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Abstract

In this paper we discuss the problem of determining
a meeting point of a set of scattered robots R =
{r1, r2, . . . , rs} in a weighted terrain P which has n >

s triangular faces. Our algorithmic approach is to
produce a discretization of P by producing a graph
G = {V G, EG} which lies on the surface of P.
For a chosen vertex p′ ∈ V G, we define ‖Π(ri, p

′)‖
as the minimum weight cost of traveling from ri to
p′. We show that minp′∈V G{max1≤i≤s{‖Π(ri, p

′)‖}} ≤
minp∗∈P{max1≤i≤s{‖Π(ri, p

∗)‖}} + W |L| where L is the
longest edge of P, W is the maximum cost weight of a face
of P, and p∗ is the optimal solution. Our algorithm re-
quires O(snm log(snm)+snm2) time to run, where m = n

in the Euclidean metric and m = n2 in the weighted met-
ric. However, we show through experimentation that only
a constant value of m is required (e.g., m=8) in order to
produce very accurate solutions (< 1% error). Hence, for
typical terrain data, the expected running time of our algo-
rithm is O(sn log(sn)). Also, as part of our experiments
we show that by using geometrical subsets (i.e., 2D/3D
convex hulls, 2D/3D bounding boxes and random selec-
tion) of the robots we can improve the running time for
finding p′, with minimal or no additional accuracy error
when comparing p′ to p∗.

1 Introduction

Tasks that require cooperation between robots often man-
date the robots to meet before starting to work on their
task. In this paper we discuss the problem of determin-
ing an efficient meeting point of a set of scattered robots
in a weighted terrain P. A terrain P = {f1, f2, . . . , fn}
is a continuous 2.5D polyhedral surface made of triangu-
lar faces, fi, 1 ≤ i ≤ n; which is formed by taking a 2D
continuous triangular subdivision and assigning a height
value to each unique vertex of the triangulation. Each face
fi is associated with a height function Fi such that for a
particular point q = (x, y) in fi, then F (q) is the height
of q.

The problem addressed here can be defined as the
weighted 1-center problem on polyhedral surfaces. Let
R = {r1, r2, . . . , rs} be a set of robots that are scattered
throughout a polyhedral surface P (it is assumed that n >

∗Research supported in part by NSERC.

s). The weighted 1-center problem is defined as finding a
point p∗ ∈ P such that

max
1≤i≤s

{d(ri, p
∗)} ≤ min

p∈P
{ max
1≤i≤s

{d(ri, p)}}

where d(ri, p
∗) is an objective function (e.g., distance,

time, energy, etc...) between robot ri and p∗.

There has been much work investigating the 1-
center problem (also known as the facility location prob-
lem) in the Euclidean setting, L2 metric, in both 2D and
2.5D and in L1 metric in 2D and 3D. In the plane under
the Euclidean metric, the optimal solution to this problem
is the center of the smallest enclosing circle, which can be
computed in time linear in the number of source points
[15][27]. In fact, there is a close connection between the
1-center problem and the furthest-site Voronoi diagram in
that the solution to the 1-center problem must lie on a
vertex or edge of the diagram. It appears however, that
some of the 2D furthest-site Voronoi diagram properties
are different for polyhedral surfaces and the combinatorial
complexity of the diagram is Θ(sn2) for s source points on
an n-face terrain [25]. The work of van Trigt [26] presents
an algorithm to solve the facility location problem on a
polyhedral terrain in O(s4n3 log n) time. Aronov et. al.
[3] improved on this with a near-optimal algorithm that
computes the furthest-site Voronoi diagram and finds the
facility center in O(sn2 log2 s log n) time. Sharir [21] pro-
vided a solution to the 2-centre problem in 2D. In the
L1 metric Drezner [5] gave a linear time algorithm for
soliving the 1-centre problem. Sharir and Welzl [23] pre-
sented O(n log n) time and O(n log5 n) algorithms for the
4-centre and 5-centre problems in the plane, respectively.
Nussbaum presented an O(n log n) for the 4-centre and 5-
centre problems in 2D [20]. The results of Nussbaum can
be extended to solve the weighted 4-centre and 5-centre
problems in the plane in O(n log2 n) using the parametric
search technique of Megido [16].

Despite the previous work in the Euclidean metric,
the problem of computing the weighted 1-center problem is
hard and has lacked sufficient research. This may be due
to the fact that even the simpler problem of computing
an approximation to a single weighted shortest path in
2D has an unpleasantly high runtime of O(n8 log n) time
[19]. To our knowledge the work presented here is the first
algorithm to provide an approximation to the weighted 1-
center problem on polyhedral surfaces (e.g., terrains).

In addition to the work on the 1-center problem,
there has been much work in computing shortest paths
on polyhedral surfaces in both the Euclidean metric and
Weighted L2 metric. Although we are solving a different
problem, we briefly mention some of this previous work
since the techniques of polyhedral discretization are simi-
lar. Several research articles, including surveys, have been
written presenting the state-of-the-art in this active field
and we refer the interested reader to those [17, 18]. Lan-
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thier et. al. [12] apply a transformation technique from
a continuous problem to a discrete problem, by adding
Steiner points to P and then connecting the Steiner points
to form a graph G. Once G is constructed, a single-source
shortest path is computed in G. The work presented here
is an extension of their work, and it is applied to the
weighted facility location problem on terrains. Aleksan-
drov et. al. apply a different Steiner placement scheme to
achieve an ε-approximation for shortest paths on P [2][1].
Their graph construction technique can be easily modi-
fied to solve the 1-center problem. More recently, Sun and
Reif [24] provided an ε-approximate solution to computing
weighted shortest paths that does not depend on terrain
parameters using an algorithm known as a BUSHWHACK
algorithm.

Letting V P be the set of vertices of P, the approxi-
mation algorithm presented here assumes that each robot
is positioned on a vertex of P (ri ∈ V P , 1 ≤ i ≤ s). Note
that minor adjustments can be made to overcome this re-
striction which do not affect the runtime analysis. Our
algorithmic approach is to produce a discretization of P
by producing a graph G = {V G, EG} which lies on the
surface of P. For a vertex p′ ∈ V G we define Π′(ri, p

′)
to represent the weighted shortest path in G from ri to
p′. Thus, ‖Π′(ri, p

′)‖ will represent the approximate min-
imum weighted cost of travelling on P from ri to p′. We
are therefore interested in computing p′ such that

max
1≤i≤s

{‖Π′(ri, p
′)‖} ≤ min

p∈V G
{ max
1≤i≤s

{‖Π′(ri, p)‖}}.

Let ‖Π(ri, p
∗)‖ represent the minimum cost of travel on P

from ri to p∗, where p∗ is the optimal meeting point in P.
If L is the longest edge of P and W is the maximum cost
weight of a face of P, we show here that

max
1≤i≤s

{‖Π′(ri, p
′)‖} ≤ max

1≤i≤s
{‖Π(ri, p

∗)‖} + W |L|.

The simplicity and the practicality of our technique
makes it attractive for computing an approximated solu-
tion to the weighted 1-center problem which minimizes the
maximum cost for any particular robot using a variety of
objective functions to represent the cost. Such objective
functions include distance, time, or energy consumption.
In addition, the algorithm is easily extended to find an ap-
proximated point p′ ∈ V G that minimizes the cumulative
cost of all of robots:

s
∑

i=1

d(ri, p
′) ≤ min

p∈V G
{

s
∑

i=1

d(ri, p)}

This may be a more desirable solution if, for example,
the objective is minimizing the fuel consumption of all
robots and thus maximizing the amount of energy (e.g.,
fuel) remaining to complete the tasks.

In addition to theoretical bounds, we also present
experimental results and show the practicality and accu-
racy of our solution. We ran tests on a variety of terrains

that have different sizes as shown in Table 1. Our tests
were run in both the Euclidean and weighted metrics. We
also tested our algorithm on terrains with different height
characteristics. Thus, in addition to their normal heights,
the terrains were stretched by multiplying the heights of all
vertices by a factor of five and flattened by setting vertex
heights to zero.

Name # Faces # Vert.
America 9,788 5,000
Sanbern 15,710 8,000
Madagascar 29,582 15,000

Table 1: Terrains used in our experimental testing.

The theoretical worst case running time of our al-
gorithm is O(snm log(snm) + snm2), where m = n in
the Euclidean metric and m = n2 in the weighted metric.
However, we show through experimentation that only a
constant value of m is required (e.g., m=8) in order to
produce very accurate solutions (which result in < 1% er-
ror). Hence, for typical terrain data, the expected running
time of our algorithm is O(sn log(sn)). Also, as part of
our experiments we show that by using geometrical sub-
sets of the robots, we can improve the running time for
finding p′ with minimal or no additional accuracy error
when comparing p′ to p∗. Examples of subsets are the
2D/3D convex hulls of R, 2D/3D bounding box of R and
randomized subset selection.

2 Our Algorithm

As mentioned, our algorithm begins with a discretization
of P through the construction of a graph G = {V G, EG},
which is spatial network approximation of P. In the fol-
lowing subsection, we describe the construction of a set
of subgraphs (one subgraph per face of P) whose union
forms G. It is well known that a Euclidean shortest
path π(va, vb) on P between vertices va and vb of P is
piecewise linear (i.e., consecutively joined straight line
segments)[22]. Moreover, such a path only bends (i.e.,
changes direction) at edges of P (see Sharir and Schorr
[22]). Similarly, Mitchell and Papadimitriou [19] show that
a weighted shortest path Π(va, vb) also exhibits similar
characteristics.

Our graph is formed such that each edge in EG cor-
responds to a line segment either crossing a single face of
P or lying along an edge of P. We therefore transform the
problem of computing robot paths on the surface of P to
that of computing robot paths in the approximating graph
G. This allows us to compute a solution to the meeting
point problem by running a variation of Dijkstra’s graph
shortest path algorithm on G. The resulting paths in G
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map directly onto paths lying on the surface of P. The ap-
proximate meeting point solution is found by running the
modified Dijkstra algorithm and observing the first vertex
in G that is reached from all robots in R. Section 2.1 de-
scribes the construction of G. Section 2.2 then describes
the modified multi-source Dijkstra algorithm which is used
to determine the meeting point.

2.1 Constructing Graph G

In this section we discuss the construction of a graph
G = (V G, EG) which corresponds to a terrain P. Let
P = {f1, f2, . . . , fn} be a terrain, which is made of trian-
gular faces, fi, 1 ≤ i ≤ n. The vertex set V G is constructed
by first placing m evenly spaced Steiner points (called edge
Steiners) along each edge e ∈ EP (see Figure 1(a)). For
each vertex of P and each edge Steiner we create a corre-
sponding vertex in V G. We denote by V G

S ⊂ V G the set
of vertices that correspond to edge Steiners.

The creation of the edge set EG is explained here by
constructing subgraphs and then adding the edges of the
subgraphs to EG, although in practice EG is constructed
by connecting the appropriate vertices of V G directly. The
subgraphs are: a sequence of chains of size m+2, a se-
quence of complete bipartite graphs K1,m and a sequence
of complete bipartite graphs Km,m. Next, we describe
how the edges of EG are assembled:

1. Adding edges of chains - in this step we construct a set
of chain graphs as follows: for each edge e = (u, v) ∈
EP we create a set of vertices V e = {v0, v1, . . . , vm+1}
such that v0 = u, v1 is the edge Steiner on e which
is closest to u, v2 is the edge Steiner on e which is
second closest to u,. . ., and vm+1 = v. The chain
is formed by adding edges (vi, vi+1), 0 ≤ i ≤ m (see
Figure 1(a)). Once constructed the edges are added
to EG.

2. Adding edges of K1,m - in this step we create for each
face fi ∈ P three complete bipartite K1,m graphs. Let
u, v, w be the three vertices which correspond to the
vertices of fi and let {v1, . . . , vm} be the edge Steiners
along edge (v, w). We construct a complete bipartite
graph K1,m by adding edges (u, vi), 1 ≤ i ≤ m (see
Figure 1(b)). Once constructed we add the edges of
the constructed graph to EG. Similarly, we create two
other K1,m graphs between v and the edge Steiners
along (u,w), and between w and the edge Steiners
along (u, v).

3. Adding edges of Km,m - in this step we create for
each face fi ∈ P three complete bipartite graphs
Km,m. Let u, v, w be the three vertices which cor-
respond to the vertices of fi, let {u1, . . . , um} be the
edge Steiner along edge (u, v) and let {v1, . . . , vm}
be the edge Steiner along edge (v, w). We construct

a complete bipartite graphs Km,m by adding edges
(ui, vj), 1 ≤ i, j ≤ m (see Figure 1(c)). Once con-
structed we add the edges of the constructed graph
to EG. Similarly, we create two other Km,m graphs
between the edge Steiners along (u, v) and the edge
Steiners along (u,w), and between the edge Steiners
along (u,w) and the edge Steiners along (v, w).

(a)

v
1 v
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v
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v
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v
0
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Figure 1: a) Steiner points and edge Steiners along edges
of P, b) edges from a K1,m graph of face fi, c) edges from
a Km,m graph of face fi, d) the subgraph Gi pertaining
to face fi.

Let Gi denote the portion of G which corresponds to
face fi ∈ P, 1 ≤ i ≤ n (see Figure 1(d)). In the following
lemma, we show the bound on the size of G when m Steiner
points are added on each edge of P.

Lemma 2.1 Graph G = (V G, EG) has V G = O(nm) ver-
tices and EG = O(m2n) edges, where m ≥ 1.

Proof: The set V G includes the vertices of P as well as
vertices that correspond to edge Steiners, thus, |V G| =
|V P | + m|EP |. Each face fi ∈ P, 1 ≤ i ≤ n has 3 edges,
thus, |EP | ≤ 3n. Similarly, the number of faces in P
is bounded yielding |V P | ≤ 3n. This leads to |V G| =
|V P| +m|EP | ≤ 3n+3nm = O(nm). The set EG consists
of edges which are the result of constructing chains as
well as complete bipartite graphs K1,m and Km,m. Each
chain contributes m + 1 edges to EG and since we add
one chain per edge of P, we therefore add |EP |(m + 1)
total chain edges to EG. For each face fi ∈ P we add
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3m edges for the three complete bipartite graphs of type
K1,m and 3m2 edges for the three bipartite graphs of type
Km,m. Since P has n faces and at most 3n edges we
can conclude that |EG| = |EP |(m + 1) + (3m2 + 3m)n ≤
3n(m + 1) + 3nm(m + 1) = O(m2n). 2

The following lemma explains the time required to con-
struct graph G when m Steiner points are added per edge
of P.

Lemma 2.2 Let P be a terrain represented as a trian-
gulation irregular network with n faces. Graph G =
{V G, EG} can be constructed in O(nm) time and space,
where m ≥ 1.

Proof: For each edge e ∈ EP we maintain an m-size array
of the Steiner points which were placed along e. Thus, the
vertices of G are stored in up to n arrays of size m. Since
the Steiner points of e are placed evenly along e, we can
compute their locations and create the arrays in O(nm)
time, requiring O(nm) space. For each vertex, we store a
pointer to the edge e ∈ EP on which it lies. Each subgraph
Gi of G represents a well-defined graph and therefore G

can be constructed without explicitly creating and storing
its edges. Assuming that P is stored as a quad edge data
structure [9], then in O(1) time, each edge e ∈ EP can
be associated with the two faces (say fj and fk) which
share e. Although not stored directly, we can compute
and construct any edge, say (u, v) ∈ EG incident to a
given vertex u ∈ V G, where u lies on some edge e ∈ EP ,
within O(1) time as follows. If v also lies on e, then v

is stored in the same array as u and thus (u, v) can be
computed and constructed in constant time. If v does not
lie on e, then we can determine the (up to four) edges of
P that share a face with e in O(1) time by using available
pointers in the quad edge data structure of P. We can
then obtain the array containing v in O(1) time since the
location of v is well-defined along one of these four edges.
2

2.2 The Modified Dijkstra’s Algorithm

After the construction of G = {V G, EG}, our algorithm
searches for a vertex p′ ∈ V G by invoking a graph short-
est path algorithm from each of the source vertices R =
r1, r2, . . . , rs ∈ V G on which the robots are positioned.
We modified the multiple-source single-target variation of
Dijkstra’s shortest path algorithm [4] such that our algo-
rithm stops at vertex p′ which is the approximating meet-
ing point. Intuitively, the strategy is to propagate out-
wards, in a wavefront fashion, from each source ri. The
best approximating meeting point p′ within the graph G

is the first point to be reached (processed) by all robots
during their propagation.

Our implementation of the algorithm uses a min-
heap Q as the priority queue to ensure that all wave-

fronts of the robots propagate at an equal rate. For
each vertex v ∈ V G we maintain an array which holds
the minimum travelling cost from each source point to v

which we denote as: costs(v)[1], costs(v)[2], ..., costs(v)[s]
where costs(v)[i], 1 ≤ i ≤ s, represents |Π′(ri, v)|. Ini-
tially, these values are set to ∞ for each vertex, except
for the vertices that represent the initial robot locations
whose cost from their own starting location is set to 0 (i.e.,
costs(ri)[i] ← 0, 1 ≤ i ≤ s).

For each vertex v ∈ V G, we also keep a local min-
heap, denoted local-heap(v), which contains the indices of
the robots. The local heap has size s and is organized
by the cost (i.e., costs(v)[i]) of reaching v from the var-
ious sources. Thus, the top element of the local heap
contains the index of the robot that has minimum cost
in the array costs(v)[i], 1 ≤ i ≤ s. Let minCostInd be
the index of the robot at the top of the local heap (i.e.,
minCostInd = [i|min1≤i≤s{costs(v)[i]}]). The min-heap
Q, which is used by the algorithm to determine which
vertex to process next, is ordered in ascending order of
costs(v)[minCostInd]. Thus, at any time during the al-
gorithm, the top element of the heap represents the ver-
tex/source pair with the global minimum cost. The re-
mainder of the algorithm is similar to Dijkstra’s algorithm
in that during the relaxation stage the heap Q is updated
accordingly. We also maintain for each vertex, an array
parent(v)[i] which stores the vertex preceding it in the
shortest path Π′(ri, v). This allows us to trace backwards
from the meeting point and obtain the actual shortest
paths in G from each ri to p′.

The algorithm halts when a vertex v is extracted
exactly s times from Q, indicating that v was the first
vertex reached by the wavefronts of all robots ri, 1 ≤
i ≤ s. A more complete description of the algorithm is
given in the pseudo code in Algorithm 1. The algorithm,
FindMeetingPoint(G,R), takes as input an approximat-
ing graph G = (V G, EG) of terrain P using m Steiner
points, and a set of source vertices R = r1, r2, . . . , rs. It
returns a vertex p′ ∈ V G representing the meeting point
solution.

Before we discuss the time and space complexity of
our algorithm we show in the following lemma that the
algorithm is correct.

Lemma 2.3 Let G = (V G, EG) be an approximating
graph of terrain P = {V P , EP} with n faces using m ≥ 1
Steiner points, and let R = r1, r2, . . . , rs be a set of robots
that require to meet at a point. The meeting point p′,
which Algorithm 1 returns when using G as the approxi-
mating graph of P, is the best approximation of the optimal
meeting point p∗.

Proof: Each time a vertex v is removed from Q, line 22
of Algorithm 1 ensures that the top element is removed
from local-heap(v), indicating that this vertex has been
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Algorithm 1 FindMeetingPoint(G, R)

1: for each vertex v of G do
2: for i ← 1 to s do
3: costs(v)[i] ← ∞
4: parent(v)[i] ← ∅
5: insert i into local-heap(v)
6: end for
7: minCostInd ← top(local-heap(v))
8: insert v into Q using costs(v)[minCostInd] as the

key
9: end for

10: for i ← 1 to s do
11: v ← vertex at which ri is positioned
12: costs(v)[i] ← 0
13: minCostInd ← i

14: update local-heap(v)
15: update v in Q using costs(v)[minCostInd]
16: end for
17: while TRUE do
18: v ← top(Q)
19: remove v from Q

20: minCostInd ← top(local-heap(v))
21: costV ← costs(v)[minCostInd]
22: remove top element from local-heap(v)
23: if local-heap(v) is empty then {All sources were

processed}
24: return(v)
25: end if
26: for each vertex u adjacent to v do
27: if costs(u)[minCostInd] > (costV +

weightedCost(v, u)) then
28: costs(u)[minCostInd] ← costV +

weightedCost(v, u)
29: parent(u)[minCostInd] ← v

30: update local-heap(u)
31: if minCostInd = top(local-heap(u)) then

{minimum cost of u has changed}
32: update Q using costs(u)[minCostInd] as key
33: end if
34: end if
35: end for
36: end while

reached by one of the robot’s wavefronts, say rj . At
this point the shortest path Π(rj , v) is known since all
weights of G are positive, implying that during the relax-
ation step (i.e., lines 27-29) the cost associated with v in
Q can only increase. After its initial construction, local-
heap(v) never grows during the algorithm and shrinks by
one in size exactly s times (i.e., once for each robot).
Hence, when local-heap(v) is empty, this indicates that
all shortest paths Π(ri, v), 1 ≤ i ≤ s to v have been de-
termined. The first such vertex v = p′ whose local-heap
becomes empty, therefore has all shortest paths to it com-
puted and is returned from Algorithm 1 in lines 23-24.
Let Cp′

= max1≤i≤s(|Π
′(ri, p

′)|) be the largest of these
path costs (i.e., representing the robot furthest from the
meeting point). Since Q is sorted by ascending order of
costs for each source point, any vertex, say u, whose local-
heap(u) becomes empty at a later time must necessarily
have cost Cu ≥ Cp′

, and thus represent a meeting point
that does not minimize max1≤i≤s(|Π

′(ri, p
′)|). 2

The following lemma describes the theoretical
worst-case runtime requirements for this phase of our al-
gorithm.

Lemma 2.4 Let G = (V G, EG) be an approximating
graph of terrain P = {V P , EP} with n faces using m ≥ 1
Steiner points, and let R = r1, r2, . . . , rs be a set of robots
that require to meet at a point. Algorithm 1 requires, in
the worst case, O(snm2 log(snm)) time, to return the best
approximating meeting point p′ ∈ V G.

Proof: Lemma 2.1 ensures that |V G| = O(nm) and so the
initialization phase of the algorithm (i.e., lines 1-16) takes
only O(snm + s log(snm)) time. The run time bound of
our algorithm is therefore determined by the WHILE loop
of lines 17-36 of Algorithm 1. In the worst case under
the weighted metric, the meeting point can be one of the
last vertices which are removed from the heap. Thus, we
assume that the algorithm executes until the heap Q is
empty. Each vertex is removed from the Q exactly once
for each source point. Again using Lemma 2.1, we may
remove vertices from the heap up to O(snm) times, where
each removal (i.e., line 19) costs O(log(nm)). Addition-
ally, removing the element from the local-heap in line 22
requires O(log s) time. Similar to Dijkstra’s single-source
shortest path algorithm, the body of the “FOR” loop (i.e.,
lines 27-34) is executed at most twice for each edge in
EG, and lines 28-33 are executed at most once per edge
where the cost of execution is O(log(nm) + log(s)). Since
Lemma 2.1 ensures that |EG| = O(nm2), the “FOR” loop
body may require O(nm2(log(nm)+log(s))) time. Apply-
ing this analysis for all s sources, lines (i.e., lines 27-34)
contribute O(snm2(log(nm) + log(s))) time to the overall
runtime cost. Therefore the overall cost of the algorithm
is O(snm(log(snm)) + snm2(log(snm))). 2

The space requirements of the algorithm are greatly
impacted by the fact that the edges of the approximating
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graph G are stored implicitly. The implicit storage, which
does not affect the time complexity of the algorithm, is
achieved because of the symmetric and systematic con-
struction of G.

Lemma 2.5 Let G = (V G, EG) be an approximating
graph of terrain P = {V P , EP} with n faces using m ≥ 1
Steiner points, and let R = r1, r2, . . . , rs be a set of robots
that require to meet at a point. Algorithm 1 requires
O(snm) space during its execution.

Proof: Algorithm 1 maintains during its execution two
types of priority queues which are min-heaps: a global
min heap Q and some local heaps (local-heap). The global
queue Q maintains an entry for each vertex in V G and
thus it requires O(nm) space. During the execution each
vertex v ∈ V G is assigned a local heap which maintains,
in priority order, the robot which must be processed next.
Since all robots may pass through v, all the local heaps of
all vertices require O(snm) space. Similarly, each vertex
v ∈ V G maintains an array of size s storing the travel cost
of each robot that traverses through v which requires an
additional O(snm) space. 2

Using the results of Lemmas 2.4 and 2.5, we can
present the following theorem.

Theorem 2.1 Let G = (V G, EG) be an approximating
graph of terrain P = {V P , EP} with n faces using m ≥ 1
Steiner points, and let R = r1, r2, . . . , rs be a set of robots
that require to meet at a point. Algorithm 1 requires, in
the worst case, O(snm2 log(snm)) time and O(snm) space
to return the best approximating meeting point p′ ∈ V G.

Fredman and Tarjan [7] and Driscoll et al. [6] have
shown that a modification to Dijkstra’s algorithm using
Fibonacci heaps [7] or relaxed heaps [6] can reduce the
running time for finding a shortest path in a graph to
O(|V G| log |V G| + |EG|) by amortizing the costs of up-
dating the heap structure. A similar argument holds for
updating the local-heap of each vertex v ∈ V G 1. By
applying their results we can further reduce the time com-
plexity as shown in the following corollary.

Corollary 2.1 Let G = (V G, EG) be an approximat-
ing graph, which uses m ≥ 1 Steiner points to ap-
proximate terrain P = (V P , EP) with n faces, and let
R = r1, r2, . . . , rs be a set of robots that require to meet
at a point. Algorithm 1 requires, in the worst case,
O(snm log(snm) + snm2) time and O(snm) space to re-
turn the best approximating meeting point p′ ∈ V G.

Through our experiments, we were able to observe
the quadratic nature of the runtime performance with re-
spect to the value of m. Figure 2 shows the runtime per-
formance obtained from tests on three different terrains,

1Our implementation did not use Fibonacci heaps or relaxed
heaps.

using two different source point sets for R. 2 Notice the
significance that both n and m play in the runtime perfor-
mance since the larger terrains require much more com-
putation time. As will be seen later, the effect of s = |R|
is also quite significant. We will show how reducing s can
dramatically effect the runtime performance of our algo-
rithm.
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Figure 2: Graph showing runtime performance for three
terrains as the number of Steiner points per edge increases.

3 Quality of the Approximation

In this section, we discuss the approximation bound for
the algorithm. Let P be a terrain with n faces and let
R = r1, r2, ..., rs be a set of robots lying on vertices of P.
Let p∗ be the optimal meeting point of R. Assume that
p∗ lies within some face fj of P, 1 ≤ j ≤ n. From the
construction of Gj , we notice a simple property which can
be used in analyzing path costs passing through face fj .
The following property holds:

Property 3.1 If p0 and pm+1 are the endpoints of an
edge e ∈ EP and pi and pi+1 are two adjacent points on e

(either a Steiner point or endpoint of e) where 0 ≤ i ≤ m,

then |pipi+1| = |e|
m+1 .

The following are two fundamental properties of
shortest paths on polyhedral surfaces of which we will need
later.

2The first two graphs result from tests on a Sparc Ultra II (dual
400MHz 32-bit processors) with 512M of memory. Due to the large
terrain size of the Madagascar terrain, the third graph shows results
from running on an Itanium II (dual 900MHz 64-bit processors) with
2G of memory.
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Property 3.2 (Sharir and Schorr [22]) A Euclidean
shortest path π(ri, p

∗) on P may not pass through more
than n faces and so it may have θ(n) segments.

Property 3.3 (Mitchell and Papadimitriou [19])
A weighted shortest path Π(ri, p

∗) on P may cross a face
θ(n) times and so it may have θ(n2) segments.

To begin our approximation quality analysis, we
first examine the cost of an approximated path Π′(ri, p

′)
in G from a single robot location ri to the approximate
meeting point p′, where 1 ≤ i ≤ s. We show that this
path is bounded with respect to the actual shortest path
Π(ri, p

′) on P from ri to p′. We can then compare the
bound max1≤i≤s{‖Π(ri, p

′)‖} with max1≤i≤s{‖Π(ri, p
∗)‖}

to obtain a meaningful estimate of the accuracy.

Recall from the algorithm description that Π′(ri, p
′)

corresponds to a path in G whose edges also happen to lie
on P. For the purposes of simplifying the analysis, we
will assume that Π′(ri, p

′) passes through the same edge
sequence (and hence faces) as Π(ri, p

′). We will bound
Π′(ri, p

′) under this assumption, although in practice the
search phase of our algorithm may produce a shorter path
in G, thereby improving the accuracy stated here.

First we show how to bound the cost of a single
shortest path segment within a face. Let sj = ab be a
segment of Π(ri, p

′) which passes through a particular face
fj of P, and let a and b lie on edges ea and eb of fj ,
respectively. Let s′j = uv be a segment such that u is the
Steiner point on ea that is closest to a and v is the Steiner
point on eb that is closest to b (see Figure 3). Assuming
that fj has weight wfj

, then the following lemma bounds

the weighted cost ‖uv‖ w.r.t. ‖ab‖:

e

f j
b

p'

r
i

a

Π(r ,p')
i

a
eb u

v

s j

s'j

Figure 3: Approximating a segment ab with a segment uv.

Lemma 3.1 ‖uv‖ ≤ ‖ab‖ + wfj
· max{|ea|,|eb|}

m+1

Proof: Without loss of generality, assume that ea 6= eb

(although the lemma also holds when ea = eb). Since u

and v were chosen as the closest of the two Steiner points
adjacent to a and b, respectively, then by Property 3.1

we obtain |ua| ≤ 1
2

|ea|
m+1 and |bv| ≤ 1

2
|eb|

m+1 . The triangle

inequality ensures that |uv| ≤ |ua| + |ab| + |bv|. Hence,

|uv| ≤ |ab| + |ea|
2(m+1) + |eb|

2(m+1) and so

|uv| ≤ |ab| +
max{|ea|, |eb|}

m + 1
(1)

In the weighted metric, the cost of travel through fj is wfj

can then be applied to equation (1) as follows:

‖uv‖ = wfj
· |uv| ≤ wfj

(|ab| +
max{|ea|, |eb|}

m + 1
)

≤ ‖ab‖ + wfj
·
max{|ea|, |eb|}

m + 1

Note that we are using an upper bound which assigns a
weight of wfj

to both ua and bv. If the faces adjacent to

fj have a smaller weight, then the weights on ua and bv

would be reduced and the bound on ‖uv‖ would be better
than the one stated herein. 2

Next we show how to bound the entire k-segment
shortest path Π(ri, p

′). We compute the bound by con-
structing a corresponding bounded path Π′(ri, p

′) in G.
Each segment ab of Π(ri, p

′) is approximated with a seg-
ment uv of Π′(ri, p

′) and we use Lemma 3.1 to bound
the cost of all such approximating segments. Let L be
the longest edge of P and W = max1≤j≤n{wfj

} be the
maximum weight of any face of P. We now introduce the
following lemma:

Lemma 3.2 Given two vertices va, vb ∈ V G, there ex-
ists a path Π′(va, vb) in G such that ‖Π′(va, vb)‖ ≤

‖Π(va, vb)‖ + k · W |L|
m+1 , where k is the number of segments

of Π(va, vb).

Proof: Let Π(va, vb) = {s1, s2, · · · , sk} and Π′(va, vb) =
{s′1, s

′
2, · · · , s

′
k′}. We consider an approximate path that

passes through the same edge sequence (i.e., k = k′), al-
though the algorithm may produce a better path. For
each si, 1 ≤ i ≤ k, we choose s′i as described in Lemma

3.1 such that ‖s′i‖ ≤ ‖si‖+
wfsi

|Lfsi
|

m+1 where wfsi
and Lfsi

are the weight and longest edge of the face through which
si crosses. In the special case where si travels along an
edge e of P, then wfsi

and Lfsi
are the largest weight and

longest edge of the two faces sharing e. By applying this
bound to each segment s′i of Π′(va, vb) we obtain:

k
∑

i=1

‖s′i‖ ≤
k

∑

i=1

(

‖si‖ + wfsi
·
|Lfsi

|

m + 1

)

This can be rewritten as:

‖Π′(va, vb)‖ ≤ ‖Π(va, vb)‖ +
1

m + 1
·

k
∑

i=1

(wfsi
|Lfsi

|)

Since wfsi
≤ W and |Lfsi

| ≤ |L| for all fsi
by definition,

then we obtain the bounds stated in the Lemma. 2
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Until now, we have bounded paths on P between
vertices in G. However, the likelihood that the optimal
meeting point p∗ would lie on a vertex of G is very low and
therefore we adjust our bound on each individual robot’s
approximating path in cases where p∗ lies interior to a face
P. Assume that p∗ lies in face fj and let p′ ∈ V Gj

be the
vertex of Gj that is closest (i.e., has least cost) to p∗. That
is, choose p′ so that

Π(p′, p∗) = min
p∈V Gj

{Π(p, p∗)}

Since p′, ri ∈ V G, there exists a shortest path Π′(ri, p
′) in

G. We will show a bound for the solution p′, although it
should be noted that the searching phase of our algorithm
(i.e., Dijkstra’s shortest path search in G) may produce a
better solution.

Lemma 3.3 Given ri ∈ V G, 0 ≤ i ≤ s, there exists
a point p′ ∈ V G such that ‖Π′(ri, p

′)‖ ≤ ‖Π(ri, p
∗)‖ +

W |L|(1+2k)
2(m+1) , where k is the number of segments of Π(ri, p

∗).

Proof: Let fj be the face containing p∗ and let q be the
point on an edge e of fj through which Π(ri, p

∗) enters fj .
We assume that ri lies outside fj (although the lemma also
holds when ri is a vertex of fj). Let p′ be the Steiner point
on e that is closest to q (see Figure 4). In the degenerate
case, q is one of the vertices of fj . Then by Lemma 3.2, we

e

f j

p

p'

r
i

q

Π(r ,q)
i

Π '(r ,p')
i

*

Figure 4: Selection of p′ for path Π′(ri, p
′).

can bound the approximate cost of Π′(ri, p
′) as follows:

‖Π′(ri, p
′)‖ ≤ ‖Π(ri, p

′)‖ +
W |L|k

m + 1
(2)

From the definition of a shortest path we are ensured that:

‖Π(ri, p
′)‖ ≤ ‖Π(ri, q)‖ + ‖Π(q, p′)‖ (3)

≤ ‖Π(ri, q)‖ + W |qp′| (4)

≤ ‖Π(ri, p
∗)‖ + W |qp′| (5)

Substituting equation (5) into (2) results in:

‖Π′(ri, p
′)‖ ≤ ‖Π(ri, p

∗)‖ + W |qp′| +
W |L|k

m + 1
(6)

Using Property 3.1 along with the fact that p′ was chosen
as the closest Steiner to q, we can deduce that |qp′| ≤

|L|
2(m+1) and apply this to equation (6) to obtain

‖Π′(ri, p
′)‖ ≤ ‖Π(ri, p

∗)‖ +
W |L|(1 + 2k)

2(m + 1)
.

2

We now introduce the main theorem that bounds
the runtime and accuracy of our algorithm.

Theorem 3.1 Let L be the longest edge of P and W be
the maximum weight among all faces of P. Let p∗ be the
optimal meeting point of a set of robots initially placed at
vertices r1, r2, ..., rs of P. Algorithm 1 produces in O(sn5)
time, an approximation p′ of p∗ such that

| max
1≤i≤s

{‖Π(ri, p
′)‖} − max

1≤i≤s
{‖Π(ri, p

∗)‖}| ≤ W |L|

Proof: Set m = k in Lemma 3.3 to obtain ‖Π′(ri, p
′)‖ ≤

‖Π(ri, p
∗)‖ + W |L|(1+2k)

2+2k
≤ ‖Π(ri, p

∗)‖ + W |L|. Since
‖Π(ri, p

′)‖ ≤ ‖Π′(ri, p
′)‖, then ‖Π(ri, p

′)‖ ≤ ‖Π(ri, p
∗)‖+

W |L|. For every ri, 1 < i < s it is easily seen that

‖Π(ri, p
′)‖ ≤ max

1≤i≤s
{‖Π(ri, p

∗)‖} + W |L|

and since this hold true for all i, then

| max
1≤i≤s

{‖Π(ri, p
′)‖} − max

1≤i≤s
{‖Π(ri, p

∗)‖}| ≤ W |L|

To analyze the time complexity of the algorithm, we will
assume that s < n. Corollary 2.1 shows that our al-
gorithm requires O(snm log(nm) + snm2) running time.
From Property 3.3 it follows that Π(ri, p

∗) may have in
the worst case Θ(n2) segments, so m = O(n2) from our
assumption. Therefore, in the worst case, the algorithm
requires m = n2 Steiner points per edge of P to obtain
the given approximation bound with a running time of
O(sn5). 2

Corollary 3.1 Let L be the longest edge of P. Let p∗

be the optimal meeting point of a set of robots initially
placed at vertices r1, r2, ..., rs of P. Algorithm 1 produces
in O(sn3) time, an approximation p′ of p∗ such that

| max
1≤i≤s

|π′(ri, p
′)| − max

1≤i≤s
|π(ri, p

∗)|| ≤ |L|

Proof: The path accuracy follows from Theorem 3.1
where W = 1. As for the time complexity, Property 3.2
indicates that π(ri, p

∗) may have at most Θ(n) segments.
Thus only m = n Steiner points are required per edge of P
to ensure the desired accuracy. Corollary 2.1 shows that
the running time is therefore O(sn3). 2

Claim 3.1 In practice (i.e., for a typical terrain), Algo-
rithm 1 requires only a constant number of Steiner points
per edge to obtain a very accurate solution. Hence the
algorithm has O(sn log(sn)) expected running time.
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3.1 Experimental Analysis of Path Accu-

racy

To verify Claim 3.1, we tested the effect of increasing the
number of Steiner points per edge of P on the quality of
the solutions. Ideally, to assess our algorithm’s solution
accuracy, we would like to show that the difference be-
tween the approximate solution with that of the optimal
solution is small. That is,

| max
1≤i≤s

{‖Π(ri, p
′)‖} − max

1≤i≤s
{‖Π(ri, p

∗)‖}| ≈ 0 (7)

However, for a given robot ri, 1 ≤ i ≤ s, our algo-
rithm does not compute the path cost ‖Π(ri, p

′)‖, but in-
stead computes ‖Π′(ri, p

′)‖ which approximates the short-
est path cost from ri to the approximated solution p′.

As the number of Steiner points added per edge
of P increases (i.e., m → ∞), it can be easily proved
that ‖Π′(ri, p

′)‖ → ‖Π(ri, p
′)‖ for all 1 ≤ i ≤ s. In our

experiments we define

MaxCost = max
1≤i≤s

{‖Π′(ri, p
′)‖}

and we measure the algorithm’s accuracy by examining the
improvement of MaxCost as m → ∞. Letting MaxCostm
denote the MaxCost when m Steiner points are added per
edge of P, we show that |MaxCostm−MaxCostm+1| → 0
as m → ∞. In the unlikely case in which p∗ falls on an edge
of P, this method of measuring solution accuracy shows
that we approach the optimal solution as m → ∞. When
p∗ lies within a face of P, we would need to add Steiner
points to the interior faces of P to be able to indicate how
close the solution is towards optimal. We ran some pre-
liminary experiments in which we did place Steiner points
interior to faces of P in order to assess the significance of
the final path links. The improvement to the overall cost
of the path was negligible because only the interior points
where p∗ is located contributed to the path cost. Thus the
large increase in computation did not merit the negligible
improvement and makes this option impractical. For the
special case using the Euclidean metric on flat terrains, we
can compute max1≤i≤s{‖Π(ri, p

∗)‖} as the center of the
smallest circle enclosing the points in R and substitute
this solution into equation (7) above in order to compare
the algorithm’s accuracy with the optimal solution.

3.1.1 Effects on MaxCost When Increasing m

We first examined the effects that increasing m had on
MaxCost for both the Euclidean and weighted metrics.
Figure 5 shows two graphs pertaining to tests that were
conducted on one of our three terrains with normal and
flattened height values using the Euclidean metric.3 Each
graph shows two data sets representing two completely

3See [11] for additional graphs for other terrains.

different sets of R on the terrain. Although no meaning-
ful comparison can be made between these two data sets,
they are shown on the same graph to save space. From the
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Figure 5: Graphs showing how solution accuracy increases
with the number of Steiner points for normal and flattened
terrains.

first graph, notice how Max Cost decreases as the number
of Steiner points per edge of P increases. Also notice that
this cost converges quickly with very little improvement af-
ter 10 Steiner points are used. The second graph of Figure
5 show results pertaining to a test that was conducted on
a flattened terrain (height value of zero). Since the terrain
is flat for this test, we were able to compare the algorithm
output with the optimal solution, which is the center of
the smallest enclosing circle of all source points. Notice
that our algorithm does indeed converge very quickly to a
near-optimal solution.

In the weighted setting, we conducted similar tests
in which weights were assigned to the terrain faces as a
function of their slopes (i.e., steeper faces are usually con-
sidered more costly to traverse). However, it should be
noted that our algorithm applies to terrains with arbi-
trarily chosen weights (e.g., based on terrain features such
as water, forest, mountainous, desert, etc.). The results
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of these tests are shown in the full version of this paper
[11]. Similar convergence behaviour is obtained as in the
Euclidean metric, although the more spiky Madagascar
terrain (which has overly exaggerated heights) has slower
convergence in the weighted setting. It would be inter-
esting to compare the results of an exact solution to this
problem, however in the weighted setting, we are unaware
of any implemented algorithm for determining the opti-
mal solution to the weighted one-center problem. We do
conjecture that for typical terrains, our algorithm does
converge close to the optimal solution when using only a
constant number of Steiner points.

3.2 Fine-Tuning the Path Accuracy

Since we compute only “approximate” paths
‖Π′(ri, p

′)‖, 1 ≤ i ≤ s, our values of MaxCost re-
flect the “approximate” cost of travel from each ri, not
the actual cost of travel. Hence, there is a measure of im-
precision in our estimate of meeting point accuracy since
the solution is based only on “approximate” maximum
travelling costs. One way of reducing such imprecision is
to try and fine-tune each path Π′(ri, p

′), 1 ≤ i ≤ s so that
it more closely resembles Π(ri, p

′). Although this would
not affect the solution (i.e., p′ remains as computed),
we can obtain a more precise value of MaxCost, which
would help in assessing the solution accuracy as well as
the final route of each robot to the destination.

Currently, there are no known algorithms for com-
puting exact weighted shortest paths on terrains, so it
is difficult to fine-tune our approximate paths. We can
however, obtain a better estimate of each path cost
‖Π(ri, p

′)‖, 1 ≤ i ≤ s by applying the technique used by
Lanthier et. al. [12]. In the Euclidean case, they unfold
the sleeve containing π′(ri, p

′) into two dimensions and
then compute the exact shortest path from ri to p′ that
remains within the unfolded sleeve of triangles using the
algorithm of Lee and Preparata [14]. Lanthier et. al. [12]
showed that for typical terrain data, optimal paths are
actually computed using this approach between 40% and
80% of the time. We apply the same unfolding technique
to compute a path π′′(ri, p

′) which represents the optimal
shortest path from ri to p′ that passes through the same
edge sequence as π′(ri, p

′). As with Lanthier et. al., it is
likely that |π′′(ri, p

′)| = |π(ri, p
′)| for most paths.

Our experiments using this sleeve refinement tech-
nique have shown that π′′(ri, p

′) improves the travelling
cost in comparison to π′(ri, p

′). Figure 6 shows the sleeve
refinement results of one of our three terrains with normal
height for one of the point sets tested earlier. 4 Notice
that the convergence is quicker and that we obtain a very
good path accuracy through the use of only two or three
Steiner points per edge.

4See [11] for additional graphs.
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Figure 6: Graph showing how the sleeve refinement stage
causes quicker convergence.

With respect to the effect on runtime performance,
we found that the cost to apply this additional sleeve-
refinement in practice is insignificant. In fact, if the com-
bined runtime of the algorithm along with the sleeve re-
finement was shown on the graph of Figure 2, there would
be no noticeable difference. In all cases, this additional
step in the algorithm took less than one second to per-
form.

4 Reducing the Running Time

As stated earlier, our algorithm’s runtime performance is
largely based on the size of the approximation graph G,
the number of Steiner points m used on each edge of P
and the number of robots. We have verified Claim 3.1
through experimental analysis by showing that the num-
ber of Steiner points required per edge need only to be a
small constant in practice. Thus, the typical running time
required for an accurate solution is O(sn log(sn)). Al-
though m is constant in practice, it still has a noticeable
effect on the runtime performance.

One strategy in reducing the algorithm runtime is
to reduce the number of robots s = |R|, hence reducing the
linear effect that R has on the overall runtime complexity.
Of course, by omitting some of the robots in R (i.e., using
only a subset of R), we may obtain a different solution
which can be far off when compared to the solution ob-
tained using R. Hence there is a tradeoff between reduced
running time and solution accuracy. The key is to reduce
|R| by selectively eliminating robots that may have little
or no effect on the solution. In order to investigate the
impact of the solution on accuracy when reducing |R|, we
experimented with three strategies for replacing R with a
subset of R and then compared the solution accuracy:
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Random: ten randomly chosen robots from R

Convex Hull: robots on 2D/3D convex hull of R

Bounding Box: robots on 2D/3D bounding box of R

In the subsections to follow, we explain the selection of
each of these subsets in detail and present experimental
results which show their effect on running time and so-
lution accuracy. Results here show only a few selected
graphs from our tests. See [11] for additional graphs for
other terrains.

4.1 Randomized Subsets

If all initial robot positions have equal effect on the so-
lution, then the simplest strategy for reducing |R| is to
choose a random subset of R. In our experiments we first
randomly chose 10 robots from an initial set of |R| = 100.
To account for bad choices, we chose three random sub-
sets of 10 and averaged the results. The robots were cho-
sen as random selections of indices from an array with
the complete set of robots; we denote this averaged set as
R′

RANDind
. Since the indices were used to select the robots

randomly, the subset does not represent a random spatial
selection. We therefore applied two additional random se-
lection strategies. We computed a random x coordinate
and a random y coordinate within the terrain range. We
then selected a robot from R whose location was closest
to (x, y), ignoring the height dimension. We did this 10
times to produce a subset denoted as R′

RANDsrc
. Lastly,

by again selecting a random coordinate (x, y) 10 times,
we chose the closest terrain vertex in place of the closest
robot location and used these as the subset denoted as
R′

RANDver
. In our graphs, we show the average of the re-

sults (labelled as “Random Average”) obtained from the
three subsets R′

RANDind
, R′

RANDsrc
and R′

RANDver
.

4.2 Convex Hull Subsets

The second strategy for selecting a subset of R, which is
shown to be superior to the other two strategies, was to
select robots that, with high likelihood, are furthest away
from the required meeting point. This is because these
robots should, with high probability, have the greatest ef-
fect on the solution. When using the Euclidean metric, on
a completely flat terrain, the furthest robots would lie on
the 2D convex hull of the point set formed by R. Since
most traversable terrain is relatively flat, it is likely that
by choosing robots on the convex hull of R, when R is
projected on the XY-plane, we would obtain a “good” set
of robots that will have the greatest effect on the meet-
ing point solution. As a terrain becomes more and more
uneven (i.e, very spiky), there is a chance that some of
the non 2D convex hull points will have a greater effect on

the solution. However, in this case we choose points along
the 3D convex hull of R. In the weighted metric however,
some of the more “inner” robots may require a long time
to traverse costly terrain to reach the meeting point. In
such cases, the 2D/3D hulls will not contain these more
significant source points (robots). Nevertheless, in typical
data, we believe that the effects of the non-convex hull
points on the solution will be minimal.

To compute the 2D convex hull subset R′
CH2D, we

ignore the z coordinate from the points in R. Hence we can
use any of the well known 2D convex hull algorithms for
a set of points in the plane. One example is the O(s log s)
time Graham’s Scan as introduced in [8]. We do this as a
pre-processing phase of our algorithm before the graph G

is constructed. On a flat terrain when using the Euclidean
metric, it can be easily shown that p∗ is identical whether
R or R′

CH2D is used. We conjecture, since most terrains
are close to being flat, that this will be true for typical
terrain data.

As the terrain becomes more uneven and spiky, the
solution using R′

CH2D can become more and more inac-
curate. A better solution would be to use the points on
the 3D convex hull so that robot positions near mountain
peaks, for example, will also have their intended effect on
the solution. We also compute the 3D convex hull of R,
denoted as R′

CH3D and show experimentally that for un-
even terrains, the solution obtained improves upon the 2D
hull subset solution.

4.3 Bounding Box Subsets

Even though the use of R′
CH3D reduces the runtime cost, it

may still be that |R′
CH3D| = O(s). That is, many robots

may lie on the convex hull. In this worst case scenario,
there would be no improvement in runtime. Perhaps it
would be better to always select a constant number of
robots so that s has no significant runtime effect on the
solution. Our randomized schemes represent one attempt
at ensuring that s was kept constant. We did however
try one more strategy by selecting subsets of robots that
lie on the 2D and 3D bounding boxes of R, which we de-
note as R′

BB2D and R′
BB3D, respectively. These bounding

boxes are represented by robots with extreme x, y and z

coordinates and so we are certain that |R′
BB2D| ≤ 4 and

|R′
BB3D| ≤ 6. Although this strategy may ignore some

robots that significantly effect the solution, it does pro-
vide the tradeoff of keeping s small and moreover, these
subsets are very fast and easy to compute.

4.4 Experimental Results

Using the same terrains and point sets as in section 3.1,
we investigated the tradeoff between runtime performance

11
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Figure 7: Graphs showing the maximum cost error asso-
ciated with the various subset selections for two of our
terrains.

and solution accuracy when using the subsets just de-
scribed. Given a subset R′ of R, we compute the meeting
point solution p′′ as

min
p′′∈V P

{max
ri∈R′

{‖Π′(ri, p
′′)‖}}

One way of assessing the accuracy of the subset solution
is to compute the MaxCostError as follows:

|maxri∈R{‖Π
′(ri, p

′)‖} − {maxri∈R′{‖Π′(ri, p
′′)‖}|

maxri∈R{‖Π′(ri, p′)‖}

The graphs in Figure 7 depict some of the results
of using each of our subset schemes, showing the maxi-
mum cost error for one point set on two of our terrains.
To obtain these results, we first obtained p′′ by running
our graph search using R′. We then re-ran the test using
the full set R but changed the stopping condition of our
algorithm to be that in which all robots ri ∈ R reached p′′.
This is analogous to the one-to-all shortest path problem.
The graph shows the difference in maximum cost error,
calculated as a percentage.

As expected, the largest error is achieved when us-
ing random subsets since some of the more important

“outer” robots are not necessarily selected when forming
the subset. Notice that for the first terrain, solutions using
both R′

CH2D and R′
CH3D produced the exact same solu-

tion (i.e., 0% error) as those in which R was used. The ad-
vantage of using R′

CH3D over R′
CH2D is visible only in the

graph for the spiky Madagascar terrain. Here we can see
that the R′

CH2D solution can result in up to 10.5% error
while the R′

CH3D solution remains at 0% error. A similar
behaviour is observed when comparing R′

BB2D and R′
BB3D

in which R′
BB3D almost always outperforms R′

BB2D. In
fact, for the spiky Madagascar terrain, the R′

BB3D solu-
tion performs as well as the R′

CH3D solution when over 10
Steiner points per edge are used.

To get a better understanding of the relative accu-
racy for the solutions, the graph shown in Figure 8 depicts
the average of these results for all terrains and point sets
using the Euclidean metric. Notice that the best sub-
set scheme is R′

CH3D with a 0% error followed by R′
CH2D

which provides less than half the error of the bounding box
schemes. The random subset schemes were the worst with
up to 16% error. The results when using the weighted
metric show that relative error of the subset schemes is
similar to that of the Euclidean metric, except that the
R′

CH2D solution performed poorly. This is due to the fact
that some of the robot locations of the original set are
near mountainous peaks which have a high cost of travel
due to their steep slopes, causing the meeting point to be
higher up the mountains while R′

CH2D typically does not
include these robots, causing the meeting point to be fur-
ther down the mountain. This effect was also noticeable
by the fact that the R′

BB2D solution provided the second
best solution overall.
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Figure 8: Graph showing the average maximum cost er-
ror across all three terrains using both point sets for the
Euclidean metric.

From the observations just made, we see that the
R′

CH3D solution performs best by matching the optimal
solution in the Euclidean setting and by producing a less
than 2% error when using the weighted metric. Let us ex-
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Figure 9: Graph showing the average Euclidean running
time across all three terrains using both point sets.

amine now the affect on runtime performance. The graph
in Figure 9 shows the runtime costs for each of these subset
schemes. Notice the significant decrease in computation
time for all subset schemes when compared to using the
complete set R. The slowest of the subset schemes still
takes only 16.1% of the runtime required for the complete
set and the quickest takes only 1.7% of the time. When
comparing the subset schemes with each other, the graph
shows that the convex hull schemes take longer to com-
pute while the bounding box schemes are quickest. The
main factor here is in the size of the subsets. In our tests,
the size of the subsets of R associated with the bounding
box schemes was always four in the case of 2D or six in
the case of 3D. The size of the subset associated with the
random scheme was of size 10, and the typical size of the
subsets associated with convex hull schemes was 10 or 11
for the 2D hull and 24 for the 3D hull.

5 Conclusions and Future Work

In this work we presented the first practical algorithm for
solving the meeting point (1-centre) for a set of robots
which are placed in a weighted terrain. Given a set of
scattered robots R = {r1, r2, . . . , rs} in a weighted ter-
rain P with n faces, our algorithm finds an approximation
point p′ to the optimal meeting point p∗ of these robots
such that:

max
1≤i≤s

{‖Π(ri, p
′)‖} ≤ max

1≤i≤s
{‖Π(ri, p

∗)‖} + W |L|

Moreover, we have shown that such an approximation
can be obtained in O(snm log(snm) + snm2) time where
m = n in the Euclidean metric and m = n2 in the weighted
metric. Our experiments have shown, however, that a con-
stant value for m is sufficient (e.g., m=8-12) in order to
produce very accurate solutions. Through experimenta-

tion, we also show that the running time may also be sig-
nificantly reduced by selecting a subset of R. This work
compared and contrasted the effect of the various ways
for selecting subsets of R with respect to runtime per-
formance and solution accuracy. When the terrain was
relatively flat, it was shown that some subsets such as
R′

CH2D and R′
CH2D of R, corresponding to the 2D and

3D convex hulls respectively, produced very good results
while reducing the running time by 98.3%. For the more
spiky terrains the runtime was still decreased by 83.9%,
although with a more significant degradation of solution
accuracy when using R′

CH2D, while R′
CH3D maintained its

high accuracy.

We have taken the approach of Lanthier et. al.
[12] to bound the approximate cost and running times. It
should be noted however, that there are other methods
of applying Steiner points to P which achieve different
bounds and accuracies. For instance, the Steiner place-
ment strategies presented by Aleksandrov et. al. [2][1] can
be applied to produce G and obtain an ε-approximation for
p′ which can be made to be arbitrarily close to p∗, at a cost
of increased running time. Although this ε-approximation
work may provide a better theoretical bound, the simpler
and more practical algorithm for placing Steiner points
evenly on the edges of P was presented in this paper. The
work of Lanthier et. al. [12] also made use of graph span-
ners to reduce the graph G, and hence reduce also the
running time. Likewise, our algorithm can easily be ex-
tended to use graph spanners to achieve a reduced running
time.

Moreover, we have shown that such an approxima-
tion can be obtained in O(snm log(snm) + snm2) time
where m = n in the Euclidean metric and m = n2 in the
weighted metric. Our experiments have shown, however,
that a constant value for m is sufficient (e.g., m=8-12) in
order to produce very accurate solutions. Through exper-
imentation, we also show that the running time may also
be significantly reduced by selecting a subset of R. This
work compared and contrasted the effect of the various
ways for selecting subsets of R with respect to runtime
performance and solution accuracy. When the terrain was
relatively flat, it was shown that some subsets such as
R′

CH2D and R′
CH2D of R, corresponding to the 2D and

3D convex hulls respectively, produced very good results
while reducing the running time by 98.3%. For the more
spiky terrains the runtime was still decreased by 83.9%,
although with a more significant degradation of solution
accuracy when using R′

CH2D, while R′
CH3D maintained its

high accuracy.
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