata, Computers and Graph-
ics, Vol. 18, No. 6, 1994, pp. 831-836.

[8] P. Brinch Hansen, Parallel Cellular automata: A model for
computational science, Concurrency: Practice and Experi-
ence 5(5), 1993, pp. 425-448.

[9] K.XK.L. Chan, C.C. Tomlin, Map algebra as a spaiial lan-
guage, In: D.M. Mark and A.U. Frank (Editors), Cognitive
and Linguistic Aspects of Geographic Space, Kluwer Aca-
demic Publishers, Dordrecht, Netherlands, 1991, pp. 351-
360.

[10] G. Cheng, C. Faigle, G.C. Fox, W. Furmanski, B. Li, and
K. Mills, Ezploring AVS for HPDC Software Intergration:
Case Studies Towards Parallel Support for GIS, AVS Con-
ference AVS’93, Lake Buena Vista, FL., May 24-26, 1993.

[11] K. Clarke, J.A. Brass and P.J. Riggan A Cellular Automa-
ton Model of Waldfire Propagation and FEztinction, Pho-
togrammetric Engineering and Remote Sensing, Vol. 60, No
11, 1994, pp. 1355-1367.

[12] E.F. Codd, Cellular Automata, Academic Press, New York,
1968.

[13] P.J. Densham, M.P. Armstrong, A Heterogencous Process-
ing Approach to Spatial Decision Support Systems, Proc.
Sixth Int. Symp. on Spatial Data Handling: Advances in
GIS research, 1994, pp. 29-45.

[14] G. Vezina, G. Ratzer, V.V. Dongen and D. Poussart, Paral-
lel Spatial Analysis and Interactive Visualization Software,
Canadian Conference on GIS, Ottawa, 1994.

[15] L. De Floriani, C. Montani and R. Scopigno, Parallelizing
vistbility computations on triangulated terrains, Int. J. Geo-
graphical Information Systems, 1994, Vol. 8, No. 6, 515-531.

[16] D. Dubrule, P. Morin, J.-R. Sack, 4 Parallel Cartographic
Modelling System: Design Implementation and Perfor-
mance, to appear in Proc. GIS’97, Vancouver, 1997.

[17

Parallel Architecture Laboratory for Geographical Informa-
tion Systems, GIS Group at the University of Edinburgh,
Report, 1990.

[18] N.L. Faust, W.H. Anderson, and J.L. Star, Geographic In-
formation Systems and Remote Sensing Future Comput-
ing Environment, Photogrammetric Engineering & Remote
Sensing 57(6), 1991, pp. 655-668.

[19] W.R. Franklin, M. Kankanhalli, D. Sun, and P.Y. Wu, Uni-
form grids: a technique for detection of hime intersection
on serial and parallel machines, Proc. 9th Int. Symp. on
Computer-Assisted Cartography AUTOCARTO 9, Balti-
more, pp. 100-109, 1989

[20] R. M. Fujimoto, Parallel Discrete Event Simulation, Com-
munication of the ACM, Vol. 33, No. 10, 1990, pp. 30-53.

[21] M. Gardner, The fantastic combinations of John Conway’s
solitaire game "Life”, Sci. Am. 223(10), 1970, pp. 120-123.

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(3]

36]

(37]

(38]

(39]

B.L. Hickmanm M.P. Bishop, and M.V. Rescigno, Advanced
Computational Methods for Spatial Information Eztraction,
Computers & Geosciences 21(1), 1995, pp. 153-173.

S.Hopkins, R.G. Healey, and T.C. Waugh, Algorithm scala-
bility for line intersection detection, Proc. 5th International
Symp. on Spatial Data Handling, Charleston, pp. 210-218,
1992.

F.C. Hoppensteadt, Mathematical aspects of population bi-
ology, in L..A. Steen, ed., Mathematics Today: Twelve Infor-
mal Essays, Springer Verlag, New York, 1978, pp. 297-320.

Y. Hund and A. Rosenfeld, Parallel processing of linear
quadirees on a mesh-connected computer, Journal of Par-
allel and Distributed Computing 7, pp. 1-27, 1089.

D. Hutchinson, L.. Kiittner, M. Lanthier, A. Maheshwari, D.
Nussbaum, D. Roytenberg, J.-R. Sack, Parallel Neighbour-
hood Modeling, Proc. SPAA '96, Padua, Italy, June 1996,
pp. 204-207.

R.M. Ttami, Cellular Automatons as a framework for dy-
namic simulations in Geographic Information Systems,
Proc. GIS/LIS’88, Vol. 2, 1988, pp. 590-597.

R.M. Itami, Swtmulating Spatial Dynamics: Cellular Au-
tomate Theory, Landscape and Urban Planning, Vol. 30,
1994, pp. 27-47.

F. Jeltsch, C. Wissel, Modelling Dieback Phenomena n
Natural Forests, Ecological Modeling, 75/76, 1994, pp. 111-
121.

Kazunori Sato, Yoh Iwasa, Modeling of Wave Regeneration
in Subalpine Abies Forests: Population Dynamics with Spa-
tial Structure, Ecology, Vol. 74(5), 1993, pp. 1538-1550.

T. Kreitzberg, A parallel toolset for intervisibility, Trans-
puter Research and Applications 6, ed. A.S. Wagner, 10S
Press, pp. 12-20, 1993.

B. Li, Opportunities and challenges of parallel spatial data
analysis: Initial experiments with data parallel map anal-
ysis, GIS/LIS '92 Annual Conf. and Exposition, San Jose,
Pp. 445-458, 1992.

J. Lomnitz-Adler, Automaton Models of Seismic Fracture:
Constraints Imposed by the Magnitude-Frequency Relation,
Journal of Geophysical Research, Vol. 98, No. B10, 1993,
pp. 17745-17756.

C. MacDonald, Node View: A Profiler/debugger for Parallel
Computers Using Message Passing, MCS Thesis, Carleton
University, Ottawa, Canada, May 1996.

B. Mills, Map Algebra: an emerging standard for analysis
in GIS, GIS Europe, November 1994, pp. 18-20.

M. Micklefield, The applications of massively parallel pro-
cessing to geographic information systems, Parallel Com-
puting and Transputer Applications: Part II, eds. M.Valero,
E. Onate, M. Jane, J.L. Larriba, B. Sudrez, IOS Press, Am-
sterdam, pp. 1206-1211, 1993.

J.E. Mower, Building a GIS for parallel computing enwvi-
ronments, Proc. 5th International Symp. on Spatial Data
Handling, Charleston, pp. 219-229, 1992.

P.W. Newton, P.R. Zwart and M.E. Cavill (eds.) Networking
Spatial Information Systems, Belhaven Press, London and
New York, 1992.

V. Romer-Rochin, J. Lomnitz-Adler, E. Morales-Gamboa,
R. Peralta-Fabi, Avalanches in a Cellular Automaton, Phys-
ical Review E., Vol. 51, No. 5, May 1995, pp. 3968-3976.

(40]

[41]

(42]

(43]

(44]

45]

[46]

(47]

D. Roytenberg, J.-R. Sack, A Simulator for the Alex AVX
Series Il Parallel Computer, Proc. of the 10th Annual Inter-
national Symposium on High Performance Computers, June
1996.

J. Strobel, Conceptual Modeling of Spatial Diffusion Prob-
lems - Lessons from Noise Propagation Analysis, GISDATA
Specialist Meeting in GIS and Spatial Models, Stockholm,
June 14-18, 1995.

T.K. Peucker and D.H. Douglas, Detection of surface spe-
ctfic points by local parallel processing of discrete elevation
data, Computer Graphics and Image Processing 4, pp. 357-
387, 1975.

F.Q. Stout, Supporting divide-and-conquer algorithms for
image processing, Journal of Parallel and Distributed Com-
puting 4, pp. 95-115.

W.R. Tobler, Philosophy in Geography, edited by S. Gale
and G. Olssen Issues for Design and Implementation, Cel-
lular Geography, 1979.

C.D. Tomlin, Geographic Information Systems and Carto-
graphic Modeling, Prentice Hall, 1990.

J. Vaughan, D. Whyatt and G. Brookes, A parallel wmple-
mentation of the Douglas-Peucker line simplification algo-
rithm, Software - Practice and Experience 21:3, pp. 331-336,
1991.

T.C. Waugh and S. Hopkins, An algorithm for polygon over-
lay using cooperative parallel processing, Int. J. Geographi-
cal Information System 6:6, pp. 457-467, 1992.

