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ABSTRACT
Vision-based sensors such as stereo cameras, are often used
on mobile robots for mapping and navigation purposes.
Cameras provide a rich set of data making them useful for
object recognition, localization and detecting environmen-
tal structure. When obtaining range measurements, how-
ever, stereo camera vision systems do not perform well un-
der some environmental conditions such as regions which
are uniform in appearance (e.g., plain walls), large metallic
or glass surfaces (e.g., windows) and poor lighting condi-
tions. This paper describes how range data obtained from a
stereo camera vision system can be improved upon through
use of additional sonar and infrared proximity sensors. We
provide experimental results showing that data fusion from
three types of sensor range data does indeed result in a more
accurate occupancy grid mapping.
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1 Introduction

The commonly known issues of sensor noise and sensor
inaccuracies have prompted much research in the area of
sensor fusion [1][2][3][4][5]. The abilities and limitations
of various sensors often dictates their usefulness for
certain robotic applications. Sonars, for example, are
often confined to collision avoidance tasks rather than
mapping because of the low spatial resolution and various
noise problems which are due to crosstalk and specular
reflection. Many researchers have turned toward 3D laser
range finders and passive stereo camera vision systems to
obtain a more accurate representation of the environment.
Laser range finders are still fairly expensive and so many
robots are equipped with less accurate stereo camera vision
systems. Such vision systems do provide fairly accurate
range measurements but there are still some situations in
which they cannot provide adequate distance measure-
ments such as windows and very black mat materials [6].
Some of the ranging problems encountered with stereo
cameras can be overcome through making assumptions on
typical environmental structure. However, in our research,
we are interested to show how multiple heterogeneous
sensors can improve the acquired vision range data without
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any assumptions on the environmental structure.

Sensor fusion has been a subject for much research
[1] using various methods such as Kalman filtering [2],
Bayesian reasoning [3], artificial networks [4] and fuzzy
logic [5]. When doing indoor mapping and navigation,
researchers have found that the use of different types of
sensors on a robot can be beneficial due to their varying
characteristics. Work has been done to fuse sonar sensor
data both with infrared sensor data [4] and with laser
range finder data [6][7][8], as well as fusing camera data
with sonar data [9][10]. Although camera or laser vision
systems are typically used to obtain fine environmental
details, cheaper sensors such as sonars and infrared sensors
are often used to provide a quick and rough estimate of
the environment [7]. These cheaper sensors can also be
used to compliment and confirm the readings of the vision
systems. Wilhelm et. al. [9], for example, show how
sonar data provides an additional weight which is used to
increase the probability of tracking a human when using
camera vision data.

The work presented here represents our initial test re-
sults aimed at identifying where stereo camera vision sys-
tems fail when mapping indoor environments and show-
ing that data from other inexpensive sensors (in our tests,
ultrasonic transducers (i.e., sonars) and infrared proximity
sensors) can be fused with the vision data to improve the
accuracy. Although the sonars and IR sensors are not with-
out their own limitations, we show that they can be used to
accurately fill in missing/invalid data from a typical stereo
camera system as well as help to identify noisy vision data.
Also, while most research in data fusion concentrates on
just two types of sensor data, in this work we concentrate
on merging data from three types of sensors. In this prelim-
inary work, our experiments focussed on building maps in
a static environment. Moreover, we do not address issues
of localization or navigation, but instead focus on hetero-
geneous sensor fusion from fixed known positions in the
environment.

2 Robot and Sensors

Figure 1 shows the robot used in our experiments with a
closeup view of the stereo camera, infrared sensor array



and sonar ring. Note that since our sonars and infrared
sensors are in fixed positions, our experiments concen-
trated on performing data fusion on data obtained from
a particular fixed height in the environment. A similar
approach was taken by [6].

Figure 1. The robot used for testing and a closeup view
showing the BumbleBee stereo camera, infrared proximity
sensors and sonar ring.

Stereo Cameras

Our robot is equipped with a passive two-lens stereo vision
camera system1 as can be seen in Figure 1. Through
software, the cameras are able to extract 3D distance
information from a single robot position at a rate of 10Hz.
The cameras can accurately determine distances within a
range of 2m to 10m with a field of view at around45◦,
allowing a large area of the environment to be processed
from a single image. One disadvantage of stereo cameras
is that they require adequate lighting and even differences
between natural and artificial lighting can pose a problem
when extracting fine details [9]. This is not a problem in
typical indoor environments during normal operating hours
but can become an issue for nighttime applications with
reduced lighting conditions. A more serious drawback of
this sensor is its inability to detect environmental features
when there is an absence of detail in the scene image or
when obstacles have transparent or metallic surfaces. For
example, plain (i.e., uniform colour) walls provide no
detail in which to make matches between pixels in the
stereo images.

Although this type of sensor produces accurate dis-
tance data for typical indoor environments, it often leaves
“gaps” in which no distance measurement is available. Ad-
ditionally, in the case of windows or large metallic surfaces,
invalid range data is often returned which could lead to in-
valid mapping of obstacles. A typical approach to tackling
these issues is to examine the full 3D range of data obtained
from the stereo camera and make assumptions on the envi-
ronmental structure. We aim however, to reduce these gaps
and discrepancies from the stereo camera range data at a
specific height through use of sonars and IR sensors.

Sonar Ring

1Bumblebee from www.ptgrey.com/products/bumblebee

Our robot also hosts a ring of 24 Polaroid 6500 ultrasonic
transducers (i.e., sonar sensors) as can be seen in Figure 1.
It is widely known that sonars have relatively high distance
accuracy and range (10m) but low angle resolution because
of the wide beamwidth (i.e.,±15◦). The wide beam is un-
able to distinguish features within the beam angle, mak-
ing sonars a poor choice of sensor for fine feature extrac-
tion within indoor environments. This resolution problem
is magnified for objects further away from the robot (i.e.,
objects appearing at the wide end of the beam). Unfortu-
nately as well, the well known problems of specular reflec-
tion, unwanted echoes, and crosstalk can cause invalid or
imprecise range readings. Often, by taking multiple read-
ings from various locations, the sonars can produce a fairly
accurate, yet coarse, representation of the environment.
Sonars provide the greatest benefit when used as a com-
pliment to other sensors to reconfirm the presence of ob-
stacles. Furthermore, since they are not vision-based, they
are useful under poor lighting conditions or when there are
many transparent objects such as windows or glass door-
ways, as this is where traditional vision-based sensors fail.

Infrared Proximity Sensor Array

Lastly, our robot is also equipped with an array of 8 Sharp
GP2Y0A02YK infrared proximity sensors as can be seen
above the sonar ring and below the cameras in Figure 1. A
main drawback of these sensors is that they are close-range
sensors and can only accurately measure obstacle distances
within a range of 0.1m to 1.5m. Thus many readings must
be taken in order to determine the shape of larger obsta-
cles. Another drawback of these sensors is that they are
susceptible to inaccuracies due to outdoor light interference
as well as an obstacle’s colour or reflectivity characteristics
which can be seriously affected by windows and metallic
surfaces. In terms of precision however, IR sensors can be
more accurate than the sonars and the stereo camera when
detecting larger shaped features such as walls, doorways,
desks, cabinets etc.

3 Data Fusion

As mentioned previously, the aim of our experiments
was to show how sonar and IR detector data readings
can be combined with the stereo camera data to improve
the overall indoor map at a specific fixed height in the
environment. A series of experiments (described in the
subsections to follow) were designed to address three
important issues. First, since the stereo cameras perform
poorly on uniformly coloured regions, there is a need to
show how the combining of sonar and IR data can “fill
in” the missing gaps in the camera data. Second, it is
beneficial to show how the data fusion of IR and sonar data
can help eliminate noisy range data from the camera data,
thus helping to refine the environment’s contours. Lastly,
since vision-based sensors fail under transparency and
low-lighting conditions, we need to show how the sonars



can help under such conditions.

Figure 2 shows images depicting our test cases. For
our window/stairwell test, Figure 2.c and 2.d show the left
and right halves of the scene where a hallway window next
to an open doorway peers into a stairwell. Figure 2.e shows
the full lighting scene for our low lighting condition test (as
the low lighting image would be difficult to see in print).
Finally, Figure 2.f shows a diagram of a large portion of
our lab used in our full lab test. For each of our tests, we
show the scaled range data overlayed on top of a diagram
of the environment. The diagrams show the shape of the
environment as well as the robot’s positions from which
the range data was taken (shown as a circle with a rectangle
indicating direction of camera and IR sensors).

(a) blank wall (b) cabinet and desk

(c) window (d) stairwell

(e) low lighting setup (f) diagram of lab

Figure 2. Images depicting the test cases for our experi-
ments.

There are various sensor fusion strategies for produc-
ing occupancy grids. We perform data fusion on our oc-
cupancy grid using a one dimensional linear Kalman filter
[2]. Figure 3 shows how we determine which occupancy
grid cells are updated from a single sonar reading. The
obstacle in the figure is detected within the sonar’s emit-
ting angle of30◦ with an error rate of1% (shown exag-
gerated in the figure for clarity). The diagram shows the
probability distribution across the grid cells which must be
updated as a result of this reading. This distribution is a
combination of the sensor dependant angular and distance
distributions that are used during the data fusion process.

We use a Gaussian distribution to compute the angular dis-
tribution in modelling the sensor noise. Therefore the in-
nermost grid cells within the emitting angle have a higher
probability of occupancy than the outermost cells. We also
apply this strategy to compute the distance distribution in
modelling the sensor distance noise. The combined distri-
bution is shown in the figure as a greyscale occupancy grid
where the darker shaded cells indicated a high probabil-
ity of object occupancy and lighter shaded cells represent
a low probability of occupancy. When using IR and stereo
camera sensors, we apply the same probabilistic model but
the angular distribution is not applied since it becomes in-
significant due to the much smaller beam emitting angle.

Figure 3. Diagram showing the occupancy grid cells that
need to be updated during a single sonar reading.

3.1 Uniformly Coloured Regions

Our first test of the vision system was on a blank wall (see
bottom half of Figure 2.a). With this uniformly coloured
wall, the stereo cameras were unable to produce any
valid range data whatsoever. The sonars and IR detectors
however, were able to obtain fairly accurate range readings
for the wall as can be seen in the diagrams of Figure
4. Note that the sonar data was obtained from a single
position, hence showing the angular nature of the sonar
measurements. This however can be made more linear
through the fusing of multiple readings from different
positions. When combined for mapping purposes, these
two sensors indicate a solid obstacle presence and can
be fused to fill in the absent range data from the stereo
cameras. This is more evident in our full lab test of section
3.4.

Our next test was on the scene in (Figure 2.b). In
the bottom half of the image, there is a small grey rolling
cabinet that blends in with the grey back panel of the desk



(a) Sonar (b) IR

Figure 4. Range data from the blank wall test.

containing the computers. The contrast between the cabinet
and the back desk panel is very low, where only the sides
and top of the cabinet are distinguishable. The diagrams
of Figure 5 show the range results. Notice that the stereo
camera was able to accurately detect the left and right edges
of the cabinet, indicating that the camera had no problems
with the low contrast between the cabinet and desk. As
in the blank wall test, the range data for the surface of the
cabinet and desk panel was unobtainable using the camera.
Both the sonar and IR sensors were able to detect the dif-
ferences between the cabinet and desk panel. The image
in Figure 5.d shows a classification of the sensor readings
where the black cells indicate agreement in readings be-
tween two or more sensors, and the light grey cells indicate
spurious measurements which cannot be trusted. Note that
the sonar and IR data sets were both necessary in order to
obtain an accurate distance to the cabinet and desk.

(a) Camera (b) Sonar

(c) IR (d) Classification

Figure 5. Range data from the cabinet/desk test.

3.2 Transparent Regions

Another test performed was that of the scene in (Figure 2.c
and 2d). These are two images that when pieced together
form the scene. The left image depicts a large window

which overlooks a stairwell and the right image shows an
opened door to that stairwell. A large cabinet was placed in
the stairwell to provide additional features to the test sce-
nario. The diagrams of Figure 6 show the range results.
Notice that the data from the stereo camera shows detected
ranges to the stairwell railings and cabinet through the win-
dow. It was able to correctly detect the door frame and the
wall through the opened door, but is unable to properly de-
tect the window distance. The sonar readings show that
the window is detected although the angular variation in-
herent to the sonar’s ring arrangement is clearly evident.
Notice that the IR data is also affected by the transparent
window, where the railing is being detected as well as the
cabinet. Although the IR sensor detected these features, the
range data is inaccurate; likely since some of the IR light
is being reflected back while some is passing through. In
the classification image (d), we can see that very few cells
show agreement between two or more sensors, although
most cells in agreement are along the window and due to
the availability of sonar data. It is clear from this test that
without the use of sonar, the window would be virtually
undetectable.

(a) Camera (b) Sonar

(c) IR (d) Classification

Figure 6. Range data from the window/stairwell test.

3.3 Low Lighting Conditions

In order to verify that stereo cameras have poor perfor-
mance in a low lighting setting, another test was performed
with obstacles arranged as shown in Figure 2.e. The im-
ages in Figure 7 show the range results for this test. Notice
that the stereo camera had difficulties detecting the dark
garbage can, cabinet and walls while the higher contrast
chairs were still partially detectable under the low lighting



conditions. The range readings, however, do not provide
adequate information for detecting obstacles, making the
vision sensor of very little use in low lighting scenarios.
From just a few position readings, the sonar is able to de-
tect important features, although quite coarse. The sonar
has difficulty with the rounded garbage can. Nevertheless,
the important walls are detected. These readings may also
be verified and fine-tuned through the addition of IR data.
From this test it is clear that the sonars provide an advan-
tage over the stereo cameras under low lighting conditions.

(a) Camera (b) Sonar

Figure 7. Range data from the low lighting test.

3.4 Full Lab Map

To get a better sense of the practicality of our 3-sensor data
fusion, we performed an experiment which produced a map
(occupancy grid) of a large portion of our lab. The results
are shown in Figure 8. In our lab, we do not have any win-
dows at the height with which the range data was taken.
Also, we performed the test under normal lighting condi-
tions. This test therefore shows the way in which the data
fusion can fill in any range gaps due to regions of uniform
colour and also how the overall map can be fine tuned. For
each type of sensor, the robot was moved to various loca-
tions in order to obtain a full coverage of the test environ-
ment. Notice in the stereo camera data that the top and
right regions show gaps. These are caused by the large re-
gions of uniform colour on the walls in the lab. The top left
gap represents an open doorway and the ”splatter” effect is
caused by range information to objects in the corridor out-
side the lab. The bottom of the grid has a splatter effect as
well since there are additional obstacles beyond the mea-
sured portion of our lab.

The sonar data provided a reasonable outline of the
environment and performed better than the camera in the
uniform regions. It did however produce more spurious
readings and had some difficulty with the finer details for
the objects in the center of the lab. The IR data shows
a very precise reading of the walls, with some missing
data on the left and bottom right because of desks which
prevented the robot from getting close enough to the walls

(a) Camera (b) Sonar

(c) IR (d) Combined

Figure 8. Range data from the full lab test.

to take readings. The occupancy grid obtained through
the data fusion as shown in the combined image, clearly
indicates the advantage of the sonar and IR data sets.
Notice how much more precise the map is along the top
and right borders where the IR data helped to refine the
missing stereo camera data. Also, notice how the three
sensors combined provide a more accurate shape estimate
for the inner obstacles.

A more thorough analysis of the sensor data will help
us to see the benefits of having more than two sensors. One
simple measure of showing the benefit is to examine the
occupancy grid cells for which each sensor produced range
readings. Figure 9.a shows an image which classifies grid
cells for the full lab test according to the number of sensors
that gave readings for that cell. The light grey cells repre-
sent the59.7% of the total readings in which only one sen-
sor produced a range value. There were34.2% of the read-
ings confirmed by two sensors (shown in medium grey).
Only 6.2% of the readings were confirmed by all three sen-
sors (shown in black). This classification indicates which
environmental features are commonly detected by sensors
with different characteristics and shows that multiple het-
erogenous sensors can produce complimentary data. Fig-
ure 9.b depicts the map represented by the combined data
fusion of Figure 8.d where all single sensor classification
data readings have been removed. Hence about60.4% of



the data is discarded as untrustworthy. Now examining the
data from the stereo camera, Figure 9.c shows (as circled)
where the sonar and IR range data were able to fill in the
gaps that were unavailable from the vision data due to re-
gions of uniform colour. These regions represented a sig-
nificant12% of the lab’s border, which would have other-
wise been void of range data if only the stereo camera data
was used. Lastly, Figure 9.d shows the “noise” (a signif-
icant 48.8%) that was eliminated from the stereo camera
data through the data fusion process.

(a) (b)

(c) (d)

Figure 9. (a) Grid cell weight classification, (b) Combined
data with single sensor readings removed, (c) Vision data
combined with Sonar/IR data showing where gaps were
filled in, (d) Noise that was eliminated from the vision data.

4 Conclusion

In this research we investigated the need for multiple sen-
sors on a robot for mapping unknown environments. We
focussed on the ability of the sensors to detect the range
to objects which are uniform in appearance, objects of dif-
ferent materials (such as transparent objects) and objects
under different conditions (e.g., low lighting). Through our
experiments presented here, we have clearly shown the lim-
ited abilities of stereo camera vision systems in certain sce-
narios. The experiments indicate that the use of low cost
sonar and infrared proximity sensors can be used in com-
bination to accurately “fill in” the missing vision sensor

information (up to12% of the border in our full lab test)
and also to fine-tune existing vision sensor range data by
discarding noise (48.8% in our full lab test). We plan to
further our work by applying probabilistic methods to the
fusion of the individual sensor’s occupancy grids so as to
reduce the false readings. We also plan to investigate how
sensors can be dynamically given priority over others so
that the “best” sensor is used when operating under various
conditions.
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