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Abstract the respiratory cycle [1, 6, 7, 12, 13, 14, 15]. Breathing cy-
cle during treatment has a significant effect on the position
The objectives of radiotherapy treatment is to kill can- of the internal anatomy.

cerous cells while minimizing damage to surrounding  The algorithm, which is presented in this paper, is a part
healthy tissues. The tumour location uncertainty “forces” of a larger system that is currently being developed at Car-
oncologists to prescribe a larger treatment area than re- |eton University together with the Ottawa Regional Cancer
quired in order to ensure that the whole tumour is receiving Centre (ORCC). The system focuses on developing means
the prescribed dose. The problem is more acute when a tu<or tracking the tumour motion and then verifying the treat-
mour can move during treatment, e.g., as a result of breath- ment and potentially redefining the treatment fields [2]. In
ing. In this paper, we present an algorithm for computing this system a sequencemfay images is captured in a sim-
the area covered by a tumor as a result of a cyclic motion ylator or in real-time during treatment. Theray images
during treatment. Our algorithm solves the following geo- are then analyzed and the tumour is identified in each of the
metric problem: Given am-vertices convex polygoff = electronic portal images. Then the algorithm computes the
{v1,v2,...,v,}, @amonotone chail’ = {c,ca,...,cm}, regions occupied by the tumour during the cyclical breath-
compute a minimums area polygghthat includes all the  ing pattern of the patient for treatment verification or adjust-
space covered by as it is translated along” such that ment.

v1 € P touchesC. Here, we present a simple algo- Our algorithm solves the following geometric problem:
rithm when P> is a convex polygon. Our algorithm takes  Gjven ann-vertices convex polygo® = {vy, vs, ..., vn},

imum area polygor) that contains all the space covered
by P as it is translated alon@ such that, € P touches

1 Introduction C. Here, we present a simple algorithm wheiis a convex
polygon. Our algorithm take® (mn—+mlognlog(n+m))

The objective of radiation treatment is to kill cancerous fime in the worst case.
cells while minimizing damage to surrounding healthy tis-  Similar problems arise in computer graphics animation
sues. Although oncologists determine a Clinical Target Vol- and in robotics. In computer animation a trajectory is de-
ume (CTV) they must prescribe a larger Planning Target fined for a given object and the goal is to determine the in-
Volume (PTV) by adding a safety margin around the CTV in termediate locations between the start position and the end
order to ensure that the tumour is completely exposed to ra-position (e.g., the motion of a hand)[5]. In robotics a very
diation during treatment. A number of factors contribute to Similar problem arises in robot path planning. Here the ob-
the final size of the PTV, including setup errors, organ mo- jectives is to find a path for a robot from a starting paint
tion, physical and geometric umbra and penumbra. In theto destination point/ such that the robot does not collide
last decade, methods for reducing damage to healthy tissue®ith obstacles along the way. Algorithms which are based
have been studied and developed [4, 8, 9, 10, 11]. Theseon Minkowski sums are often used to compute the config-
methods include immobilizing devices and position track- uration space of the robot. Once computed, a search for a
ing devices such as stereoscopic cameras and video basedlid path through the configuration space betweemd?
position tracking. Special consideration is given to tumour is executed [3].
motion during treatment e.g., tumour motion as a result of  The paper is organized as follows. In Section 2 we



present notation and definitions used throughout the papeiObservation 1 Given a convex polygoR® and a monoton-
followed by the properties of a path polygon which we give ically decreasing chaii®” in the y-direction, the path poly-
in Section 3. In Section 4 we describe our algorithm and in gon, P»**!, which is a result of translating® along seg-
Section 6 we summarize our result and discuss future work.mentc;c; ;1 of C is the convex hull oP? and P+,

Proof:
If Pitl £ @, where Q denote the convex hull &f

. . . - and P (Q = CH(P?, P*+1)), then two cases arise:
In this section we present notations and definitions that

2 Preliminaries

are used throughout the paper. Case 1P»*1 N Q # Q: in this case there is a poiat €
Let P = {vi,v1,...,v,} be a convex polygon whose Q — (P¥*1 N Q) and therefore ¢ PH»+1. Let L

vertices are given in counter clockwise (CCW) order and let be a line parallel t&;¢; 17 througho and letv be the

C ={ecy,ca,...,cm} be amonotone chain. For simplicity intersection betweeh and P?. Let+’ be a point on

we assume that is a strictly decreasing monotone chain in P+l such that whenP? is overlayed onPi*! then

they direction, namelyy(c;) > y(ci+1),1 < i < m. We v = v'. In this caseP"**! does not contain all the

also assume that is translated along’ such that, € P segmentv’ and therefore it cannot be a path polygon.

touche<”' throughout the motion aoP.

We denote by, the topmost vertex aP (the vertexv €
P with the highesy-coordinate) and by, the bottommost . . it i
vertex of P. Verticesv; anduv, divide P into two monotone Thus, t:ere exzsts ZDOIﬂtiJ; = (PYT N Qb).
chains: the left chain, denoted ad.C' whose vertices, in Note, thab ¢ P* ando ¢ P**" sinceo ¢ Q. Let L be
CCW order, arg{vy, . . ., v, }, andthe right chain, denoted a line parallel taz;ciy1 througho and letv be the in-
asRC whose vertic;es ’in CCW order, afe, o1} tersection ofL andP?. Let v’ be a point onP*+! such

, y gee ey . i i+1 o .
In our problem, polygorP is translated along chaif. that whenP" is overlayed onP'™” thenv = v'. Since

We denote byP! the copy of P when it is positioned at o ¢ Qimplies that line segment’ ¢ Q) contradicting
Y Py P the fact that) = CH(P?, Pi*1).

Case 2PH*+1 N Q # P+ in this case we assume that
Case 1 does not hold and therefd?éi*! N Q = Q.

vertexc; € C and the vertices oP® are {vi,vi,... v }.
The topmost vertex, bottommost vertex, left chain and right
chain of P* are denoted by, v{, LC* and RC", respec- O
tively. -
Verticesu € P andv € P areextreme verticesif P The fact thatP***! is convex leads to the following

andP’,i > j, lie in the same half plane defined by a lire ~ corollary regarding the number of verticesiy' 1.

throughu andv. Verticesu andv areleft extreme vertices  Corollary 3.1 Given a convex polygoR = {v1,..., 0.}
if P*and P’ lie on the right side of.. Similarly, vertices  and a monotonically decreasing chaihin the y-direction,
u andv areright extreme verticesf P* and P’ lie on the the number of vertices of the path polygdH;i+*, which is

left side of L. Note that the lind_ is not directed by: andv a result of translating” along segmerit;e;7 of C is n+2.
and thus “right” and “left” are not related to a direction of

L. The segmentw is termedextreme edge The convexity of the path polygon does not hold wiien
The solution to our problem is the minimum area poly- cons_ists of 3 or more vertices_ (unleSsis a straight line).
gon which includes all the regions touched Byas it is In this case the path polygon is monotone (see Lemma 3.1

translated along chaii. We term the output polygopath belqw). Moreover, the top and bottom vertices of can be
polygon We denote by,Pi*, the output path polygon, €asily computed (see Lemma 2).
when P is translated along a sub-chafn;, ¢;41, ..., ¢k},

: ; Observation 2 Given a convex polygoR and a monoton-
of C,. The topmost and bottommost verticesrf* are de- hog

ik ik . o ) ically decreasing chairC' = {¢;,¢it1,...,cx} in the y-
noget(i]a@t htar;]dl,’b O,Przelfpectévely.tSérgllactﬂy;cthe(jlzfésaaln direction, the topmost and bottommost vertices of the path
?ens eciicgl chain are denoted by, an ' polygon, P»+* are v} andvj % respectively ¢ T = vi

P Y- andv,‘)’“’k = Uz+k).
3 Properties of Path Polygon Proof: Omitted. i

) ) ) Following the two observations, we proceed to show that
In this section we present several properties of the pathyy,, path polygon is monotone in thedirection.
polygons upon which our algorithm is based.

In our problemP is a convex polygon and, for sim- Lemma 3.1 Given a convex polygo® and a monotoni-
plicity, C is a strictly decreasing monotonic chain in the cally decreasing chaid' in the y-direction, the path poly-
y-direction. Thus, we observe the following: gon P“** jsy monotone.



area polygor) that contains all the regions covered By
asP is translated along’ such that); € P touche<'.

Our algorithm is based on the facts tiiit !+ is convex
(see Lemma 1) and that**** is monotone (see Lemma
3.1). The idea behind the algorithm is as follows. Starting
from ¢;, make a copy ofP and place it at; to form P?.
Then addP? to P*“~! one at a time.

We first describe, in Section 4.1, how to add to
PLi=1 which is the crux of the algorithm. Then in Sec-
tion 4.2 we present our algorithm and the time complexity.

a. b. 4.1 Adding Pito P!
Figure 1. The two cases that the monotonicity In this section we show how polygoR’ is added to
of the LC**+* can be violated. PLi=1 Note that we only present the algorithmic steps of

updating the left chain aP'*~!. Similar and symmetrical
steps are taken to update the right chaidPdf 1.

Proof: Observation 3 Let v be the left extreme edge of
By Lemma 2, v/'** and v/"t* divide Piitk into ~ CH(P'™', P") whereu € P'~'andv € P'. When up-

two chains theLC#i+* and RCH+*. If P»i+* is not dating LC'***~! there are two cases to consider.
y-monotone then eithef.C**+* or RC***t* are noty-
monotone. Without loss of generality assume that-i+*

is not y-monotone. Then there are three consecutive ver-
ticesu, v, w € LC**t* where the monotonicity af C*#t*

is violated for the first time. Namely, the segment is Case 2Vertexu C PLi~l (u ¢ LCLi—1) (see Figure

Case 1Vertexu € LC!~! (see Figure 2a). In this case
verticesu, v, ..., vj, replace vertices, ..., vy "' €

Lo,

added to such thaj(u) > y(v) andy(w) > y(v), (see 2b). In this verticeso, ..., v; " are used to update
Figure 1). Assume that vertexis a result of adding’ LOYi—1 wherew is the intersection betwediL:i—1
to P~ and vertexw is a result of adding??*! to P*7, and LOi— 1.

There are two cases to examine:

Proof: In Case lu € LCY*~1 and therefore the left ex-
treme edge is outsideLC"*~!. Thus, it must be added
to LC'~1. The remaining vertices, .. ., v}, are added by

Case 1w is to the right of wv (Figure 1b): in this case
PJ and Pi*! are to the left ofow. Sincevw has a
positive slope it implies thag(v}™') > y(v}). This

: L Lemma 1.
contradicts the monotonicity df. In Case 2u ¢ LCY~! (u ¢ PY~1) and therefore it
Case 2w is to the left of wv (Figure 1a): in this casev = cannot be part of.C'. Sincev; must be a part of>!:!
vi™' and from Lemma 2v = wv]. Since C it implies thatLC*~!* and LC™*~! must intersect. Once
is a monotonically decreasing chain it implies that the intersection of.C*~1¢ andLC':*~! is found, the inter-
y(vit!) < y(u!) and thaty(vj ') < y(v]). Poly-  section point is added t6Ci~! followed by vertices of
gon PJ is to the right ofuwv and thereforepw € w,...,vi € LC*1" as aresult of Lemma 1. 0
CH(P?, P7+1). This contradicts the assumption that _ , .
7w € Lot Function AddPolygonf'*~', P*) _
{The function adds polygoR to path polygonP!:i—1
¥
| {Updating the left chain oP'i~1}
1: find the convex hull ofPi—1, P?
] 2: u — left extreme vertex of*~!
4 Algorithm 3: v« left extreme vertex oP’
4: if w € P1*~1 then {see Figure 2h
In this section we describe our algorithms for finding the 5:  remove vertices,, .. ., v;’l’l from LC1i—1
path polygon of a convex polygoR: Given ann-vertices 6: LCY — LCY" 1 Uu,v,... 0}
convex polygonP = {vy,vs,...,v,}, a monotonically de- 7. else{hereu ¢ P%~1, thus,LC*~1in LCY 1 may

creasing chait€’ = {cy, ca, ..., ¢y}, COMpute @ minimum intersect at a new vertex (see Figure 2b)



pl/i-l pl/i-1

Figure 2. The two cases for adding polygon
Pito PLi—l: a, extreme vertex u € LCOY!
and b. extreme vertex u ¢ LC1i~1,

8: find edges wv € Pi—Liandu/v’
P11 such thatiw N u/v’ # ()
9 weuwnNuv £ _
10:  remove vertices/, ..., v, """ from LOVi~1
;. LOY — LCY U w, ..., v}
12: end if
{Update the right chain aP*‘=1}
{This case is similar to updating to updating the left
chain and therefore omittéd
endfunction

Next we prove the correctness of the function. First we
show that ifu ¢ P~ thenLC~1 0 LC*~ 1 at a single
vertex.

S

Lemma 4.1 Given a convex polygo® and a monotoni-
cally decreasing chaid in the y-direction, ifu ¢ P11,
whereu is the left extreme edge &' then LC*~! in-
tersects the.C*~1+* only once.

Proof: The proof is given by contradiction. Assume that
LCYH =1 and LC*~ 1% intersect more than once. Let edges
gr andst be the edges thatu intersectsLCi~! for the
first time (entersP!i~1) and for the second time (leaves
PLi=1) respectively (see Figure 3).

Edgest € LC'*~! was added when polygoR*, k <
i — 1 was added td.C*~1. Thus,st is either an edge of
P* or an extreme edge &f H(P*~1, P*). Let L denote a
line throughst. Thus, P lies belowL.

Edgeww intersectsst and therefore: € P~ is above
L. This implies thatP’~! is aboveP* contradicts to the as-
sumption thaC' is a monotonically decreasing chain since
k<i—1. O

We can now show that the function correctly adeisto
Pl,ifl_

Figure 3. Animpossible configuration that oc-
curs if LCY~1 would intersect LC*~'* more
than once.

Lemma 4.2 Given a convex polygo® = {vy,...,v,}
and a monotonically decreasing chath= {ci,..., ¢} in

the y-direction, the resulting polygon, which is constructed
by adding polygonP? to P!*~! by Function AddPolygon,
is the path polygoP!+?.

Proof: The proof is given by showing: a. the output poly-
gon is monotone in thg-direction; and b. the output poly-
gon is the minimum size polygon that covers the regions
occupied byP as it is translated along.

Case 1 Output polygon is monotone:for brevity we
show that the constructed left chain is monotone in the
y-direction. The algorithm accepts as inpBt-*~! and
therefore LC*~! is monotone. The algorithm finds as
a first step polygorQ = CH(Pi~!, P"). From Obser-
vation 3 there are two options for unitingC*~'* and
LC*~1. First option occurs whem € LC*~! where
u is that the left extreme edge dPi~!. Here, LC**
is monotone because the sub-chainZef!*~! consisting
of {v;"",...,u} is monotone and the concatenated sub-
chain of LC?~ consisting of{u, . . ., v; "} is monotone.
This case is handled in lines 5,6 of function AddPolygon.

The second option is that ¢ LC**~! whereu is the
left extreme edge oP~!. Here, by Lemma 4.1 there is
an intersection point such that the sub-chain ¢fC*:*~*
consisting of{v;” ", ..., w} is monotone and the concate-
nated sub-chain atC*~ 1 consisting of{w, ..., v, "'} is
monotone. This case is handled in lines 8-11 of function
AddPolygon.

Case 2 Output polygon is the minimum size polygon
containing P: the input polygonP'i~1 is a path polygon
and therefore the minimum size polygon that covers the
regions occupied by as it is translated along sub-chain
c1,...,ci—1. From Lemma 1P*~ ! is a path polygon and
therefore the minimum size polygon that covers the regions
occupied byP as itis translated along_¢;. Therefore the
union of the two path polygons is the minimum size poly-
gon that covers the regions occupied®as it is translated
along sub-chainy, . .. Function AddPolygon finds

y Ci—1-



the union of the two polygons by determining the left and Lemma 4.4 Given a convex polygo® = {vq,...,v,}
right chains of the output polygon. O and a monotonically decreasing chaiti = {ci,...,¢n}
in the y-direction, the function ComputePathPolygon cor-

During its execution, the function AddPolygon adds new rectly computes the path polygdt-™.

vertices to the output path polygdtt-*. However, the func-
tion also removes vertices from the polygon. Although, the p.q+-

total number of vertices that can be added’(&) by Corol- We show it by induction on the size of the monotone
lary 3.1 the number of vertices iR"—!»* grows by constant chainC.

number. Recall that the function removes the same number

- . 3 Base case:C consists of one vertex. In this case the
of vertices. Thus, we obtain the following corollary.

function ComputePathPolygon returRs.

The induction hypothesis is: assume that function Com-
putePathPolygon correctly computes the path polygofi
for a monotone chaif’ with k vertices.

We show that it correctly computes the path polygon for
a monotone chaif’ with £ + 1 vertices.

At the k + 1 iteration the function invokes AddPolygon
with the path polygorP!-* and P¥*+!. From the induction
hypothesis polygo®'* was correctly computed by Com-

Corollary 4.1 The total number of vertices in path polygon
PLi can benm.

The time complexity of the function is given next.
Lemma 4.3 Function AddPolygon require®(logn +

log nlog(nm) + n) time in the worst case to add polygon
P to PYi~1, wheren is the number of vertices iR".

putePathPolygon.
Proof: By Lemma 4.2 the function AddPolygon correctly adds
: , , k k N
Finding theC' H (P*~", P') can be done id(log n) time  POlygonP** to P1¥ to form P17+, =

(note thatP'~! and P* are two copies of the same polygon  The time complexity of the ComputePathPolygon is
and the supporting lines are parallelday¢;. Finding the given next.

intersection betweedC1*~! and LC*~1* can be done in

O(log nlog!) time similarly to merging two convex hulls,  Theorem 4.1 Given a convex polygo® = {v,...,v,}
wherel is the number of vertices ig?l-i—1, By Corollary and a monotonically decreasing chaift = {c1,...,¢m}
4.1 the number of vertices i?*~! is bounded bynm in the y-direction, the function ComputePathPolygon com-
which yields a time complexity 0@(lognlog(nm). Last putes the path polygoR"™ in O(mn + m log nlog(nm))
the function adds new vertices foC**~! and RC1*~ 1, time.

In the worst case all the vertices 6f must be added to

LCY 1 andRCY~1, which is linear. O Proof:

In this section we showed how a single polygon is added . The function ComputePathPolygon—1 polygons to an

e . initial path polygonP!-!. At each iteration the algorithm it
to an existing path polygon. Next we present the algorithm ‘ )
computes the nexp’ at a costO(mn). The function also
that computes the complete path polygon.

invokes the function AddPolygom — 1 times at a cost of

. . Ol 1 1 time.
4.2 Main Algorithm (logn + lognlogmn + n)

O
In this section we present the main algorithm which com-
putes the complete path polygét™ When the size of the monotone chainis O(n), we ob-
Function CmputePathPolygon(C,P,Q) tain the following corollary:
= ...,Cm+ IS @ monotone chain in the y- .
;{igectior%% em} | n y Corollary 4.2 Given a convex polygoR = {vq,...,v,}
and a monotonically decreasing chaitt = {ci,...,cn}

{P is the input convex polyggn

{Q is the output path polyggn in the y-direction, the function ComputePathPolygon com-

putes the path polygoR'" in O(mn + mlog?® n) time.

1. PL1— Pl;

2: for i+ 2tom do

3:  compute polygorP! 5 Conclusions

4:  Call function AddPolyonpP!i—1,P?)

5: end for Reducing the damage to healthy tissue is very important
6: Q«— PL™ and at times crucial to successful recovery of cancer patients

Next we show that the algorithm finds the path polygon who are treated by radiation therapy. Oncologists often pre-
PL™ and discuss its time complexity. scribe a large area to be treated in order to ensure that the



whole tumour is receiving the prescribed dose. This is es- [8] L.H. Gerig, S.F. E1-Hakin, J. Szanto, D. Salhani, and
pecially critical in cases where the tumour moves during

treatment e.g., as a result of breathing. In this paper we

presented a solution for computing the area covered by a

tumour as its moves during treatment. Our solution takes

O(mn + mlognlog(nm)) time. We are currently work-
ing on pre-clinical tests to incorporate our techniques in the
treatment cycle. We are also working on a 3D variation of
this problem.
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