An € - Approximation Algorithm for Weighted Shortest Path Queries on Polyhedral
Surfaces *¥

Lyudmil Aleksandrovi Mark Lanthierf Anil Maheshwaritand Jorg-Riidiger Sack?
E-mail: {lanthier,maheshwa,sack}@scs.carleton.ca

1 Introduction

Shortest path problems are among the fundamental prob-
lems studied in computational geometry and other areas
such as graph algorithms, geographical information sys-
tems (GIS) and robotics. Due to their relevance in prac-
tice, 3-dimensional shortest paths problems, in particu-
lar, have received considerable attention. For surveys on
shortest path problems see e.g., [13, 14].

Canny and Reif [4] showed that the problem of
computing a shortest path between two points among
a set of polyhedra (avoiding the interiors) is NP-Hard.
The NP-hardness and the large time complexities of 3-d
shortest paths algorithms even for special problem in-
stances have motivated the search for approximate so-
lutions to the shortest path problem. The quality of
an approximate solution is assessed in comparison to
the correct solution. One particular class of approxima-
tion algorithms produces e- approximations of a shortest
path. A path IT'(s,t) between two points s and ¢ is said
to be an e-approximation of a (true) shortest path II(s, t)

1T (s,8)l
sl <1+ ¢, for some € > 0.

between s and t, if

For Euclidean shortest path problems on a sin-
gle polyhedron, a significant amount of activity has re-
cently emerged with work presented for example by Her-
shberger and Suri [8], Har-Peled et. al. [7], and Agarwal
et. al. [1]. We refer to reader to the full version of this
paper for more details on these results.

Weighted shortest paths problems are of partic-

*Research supported in part by ALMERCO Inc. & NSERC.

fBulgarian Academy of Sciences, CICT, Acad. G. Bonchev Str.
BI. 25-A, 1113 Sofia, Bulgaria

¥School of Computer Science, Carleton University, Ottawa, On-
tario K1S5B6, Canada

8Part of this research was carried out while the first author
listed was visiting Carleton University.

ular interest as the Euclidean distance does not always
capture the true cost of a path. In the weighted scenario
each face of a region has an associated weight which rep-
resents the cost of travel through that face. The cost
of travel through a face is the distance traveled multi-
plied by the face’s weight. Papadimitriou [16] provided
an e-approximation algorithm for computing weighted
shortest paths amidst polygonal obstacles in the plane;
their algorithm runs in O(n*(L + log(n/€))?/€?) time,
where L represents the bit precision. Lanthier et. al. [10]
presented several practical algorithms for approximating
shortest paths in weighted domains. In addition to their
experimental verification and time analysis, they provide
theoretically derived bounds on the quality of approxi-
mation. More specifically, the cost of the approximation
is no more than the shortest path cost plus an (addi-
tive) factor of WL, where L is the longest edge length,
W is the largest weight among all faces. They also use
spanners to get at most J times the shortest path cost
plus SW L, where 8 > 1 is an adjustable constant. Mata
and Mitchell [12] presented an algorithm that constructs
a graph (pathnet) which can be searched to obtain an
approximate path, but they do not state any bounds on
the accuracy of the path obtained.

Very recently, Aleksandrov et al. [2] presented an
e- approximation algorithm for weighted shortest paths
between two vertices on a polyhedral surface. Their al-
gorithm runs in O(mnlogmn + nm?) time where m =
O(logs(L/r)) and L is the length of the longest edge
and r = f(€) times the minimum distance from any ver-
tex to the boundary of the union of its incident faces.
In the unweighted case, f(e) = min(g,1/6) and 6 >
1+ <86 " where 6 is the minimum angle between any
two adjacent edges of P. In the weighted case, f(e) =
min (557757, 1/6) and 6 > 1+ %, where W
and w are the largest and smallest face weights of P,
respectively. The work presented here is a generalize-
tion of [2], which is extended to allow arbitrary query
points, (both source and destination) and is easily paral-
lelizable. Our techniques also allow for the computation
of a weighted shortest path map. This work represents
the first e-approximation algorithm for weighted shortest

path queries on a non-convex polyhedron.

Parallelization of e-approximation weighted short-
est paths algorithms is of particular interest as, with
more computing power, better approximations are ob-
tainable in the same time or in even less time. Parallel
shortest paths problems in graphs have received some
attention. As described for example in Leighton, [11],
the all-pairs shortest path in a weighted graph can be
computed using transitive closure. This leads however
to algorithms which have a processor utilization no less
than M(n), where M(n) is the time required to multi-
ply to n by n matrices. For other related work see e.g.,
[6, 17, 9, ?]. Single-source parallel shortest path prob-
lems in graphs have e.g., been developed by Paige and
Kruskal [15]. Their algorithm runs in THET A(nlogn)
time and uses THET A(n) EREW PRAM processors.
Cohen presented an NC algorithm that computes short-
est paths in a digraph and makes use of a k*-separator
decomposition. The algorithm computes shortest paths
from s sources to all other vertices using O(n3* + s(n +
n?#)) work. Reachability from s sources can be com-
puted using O(M (n*)log®n + s(n + n?*)) work, where
M (k) = o(k®37) is the best known work bound for k x k
matrix multiplication. These bounds are applicable to
planar graphs when g = 0.5. The authors know of no
non-trivial parallel algorithms for the weighted short-
est paths problem with unknown source and destination
queries other than the one presented here.

2 Our Algorithm

Our approach to solving the problem is to discretize the
n-face polyhedron P in a natural way, by placing up to
m Steiner points along each edge of P. We construct a
graph G containing Steiner points as vertices and edges
as those interconnections between Steiner points that
correspond to segments which lie completely in the trian-
gular faces of P. The geometric shortest path problem on
polyhedra is thus stated as a graph problem so that the
existing efficient algorithms (and their implementations)
for shortest paths in graphs can be used. We preprocess
the given polyhedron P in order to answer shortest path
queries. We will discuss both the preprocessing step and
how to answer queries using data structures computed
in the preprocessing step.

The vertices (and Steiner points), edges and the
faces of P define a planar graph, which we call the polyg-
onal graph G, with the corresponding set of vertices,
edges and faces, respectively. Frederickson [?] has shown
that any planar n-vertex graph can be partitioned into
O(n/r) parts (regions), so that each part consists of O(r)
vertices and has O(+/r) vertices on the boundary of the
region. This construction is based on applying the sepa-
rator theorem due to Lipton and Tarjan [?]. Aleksandrov
and Djidjev [?] very recently provided an algorithm for

computing such partition; their algorithm runs in lin-
ear time. The preprocessing stage of our shortest path
algorithm does the following;:

1. Using the technique of Aleksandrov et. al. [2], com-
pute a graph G on P (they introduce m Steiner
points on each edge of P, where m is a function of
the topology of each triangle of P).

2. Using the algorithm of Aleksandrov and Djidjev [?],
partition G into mn/r regions Ri, Rz, ..., Rmn/r,
where 7 is an adjustable parameter. Let Gy, Go, ...
be the graphs corresponding to each of these re-
gions, respectively. Note that their algorithm par-
titions a planar graph, where as G may be non-
planar. We partition a subgraph of G, consisting
of all vertices and only those edges of G that cor-
respond to the region’s polygonal boundary. Once
the partition is computed on the subgraph, we add
the rest of the edges of G to obtain the partition of
G.

3. For each region R;,1 < i < mn/r, compute shortest
paths among all pairs of vertices in G;.

4. Create for each region R;, a complete graph G on
its boundary vertices. The weight on an edge in G;
between two boundary vertices u and v of region R;
represents the length of the shortest path between
them when the path is restricted to be in R;. Let
G!'=aG;,|JG..

5. Compute shortest paths between all pairs of bound-
ary vertices from all regions, i.e., compute shortest
paths among all pairs of verticesin G} | JGLU ... UG

!

6. For each region R;, compute once again shortest
paths between all pairs of vertices in GY.

Suppose we wish to know a shortest path between
two vertices w and v in G. There are two possibilities:
(i) u and v are in the same region, say R;, or (ii) u and
v are in different regions, say R; and R;. In the first
case, we know the shortest path between u and v, by
knowing the shortest path in G7. In the second case, we
know the shortest path from u (or v) to all the boundary
vertices of R; (resp. R;). Also we know the shortest
paths between every pair of boundary vertices of R; and
R;. Since there are O(+/r) boundary vertices per region,
we can compute the shortest path between v and v by
investigating O(y/7 x /r) pairs. If the query pair on P
happens to be the points corresponding to vertices of G,
then we report the path as above. For arbitrary query
points s and ¢ on P, we perform the following steps:

1. Locate the regions R; and R, containing s and ¢,
respectively, where R; may be same as R;.

2. Locate the faces f; € R; and f; € R; containing s
and ¢, respectively.

7Gmn/7‘

mn/'r'

3. Add (temporary) edges to G (G) from s (t) to all
vertices representing Steiner points of f; (f;).

4. Compute a shortest path from s (¢) to all vertices
on the boundary of R; (R;). Investigate all shortest
paths between pairs of boundary vertices of R; and
R; and report a shortest path between s and t.

2.1 Running Time and Accuracy Analysis

In Step 1 of the algorithm, we compute a graph G by
discretizing the polyhedron P which has at most O(nm)
vertices and at most O(nm?) edges. This can be done
in O(nm?) time. In Step 2, the algorithm of Aleksan-
drov et. al. [2] requires time linear in the number of
vertices of G, hence O(nm) time is required. Step 3
calls for the computation of the shortest path between all
pairs of r vertices in each graph G;. We can use any all-
pairs-shortest-path algorithm which will cost O(r? log r+
r?2m) time per region and hence O(nmrlogr + nm?r)
overall time for all regions. Using these results, Step 4
can be completed easily within O(y/r/r) = O(r) time.
Now using these newly created graphs, Step 5 requires
an all-pairs-shortest-path computation on a graph with

%ﬁ = 7% vertices and O(mn) edges, which can be

done in O(Mlogm—: (":})2) time. Lastly, Step 6

T

requires the same amount of time as Step 3. As a result,

the overall preprocessing phase requires O(nmrlogr +

nm?,r + @ log % —+ %) time.

Now we can analyize the accuracy of the path ob-
tained. From the results of Aleksandrov et. al. [2],
given that s and t are vertices of P, a Euclidean short-
est path approximation 7'(s,t) can be computed such
that |7'(s,t)| < (1 + 4e)|n(s,t)|. For the weighted sce-
nario an approximation IT'(s,t) is computed such that
I (s, 8)|| < (1 + 2¢ + 3¢X)||TI(s, t)||, where W and w
are the largest and smallest weights of any face in P.
However, the preprocessing phase requires computation
of shortest paths between Steiner points. Using a simi-
lar proof strategy as of [2], we show that a path between
Steiner points s and t can be found such that |7'(s,t)| <
(1+7e)|m(s,t)| and ||TT'(s, t)]| < (1+26+66%)”H(5,t)”.
However, this requires that s and ¢ be a certain min-
imal distance apart. More precisely, let f; and f; be
the two faces sharing the edge on which s lies. Let 7
be the set of faces incident to a vertex of f; or f;. In
order for the above bound to hold, ¢ must lie outside
Ts. If t lies within 75 then we can apply any existing
shortest path algorithm between s and ¢ that remains
within 7, which contains a constant number of faces in
practice, as well as recall that the underlying graph is
planar. Our proof strategy is to show that there exists
a path in G, that is an e-approximation of a shortest
path. It is very likely that Dijkstra’s algorithm may find
an alternate and even a better cost path in G. Assume
now that for queries, s and t are arbitrary points on P

such that ¢() 7, = 0. We show (again in [2]) that there
exist paths such that |7'(s,t)| < (1 4 12¢)|n(s,t)| and
T (s,)] < (14 2€(1+62) + 6622 (1 + 31))||TI(s, 2)].
The result is summarized in the following;

Theorem 2.1 An e-approzimate path between two arbi-
tray query points s and t on P can be computed, provided

tN7s = 0.

The preprocessing step of the above algorithm can
be parallelized by the known techniques, since the ge-
ometric shortest path is transformed to an equivalent
graph problem.

References

[1] P.K. Agarwal, S. Har-Peled, M. Sharir, and K.R. Varadara-
jan, “Approximating Shortest Paths on a Convex Polytope
in Three Dimensions”, submitted to J. ACM, 1996.

L. Aleksandrov, M. Lanthier, A. Maheshwari and J.-R. Sack,

“An e-Approximation Algorithm for Weighted Shortest Paths

on Polyhedral Surfaces”, Technical Report, Carleton Univer-

sity, December 1997.

[3] A. Baltsan and M. Sharir, “On the Shortest Paths Between
Two Convex Polyhedra”, J. ACM, 35, 1988, pp. 267-287.

[4] J. Canny and J. H. Reif, “New Lower Bound Techniques
for Robot Motion Planning Problems”,28th IEEE Symp. on
Foundations of Computer Science, 1987, pp. 49-60.

[5] E. Cohen, “Efficient Parallel Shortest-Paths in Digraphs with
a Separator Decomposition”, SPAA’93, 1993, pp. 57-67.

[6] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and
graph algorithms”, SIAM Journal of Computing, Vol. 10,
Mo. 4, pp. 657-675, 1981.

[7] S. Har-Peled, M. Sharir, and K.R. Varadarajan, “Approxi-
mating Shortest Paths on a Convex Polytope in Three Di-
mensions”, Proc. 12th Annual Symp. on Computational Ge-
ometry, Philadelphia, PA, 1996, pp. 329-338.

[8] J. Hershberger and S. Suri, “Practical Methods for Approxi-
mating Shortest Paths on a Convex Polytope in R3”, Proceed-
ings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1995, pp. 447-456.

[9] J. Jenq and S. Sahni, “All pairs shortest path in sparse net-
works”, Journal of the ACM, Vol. 24, No. 1, pp. 1-13, 1977.

[2

[10] M. Lanthier, A. Maheshwari and J.-R. Sack, “Approximating
‘Weighted Shortest Paths on Polyhedral Surfaces”, Proceed-
ings of the 13th Annual ACM Symposium on Computational
Geometry, 1997, pp. 274-283.

[11] F.T. Leighton, “Introduction to Parallel Algorithms and
Architectures”, Morgan Kaufmann Publishers, San Mateo,
USA, 1992.

[12] C. Mata and J. Mitchell, “A New Algorithm for Computing
Shortest Paths in Weighted Planar Subdivisions”, Proceed-
ings of the 13th Annual ACM Symposium on Computational
Geometry, 1997, pp. 264-273.

[13] J.S.B. Mitchell, “Shortest Paths and Networks”, Handbook
of Discrete and Computational Geometry, J. Goodman and
J. O’Rourke Eds., CRC Press LLC, Chapter 24, 1997, pp.
445-466.

[14] J.S.B. Mitchell, “Geometric Shortest Paths and Network Op-
timization”, Handbook on Computational Geometry, J.-R.
Sack and J. Urrutia Eds., Elsevier Science B.V., 1998.

[15] R.C. Paige and C.P. Kruskal, “Parallel algorithms for short-
est path problems”, in Proceedings of 1989 International
Conference on Parallel Processing, pp. 14-19, 1989.

[16] C.H. Papadimitriou, “An Algorithm for Shortest Path Mo-
tion in Three Dimensions”, IPL, 20, 1985, pp. 259-263.

[17] C. Savage, “Parallel Algorithms for Graph Theoretic Prob-
lems”, Ph.D. thesis Mathematics Department, University of
Illinois, Urbana, IL, 1977.

[18] M. Sharir, “On Shortest Paths Amidst Convex Polyhedra”,
SIAM Journal of Computing, 16, 1987, pp. 561-572.

