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Abstract

Recent research in the area of autonomous robots has
concentrated on the development of simpler, smaller and
cheaper robots. A robot is presented here which has
been developed for the purpose of investigating the use-
fulness of robots with a minimal set of sensors. A care-
fully selected repertoire of combined instinctive behav-
iors allows the robot to remain functioning, providing
the essence of an artificial life-form. The robot achieves
landmark-based navigation for the purpose of finding
energy to remain “ealive”. The programming of these
behaviors is accomplished with hardwired networks of
neurons that can be easily converted into electronic cir-
cuitry.

1 INTRODUCTION

Many autonomous robots are built with the intention
of getting them to perform complex tasks. These com-
plex tasks usually require complex sensors and a large
amount of computation. A robot equipped with these
sensors and computational processors is usually large
and heavy due to the need for large power supplies.
There is a growing amount of interest in the design of
smaller and simpler robots employing nanotechnology

(4], (3], [1], [11].

One possible method of reducing a robot’s size is to
replace the cluster of complex sensors and their proces-
sors with a minimal set of very simple sensors. This
strategy cuts down on the amount of sensory informa-
tion that needs to be processed and hence provides a re-

duction of the processing power requirements. A draw-
back of this approach is that the robot is limited to sens-
ing simple environmental stimuli and thus it may have
limited usefulness. It is our opinion that these robots
can be most useful when many are used together in a
cooperative manner.

There has been research in the application of neural
networks [2], genetic algorithms [5] and classifier sys-
tems [8] to autonomous robots. The research often in-
volved the learning of simple behaviors from scratch.
That is, the robot started with no initial knowledge of
its sensors and then through environment interaction, it
was able to learn how to use its sensors to perform some
simple behavior such as avoiding an obstacle, pushing
a box or following an edge. With these techniques, the
robot had to learn how to perform the behaviors over
time. A problem with learning such simple behaviors
is that the robot initially performs poorly during the
learning process, and adequately only after a certain
amount of time has elapsed.

Another approach to designing behaviors is to hard-
wire them as instincts so that the robot is immediately
able to perform simple behaviors when initially placed
in an environment. A benefit of instincts is that no
extra processing power for learning is needed. Fur-
thermore, the behavior can be easily coded in simple
electronic circuitry which leads to a reduction in the
amount of physical space required to implement a be-
havior mechanism. Furthermore, if many of these hard-
wired instinctive behaviors are to be incorporated into
the robot, then they may all be coded onto one small
electronic device. This reduction in processing power is
of a tremendous advantage to nano-sized robots.

In this paper we describe an insect-like robot, RABI
(Robotic Adaptive Behavioral Insect), which was devel-
oped in order to gain insight as to the usefulness of such
simplified robots. A physical robot was built to eval-
uate the simplified design and a simulated version of
the robot was used to study the various behaviors and



Ant. 3Ant. 2Ant. 1Ant. O

Ant. L Ant. R

Figure 1: The antennae sensors of RABI.

motivational aspects corresponding to those of artificial
life forms.

The sensors merely consist of 6 antennae which act
as proximity sensors as shown in Figure 1. These an-
tennae do not provide accurate proximity readings, but
only a yes or no response indicating the presence or
absence of an obstacle. The simulated version has ad-
ditional simple sensors to detect light, energy, dirt, and
a metal disk.

The rest of this paper describes various design as-
pects of building RABI. We first describe the implemen-
tation of the robot’s behaviors and its motivation sys-
tem that provide it with life-like characteristics. Sim-
ulation results show how the robot’s behaviors can be
combined to provide a robust overall system. We then
briefly discuss the map building and navigational strat-
egy used by the robot to locate and obtain energy.

2 IMPLEMENTATION OF BEHAVIORS

An approach similar to that of Beer [1] is used to pro-
gram hardwired instincts into RABI. The instinctive be-
haviors are individually coded as networks of several in-
terconnected neurons. The neurons are interconnected
with excitatory (lines with arrows) and inhibitory (lines
with circles) links to provide a method of low level com-
putation. Our design of behaviors differs from Beer
(1990) in that we use many different types of neurons
in order to provide more functionality. The different
types of neurons used are shown in Figure 2.

All neurons are similar in that they sum incoming
signals and produce an output. The output of each neu-
ron differs with its activation function. Some neurons,
such as the accumulative, sustain and differential, keep
an internal state according to previous input signals.
In a sense, the network of neurons is a cross between
a neural network and a state machine. All instinctive
behaviors and control mechanisms (including leg coor-
dination) are programmed solely with these networks.

:
g

Standard

Binary

i
i

Random

Pulse

i
;

Threshold

Accumulative

;
i

Sustain Differential

Figure 2: The different neurons used in the implemen-
tation of instinctive behaviors.

Some additional programming is currently being used
for map-building and landmark matching. More infor-
mation on the neurons and networks used is given in

[6].

These neuron networks are used to coordinate leg
movements and to implement various instincts of the
robot. Instinctive behaviors are created for collision
avoidance, wandering, edge following, vacancy (i.e. re-
maining in unoccupied areas of the environment), light
seeking, energy seeking, cleaning, map building and
landmark-based navigation.

Due to space constraints, only the leg coordination
network and collision avoidance behavior are discussed
here; for further details on the construction of the other
networks, see [6]. The leg coordination networks of Beer
[1] did not explicitly handle turning, and the timing for
lifting and placing the foot down is not at all clear. A
modified version of this network (with the new neurons
discussed previously) is used to allow RABI to coordi-
nate its 6 legs and walk using a tripod gait. The notion
of timed pulses is eliminated since only one gait is de-
sired. The network is shown in Figure 3 below and is
duplicated for each of the 6 legs.

In this network, the FRT, BCK, FTUP and FTDN
neurons are connected to the robots leg sensors and pro-
vide a binary response indicating whether the robot’s
leg is all the way forward, backward, up or down, respec-
tively. The FTDN neuron instructs the robot to begin a
stance phase (push forward) when the foot of the robot
touches the ground by partially exciting the ST neuron.
One additional neuron (not shown) is connected to the



Figure 3: The neuron network for leg coordination.

ST neuron of each leg to provide a constant partial exci-
tation. Since the ST neuron is a threshold neuron, it is
only fully excited when it receives 2 inputs of 0.5. Once
the foot is lifted up, and the leg is all the way back, the
FTUP and STLMT neurons excite the SW and LEGUP
neuron and causes the robot to lift its leg and swing it
forward. When the leg reaches all the way forward, the
SWLMT neuron enables the LEGDN neuron and the
robot puts its leg down. The MTRF/B and MTRU/D
neurons are directly connected to the leg motors and
cause the motor to spin in a CW or CCW direction de-
pending on a positive or negative input. The role of the
POSLEG neuron is to ensure that the leg stays in the
swing mode until the leg is placed down or in the stance
mode until the leg is all the way back.

Turning is accomplished by reversing the legs on one
side of the robots body. Essentially, the robot pivots on
the spot. The REV neuron provides a special excitatory
input to the SW, ST, BCK and FRT neurons which
causes them to negate their outputs. In the case of the
SW and ST neurons, this reverses the direction of the
motor. The BCK and FRT neurons provide a crossover
of sensor data to compensate for reverse direction when
excited. One additional piece of coordination is required
to achieve walking. That is, the POSLEG neurons of
adjacent legs inhibit each other. This is done similarly
to Beer [1].

Figure 4: The neuron network for collision avoidance.

Figure 4 depicts the collision avoidance network. The
topmost neurons represent the input from the frontal
antennae (ANTO being the rightmost). These neurons
output binary data indicating whether or not the cor-
responding antenna is touching an obstacle. The DE-
TECT LEFT and DETECT RIGHT neurons receive
weighted input from each of the antennae as shown.
From this weighted input, the DECIDE LEFT and DE-
CIDE RIGHT neurons make a decision as to whether or
not the robot should turn left or right. If the DETECT
RIGHT neuron’s input dominates the DETECT LEFT,
then the robot decides to turn left, since there are more
obstacles touching on the right side of the robot. The
decision to turn left is made in a similar manner. One of
the AVOID LEFT and AVOID RIGHT neurons is then
enabled and it remains enabled until the PULSE neu-
ron disables it. This occurs when the robot no longer
detects a collision. As will be seen in the next section,
the AVOID LEFT and AVOID RIGHT neurons com-
pete with all other behaviors to decide which direction
the robot should turn.



2.1 Motivation and Behavior Selection

In order for a robot to display some of the autonomous
characteristics of living systems, it must be endowed
with a repertoire of behaviors that give it a degree of
unpredictability and randomness. The overall behavior
of the robot should emerge as a function of the indi-
vidual behaviors. This results in a more robust overall
system [3],[1].

A robot with the ability to perform multiple behav-
iors may be faced with a decision as to which behaviors
should be performed at any moment in time. In gen-
eral, there may be conflicting behaviors that require
the robot to perform two incompatible actions such as
turning left and turning right. In this case, the robot
must make a compromise by choosing which direction
to turn. A simple method of avoiding conflicting behav-
iors is to allow the robot to give-in to only one behavior
at a time as seen in [7]. If this approach is followed, then
the robot should choose to exhibit the most important
behavior which is defined in terms of motivational inten-
sity. RABI is designed to adhere to 3 basic motivational
rules, in order of importance:

1. Remain functioning (keep ample supply of energy)
2. Explore the environment for new sources of energy

3. Perform any tasks desired by the creator.

The rules are chosen so that the robot mimics an ar-
tificial life form. It exhibits a strong motivation to stay
alive. RABI constantly monitors its energy level and
when this becomes too low, it immediately attempts to
find an energy source to ensure its survival. Initially, a
robot placed in an unknown environment is unaware of
the energy sources it contains. In order to find energy
sources, the robot must explore, but it should not spend
all of its time looking for energy sources since any use-
ful robot would be required to perform some task for
which it was designed. RABI instinctively does a lot of
exploration when first placed into a new environment.
After the environment has been mapped out and the
robot has knowledge of some energy sources, this desire
for exploration decreases. Eventually, RABI will cease
to explore the environment, concentrating on the task
at hand, occasionally taking a break to obtain energy.

In order to be able to make a decision as to which
behavior is to be selected at any one time, RABI has
hardwired priorities among the individual behaviors.
This allows the most important behaviors such as en-
ergy seeking and obstacle avoidance to override the less
important ones such as wandering and cleaning. The
notion is similar to the subsumption architecture intro-

Figure 5: Connections of behavioral control neurons re-
quired for prioritized behavior selection.

duced by [3]. Figure 5 shows the connections required
to implement this prioritized selection process.

Each individual behavior has 2 neurons whose out-
puts indicate that the behavior requires a left or right
turn. The behaviors compete for overall control of the
robot by connecting to the neurons responsible for ac-
tuator control (i.e. TURN LEFT and TURN RIGHT).
The priorities are established by assigning different wei-
ghts to the links from each behavior. Note that the
weight values are in multiples of 2. This allows a high
priority behavior to override all lower priority behav-
iors since the weight of an incoming high priority signal
exceeds the sum of all lower priority incoming signals
combined. With this strategy, many behaviors compete
for control at any one time but only the behavior with
highest priority is allowed to control the robot. The
CLEAN AHEAD and EDGE AHEAD neurons corre-
spond to moving forward and hence they inhibit the
turning process.

With these connections it is possible to equip a robot
with multiple behaviors. Furthermore, this strategy en-
sures that only one behavior will be active at a time.
The behaviors are individually predictable, but by com-
bining them, more complex behaviors emerge. Fig-
ure 6 shows the results of combining the wandering
and vacancy behaviors. The dots represent the path
that RABI has made within a simple square environ-
ment. With only a wandering behavior and the colli-
sion avoidance behavior (which is always enabled), the
robot spends much of its time traveling along the en-
vironment boundaries. When the vacancy behavior is
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Figure 6: Robot’s path when using a) just wandering
behavior, b) both wandering and vacancy behaviors.

added, the path becomes more random since the robot
spends most of its time away from the boundaries.

The use of multiple behaviors provides a degree of
unpredictability and a more convincing representation
of a living organism. The addition of a third behavior
yields a more interesting result. Figure 7 shows the re-
sults of combining the wandering (W) and vacancy (V)
behaviors with the light seeking (LS) behavior. A light
source is now placed outside (beneath) the environment.

With solely a light seeking behavior, the robot’s tra-
jectory is very regular and uniform with circular pat-
terns. The circular pattern arises from the implemen-
tation of the light seeking behavior: once the robot has
passed the light source, it turns back around for another
pass. By adding the wandering behavior, the robot is
able to occasionally stray from the uniform path, but
the overall regular movement pattern remains. With
the addition of the vacancy behavior, the robot moves
away from the wall so as not to rub up against it. This
pattern is more random but the circular pattern still
remains. With the addition of both wandering and va-
cancy behaviors, the resulting trajectory is quite ran-
dom with almost no trace of the circular pattern. From
these results, it is clear that by combining multiple be-
haviors, a more random behavior emerges. The result-
ing behavior is similar to that of a fly bouncing up
against a window.

2.2 Cooperative Behaviors

It is also possible for these behaviors to complement
one another through cooperation. Consider a robot
that is equipped with a miniature scoop that drags on
the ground beneath it. As the robot moves around,
dirt morsels collect in the scoop and a simple sensor in-
structs the robot that the scoop is full of dirt and must
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Figure 7: Randomness of trajectory for a robot with (a)
only LS behavior, (b) LS and W behaviors, (¢) LS and
V behaviors and d) LS, W and V behaviors.

be emptied. The robot cold then proceed to the near-
est wall and dump the dirt. This scenario represents the
task of cleaning an environment. The simulated RABI
has this ability through the use of its cleaning behavior.
By wandering around in the environment, RABI is able
to collect morsels of dirt and dump them along obstacle
boundaries. Since the wandering is aimless, there are
likely to be portions that remain uncleaned.

One simple method of improving the efficiency of this
cleaning task is to somehow instruct the robot where
to clean. If the robot is equipped with a light-seeking
behavior, it could be attracted to a dirty part of the
environment by placing a light source there. While it
is near the light source, its dirt scoop becomes full and
the cleaning behavior takes over. Once the scoop has
been dumped, the light seeking behavior kicks in and
the robot heads back to the light source. As a result, the
area around the light source will be cleaned up. This
is easily accomplished with RABI by enabling its light
seeking and cleaning behaviors simultaneously.

One could imagine this technique employed in a col-
ony of nanobots. The light source can be placed at
different locations in the environment for short periods.
The colony of robots would converge to this lit loca-
tion and perform their cleaning task. Perhaps a second
colony of robots could trace the environmental borders,
picking up the dumped morsels, providing additional
cleanup.
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Figure 8: A map of a simple environment.
3 MAP BUILDING

If a robot is to remain functioning, it must have some
method of finding energy sources. It should know when
an energy source is nearby so that it can go to it and
obtain energy. Assuming that the robot is equipped
with some form of energy detection sensor (the sensor
may detect fields of energy or wall sockets), then all
that needs to be done to ensure survival is to remember
the location of the energy sources. To do this, the robot
must build a map of the environment so that the relative
distance and direction to any energy source is always
known.

RABI is able to create a map of an unknown en-
vironment using its 6 antennae and a marker (metal
disk). It does this by tracing out obstacle boundaries,
extracting distance and angle information from the ob-
stacle’s features. This method of mapping is known as
landmark-based or feature-based mapping and has been
previously studied by [10].

4 Landmark-Based Mapping

By simply tracing out obstacles, a robot can map out
an environment in terms of edges and corners. Figure
8 shows an environmental map constructed with the
simulated version of RABI.

In the map, the dark lines represent map edges and
the circles represent corners. In order to build this
map, the robot follows along the edges of the environ-
ment, recording the distances traveled between turns
and the angles turned at each corner. When beginning
the tracing process, the robot drops its marker. Once
the robot arrives back at the location where the marker
was dropped, it picks it back up and the trace is com-

Map 1 Map 2 Qéap Map

Figure 9: Generalized map created by matching and
combining 3 separate mappings.

plete. By varying the minimum corner angle and edge
length that can be detected, maps with differing levels
of accuracy are produced. While the robot is tracing an
obstacle, it records any energy source readings from its
sensors and remembers which edges gave a strong en-
ergy reading. This allows the robot to associate edges
and corners with energy sources. With this strategy, the
robot could map out all obstacles in an environment.

When an object is initially encountered, there is no
immediate way of telling whether it has previously been
mapped out. RABI keeps both a short and long term
memory (STM and LTM respectively) containing sim-
ple neurons that represent edges and corners of an ob-
stacle. The LTM keeps maps of all obstacle mappings
made so far, and the STM keeps a sequence of 7 or 8
obstacle features. Whenever RABI encounters an ob-
stacle, it begins tracing it and recording the features in
the STM. Once this memory becomes full, it attempts
to match its contents with a sequence in the LTM. If no
match is found, the robot drops its marker and contin-
ues tracing the obstacle. If a match is found, then the
location within the map is known and may be used for
navigation purposes.

Due to the inherent inaccuracies of the robot’s move-
ments and measurements, the resulting map of an ob-
stacle can differ upon each traversal. This presents a
problem since the robot must have some way of match-
ing 2 nearly similar mappings. When RABI obtains a
new mapping of an obstacle, it compares the map with
others in memory to see if they match within a small
tolerance of edge lengths and turning angles. If so, it
stores a generalized map representing a combination of
the 2 maps. Figure 9 shows the generalized map re-
sulting from a generalization of three separate obstacle
maps.



Figure 10: Simple environment examples.

4.1 Navigation on an Obstacle Border

In order to find energy sources, the robot must be able
to navigate from edge to edge in the environment to
reach the location at which an energy source was previ-
ously detected. Since the LTM is essentially a sequence
of interconnected neurons, then once a partial sequence
has been identified from STM, navigation merely re-
quires the robot to travel to consecutive edges in the
environment until the desired edge or corner has been
reached. By spreading activation outwards from the
desired location, the robot is given an indication as to
which direction to head in (i.e. clockwise or counter
clockwise along the obstacle border). The technique of
spreading activation has been previously implemented
by researchers such as [9].

The technique of matching STM sequences with LTM
sequences is not at all without problems. In order for
this method to work adequately, the environment must
be sufficiently complex so that the obstacles provide
enough information to distinguish between features. Fig-
ure 10 shows a set of 4 simple environments. With
environments A and B, features would be hard to dis-
tinguish because of the similar edge lengths and corner
angles within it. Thus the robot would not be able to
determine its location. Environments C and D however,
contain some distinguishable features which allow easy
identification.

The method of feature-based mapping and landmark-
based navigation is therefore limited to environments in
which there is a large amount of variance among obsta-
cle features and the obstacles themselves are sufficiently
complex.

4.2 Navigation Between Obstacles

In general, there may be many obstacles in an envi-
ronment. A robot may need to travel from obstacle to
obstacle in order to reach a desired location. A robot
equipped with only simple antennae sensors, should re-
main near obstacles since this is where its antennae are
most useful. When traveling out in the open, the an-
tennae do not provide any information. Thus, when
navigating, the robot should only venture into open ar-
eas when absolutely necessary. Moreover, when in an

Figure 11: Additional links required to store adjacency
information between obstacles.

open area, the robot should travel in a well defined path,
such as a straight line, so that it is aware of where it
will be once another obstacle is encountered.

When building a map of the environment, RABI also
records the adjacency information between 2 obstacles
by adding an imaginary edge between them. Many of
these imaginary edges are created so that the robot has
an indication as to the relative distances and directions
between obstacles. Figure 11 shows a simple environ-
ment with the imaginary links added. These links are
added by simply adding additional neurons connecting
edges in the LTM. With these links, RABI knows that
if it turns away at some point along an obstacle bound-
ary at some angle, then by traveling straight, it will
reach a known edge of another obstacle. By using the
spreading activation technique with this revised LTM,
it knows which direction to travel along the obstacle as
well as when to turn away and head off into open space
to get to another obstacle. As a result, RABI is capable
of point to point navigation from obstacle to obstacle
which is used for the purpose of finding previously en-
countered energy sources.

5 CONCLUSION

It is clear that a reduction of sensor size and complex-
ity leads to overall reduction of the autonomous sys-
tem and reduces the processing requirements. We have
shown that by using the notion of motivation-controlled
behaviors a robot can be built to remain functioning as
well as performing some task. The robot presented is
given a repertoire of simple behaviors which are pro-
grammed using a hardwired network of neurons. The



method used to construct such behaviors allows a fur-
ther reduction of the robot’s size and weight. Addi-
tional programming was also used to provide the robot

with point to point landmark-based navigation, allow-

ing it to locate and ingest energy sources. The research

reported here takes a first step towards the development
of small, light-weight and inexpensive artificially living
robots.
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