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Abstract

The objectives of radiotherapy treatment is to kill can-
cerous cells while minimizing damage to surrounding
healthy tissues. The tumour location uncertainty “forces”
oncologists to prescribe a larger treatment area than re-
quired in order to ensure that the whole tumour is receiving
the prescribed dose. The problem is more acute when a tu-
mour can move during treatment, e.g., as a result of breath-
ing. In this paper, we present an algorithm for computing
the area covered by a tumor as a result of a cyclic motion
during treatment. Our algorithm solves the following geo-
metric problem: Given ann-vertices convex polygonP =
{v1, v2, . . . , vn}, a monotone chainC = {c1, c2, . . . , cm},
compute a minimums area polygonQ that includes all the
space covered byP as it is translated alongC such that
v1 ∈ P touchesC. Here, we present a simple algo-
rithm whenP is a convex polygon. Our algorithm takes
O(mn + m log n log(m + n)) time in the worst case.

1 Introduction

The objective of radiation treatment is to kill cancerous
cells while minimizing damage to surrounding healthy tis-
sues. Although oncologists determine a Clinical Target Vol-
ume (CTV) they must prescribe a larger Planning Target
Volume (PTV) by adding a safety margin around the CTV in
order to ensure that the tumour is completely exposed to ra-
diation during treatment. A number of factors contribute to
the final size of the PTV, including setup errors, organ mo-
tion, physical and geometric umbra and penumbra. In the
last decade, methods for reducing damage to healthy tissues
have been studied and developed [4, 8, 9, 10, 11]. These
methods include immobilizing devices and position track-
ing devices such as stereoscopic cameras and video based
position tracking. Special consideration is given to tumour
motion during treatment e.g., tumour motion as a result of

the respiratory cycle [1, 6, 7, 12, 13, 14, 15]. Breathing cy-
cle during treatment has a significant effect on the position
of the internal anatomy.

The algorithm, which is presented in this paper, is a part
of a larger system that is currently being developed at Car-
leton University together with the Ottawa Regional Cancer
Centre (ORCC). The system focuses on developing means
for tracking the tumour motion and then verifying the treat-
ment and potentially redefining the treatment fields [2]. In
this system a sequence ofx-ray images is captured in a sim-
ulator or in real-time during treatment. Thex-ray images
are then analyzed and the tumour is identified in each of the
electronic portal images. Then the algorithm computes the
regions occupied by the tumour during the cyclical breath-
ing pattern of the patient for treatment verification or adjust-
ment.

Our algorithm solves the following geometric problem:
Given ann-vertices convex polygonP = {v1, v2, . . . , vn},
a monotone chainC = {c1, c2, . . . , cm}, compute a min-
imum area polygonQ that contains all the space covered
by P as it is translated alongC such thatv1 ∈ P touches
C. Here, we present a simple algorithm whenP is a convex
polygon. Our algorithm takesO(mn+m log n log(n+m))
time in the worst case.

Similar problems arise in computer graphics animation
and in robotics. In computer animation a trajectory is de-
fined for a given object and the goal is to determine the in-
termediate locations between the start position and the end
position (e.g., the motion of a hand)[5]. In robotics a very
similar problem arises in robot path planning. Here the ob-
jectives is to find a path for a robot from a starting points
to destination pointd such that the robot does not collide
with obstacles along the way. Algorithms which are based
on Minkowski sums are often used to compute the config-
uration space of the robot. Once computed, a search for a
valid path through the configuration space betweens andt
is executed [3].

The paper is organized as follows. In Section 2 we



present notation and definitions used throughout the paper
followed by the properties of a path polygon which we give
in Section 3. In Section 4 we describe our algorithm and in
Section 6 we summarize our result and discuss future work.

2 Preliminaries

In this section we present notations and definitions that
are used throughout the paper.

Let P = {v1, v1, . . . , vn} be a convex polygon whose
vertices are given in counter clockwise (CCW) order and let
C = {c1, c2, . . . , cm} be a monotone chain. For simplicity
we assume thatC is a strictly decreasing monotone chain in
they direction, namely,y(ci) > y(ci+1), 1 ≤ i < m. We
also assume thatP is translated alongC such thatv1 ∈ P
touchesC throughout the motion ofP .

We denote byvt the topmost vertex ofP (the vertexv ∈
P with the highesty-coordinate) and byvb the bottommost
vertex ofP . Verticesvt andvb divideP into two monotone
chains: the left chain, denoted asLC whose vertices, in
CCW order, are{v1, . . . , vb}, andthe right chain, denoted
asRC whose vertices, in CCW order, are{vb, . . . , v1}.

In our problem, polygonP is translated along chainC.
We denote byP i the copy ofP when it is positioned at
vertexci ∈ C and the vertices ofP i are{vi

1, v
i
2, . . . , v

i
n}.

The topmost vertex, bottommost vertex, left chain and right
chain ofP i are denoted byvi

t, v
i
b, LCi andRCi, respec-

tively.
Verticesu ∈ P i andv ∈ P j areextreme vertices, if P i

andP j , i > j, lie in the same half plane defined by a lineL
throughu andv. Verticesu andv areleft extreme vertices
if P i andP j lie on the right side ofL. Similarly, vertices
u andv areright extreme verticesif P i andP j lie on the
left side ofL. Note that the lineL is not directed byu andv
and thus “right” and “left” are not related to a direction of
L. The segmentuv is termedextreme edge.

The solution to our problem is the minimum area poly-
gon which includes all the regions touched byP as it is
translated along chainC. We term the output polygonpath
polygon. We denote by,P i,k, the output path polygon,
whenP is translated along a sub-chain{ci, ci+1, . . . , ck},
of C,. The topmost and bottommost vertices ofP i,k are de-
noted asvi,k

t andvi,k
b , respectively. Similarly, the left chain

and the right chain ofP i,k are denoted byLCi,k andRCi,k,
respectively.

3 Properties of Path Polygon

In this section we present several properties of the path
polygons upon which our algorithm is based.

In our problemP is a convex polygon and, for sim-
plicity, C is a strictly decreasing monotonic chain in the
y-direction. Thus, we observe the following:

Observation 1 Given a convex polygonP and a monoton-
ically decreasing chainC in they-direction, the path poly-
gon, P i,i+1, which is a result of translatingP along seg-
mentcici+1 of C is the convex hull ofP i andP i+1.

Proof:
If P i,i+1 6= Q, where Q denote the convex hull ofP i

andP i+1 (Q = CH(P i, P i+1)), then two cases arise:

Case 1P i,i+1 ∩Q 6= Q: in this case there is a pointo ∈
Q − (P i,i+1 ∩ Q) and thereforeo 6∈ P i,i+1. Let L
be a line parallel tocici+1 througho and letv be the
intersection betweenL andP i. Let v′ be a point on
P i+1 such that whenP i is overlayed onP i+1 then
v = v′. In this caseP i,i+1 does not contain all the
segmentvv′ and therefore it cannot be a path polygon.

Case 2P i,i+1 ∩Q 6= P i,i+1: in this case we assume that
Case 1 does not hold and thereforeP i,i+1 ∩ Q = Q.
Thus, there exists a pointo ∈ P i,i+1 − (P i,i+1 ∩ Q).
Note, thato 6∈ P i ando 6∈ P i+1 sinceo 6∈ Q. LetL be
a line parallel tocici+1 througho and letv be the in-
tersection ofL andP i. Let v′ be a point onP i+1 such
that whenP i is overlayed onP i+1 thenv = v′. Since
o 6∈ Q implies that line segmentvv′ 6∈ Q contradicting
the fact thatQ = CH(P i, P i+1).

2

The fact thatP i,i+1 is convex leads to the following
corollary regarding the number of vertices inP i,i+1.

Corollary 3.1 Given a convex polygonP = {v1, . . . , vn}
and a monotonically decreasing chainC in they-direction,
the number of vertices of the path polygon,P i,i+1, which is
a result of translatingP along segmentcici+1 of C is n+2.

The convexity of the path polygon does not hold whenC
consists of 3 or more vertices (unlessC is a straight line).
In this case the path polygon is monotone (see Lemma 3.1
below). Moreover, the top and bottom vertices of can be
easily computed (see Lemma 2).

Observation 2 Given a convex polygonP and a monoton-
ically decreasing chainC = {ci, ci+1, . . . , ck} in the y-
direction, the topmost and bottommost vertices of the path
polygon,P i,i+k are vi

t andvi+k
b respectively (vi,i+k

t = vi
t

andvi,i+k
b = vi+k

b ).

Proof: Omitted. 2

Following the two observations, we proceed to show that
the path polygon is monotone in they-direction.

Lemma 3.1 Given a convex polygonP and a monotoni-
cally decreasing chainC in they-direction, the path poly-
gonP i,i+k is y monotone.
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Figure 1. The two cases that the monotonicity
of the LCi,i+k can be violated.

Proof:
By Lemma 2, vi,i+k

t and vi,i+k
b divide P i,i+k into

two chains theLCi,i+k and RCi,i+k. If P i,i+k is not
y-monotone then eitherLCi,i+k or RCi,i+k are noty-
monotone. Without loss of generality assume thatLCi,i+k

is not y-monotone. Then there are three consecutive ver-
ticesu, v, w ∈ LCi,i+k where the monotonicity ofLCi,i+k

is violated for the first time. Namely, the segmentvw is
added to such thaty(u) > y(v) andy(w) > y(v), (see
Figure 1). Assume that vertexv is a result of addingP j

to P i,j−1 and vertexw is a result of addingP j+1 to P i,j .
There are two cases to examine:

Case 1w is to the right of uv (Figure 1b): in this case
P j andP j+1 are to the left ofvw. Sincevw has a
positive slope it implies thaty(vj+1

b ) > y(vj
b). This

contradicts the monotonicity ofC.

Case 2w is to the left of uv (Figure 1a): in this casew =
vj+1

t and from Lemma 2v = vj
b . Since C

is a monotonically decreasing chain it implies that
y(vj+1

t ) < y(vj
t ) and thaty(vj+1

b ) < y(vj
b). Poly-

gon P j is to the right ofuv and therefore,vw ∈
CH(P j , P j+1). This contradicts the assumption that
vw ∈ LCi,j+1.

2

4 Algorithm

In this section we describe our algorithms for finding the
path polygon of a convex polygonP : Given ann-vertices
convex polygonP = {v1, v2, . . . , vn}, a monotonically de-
creasing chainC = {c1, c2, . . . , cm}, compute a minimum

area polygonQ that contains all the regions covered byP
asP is translated alongC such thatv1 ∈ P touchesC.

Our algorithm is based on the facts thatP i−1,i is convex
(see Lemma 1) and thatP i,i+k is monotone (see Lemma
3.1). The idea behind the algorithm is as follows. Starting
from c1, make a copy ofP and place it atci to form P i.
Then addP i to P 1,i−1 one at a time.

We first describe, in Section 4.1, how to addP i to
P 1,i−1, which is the crux of the algorithm. Then in Sec-
tion 4.2 we present our algorithm and the time complexity.

4.1 Adding P i to P 1,i−1

In this section we show how polygonP i is added to
P 1,i−1. Note that we only present the algorithmic steps of
updating the left chain ofP 1,i−1. Similar and symmetrical
steps are taken to update the right chain ofP 1,i−1.

Observation 3 Let uv be the left extreme edge of
CH(P i−1, P i) whereu ∈ P i−1 andv ∈ P i. When up-
datingLC1,i−1 there are two cases to consider.

Case 1 Vertexu ∈ LC1,i−1 (see Figure 2a). In this case
verticesu, v, . . . , vi

b replace verticesu, . . . , v1,i−1
b ∈

LC1,i−1.

Case 2 Vertexu ⊂ P 1,i−1 (u 6∈ LC1,i−1) (see Figure
2b). In this verticesw, . . . , vi−1,i

b are used to update
LC1,i−1, wherew is the intersection betweenLC1,i−1

andLCi−1,i.

Proof: In Case 1u ∈ LC1,i−1 and therefore the left ex-
treme edgeuv is outsideLC1,i−1. Thus, it must be added
to LC1,i−1. The remaining vertices,v, . . . , vi

b, are added by
Lemma 1.

In Case 2,u 6∈ LC1,i−1 (u ⊂ P 1,i−1) and therefore it
cannot be part ofLC1,i. Sincevi

b must be a part ofP 1,i

it implies thatLCi−1,i andLC1,i−1 must intersect. Once
the intersection ofLCi−1,i andLC1,i−1 is found, the inter-
section point is added toLC1,i−1 followed by vertices of
w, . . . , vi

b ∈ LCi−1,i as a result of Lemma 1. 2

Function AddPolygon(P 1,i−1, P i)
{The function adds polygonP i to path polygonP 1,i−1

}
{Updating the left chain ofP 1,i−1}

1: find the convex hull ofP i−1, P i

2: u ← left extreme vertex ofP i−1

3: v ← left extreme vertex ofP i

4: if u ∈ P 1,i−1 then {see Figure 2a}
5: remove verticesu, . . . , v1,i−1

b from LC1,i−1

6: LC1,i ← LC1,i−1 ∪ u, v, . . . , vi
b

7: else{hereu 6∈ P 1,i−1, thus,LCi−1,i ∩ LC1,i−1 may
intersect at a new vertex (see Figure 2b)}
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Figure 2. The two cases for adding polygon
P i to P 1,i−1: a. extreme vertex u ∈ LC1,i−1

and b. extreme vertex u 6∈ LC1,i−1.

8: find edges uv ∈ P i−1,i andu′v′ ∈
P 1,i−1 such thatuv ∩ u′v′ 6= ∅

9: w ← uv ∩ u′v′ 6= ∅
10: remove verticesv′, . . . , v1,i−1

b from LC1,i−1

11: LC1,i ← LC1,i−1 ∪ w, . . . , vi
b

12: end if
{Update the right chain ofP 1,i−1}
{This case is similar to updating to updating the left
chain and therefore omitted}

endfunction
Next we prove the correctness of the function. First we

show that ifu 6∈ P 1,i−1 thenLC1,i−1 ∩LCi−1,i at a single
vertex.

Lemma 4.1 Given a convex polygonP and a monotoni-
cally decreasing chainC in they-direction, ifu 6∈ P 1,i−1,
whereu is the left extreme edge ofP i−1 thenLC1,i−1 in-
tersects theLCi−1,i only once.

Proof: The proof is given by contradiction. Assume that
LC1,i−1 andLCi−1,i intersect more than once. Let edges
qr andst be the edges thatvu intersectsLC1,i−1 for the
first time (entersP 1,i−1) and for the second time (leaves
P 1,i−1) respectively (see Figure 3).

Edgest ∈ LC1,i−1 was added when polygonP k, k <
i − 1 was added toLC1,k−1. Thus,st is either an edge of
P k or an extreme edge ofCH(P k−1, P k). Let L denote a
line throughst. Thus,P k lies belowL.

Edgeuv intersectsst and thereforeu ∈ P i−1 is above
L. This implies thatP i−1 is aboveP k contradicts to the as-
sumption thatC is a monotonically decreasing chain since
k < i− 1. 2

We can now show that the function correctly addsP i to
P 1,i−1.

LC1,i-1

q

r

u

v

s t

Figure 3. An impossible configuration that oc-
curs if LC1,i−1 would intersect LCi−1,i more
than once.

Lemma 4.2 Given a convex polygonP = {v1, . . . , vn}
and a monotonically decreasing chainC = {c1, . . . , cm} in
they-direction, the resulting polygon, which is constructed
by adding polygonP i to P 1,i−1 by Function AddPolygon,
is the path polygonP 1,i.

Proof: The proof is given by showing: a. the output poly-
gon is monotone in they-direction; and b. the output poly-
gon is the minimum size polygon that covers the regions
occupied byP as it is translated alongC.

Case 1 Output polygon is monotone:for brevity we
show that the constructed left chain is monotone in the
y-direction. The algorithm accepts as inputP 1,i−1 and
thereforeLC1,i−1 is monotone. The algorithm finds as
a first step polygonQ = CH(P i−1, P i). From Obser-
vation 3 there are two options for unitingLCi−1,i and
LC1,i−1. First option occurs whenu ∈ LC1,i−1 where
u is that the left extreme edge ofP i−1. Here, LC1,i

is monotone because the sub-chain ofLC1,i−1 consisting
of {v1,i−1

t , . . . , u} is monotone and the concatenated sub-
chain ofLCi−1,i consisting of{u, . . . , vi−1,i

b } is monotone.
This case is handled in lines 5,6 of function AddPolygon.

The second option is thatu 6∈ LC1,i−1 whereu is the
left extreme edge ofP i−1. Here, by Lemma 4.1 there is
an intersection pointw such that the sub-chain ofLC1,i−1

consisting of{v1,i−1
t , . . . , w} is monotone and the concate-

nated sub-chain ofLCi−1,i consisting of{w, . . . , vi−1,i
b } is

monotone. This case is handled in lines 8-11 of function
AddPolygon.

Case 2 Output polygon is the minimum size polygon
containing P : the input polygonP 1,i−1 is a path polygon
and therefore the minimum size polygon that covers the
regions occupied byP as it is translated along sub-chain
c1, . . . , ci−1. From Lemma 1P i−1,i is a path polygon and
therefore the minimum size polygon that covers the regions
occupied byP as it is translated alongci−1ci. Therefore the
union of the two path polygons is the minimum size poly-
gon that covers the regions occupied byP as it is translated
along sub-chainc1, . . . , ci−1. Function AddPolygon finds



the union of the two polygons by determining the left and
right chains of the output polygon. 2

During its execution, the function AddPolygon adds new
vertices to the output path polygonP 1,i. However, the func-
tion also removes vertices from the polygon. Although, the
total number of vertices that can be added isO(n) by Corol-
lary 3.1 the number of vertices inP i−1,i grows by constant
number. Recall that the function removes the same number
of vertices. Thus, we obtain the following corollary.

Corollary 4.1 The total number of vertices in path polygon
P 1,i can benm.

The time complexity of the function is given next.

Lemma 4.3 Function AddPolygon requiresO(log n +
log n log(nm) + n) time in the worst case to add polygon
P i to P 1,i−1, wheren is the number of vertices inP i.

Proof:
Finding theCH(P i−1, P i) can be done inO(log n) time

(note thatP i−1 andP i are two copies of the same polygon
and the supporting lines are parallel toci−1ci. Finding the
intersection betweenLC1,i−1 andLCi−1,i can be done in
O(log n log l) time similarly to merging two convex hulls,
wherel is the number of vertices inP 1,i−1. By Corollary
4.1 the number of vertices inP 1,i−1 is bounded bynm
which yields a time complexity ofO(log n log(nm). Last
the function adds new vertices toLC1,i−1 and RC1,i−1.
In the worst case all the vertices ofP i must be added to
LC1,i−1 andRC1,i−1, which is linear. 2

In this section we showed how a single polygon is added
to an existing path polygon. Next we present the algorithm
that computes the complete path polygon.

4.2 Main Algorithm

In this section we present the main algorithm which com-
putes the complete path polygonP 1,m

Function CmputePathPolygon(C,P,Q)
{C = {c1, . . . , cm} is a monotone chain in the y-
direction}
{P is the input convex polygon}
{Q is the output path polygon}

1: P 1,1 ← P 1;
2: for i ← 2 to m do
3: compute polygonP i

4: Call function AddPolyon(P 1,i−1,P i)
5: end for
6: Q ← P 1,m

Next we show that the algorithm finds the path polygon
P 1,m and discuss its time complexity.

Lemma 4.4 Given a convex polygonP = {v1, . . . , vn}
and a monotonically decreasing chainC = {c1, . . . , cm}
in the y-direction, the function ComputePathPolygon cor-
rectly computes the path polygonP 1,m.

Proof:
We show it by induction on the size of the monotone

chainC.
Base case:C consists of one vertex. In this case the

function ComputePathPolygon returnsP 1.
The induction hypothesis is: assume that function Com-

putePathPolygon correctly computes the path polygonP 1,k

for a monotone chainC with k vertices.
We show that it correctly computes the path polygon for

a monotone chainC with k + 1 vertices.
At the k + 1 iteration the function invokes AddPolygon

with the path polygonP 1,k andP k+1. From the induction
hypothesis polygonP 1,k was correctly computed by Com-
putePathPolygon.

By Lemma 4.2 the function AddPolygon correctly adds
polygonP k+1 to P 1,k to formP 1,k+1. 2

The time complexity of the ComputePathPolygon is
given next.

Theorem 4.1 Given a convex polygonP = {v1, . . . , vn}
and a monotonically decreasing chainC = {c1, . . . , cm}
in they-direction, the function ComputePathPolygon com-
putes the path polygonP 1,m in O(mn + m log n log(nm))
time.

Proof:
The function ComputePathPolygonm−1 polygons to an

initial path polygonP 1,1. At each iteration the algorithm it
computes the nextP i at a costO(mn). The function also
invokes the function AddPolygonm − 1 times at a cost of
O(log n + log n log mn + n) time.

2

When the size of the monotone chainC is O(n), we ob-
tain the following corollary:

Corollary 4.2 Given a convex polygonP = {v1, . . . , vn}
and a monotonically decreasing chainC = {c1, . . . , cm}
in they-direction, the function ComputePathPolygon com-
putes the path polygonP 1,m in O(mn + m log2 n) time.

5 Conclusions

Reducing the damage to healthy tissue is very important
and at times crucial to successful recovery of cancer patients
who are treated by radiation therapy. Oncologists often pre-
scribe a large area to be treated in order to ensure that the



whole tumour is receiving the prescribed dose. This is es-
pecially critical in cases where the tumour moves during
treatment e.g., as a result of breathing. In this paper we
presented a solution for computing the area covered by a
tumour as its moves during treatment. Our solution takes
O(mn + m log n log(nm)) time. We are currently work-
ing on pre-clinical tests to incorporate our techniques in the
treatment cycle. We are also working on a 3D variation of
this problem.
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