
 1

IMPLEMENTATION OF ADAPTIVE BEHAVIORS
IN A SIMPLE INSECT-LIKE ROBOT

by MARK LANTHIER, B.C.S.
in partial fulfillment of the requirements for

the degree of Master of Computer Science

September 21, 1993
© Copyright 1993

Carleton University

 2

ABSTRACT

 Recent approaches towards designing autonomous robots have concentrated on the
bottom-up approach by programming them with instinctive behaviors in which the overall
behavior of the robot emerges from the interaction of the robot with the environment. This
thesis describes how these instincts can be coded using simple fixed weight neural networks
which reduce the need for computational speed and power. Furthermore, with these simple low
level behaviors, only simple sensors are required. The resulting robot is therefore simpler,
smaller and cheaper. The potential of simply constructed robots that use a minimal complement
of basic sensors is investigated. A hardware and simulated version of a robotic insect is
presented which have the capability of adapting to a static, initially unknown environment. The
hardware version was developed to determine if such a robot could operate in the unpredictable
and noisy real world. Various problems were encountered during its development that points out
the importance of developing a physical device. The robot is endowed with instincts pertaining
to obstacle avoidance, wandering, vacancy and edge following. Instincts from the simulated
version also include photokinesis, floor cleaning and landmark-based navigation.

 3

TABLE OF CONTENTS

 PAGE

Acceptance Sheet .. 1
Abstract .. 2
Table Of Contents ... 3
List of Tables .. 8
List of Figures ... 9
List of Plates ... 13

CHAPTER 1 Artificial Life Through Robotics 14

1.1 Traditional Robotics ... 15
1.2 The Subsumption Architecture - A Different Perspective 16
1.3 Artificial Life ... 18

1.3.1 Linear vs. Nonlinear systems ... 19
1.3.2 Local vs. Global Behavior .. 20

1.4 Adaptive Behavior .. 21
1.4.1 Types of Reflexes .. 22
1.4.2 Types of Taxes ... 23
1.4.3 Integrating Behaviors .. 25

1.5 Why an Insect Model ? ... 26
1.6 Problems With Simulated Robots ... 27
1.7 RABI .. 27
1.8 Summary ... 28

CHAPTER 2 Modeling a Biological System .. 30

2.1 Artificial Learning ... 31

2.1.1 Neural Networks ... 32
2.1.2 Genetic Algorithms ... 34
2.1.3 Classifier Systems .. 37

 4

2.1.4 Combined Strategies ... 39
2.2 The Hardwired Approach .. 40
2.3 Fixed Weight Neural Networks ... 41
2.4 RABI's Neuron Networks ... 42

2.4.1 The Neurons .. 43
2.4.2 The Networks ... 45
2.4.3 Neuron Networks and the Subsumption Architecture 46

2.5 Summary ... 47

CHAPTER 3 Walking and Coordination .. 48

3.1 Gaits .. 49

3.1.1 Gait Selection ... 49
3.1.2 Gait Analysis .. 51
3.1.3 Quadruped Vs. Hexapod .. 54

3.2 Gait Implementation ... 55
3.2.1 Previous Approaches .. 55
3.2.2 RABI's Walking .. 58

3.3 Turning ... 60
3.3.1 Turning With Simple Sensors .. 61
3.3.2 RABI's Turning .. 62

3.4 Summary ... 64

CHAPTER 4 Instinctive Behaviors .. 65

4.1 Avoiding Injuries .. 65

4.1.1 Obstacle Detection .. 66
4.1.2 Collision Avoidance .. 69

4.2 Wandering: A Basis for Exploratory Behavior 73
4.2.1 Implementing Artificial Wandering Behavior 73
4.2.2 A Wandering Bias Towards Vacant Areas 75

4.3 Edge Following Behavior .. 77
4.3.1 Modes of Edge Following ... 78

 5

4.3.2 A Neural Implementation of Edge Following 84
4.4 Light Orientation: A Source of Energy .. 87
4.5 Food Orientation: Finding and Absorbing Energy 91
4.6 Cleaning: A Task-Oriented Behavior .. 94
4.7 Behavior Selection .. 96

4.7.1 Behavior Hierarchy .. 97
4.7.2 Emergent Behaviors .. 98
4.7.3 Making Behaviors More Efficient .. 102

4.8 Summary ... 103

CHAPTER 5 Mapping out the Environment ... 104

5.1 Mapping Strategies .. 104

5.1.1 Mapping Free Space ... 105
5.1.2 Mapping the Obstacle Space .. 107

5. 2 Landmark-Based Mapping .. 109
5.2.1 Previous Approaches .. 109
5.2.2 RABI's Landmark-Based Mapping .. 110

5.2.2.1 Landmark Feature Identification ... 111
5.2.2.2 Odometry and Angle Measurements 113
5.2.2.3 Feature Extraction ... 114
5.2.2.4 Landmark Memory .. 120
5.2.2.5 Storing Data in the Memory .. 121
5.2.2.6 Completing a Landmark .. 124

5.3 Combining Mapping Techniques .. 128
5.4 Summary ... 129

CHAPTER 6 Navigating in the Environment .. 130

6.1 Navigation Strategies ... 130
6.2 Landmark Identification .. 132

 6

 6.2.1 Data Discrepancies ... 132
6.2.2 Distinguishing Between the Inner Obstacles and the Border 135
6.2.3 Identical and Similar Obstacles ... 135
6.2.4 The Matching Process ... 136

6.3 Improving Identification Through Additional Sensor Information 139
6.3.1 Global Orientation and Outside Influence 140
6.3.2 Single, Dual and Infinite Disks ... 141

6.4 Simplified Spatial Adjacency ... 143
6.4.1 Adjacency Links .. 144
6.4.2 Creating an Adjacency Link ... 147

6.5 Point to Point Navigation ... 149
6.5.1 Self Location .. 150
6.5.2 Determining a Path ... 151
6.5.3 Selecting the Destination Points .. 154
6.5.4 Turning Around .. 156
6.5.5 Using an Adjacency Link .. 157

6.6 Summary ... 160

CHAPTER 7 Motivation and Behavior Selection 161

7.1 Motivated Behavior ... 161

7.1.1 Homeostatic and Externally Driven Behaviors 162
7.1.2 The Role of Past Experiences ... 162

7.2 Behavior Selection .. 163
7.3 RABI's Motivation and Behavior Selection .. 164

7.3.1 Obtaining Energy .. 165
7.3.2 Seeking Energy Vs. Map Building .. 167
7.3.3 Enabling and Disabling the Edge Following Behavior 169
7.3.4 Instinctive Behavior Selection .. 171

7.4 Summary ... 173

 7

CHAPTER 8 Hardware Construction of RABI 174

8.1 Frame Construction and Materials ... 174

8.1.1 Version 1.0 - The Inauguration ... 177
8.1.2 Version 1.1 - Beetle .. 179
8.1.3 Version 2.0 - Spider ... 180
8.1.4 Version 3.0 - Quadruped .. 182
8.1.5 Version 4.0 - Hexapod .. 185
8.1.6 Version 4.1 - Insect With Antennae .. 186
8.1.7 Version 4.2 - The Final RABI .. 187

8.2 The RABI / Computer Interface ... 189
8.3 Electronics .. 190

8.3.1 Leg Positioning ... 191
8.3.2 Leg Control ... 192
8.3.3 Robot Interface Circuitry .. 196

8.4 Future plans .. 198
8.5 Summary ... 200

APPENDIX A1 Spreading Activation ... 201
APPENDIX A2 Generalization ... 203

REFERENCES ... 204

 8

LIST OF TABLES

TABLE DESCRIPTION PAGE

 1 Possible matching memory sequences. 138
 2 All possible robot commands. 186

 9

LIST OF FIGURES

FIGURE DESCRIPTION PAGE

 1.1 The subsumption architecture. 5
 2.1 A neural network with one hidden layer. 20
 2.2 Model of a simple summation neuron. 20
 2.3 Generating offspring schema through crossover and mutation. 23
 2.4 The basic parts of a classifier system. 24
 2.5 Functionality of the neurons in the neuron networks. 30
 2.6 Appearance of the neurons in the neuron networks. 32
 2.7 Various interconnecting link types used in RABI's neuron networks. 33
 3.1 Geometric representations of standard obstacles. 37
 3.2 Gait diagrams of hexapod wave gaits. 38
 3.3 Leg phases representing the general wave gait for a hexapod robot. 40
 3.4 Gait diagram of a quadruped wave gait with duty factor 3/4. 40
 3.5 Instability problem caused by leg placements. 41
 3.6 Local leg network from [Beer 90]. 43
 3.7 Additional pacemaker connections allowing coordinated walking. 44
 3.8 Revised leg network accounting for stepping delay. 45
 3.9 Connecting the WALK neuron. 46
 3.10 Interconnections of leg networks providing leg coordination. 47
 3.11 Snapshots showing the displacement of a turning hexapod robot. 48
 3.12 Expanded leg network showing additional neurons needed for turning. 49
 3.13 A mechanism for controlling the reverse neurons. 50
 3.14 Connecting the DRAG neurons for additional coordination. 51
 4.1 The 6 antennae incorporated into RABI. 55
 4.2 The four basic types of detectable obstacle features. 56
 4.3 The 16 possible frontal antennae readings and the appropriate
 response needed to avoid contact. 57
 4.4 Diagram showing the oscillating turning problem. 57
 4.5 The neural circuitry depicting the collision avoidance behavior. 58
 4.6 The neural circuitry depicting the wandering behavior. 61
 4.7 The 3 basic steps of vacancy behavior. 63
 4.8 The neural circuitry depicting the vacancy behavior. 64

 10

FIGURE DESCRIPTION PAGE

 4.9 Situations causing loss of edge contact. 66
 4.10 Placement of a side antenna. 67
 4.11 The different types of frontal antennae collisions calling for
 reorientation to a new edge. 67
 4.12 Additional frontal antennae collision situations. 68
 4.13 Circling problem during edge following without the squeeze mode. 69
 4.14 Entrapment problem during edge following without the squeeze mode. 69
 4.15 Mapping discrepancies caused by narrow passageways. 70
 4.16 A state diagram depicting the edge following process. 71
 4.17 A neural circuit depicting right edge following behavior. 72
 4.18 The combined left and right edge following circuitry. 74
 4.19 A neural circuit for photokinetic behavior. 75
 4.20 Screen snapshot of the phototropic behavior. 76
 4.21 A neural circuit for the energy seeking behavior. 78
 4.22 Screen snapshots showing the effect of varying T3 during the
 energy seeking process. 80
 4.23 A neural circuit for the cleaning behavior. 82
 4.24 Screen snapshots before and after the cleaning behavior was used. 83
 4.25 Prioritized connections for instinctive behavior selection. 84
 4.26 Screen snapshots depicting the affects of combining the wander
 and vacancy behaviors. 86
 4.27 Screen snapshots showing the wander and light seeking behaviors. 87
 4.28 Screen snapshots showing the integration of the wander, vacancy
 and light seeking behaviors. 88
 4.29 Screen snapshots showing the effects of combining the cleaning
 and light seeking behaviors. 89
 5.1 Two variations of grid-based mapping. 92
 5.2 The offset dissection of a quadtree mapping. 94
 5.3 A polygonal mapping of a simple environment. 95
 5.4 Identifiable and unidentifiable environment shapes. 97
 5.5 Three environments with identical edge lengths and corner magnitudes. 100
 5.6 Position measurement circuitry. 100
 5.7 The position measurement circuitry for the software version of RABI. 101
 5.8 The neural circuit for feature extraction. 103

 11

FIGURE DESCRIPTION PAGE

 5.9 The effects of varying the cornering threshold. 104
 5.10 Zig-zag path with consecutive corners of opposite types. 106
 5.11 Additional neurons in the feature identification network. 106
 5.12 The mapping of a simple environment. 107
 5.13 Storing multiple landmarks in memory keeping pointers to
 each landmark. 108
 5.14 The expanded neural circuit for feature extraction. 109
 5.15 The external neurons connected to the memory unit. 110
 5.16 False detection of the starting position. 112
 5.17 Obstacle tracing and disk dispensing network. 113
 5.18 Dropping a disk in a corridor or hole. 114
 5.19 A topological mapping of an indoor environment. 116
 6.1 CW and CCW mappings of a rectilinear environment. 120
 6.2 Misalignment problem caused by the lack of proximity detection. 120
 6.3 Estimating a polygon from a circular environment. 121
 6.4 Two environments that appear identical due to the lack of spatial
 information and the allowable error during matching. 123
 6.5 Three similar obstacle mappings and the resulting generalization. 124
 6.6 Two identical matching sequences which are offset due to the
 circular nature of the linked list. 125
 6.7 Two layers of neurons that represent the same obstacle mapping. 126
 6.8 Additional spatial information obtained from an external cue. 127
 6.9 Tracing problem with similar disk types. 129
 6.10 Using an infinite number of disks for tracing out obstacles. 130
 6.11 Adjacency links (dotted) required to record spatial adjacency
 among obstacle mappings. 131
 6.12 The edge displacement problem. 132
 6.13 Environmental mappings before and after two adjacency links
 are added. 133
 6.14 The neural circuit for the adjacency link mechanism. 134
 6.15 Path traveled during the creation of an adjacency link. 136
 6.16 Results from spreading activation for 1, 2 and 4 destination points. 140
 6.17 Connecting neurons that control the activation process. 142
 6.18 Additional neurons needed to handle conflicting destination types. 143

 12

FIGURE DESCRIPTION PAGE

 6.19 Neural circuit for turning around. 144
 6.20 Example showing the output of neurons after activation is spread
 across an adjacency link. 145
 6.21 A neural circuit for using the adjacency links. 146
 7.1 Excitation of the WALK neuron by the motivated behaviors. 152
 7.2 Neural circuitry representing the ingestion mechanism. 153
 7.3 Neural circuit for selecting the motivated behaviors. 155
 7.4 Neural connections responsible for the enabling of the edge
 following process. 156
 7.5 Neural circuitry to disable edge following when near an energy source. 157
 7.6 A neural circuit to disable the edge following behavior. 158
 7.7 Neural links used to associate light with energy and dirt morsels. 159
 8.1 Worm gearbox set from Tamiya. 162
 8.2 Planetary gearbox set from Tamiya. 163
 8.3 Two layer mechanical frame construction. 164
 8.4 Initial leg design. 165
 8.5 Leg design of RABI version 2.0. 167
 8.6 The prismatic leg joint for vertical movement. 170
 8.7 The 4-antennae system for detecting obstacles. 174
 8.8 The improved antennae system design. 175
 8.9 The hardware setup for RABI. 176
 8.10 Schematic diagram for horizontal positioning information for each leg. 178
 8.11 The schematic diagram for the leg control circuitry. 179
 8.12 Additional circuitry providing the necessary current to the motors. 181
 8.13 The 8-bit data format for the input and output buses. 182
 8.14 A schematic diagram for the control bus circuitry. 184
 8.15 A schematic diagram for the sensor latching circuitry. 185

 13

LIST OF PHOTOGRAPHIC PLATES

PLATE DESCRIPTION PAGE

 1 RABI version 1.0 165
 2 RABI version 1.1 166
 3 RABI version 2.0 - side view 168
 4 RABI version 2.0 - top view 169
 5 RABI quadruped version 3.0 - top view 171
 6 RABI quadruped version 3.0 - front view 172
 7 RABI version 4.0; the revised hexapod 173
 8 Side view of the final version of RABI 175

 14

∼∼

Chapter 1
Artificial Life Through Robotics

∼∼

 There has been a growing amount of research in the area of autonomous mobile robots

and animats 1. Much of the work has been the designing of task-oriented mobile robots many of
which use sophisticated sensors (i.e. cameras, range finders) and require much computational
speed and power. While this approach seems to create robots that are able to impressively
perform simple tasks, it usually results in a highly complex and expensive system that can only
operate in a constrained environment. In addition, the sophisticated sensors suffer from noisy
data, resulting in the need to alter the environment to reduce noise 2.

 By creating robots with simple sensors, the noise factor is sufficiently reduced allowing
the robot to function in an unaltered environment. The drawback of simplifying the sensors is
that the information extracted from the environment is reduced and the resulting robot would
only be able to perform simple tasks. However, the elimination of complex sensors allows the
robot to be reduced in size since the computational power requirements diminish. With such a
small size, perhaps many of these simplified robots could perform as a whole the same tasks as a
more complex robot but at a fraction of the expense. Nanotechnology research may eventually
lead to efficient nano motors and pumps, allowing these simplified robots to become reality
[Flynn 87].

 Although there has been some recent research in the area of colonies of nanobots [Dario
et al. 91], [Lewis and Bekey 92], there is a need to determine just what types of complex

1 The term animat is used to describe an artifical animal ; in this case, a simulated robotic life form.
2 In the case of laser range finders, ambient light from outside the environment must be blocked off. For cameras,

the obstacle contrasts must be altered in order for the camera to single out the desired objects. An example of this
is creating a black and white environment.

 15

behaviors can emerge from these simple robots individually. By experimenting with simplified
robot control mechanisms and sensors, one may gain insight as to their usefulness.

 The first step towards creating these individual robots is to determine the basic primitive
behaviors that are needed for survival. At the lowest level of control, the robot can be
programmed with simple behaviors such as obstacle avoidance, wandering, edge following,
phototropism, photophobia and searching for food. Additional behaviors could then be added
allowing the robot to learn and adapt to its environment as well as perform a repertoire of simple
tasks. A robot of this nature takes precedence in keeping itself functioning by learning to adapt
and survive in its environment, performing its given tasks only when its needs are met. Such a
robotic system would represent a kind of mechanical artificial life form.

1.1 Traditional Robotics

 Many researchers have taken a common approach towards designing so-called
"intelligent" autonomous robots and robotic systems. Many of their robots were developed in a
straight forward manner with software that instructed the robot to perform some action whenever
a specific event had occurred. In this approach, the sensor data is fused into an internal model of
the environment. The robot would often have a set of rules or strategies which completely
governed its overall actions. The internal model was then used to reason about and plan
intelligent actions. A main problem with using such an internal model of the environment is in
the representation. The world must be represented with enough information to allow reasoning.
When there is a lack of information, the reasoning and decision making process may not come up
with an appropriate response for a given event. The need for accurate representations resulted in
the need to increase sensor power. The addition of more complex sensors further required a large
quantity of processing power in order to process the information.

 The traditional programming approach used what is known as a top-down strategy in
which a main controller was responsible for the overall actions performed by the robot. With
this approach, it was difficult to add functionality to the robot since it involved making changes
to the existing software and/or hardware. Moreover, by adding additional features to the robot,
there was often a need to increase the computational power since in order to keep the robot
operating with a reasonable response time. Due to the need for processing sensor data, this type
of design is of no practical use in situations that demand a quick response time.

 16

 The computers on-board these traditional robots were often required to make complex
calculations to solve problems related to 3D transformations, data analysis and extrapolation, and
noise reduction techniques. In addition, the algorithms demanded the computer's processing
power for computational geometry and decision making problems as well as positioning and
control for the robot's actuators. During the development of such systems it was often the case
that the computer could not meet the real-time demands of the control software, leaving the
designers with the choice of increasing the computational power or reducing the computational
requirements of the system. The latter solution leads to a reduction in functionality of the
overall system.

 Usually, as the robot went through its many design phases, the final version ended up
being quite complex and loaded with massive computational hardware and sophisticated sensors.
Needless to say, these robots were usually bulky, and heavy and often contained software and
hardware problems that were difficult to predict ahead of time. Thus, the resulting robot was
expensive, complex and often not very robust.

 Perhaps the biggest problem was that of developing algorithms with the ability to handle
the many different situations that could be encountered. Often the algorithms were improved
upon to account for different situations, but this improvement often resulted in quite complex
algorithms which were more difficult to code. Moreover, these algorithms could only be
improved upon up to a certain point before they become too complex to implement in a robotic
system.

 Despite the many shortcomings, this traditional top-down approach to programming was
used for many years. Perhaps the reasoning for this was that computers were becoming smaller,
quicker, and cheaper, leading researchers to believe that eventually the computer would be quick
enough to handle even the most demanding computations. But as these robots became larger,
heavier and more heavily equipped with sophisticated sensors, it was clear that another approach
had to be taken towards the design of autonomous systems.

1.2 The Subsumption Architecture - A Different Perspective

 After a while, some researchers began to ask a simple question: "How could it be that a
simple ant could outperform these highly complex and expensive robots ?". After all, an ant is
equipped with only simple sensors and little or no computational power at all. Clearly, there

 17

was a problem with the traditional approach to robot design since their performance did not meet
their expectations. Furthermore, there is a growing suspicion that the traditional approach to
intelligent behavior is inadequate for systems that must operate in realistic environments, since
they involve explicit reasoning by manipulating symbolic representations of the world [Beer 90].

 One researcher in particular decided to make a radical change towards the design of
robotic systems. This researcher is Rodney Brooks. In 1985-1986 R. Brooks published papers
describing a radically new architecture for use in designing autonomous systems. This
architecture is known as the subsumption architecture [Brooks 86]. This new architecture
emphasizes a more direct coupling of sensors to actuators. It is a distributed and decentralized
structure that provides a more dynamic interaction with the environment. Moreover, by having
multiple parallel activities, and by removing the idea of a central representation, there is less
chance that any given change in the class of properties enjoyed by the world can cause total
collapse of the system [Brooks 91].

 The subsumption architecture (SA) represents a bottom-up approach to the design of
intelligent robotic systems. This meant that the robot was designed by building the simplest
reactive components first, and then adding the higher level functioning. The SA allows the
robot to be developed one piece (level) at a time such that after each level is completed, the robot
is able to perform some simple behavior. Additional levels are added only when it is fairly
certain that the existing layers are operating properly. With the SA, the behaviors are
programmed in a priority oriented fashion in which higher levels of behavior subsume the lower
levels. Thus the higher level behaviors can override or suppress the signals in the lower level
behaviors. These higher levels of behavior correspond to higher levels of competence. The SA
represents a parallel and distributed structure for connecting sensors to actuators as shown in
Figure 1.1.

 The architecture allows for incremental development, where additional layers can be
"added on" to the existing structure without the need to modify the previous layers. The SA
concentrates on getting the robot to function in a simple reactive manner, adding additional
functionality on top of the simple behaviors. The result is a more robust and reactive system
than with the traditional top-down approach. Furthermore, with the SA, there is no need for
decision making as to when certain behaviors (actions) should be performed since it is
automatically done through the subsumption process. This allowed the system components to
be separated, reducing the computational requirements of the overall system.

 18

Level 3

Level 2

Level 1
Sensors Actuators

Figure 1.1 The subsumption architecture. Higher levels subsume lower levels when they
wish to take control.

 The main drawback of this approach is that there is no learning component. Traditional
approaches, although far too complex and bulky, at least had the ability to learn. As it turns out,
the SA shares a similarity to the notion of "instinctive behaviors" since they are built-in to the
robot and no learning is required. Some say that the subsumption architecture is limited in that
only simple behaviors can be implemented and that the approach could never have the ability to
perform complex tasks that require reasoning.

 The SA approach, although limited in its learning and task abilities, can lead to a robotic
system that closely resembles a simple life form. As seen by observing ants, even a simple life
form without the ability to learn or reason can perform rather well. Moreover, through
cooperation, more complicated behaviors emerge from the system as a whole. It is the author's
opinion that the SA approach represents a significant leap towards the development of
"intelligent" robots and robotic systems.

1.3 Artificial Life

 Can a robot be created that simulates the life of a simple biological organism ? This
question is not easy to answer. In fact, there are many different aspects that must be considered
in the creation of artificial life. Before answering this question, one must have an understanding
as to what artificial life represents.

 19

 Artificial Life (A.L.) is the study of man-made systems that exhibit behaviors
characteristic of natural living systems [Langton 89]. It attempts to capture the behavior of the
components of a living system and to endow artificial components with similar behaviors. If the
artificial parts and behaviors are organized correctly, then the artificial system should exhibit the
same dynamic behavior as the natural system. The approach of A.L. is not concerned with
building systems that reach some sort of solution. For these systems, the ongoing dynamics is
the behavior of interest, not the state ultimately reached by that dynamics. Traditional task
oriented robots would be discarded from the area of A.L., since the resulting task performance is
the only topic of interest. In essence, they are built as "slaves" with no desire for survival.

 The key concept in A.L. is emergent behavior. Natural life emerges out of the organized
interactions of a great number of non-living molecules, with no global controller responsible for
the behavior of every part. Rather, every part is a behavior itself, and life is the behavior that
emerges from the local interactions among individual behaviors. It is this bottom-up, distributed,
local determination of behavior that artificial life employs in its primary methodological
approach to the generation of life-like behaviors [Langton 89]. This bottom-up approach favors
the subsumption architecture since simple behaviors can be created separately, allowing the more
complicated behaviors to emerge.

1.3.1 Linear Vs. Nonlinear systems

 Linear systems are those for which the behavior of the whole is just the sum of the
behavior of its parts. Linear systems obey the superposition principle in that by studying the
parts in isolation, we can learn everything we need to know about the complete system.
Nonlinear systems on the other hand, do not obey the superposition principle. In these
systems, the primary behaviors of interest are properties of the interactions between parts, rather
than being the properties of the parts themselves, and these interaction-based properties
necessarily disappear when the parts are studied independently.

 Behaviors themselves can constitute the fundamental parts of nonlinear systems (virtual
parts) which depend on nonlinear interactions between physical parts for their very existence.
By programming a robot with many simple behaviors, complex behavioral patterns can emerge
through the interaction of the robot with its environment.

 20

1.3.2 Local Vs. Global Behavior

 There are two basic approaches to creating a nonlinear robotic system. These are
through local and global specification. With local specification (subsumption architecture),
each basic component of the system has a set of local rules that determine its behavior. With
global specification (traditional robotics), there is one set of rules that governs the behavior of all
the components as a whole. It is easier to generate complex behavior from the application of
simple local rules than it is to generate complex behavior from the application of complex global
rules. This is because complex global behavior is usually due to nonlinear interactions occurring
at the local level. With bottom-up specifications, the system computes the local, nonlinear
interactions explicitly and the global behavior (which was implicit in the local rules) emerges
spontaneously without being treated explicitly.

 With top-down specifications, however, local behavior must be implicit in global rules.
The global rules must “predict” the effects on global structure of many local, nonlinear
interactions - something which we have seen is intractable, even impossible in the general case.
Thus, top-down systems must take computational shortcuts and explicitly deal with special cases,
which results in inflexible, brittle and unnatural behavior.

 Furthermore, in a system of any complexity the number of possible global states is
astronomically enormous and grows exponentially with the size of the system. Systems that
attempt to supply global rules for global behavior simple cannot provide a different rule for
every global state. On the other hand, systems that supply local rules for local behavior can
provide a different rule for each and every possible local state. In addition, the size of the local
state-space can be completely independent of the size of the system. The only special cases
explicitly dealt with in locally determined systems are exactly the set of all possible local states,
and the rules for these are just exactly the set of all local rules governing the system.

 Consider modeling a colony of ants. One could create many instances of different
classes of ants such that each class of ants has its own unique behavior. One could then start up
a simulation of a simple 2-D environment by specifying an initial configuration of these classes
of ants. Once started, the behavior of this system would depend entirely on the collective results
of all the local interactions between individual ants and between each ant and the environment.
There would be no “drill-sergeant” ant choreographing the ongoing dynamics according to some
sort of high-level rules for colony behavior. The behavior of the colony of ants would emerge
from the behaviors of the individual ants themselves, just as in a colony of biological ants.

 21

1.4 Adaptive Behavior

 Part of the definition of life itself is that the organism must have some way of finding and
absorbing food. Many life forms have adapted to their environments through genetic selection,
although there may be some degree of adaptability during their life cycle. This brings up the
notion of adaptability in robotic behaviors. Adaptive behavior is behavior which is adjusted to
environmental conditions. A robot with this type of behavior must be able to react in some
appropriate manner to these changing conditions such that it remains functional. Perhaps, this
adaptation may correspond to the fine-tuning of behaviors to suit the current environment, thus
increasing the efficiency of the robot over time.

 Learning is the process by which behavior remains adaptive throughout an agent's 3 life
in the face of a non-stationary environment [Beer 90]. Conversely, if a robot is functioning in a
non-changing environment, then the process of learning is not always necessary. Initially, the
robot will have learnt the environmental conditions and since they are non-changing, the learning
process will diminish since the robot has learned all it needs to know about the environment to
function adequately. There is an interlocking of both learning and adaptive behavior since each
relies on the other. It can be said that adaptive behavior is the direct result of learning.

 A robot functioning in an environment may exhibit various forms of behavior. In fact, a
short sequence of simple behaviors can sometimes appear as a complicated behavior.
Researchers [Brooks 86] [Beer 90] agree that insects exhibit very simple reactive behaviors
which interact to realize a complicated sequence of actions. These reactive behaviors take the
form of either reflex behaviors or taxes. A reflex is a fast stereotyped response triggered by a
particular class of environmental stimuli. The intensity and duration of the response is entirely
governed by the intensity and duration of the stimulus [Carew 85]. Taxes on the other hand
involve the orientation of an animal toward or away from some environmental stimulus such as
light, gravity or chemical signals [Camhi 84].

3 The term agent is synonymous with robot.

 22

1.4.1 Types of Reflexes

 Most reflexes are used for avoiding, escaping or minimizing the effects of noxious
stimuli. The immediacy of reflexes, and their relative independence of the animal's past history,
make them easy to study. [Staddon 83] states that a reflex is the name for the properties of the
relation between stimulus and response, and that these reflexes incorporate seven main
properties:

1) Threshold : The minimum stimulus level required to elicit a reflexive response. (This may

depend on the animal's state of attention, motivational state and its past history).

2) Latency : The time between stimulus onset and the occurrence of the reflex response. (This

may depend on stimulus intensity where a more intense stimulus elicits a more rapid
response. The strength as well as the speed of most reflex responses is directly related to
stimulus intensity).

3) Refractory Period : A brief period of time in which the threshold of a reflex is elevated after

the reflex has occurred.

4) Temporal Summation : The situation in which two sub threshold stimuli, spaced closely in

time, excite a reflex but separately they elicit no response. (A cat, for example, will turn
towards a sound, looking at the direction of the sound with its ears pricked forward waiting
for additional stimuli before responding).

5) Spatial Summation : The situation in which two individually sub-threshold stimuli excite a

response when presented together. (A dog for example, may ignore a single itch but
additional itching stimuli around the same area will result in a scratching reflex).

6) Momentum : The measure of time in which the reflex continues its excitation once the

stimulus has been removed. (The scratch reflex is an example of a reflex with momentum).

7) Habituation : The decrease in vigor and eventual cessation of a response due to repeated

elicitation of a reflex response.

 Automatic variation in the strengths of these properties gives the organism a kind of
adaptation to the environmental stimuli. In a sense, a higher level organism can become familiar

 23

with certain types of stimuli which may lead to more efficient reactions. For simple low level
organisms incapable of learning, the strengths of these properties are usually fine tuned from the
genetic process. This fine tuning represents a kind of evolutionary adaptation. The changing of
reactions as a function of time also represents a form of adaptability; habituation and warm up
effects are examples.

 In addition to the properties mentioned, there are three principles of reflex interaction:

1) Reciprocal inhibition : The competition of incompatible reflexes for control.

2) Cooperation : A blending response of two or more reflexes when they are simultaneously

excited.

3) Successive Induction : The sequential excitation of reflexes in which the former reflex

induces the later.

 It is these principles of interaction that determine which reflexes have control of the
organism at any one time. This is closely related to the aspect of motivation and behavior
selection which is discussed further in chapter 7.

1.4.2 Types of Taxes

 Many forms of life posses either no, or only the most rudimentary nervous system. With
their simple construction they are somehow able to survive by finding food and a proper habitat.
Thus, orientation mechanisms (taxes) exhibit the properties of adaptive behavior in their clearest
form.

 The simplest example of an orientation mechanism is that of climbing plants. Plants
grow vertically and seek the highest best-lighted point, unless there are other factors such as
obstacle avoidance, predators and wind effects which may inhibit this process. This behavior
can be explained by the combined effects of negative geotropism (orientation away from
gravity), circumnutation (winding orientation) and positive phototropism (orientation towards
light).

 Another form of orientation is that of chemotaxis, which represents the ability to orient
towards chemical stimuli. Bacteria use this type of orientation mechanism to move up and down
chemical gradients. Since these bacteria have only simple chemical sensors and thus the only

 24

way to find a chemical source is by means of hill climbing. The bacteria are required to use
kinetic orientation in that they must make successive comparisons.

 [Staddon 83] distinguishes taxic reactions as being one of 4 main types:

1) Klinotaxis : The use of successive comparisons to orient towards a stimulus.

2) Tropotaxis : The outcome of a balancing process; the animal turns until the two receptors are

equally stimulated and then proceeds forward.

3) Telotaxis : The orientation between two symmetrically disposed stimuli by directly

approaching one of the stimuli. Here the animal is somehow able to identify the bearing of
the stimuli.

4) Light-compass reaction : Maintaining a fixed angle between the path of motion and the

direction of the stimulus.

 These classes represent the basic types of orientation strategies found in animals. These
types of orientation specify the basic underlying mechanisms of simple orientation reactions.
There are many simple orientation reactions observed in animals; some of them being:

 - Attraction to light or dark (skototaxis) areas and objects,
 - Attraction to warm areas,
 - Postural reactions to light and gravity (geotaxis),
 - Reactions to physical contact (seeking out and conforming to crevices and corners),
 - Reactions to fluid flow (rheotaxis),
 - Reactions to chemical (chemotaxis) and humidity gradients .

 These taxes allow the animal to orient towards certain stimuli while avoiding others. It
allows the animal to seek out safe locations and food; the necessities for survival. These
orientation mechanisms represent survival instincts and thus are a form of adaptive behavior. In
some taxes, such as the Mysis crustaceans in the Naples Aquarius, periodic taxic reversals
provide an additional degree of adaptability.

 25

1.4.3 Integrating Behaviors

 Despite the relative simplicity of each reaction analyzed in isolation, when combined,
they can lead to complicated, "intelligent" behavior. [Staddon 83] states the following:

"The function of reflexes is the integration of behavior, which would
be impossible without well-defined rules of interaction".

 Although reflexes and taxes can provide a repertoire of reactive behaviors, it is the
interaction of these reactions that provides an integrated overall behavior of the organism. Thus,
one must specify rules of interaction in order to integrate the reactions and produce complex
behaviors. Cooperation and competition represent the two kinds of combination rules of
behavior and these will be discussed in a later chapter. With a set of such well-defined
reactions, one might think that the behavior of an organism is somewhat predictable; but the
behavior is often unpredictable. One of the aspects of this unpredictability is due to the
variability in behavior. In some cases, the variability is intrinsic to the mechanism and serves as
a function of random sampling of the environment. A degree of variability will also prevent the
organism from getting trapped in certain situations; like corners, local maxima and minima, and
continuous circling. An example of this can be seen when a fly is observed buzzing at a
window. The fly does not utilize a systematic searching strategy to find a way out, instead a
degree of randomness is used which may eventually find an opening.

 For conflicting reactive mechanisms, the animal must choose between the two reactions
or issue a compromise. If this were not so, then when faced with a stimulus requiring one of
many responses, the animal's reactive behaviors would be in continuous conflict. As a result the
animal would not react appropriately, leading to trappings, circulation or even fatality. A degree
of variability allows the animal to avoid these conflicting situations. The protozoan Euglema,
for example, is photo-positive in weak light and photo-negative in strong light. Consequently,
these animals congregate in intermediate levels of illumination; this may represent a compromise
between the bright light that provides energy and the dim light that provides greater protection
from predators [Straddon 83].

 There may also be a degree of systematic variation in which the rules of interaction
depend on contextual variables such as the time of day, condition of light, presence of other
animals, etc. In each situation the animal's behavior may be predictable, yet the animal may be
sensitive to a variety of situations resulting in a large repertoire of behaviors.

 26

 Reflexes and taxes both depend only on recent events which limits their overall
usefulness towards adaptable behavior. Reflexes are further limited in that they are not readily
modified by their consequences; they are almost independent of feedback. If an animal or robot
is to be able to adapt to its environment, it must be able to cope with different situations which
may require different reactions in different circumstances. With the ability of an animal to learn,
adaptation can be enhanced allowing the animal to function more efficiently and possibly avoid
fatal situations.

 This learning ability plays a large role in higher level decision making to such an extent
that past experience may drastically alter the previous functioning of the robot. This may
pertain to paranoia, eagerness, reduction in curiosity, etc. Nevertheless, this learning ability is
required for adaptive behavior since it may be crucial for survival.

1.5 Why an Insect Model ?

 Animals are naturally able to adapt their behaviors to the environment in which they are
embedded. As mentioned previously, through evolution, these behaviors are fine-tuned to suit
their natural environment. Of all animals, insects perform amazingly well considering their
small size. Their biological control systems are versatile and robust. These simple creatures
have adaptive control systems that allow them to walk in complex terrains and even upside
down. Insects are also able to adapt while coping with sensor damage and leg amputations
[Graham 85].

 In general, insects can have an instinctive ability for cooperation. Ant and bee colonies
are rather efficient due to the cooperative efforts of the individuals. These cooperative efforts
are instincts which are embedded into the control mechanisms of each individual. An example
of such a mechanism is the receptors on a worker ant which allows them to follow a chemical
residue left behind from other ants.

 A colony of small cooperating robots would closely resemble a colony of biological
insects in the way they function individually and the way they function as a whole. It makes
sense to model each of these individual robots as an insect since they are biologically similar to a
natural insect.

 27

1.6 Problems With Simulated Robots

 Many researchers have developed simulations of robots and animats. While their
experiments clearly show that simple life forms can be mimicked by a computer, they are limited
to the domain of their specialized "ideal" environments. Often, the designer creates a simplified
environment such that the robot's simulated sensors produce accurate data and the actuators
always perform to specifications. This is hardly the case in the real world. To help validate
their simulated experiments, some researchers have attempted to program errors into sensor
readings by simulating noisy data. This attempts to bring the research a step closer to the
development of real robots but it is never possible to accurately simulate the effects that are
caused by the vast randomness of the physical world.

 [Brooks 91] has concentrated his research on designing actual robots. His robots are
created incrementally; at each step letting them loose in the real world. By doing this, the robots
are designed to perform in an environment as opposed to altering the environment to suit the
robot. He states:

"When we examine very simple level intelligence we find that explicit representations
and models of the world simply get in the way. It turns out to be better to use the world
as its own model".

 Although simulated robots and animats may provide insight as to the interaction of
various behaviors and mechanisms, they would likely fail in the noisy and unpredictable world of
reality.

1.7 RABI

 This thesis presents a robot RABI (Robotic Adaptive Behavioral Insect) which was
developed to investigate the usefulness of robots with simple sensors. It is important to study
the usefulness of robots equipped with minimal control circuitry and minimal sensors so that
future robots could be developed simpler and smaller. By using a similar architecture to
[Brooks 86] and a simple control structure based on [Beer 90], a simplified robot can be created
that exhibits similar behaviors to that of biological insects.

 28

 RABI represents a simplified robotic insect capable of learning in a static, yet initially
unknown environment. There is both a hardware and a software version of RABI 4, both using
touch sensors in the form of antennae and motor actuators to move the legs. The software
version also contains a sensor and motor to detect a disk (used as a marker) which can be
dropped and picked up by the robot. The hardware version was built to determine if such a
robot could indeed function in a real world environment. As was expected, the walking
mechanisms of the simulated robot had to be altered to control the hardware robot due to the
unforseen nature of the robot's actuators and sensor readings.

 In addition, the software version has simulated taxic sensors to detect light areas and
energy sources. Robots do not eat, instead they must consume some sort of electrical energy
(battery charging) or light (solar powered). The energy sensor may be thought of as a sensor
that detects power surges so that the robot would be able to find wall sockets and other types of
electrical outlets. In outdoor environments, perhaps the only source of energy would be the sun.
Here, the robot must be equipped with solar cells to extract energy from the light.

 Chapter 2 discusses the issues involved in modeling a biological system. The remaining
chapters discuss the implementation of RABI. Chapter 3 discusses the walking mechanisms.
Chapter 4 discusses the programmed instinctive behaviors of the robot. Chapters 5 and 6 deal
with the map learning and navigation aspects of RABI. Chapter 7 discusses the motivational
aspects involved with behavior selection and Chapter 8 describes the hardware design of RABI.

1.8 Summary

 Since artificial life is concerned with generating life-like behaviors, a good place to start
is to identify the mechanisms by which behavior is generated and controlled in natural systems,
and to recreate these mechanisms in artificial systems. Traditional approaches to robot design
attempted to create a complex robot capable of performing some simple task using sophisticated
reasoning about sensor data. This approach led to complicated, expensive and brittle robots that
were not at all reactive. [Brooks 86] pioneered an approach using the subsumption architecture
that utilized a bottom-up approach to programming. This new approach allowed for incremental
development of a reactive-based robot capable of performing with levels of capability. Robots
using this architecture are simpler, cheaper and more robust than the traditional approach.

4 Chapter 8 discusses the design phase of the hardware version of RABI. The simulated version is discussed

throughout the thesis.

 29

 By combining techniques of [Brooks 86] and [Beer 90], a robot can be developed that
exhibits simpler reactive behaviors. These simple behaviors take the form of reflexes and taxes
which provide the survival instincts of the robot. The more complex adaptive behaviors emerge
from the interactions of these simple behaviors with the environment. By simplifying individual
behaviors, the need for sophisticated sensors can be eliminated, resulting in a smaller, cheaper,
and simple robot.

 30

∼∼

Chapter 2
Modeling a Biological System

∼∼

 The task of modeling a biological system is not at all trivial. [Linsker 90] states the

following: "Unlike conventional computer hardware designs, neural circuitry is not hard-wired
or specified as an explicit set of point-to-point connections. Instead, it develops under the
influence of a genetic specification and epigenetic factors both before and after birth". This
statement implies that the functionality of a neural network model arises from the
interconnections which are learnt, rather that explicitly programmed. Thus, standard
programming techniques do not provide a biologically feasible solution to the model being
developed. Another strategy must be used to allow the model to develop, through learning, into
a functional system.

 Biological development processes are far too complex to warrant a complete
understanding of the organizational and computational aspects of biological neural networks. In
order to understand such a complex computational instrument, it helps to create simplified
models which mimic various parts of the whole. Some feel that it may eventually be possible to
combine the various parts to create a device capable of performing similar tasks to that of a
biological system. By making simplifications and assumptions to the operations involved with
biological neural networks, a complete understanding of the simplified model can be ascertained.

 As stated by [Rosenblatt 58], if we are eventually to understand the capability of higher
organisms for perceptual recognition, generalization, recall, and thinking, we must first have
answers to three fundamental questions:

1. How is information about the physical world sensed or detected by the biological
system ?

2. In what form is the information stored, or remembered ?
3. How does information contained in memory, influence recognition and behavior ?

 31

 The answer to the first question is fairly well understood compared to the other two. This
may be due to the fact that the mechanisms related to sensory input have certain construction and
connections that are readily visible, allowing a more complete study. The other two questions
are not so easily answered. Biological memory is quite complex. It is capable of remembering
detailed information while generalizing and matching to previous experiences. Amazingly
enough, this detailed information is able to be extracted in an instant. Memory organization and
operation is a baffling yet prominent area of research. Unfortunately, this area is beyond the
scope of this thesis.

2.1 Artificial Learning

 Due to genetic selection, animals are born with a certain degree of instinctiveness. Thus
the animal is born with a set of associations between environmental signals and actions that will
lead to satisfaction of its needs [Wilson 87]. The rest of the associations are learned through
experience. For an "intelligent" autonomous robot (animat) one possible method of representing
these associations is in the form of condition-action rules. Here an action is performed
whenever its condition is met. It would be useful for the animat to use its past experience to
update its set of rules. The learning of simple rules of behavior (i.e. associations) represents a
kind of adaptability required for artificial life forms.

 The learning problem is difficult because useful information is hard to obtain. First of
all, environmental events relevant to particular rules come in arbitrary order and one by one.
Thus, a truly "intelligent" animat must have some means of extracting the relevant cues in order
to develop its rules. Secondly, there is no "teacher" indicating when the animat has performed
the correct action in each situation. Thus, the animat must be self-taught by somehow rating its
actions according to the degree of satisfaction it receives after they are performed. The term
payoff is used to describe this rating. The payoff constraint actually poses another problem,
since the animat may not be rewarded immediately after an action has been issued. It may take
a sequence of correct actions in order to receive a payoff, which may come only after the last
action is performed. This sequence of correct movements can be called "stage-setting". Thus,
the animat should be able to learn under a payoff that may be delayed. Finally, since the
environment is diverse, there may be many similar situations that call for similar actions. Thus,
the animat should be able to discover significant combinations of the features, generalizing them
as much as possible.

 32

 There are three popular approaches that represent artificial learning systems. These are
artificial neural networks , genetic programming and classifier systems. The feasibility of these
approaches is discussed in the sections to follow.

2.1.1 Neural Networks

 Since learning is a task which is handled by the brain, it makes sense to model a brain for
use in an artificial system. The most straight forward approach to mimicking a biological brain
is to attempt to construct a model that closely resembles its structure and operating principles. A
biological brain is known to be composed of neural networks . These massively parallel
networks are composed of massive amounts of interconnected neurons which provide all brain
operations in a massively parallel computational manner.5 There are various portions of the
brain which are understood better than others. In particular, as mentioned previously, the area
associated with memory is not well understood.

 [Rosenblatt 58] did some pioneering research with the idea of a perceptron. Since then,
there has been a growing amount of research in developing neural networks that achieve different
forms of learning and organization. A collection of papers describing the fundamental research
in the area of neural networks is given by [Anderson and Rosenfeld 89].

 Neural networks generally have an input layer, one or more internal (hidden) layers and
an output layer, where each layer is composed of a collection of neurons as shown in Figure 2.1.
Excitatory and Inhibitory links connect neurons from each layer in a highly interconnected
fashion. Each of these links has a weight associated with it that indicates the strength of the
connection.

5 From this point onward, the term "neural networks" will refer to artificially constructed (i.e. computer or

electronically implemented) neural networks.

 33

1 2I H

2I

3I

1

O1

O2

O3

H

nH

n-1H

Input
Layer

Output
Layer

Hidden Layer

{ }

{

Figure 2.1 A neural network with one hidden layer.

 The neurons are simple processing elements that merely compute their activation,
perform a simple operation and emit an output 6. Figure 2.2 depicts an example representing a
"summation" neuron X that simply outputs a sum of the input neurons' signals multiplied by their
weights.

NEURON
W2

Wn

x

O1

2O

nO

Ox =
n

•
i=1

OiWi

W1

Figure 2.2 Model of a simple summation neuron.

 There have been many variations in the processing aspect of this simple neuron model,
however, they will not be discussed here. Again the reader is referred to [Anderson and
Rosenfeld 89] for examples of neural network structures and the neurons therein.

6 With computers, the inputs, weights and outputs are usually represented as floating point numbers between 0.0

and 1.0.

 34

 The networks are able to learn by matching specific input patterns to specific output
patterns. The weights of the interconnecting links are altered to reflect the information that has
been learnt. In fact, some networks actually begin with random weights assigned to all links,
thus learning is required in order to set the weights to any meaningful values. After a period of
learning (multiple input patterns are entered), the network maps the set of input patterns to a set
of output patterns. These networks are capable of accomplishing pattern matching feats which
would prove to be difficult to achieve through traditional straight forward programming. One
shortcoming of neural networks is that they require the environment (or supervisor) to supply the
correct value for each set of circumstances. This requirement can hinder the use of neural
networks for animat purposes since in an unknown environment the robot rarely knows the
correct response for a particular situation. At most, the robot can only take a best guess as to
which action should be performed at any one instant. Moreover, it is not clear how feedback in
the form of payoff could be used in these networks.

2.1.2 Genetic Algorithms

 The theory of evolution states that complex animals evolved from lower, more primitive
forms of life. This evolution results in physical and behavioral changes from generation to
generation. In fact, some believe that sophisticated forms of life have evolved from other very
primitive forms of life. If this is so, then the structure and organization of the sensory and
control mechanisms must have evolved greatly. This physical evolution is the result of
adaptation of the animal to its environment. It would be reasonable to assume that with
adaptation, these animals would learn "rules of thumb" for survival in their environment. With
genetic selection, these rules are passed onto future generations in the form of instincts. It is
also reasonable to assume that these instincts are improved upon from generation to generation.
[Staddon 83] gives a convincing argument for these assumptions, with the example of Orb-web
spiders. Orb-web spiders have devised a most efficient net for catching flying insects, yet
researchers can trace no history of trial and error in the life of an individual spider that could
explain the excellence of the web's design. Spider's don't learn how to weave good webs and no
spider designs a variety of different webs, discarding all but the most efficient. This instant web-
building perfection represents a solid example of an evolutionary instinct.

 Due to the enormous complexity of biological neural networks, it seems reasonable to
assume that an animal's central nervous system is not completely determined genetically.
Nevertheless, the assumption that all forms of life are endowed with instincts, through genetics,

 35

is also reasonable. Insects for example, do not have the brain capacity required for learning, and
therefore rely mostly on instinctive mechanisms for survival. These instincts may pertain to
hardwired reactive and performance mechanisms representing reflexive and taxic behaviors
which eventually become fine tuned to environmental stimuli over time through evolution.

 Genetic programming is a computational tool that attempts to mimic the process of
genetic selection and evolution. Stated simply, the idea of this strategy is to create a population
of agents 7, and select the ones with the best performance, for use in the next generation
(population). Eventually, by continually selecting the best agents from generation to generation,
the agents in the later generations will perform well.

 A genetic algorithm (GA) usually represents an agent as a string of bits, called a
chromosome (schema), where each bit represents some aspect of the agent. In the case of a
simulated robot or animat, the bits may pertain to sensor and actuator information. The genetic
process begins by creating a population of random schema and placing them into an environment
for a specific period of time. After this time has elapsed some schemas are then selected on the
basis of best performance. There must be some method of determining which schemas are better
than others. To do this, the genetic algorithm incorporates what is called a fitness function. By
applying this function to each schema, an indication as to their relative prosperity is acquired.
For example, an agent attempting to find food may have a fitness function that measures the
Euclidean distance from the agent to the food source. The agents with better performance would
have a smaller distance value.

 Using the fitness function, the best schemas are selected. These schemas are selected in
pairs for reproduction of offspring. The process takes a pair of schema and performs a crossover
in which a random split is made in the two strings of bits. The split partitions the parents into
two pieces each. The right piece of one parent is concatenated to the left piece of the other to
produce two new offspring as shown in Figure 2.3. These offspring then undergo a mutation in
which one of their bits is randomly flipped. This allows for a degree of randomness in the
genetic process. The resulting offspring are used in the next schema population.

7 The term agent represents the object being studied (i.e. an animal, animat, robot, ...).

 36

1 0 1 1 10 0 0 1111 0000

1 0 1 1 0 111 00 10 01 00

1 0 1 1 0 1 0 1 00 10 01 1 0

Crossover

Mutation

Offspring A

Parent A Parent B

Offspring B

Figure 2.3 Generating offspring schema through crossover and
mutation.

 There has been some recent work in the area of genetically programming robot instincts.
[Koza and Rice 92] have developed a simulation of a genetically programmed robot capable of
the simple task of pushing a box from the middle of a room towards a wall. The robot is
equipped with 12 sonar sensors which report distances to the nearest object and is capable of
moving in the forward, left and right directions. The first few generations of robots are not
always able to find the box. Those that find it, are not able to push it correctly towards the wall.
However, after a few generations of robots, they are capable of finding the box and pushing it to
the wall.

 The foremost advantage of using this genetic programming technique is that very little
programming needs to be done. Instead, most of the design work corresponds to defining the
problem, in which a major part is determining a useful fitness function. The robot does not know
a priori what the sensors mean nor what the primitive motor functions do. That is to say that the
robot actually learns to perform the box pushing task from scratch.

 However, there are some drawbacks to using genetic algorithms. GAs are subtle in that
it often takes many generations of schema before a reasonable performance is achieved. Thus
the need for high speed computations. Despite the impressive results of [Koza and Rice 92], the
robot's task is quite simple and may not prove to be useful. Another disadvantage of using a GA
surfaces when the robot must perform a variety of tasks which may involve switching among
them at different points in time. Such a system would require a large bit string size and may
take a long time to evolve. Moreover, as the bit string becomes longer and more complex, the
determination of a feasible fitness function becomes increasingly difficult.

 37

2.1.3 Classifier Systems

 A classifier system (CS) combines a rule-based approach with genetic algorithms. The
system uses a set of classifiers (rules) to control an agent. These classifiers are similar to
schemas of GAs in that they consist of a string of bits. Like GA applications to animat agents,
these bits represent sensor information and actions. The classifiers consist of a condition/action
pair representing a rule. The system keeps a list of all classifiers as shown in Figure 2.4. There
is an input interface that translates the current state of the environment into standard messages,
and an output interface that translates messages into effector actions. Finally, a message list
keeps track of incoming and outgoing messages.

condition

message list

input interface output interface

classifiers
action

Figure 2.4 The basic parts of a classifier system.

 As stated in [Booker et al. 89] the classifier system works as follows:

Step 1: Translate all incoming messages from the input interface to the message list.
Step 2: Compare all messages on the message list with the conditions of all classifiers and

record the matches.
Step 3: For each match, post the message representing the action part of the classifier onto the

message list; removing all previous messages on the message list.
Step 4: Combine the requirements of all the messages on the message list into one message and

send it onto the output interface.
Step 5: Return to step 1.

 38

 The system allows an animat to perform according to the rules imbedded in the
classifiers. Thus, by beginning with a set of basic classifiers, the animat is able to perform in an
instinctive manner.

 The system has two additional components used for learning purposes corresponding to
credit assignment and discovery. Assigning credit to rules that achieve rewards is a difficult
task since many of the rules need to be rewarded for their role in the "stage setting" process. By
adding a payoff strength to each classifier, the classifiers are rated as to their relative usefulness
in specific situations. The system uses a bucket brigade algorithm that adjusts the strengths to
reflect the classifier's overall usefulness to the system. Each time step, the classifiers make
"bids" according to their strength. Only the highest bidding classifiers get their messages on the
message list. The bucket brigade ensures that the "stage setting" rules eventually receive credit
if they are coupled into sequences that eventually lead to payoff.

 The discovery component of a CS uses a genetic algorithm, which applies genetic
operators of crossover and mutation to classifiers selected according to their strength. The
weakest classifiers are replaced by the new offspring. This process ensures that the animat will
learn, over time, the rules which best solve the problem at hand. The credit assignment and
discovery process are a little more involved than mentioned here. For further reading, the reader
is referred to [Booker et al. 89].

 [Wilson 85] used a classifier system for an animat that lived in an environment
containing 92 distinct sensory vectors. The animat's objective was to satisfy its need for food.
With no initial knowledge of what food looked like, the animat evolved classifiers that led it to
move towards visible food. It was also able to move in efficient paths towards food that could
not be seen immediately, by using other objects as clues to the proximity of the food. This
example shows that classifiers can prove to be quite useful for animat purposes.

 [Wilson 87] suggests that a classifier system is suited to learn multiple disjunctive
concepts incrementally under payoff. That is, classifier systems were designed to handle a
complex and perpetually novel stream of data which makes them adaptively efficient.
Moreover, in a CS, some relevant generalization of rules is achieved automatically. This may be
due to the fact that a CS recognizes the importance of tightly coupling induction mechanisms
with problem solving.

 39

 It is suggested that a CS works well when there is a large amount of sensor information,
with relevant data being sparse. For simple robots with little sensor information, the system
cannot take advantage of the environmental input and thus may not perform as well as a simple
rule-based approach. A shortcoming of the CS is that the rules are written in a language that
lacks descriptive power. This makes it difficult to debug and/or reason about. In addition,
since several rules are allowed to be fired simultaneously, there are control issues that must be
handled that do not appear in the other strategies.

2.1.4 Combined Strategies

 Perhaps a compromise between neural networks and genetic programming may prove to
be more efficient for robotic control. Such a system could make use of the neural network
structure, while using genetic algorithms to specify the interconnecting links. [Beer and
Gallagher 92] have experimented with combining neural networks and genetic programming.
Their approach was to construct a neural network whose interconnected weights are determined
genetically. The experiments involved the development of a chemotaxis behavior as well as a
control technique for coordinated walking. The first set of experiments resulted in generations
of robots that exhibited four classes of chemotaxis behavior. These four classes were observed
as different movement patterns in the area of food patches. The results show that genetic
programming, combined with neural networks can capture the subtle intricacies of biological
behavior.

 Classifier systems, themselves represent a combined strategy of rule-based systems and
genetic algorithms. To my knowledge, the combination of neural networks and classifier
systems has not been studied. [Booker et al. 89] gives a comparison between classifier systems
and the connectionist approach (neural networks). Perhaps, all three strategies combined could
produce a sophisticated architecture for use in A.I. problems. It is unclear however, if much will
be gained from using the combined strategies as opposed to any single one.

 40

2.2 The Hardwired Approach

 There has been much research using neural networks, genetic algorithms and classifier
systems to allow animats and robots to learn how to perform simple behaviors and control
problems. Some examples are learning to walk, learning to orient towards a light source,
learning to push a box etc. Since these behaviors are rather simple, it is possible to design a
hardwired approach for each behavior. It is the author's opinion that little is gained by allowing
a robot to learn how to perform a simple behavior that could have been hardwired in a simpler,
quicker and straight forward manner. A robot insect learning to walk with a neural network for
example, would probably end up using a simple tripod gait. If this is so, then why not hardwire
the tripod gait instead of wasting valuable resources trying to learn.

 Sometimes however, unpredictable behaviors can arise from allowing the behavior to be
learnt from scratch as in [Beer and Gallagher 92]. The variation in chemotaxis behavior in their
research does resemble the unpredictability (chaos) of natural systems. Sometimes this chaos is
an important part of life itself, and by omitting this randomness, it may not be possible to mimic
life forms to any degree of satisfaction.

 After a few generations, their robot was able to perform a chemotaxis behavior, and
eventually the developed behavior was at a stage in which no further generations would improve
upon it. At this point in time, the behavior remains relatively unchanged, thus fixed. The
resulting neural network could then be hardwired into electronic hardware, thus reducing the size
and cost of the robot and achieving the same performance.

 Now consider a robot that is able to perform a variety of these "instinctive" types of
behaviors. A neural network or classifier system would require a lot of processing power if it
were to learn these behaviors from scratch. This processing speed and power may not be
available for nanobots. It would be better to hardwire these behaviors into electronic gates so as
to reduce the need for processing power. The foremost advantage, however, of employing
predetermined instinctive behaviors as a control tactic is that the system in which they reside will
have a quick response time when encountering environmental stimuli. Quick reactions may be
necessary for systems that operate in potentially dangerous fast pace environments.

 A main disadvantage of this hardwired approach would be that learning mechanisms
cannot be hard wired directly into electronic hardware. Thus, the instinctive behaviors would be
fixed and unable to be improved upon. This is not so bad since for an unchanging environment,

 41

the learning process of neural networks, GAs and classifier systems eventually diminishes as
time passes. By choosing behaviors that have resulted from using any of these strategies, the
performance of the hardwired robot will be very similar. If the environment is changing
dynamically however, then the hardwired approach would not be able to handle the changes due
to the lack of learning. Another problem is with robustness. The hardwired approach is not as
robust as a neural network, since it is composed of a much, much, smaller number of processing
units. That is, the death or malfunction of a single unit with the hardwired approach may lead to
ill behavior or robot fatality, whereas in a neural network no change may even be observed,
unless massive malfunction occurs (i.e. brain damage). However, for an average robot in a
nonhazardous environment, if the instinctive neural circuitry is well designed and constructed,
then the issue of robustness may not even be considered a problem.

2.3 Fixed Weight Neural Networks

 If instincts are to be hardwired into electronic circuitry, it would be helpful to have the
behaviors coded in some form that is similar to electronic gates. Of the strategies mentioned so
far, neural networks are closest to electronics since they are composed of simple processing units
which are similar to gates. The only aspect of neural networks that is difficult to code into
electronics is the ever-changing weights associated with each link. Since these weights are used
for learning purposes, they do not need to change over time if the network is used to code an
instinctive behavior.

 [Beer 90] presents a model of robot control consisting of a network of interconnected
neurons that use fixed weights. The term neuron network is given to this model in order to
make the distinction between standard artificial neural networks. The model differs from
traditional neural networks in a number of ways:

1) The network does not learn; the weights of the interconnecting links have fixed
values.

2) There is no input, middle and output layers per se. The activation through the
network does however have a main direction of flow.

3) The number of neurons in a neuron network is much less than a neural network and
therefore, a neuron network is usually quite smaller.

4) The neuron networks are not as heavily interconnected as a neural network.

 42

5) A neuron network typically has a variety of different types of neurons whereas a
neural network usually has just one type throughout.

 Although the two types of networks have these differences, they share the same basic
fundamental computational strategy in which neurons are excited or inhibited by others. A
neuron network is made up of neuron 8 objects. Each neuron receives input signals from its
adjacent "input" neurons, computes some simple function using these input signals and then
produces an output. Like the formal neurons of artificial neural networks, the neuron model
ignores the details of action potential generation and most of the complexities of synaptic and
dendritic interactions. The neurons are most similar to those of [Hopfield 84], but differ in the
choice of input/output function, inclusion of time-dependent properties and the nonuniformity of
the network elements and their connections. The input/output function is characterized by three
parameters: a threshold at which the neuron begins to fire, a firing frequency, and the gain. By
varying these parameters, the behavior of the neuron can vary.

2.4 RABI's Neuron Networks

 The neuron model of [Beer 90] allows the neurons to vary slightly in behavior by
adjusting various parameters. It is reasonable to speculate that there may be a variety of
different types of computational functions exhibited by biological neurons since there are various
parameters associated with them. [Caudill and Butler 90] state that biological neurons display a
large repertoire of input-combining treatments. They also state that there may be several kinds
of special purpose direct inputs to a neuron and that the neurons may vary their input threshold.
With this in mind, the neuron network model was slightly altered by allowing a variety of
different types of neurons by essentially varying these parameters.

8 The term neuron is borrowed from traditional neural networks, however, it is simplified greatly from actual

biological neurons.

 43

2.4.1 The Neurons

 Since the neuron networks may eventually be hardwired, it would be useful to design
neurons that easily convert to electronic circuitry. The interfacing would probably be digital and
require binary signals. Thus, we could create neurons that emit binary signals of either 0 or 1
depending on whether they are excited. Borrowing from the notion of digital logic, we could
create neurons that perform simple operations such as an AND gate, pulsing signals, flip-flops,
comparators, summing, differentials etc. Figure 2.5 shows function diagrams of neurons that
perform similar operations by connecting a variety of simple mechanisms.

+ + +

+

+
+

-
+ -

BinaryStandard Threshold

Accumulative

Differential

+

Pulse

Sustain

+

Random

Figure 2.5 Functionality of the neurons in the neuron networks.

 Each neuron takes a sum of its inputs and produces a single output representing the sum.
The standard neuron emits this "analog" 9 signal as its output. Binary neurons on the other
hand, pass this summated signal through a threshold mechanism. If the value is positive, the
binary neuron emits a binary signal of 1; otherwise it emits a 0. Another similar neuron is the
threshold neuron which uses a threshold on the input signals and on the output signals. Thus,
the neuron emits a binary high signal if its input sum exceeds the input threshold. This neuron
can be used as an AND gate where two or more high input signals are required in order to
produce a high output signal.

9 With computers, the inputs, weights and outputs are usually represented as floating point numbers between 0.0

and 1.0.

 44

 An accumulative neuron is similar to an accumulator as seen in microprocessors. It
keeps a summation of all excitatory and inhibitory signals from the input lines and emits an
"analog" signal indicating the current sum. This sum may be negative (i.e. in the case where
inhibitory signals dominate the excitatory ones. The neuron has a special input signal that when
high, resets the accumulated sum to zero. This neuron does not seem biologically feasible but
nevertheless it provides a useful neural tool for counting which is required for measurement
purposes.

 A random neuron emits a random binary output whenever its input activation is positive
and emits no signal otherwise. The neuron has an internal probability factor indicating the
probability of outputting a binary high signal. The idea of a random neuron is not as readily
accepted since there is no well known biological neuron that performs this function. All animals
however have an unpredictable aspect related to chaos theory that endows them with a kind of
randomness.

 The pulse neuron is similar to a rising edge or falling edge 10 detector in electronics. It
monitors the incoming signals and emits an energy pulse (a high binary signal) whenever the
input sum switches from high to low or vice-versa. This neuron is used as an on or off switch
that enables or disables other neurons occasionally.

 The sustain neuron contains a state, thus it is similar to an electronic flip-flop. When
the incoming signal summation is positive, the state is set to "on" and the neuron emits a binary
high signal. The neuron continues to emit this high signal until the input summation is negative;
it then sets the state to an "off" position and the neuron emits nothing. This neuron does not
seem biologically plausible since it is capable of indefinitely emitting a high signal, even after
the inputs are removed. This neuron is needed however, since there is often a need for
maintaining a state (1 unit memory).

 Finally, the differential neuron is used as a comparator, by comparing the current input
with the last input. If the difference is positive, the neuron emits a binary high signal, otherwise
it emits a low. The neuron is capable of remembering the last input summation for use in
comparison. Thus, this neuron uses a kind of volatile memory which could be implemented as a
feedback loop with a delay.

10 The rising-edge and falling-edge neurons are identified by a and symbol respectively.

 45

2.4.2 The Networks

 RABI's programming involved the creation of simple instinctive behaviors. Since there
is no learning aspect to the behavior mechanisms, they were coded with neuron networks using
the repertoire of neurons mentioned in the previous section. The various networks are described
throughout this thesis with diagrams showing their components. The visual form of neurons of
Figure 2.5 can cause a neuron network diagram to look cluttered and complex; therefore their
appearance has been altered for the network diagrams for the sake of keeping the diagrams
simple. The appearance of the various neurons are shown in Figure 2.6.

~~1/2
?

~
+

-

Standard Binary Threshold Acumulative

Random Pulse Sustain Differential

Sensor Monitor Motor

Figure 2.6 Appearance of the neurons in the neuron networks.

 Note the addition of sensor, monitor and motor neurons. These neurons represent the
input and output neurons similar to traditional neural networks respectively. The sensor (or
monitor) neurons receive input directly from a sensor (or monitor) which they are connected to,
and output a signal whose strength reflects that of the sensor (or monitor) reading. Similarly, a
motor neuron connects directly to an actuator. When the motor neuron receives an input
activation, this activation directly affects the actuator.

 Interconnecting the neurons are links as shown in Figure 2.7. Each link has a weight
associated with it. Inhibitory links result in a negative activation whereas excitatory links
result in positive activation, each with an associated weight. Most of the interconnections are
composed of these two kinds of links. The additional negating link provides a method of
negating a neuron's output. Any neuron that receives positive activation from a negating link
will negate its output. This is useful for changing directions of a motor neuron. Finally, the
resetting link is used to reset the accumulated energy of an accumulative neuron. When an

 46

accumulative neuron receives a positive activation from a link of this type, its internal stored
energy is reset to zero.

Inhibitory

Excitatory

Negating

Resetting

1.0

1.0

1.0

1.0

Figure 2.7 Various interconnecting link types
used in RABI's neuron networks.

 Since these neuron networks are simulated, the various timing and delay properties of the
neurons can be directly controlled. With direct hardware implementations, however, there are
certain neuron characteristics (such as feedback) that require additional care so that they have
similar performance to the software versions. The technicalities of the construction of these
neuron networks in electronic hardware has not been investigated. This is a future area of study
towards the development of a fully self contained version of RABI.

2.4.3 Neuron Networks and the Subsumption Architecture

 The subsumption architecture(SA) of [Brooks 86] provides a form of task-level
decomposition in which the various basic functions (or instincts) can be programmed separately
and then linked together. The SA in its original form uses state machines to code the behaviors.
Previous robots designed using the SA required microprocessors to program and control these
state machines which controlled the overall performance of the robot. RABI presents a
simplified approach towards coding these simple behaviors. By using neuron networks,
processors are not needed since the networks can be hardwired into electronic circuitry. By
interconnecting the neural circuits in a hierarchical subsumption-style fashion, the overall
structure of the system would have a similar performance as the SA, but with reduced size and
complexity.

 47

2.5 Summary

 Many techniques have been used to develop "intelligent" robotic systems. Among these,
neural networks, genetic algorithms and classifier systems are the most widely used for learning
purposes. Much of the research using these techniques has focused on learning simple behaviors
from scratch. While these methods of learning provide insight as to the mimicking of the
behaviors of biological systems, they often require much computational power. This high
computational requirement can lead to larger, more complex and expensive robotic systems.

 By hardwiring the simple behaviors into the robot, the computational requirements
diminish, allowing the robot to be reduced in size and complexity. This hardwired approach
could be implemented using neuron networks, which are similar to the notion of fixed weight
neural networks [Beer 90]. By using a repertoire of simple neuron-like elements, these neuron
networks can provide a variety of different functional behaviors. The arrangement of these
behaviors in a subsumption-style arrangement allows the overall system to perform in a similar
manner to the robots of [Brooks 86] but with the possibility of reduced size and complexity.

 48

∼∼

Chapter 3
Walking and Coordination

∼∼

 All autonomous robots require some form of movement. More often than not, this

movement is realized through wheeled motion. However, this form of movement is not a
natural form of locomotion. Most visible forms of life use some form of joint movements in
order to achieve motion. Insects for example have a simple yet efficient mechanical structure.
An example of the efficiency is the fact that ants can lift many times their own body weight. In
fact, insects perform rather well considering their very small size. An insect is defined to have 6
legs, however, there are insect-like organisms with 4, 6, 8 or more legs that perform similarly.

 Giving a robot the ability to walk has its advantages but adds a great deal of complexity
to the aspect of control. A walking machine has the ability to step over small obstacles of
various kinds as well as being able to perform efficiently in rough terrain environments. Legs
allow the robot to access environments that wheeled robots would normally fail to perform in
due to obstacles, ruts, uneven surfaces, etc. Conversely, robots with wheels have the advantage
that they can move quicker, provided that the terrain is suitable, and require a less complex
control strategy. The reason for this ease of control is due to the small number of degrees of
freedom (i.e. usually just two motors forward and backward) as well as the simplified terrain
necessary for wheeled locomotion. A robot that is required to adapt to its surroundings would
prove to be more useful if it were able to handle a variety of terrains. There is a tradeoff,
however, since legged vehicles usually require more complex control techniques and
complicated mechanics as well as heavier power requirements.

 Controlling walking robots is a difficult problem due to complications such as
maintaining stability, choosing an appropriate gait and coordinating the legs [Bernstein 67]. In
many cases, the robot must be precisely controlled and may be required to deliver payloads.
This causes additional problems related to force, compliance, energy, stress and power

 49

computations. RABI does not take on these extra computational burdens since it is only walking
around in a simplified environment.

3.1 Gaits

 When designing a legged robot, all the legs must be coordinated otherwise the legs will
just flop around and the robot will not achieve motion. Let the transfer phase of a leg be the
period in which the foot is not on the ground. Similarly, the support phase of a leg is to be the
period in which the foot is on the ground, providing support. A leg does not exhibit continuous
motion. The leg must be lifted at the end of each stroke and placed down again in preparation
for another stroke. This alternating phenomenon creates a phasing problem that is described by
the term gait. A gait represents the combined coordinated motion of the legs, defined as the time
and location of the placing of each foot. There are various types of gaits that may be used by a
legged robot, each with its own unique movement pattern.

3.1.1 Gait Selection

 Selecting an appropriate gait depends upon certain conditions such as the terrain
condition, stability requirements, ease of control, smoothness of body motion, speed, mobility
and power requirements. The selection depends greatly on the type of terrain that is to be
traversed by the robot. Consider dividing the terrain into foot-sized cells. Each cell can be
labeled as a valid or forbidden zone. A forbidden zone is a zone that does not provide support.
These may be cells with weak soil structure, steep gradients, interference between terrain and
legs, etc. Terrains can be categorized as perfect, fair or rough depending on whether they have
none, few or many forbidden cells respectively.

 At this point it will help to define two characteristics that a gait may possess. A gait is
symmetric if the motion of the legs of any right-left pair is exactly half a cycle out of phase. A
gait is periodic if similar states of the same leg during successive strokes occur at the same
interval for all legs. That interval is called the cycle time, T, which is the time that it takes to
complete one cycle of leg locomotion.

 Periodic gaits work well in perfect terrain since they are easily implemented. There are 3
main types of periodic gaits described as follows.

 50

1. Wave gaits provide optimum stability. In a wave gait, stepping motion occurs in a

wave-like fashion from the back legs to the front legs.

2. Equal phase gaits can easily distribute the placing and lifting events in a locomotion

cycle, minimizing fluctuations in power consumption.

3. Continuous follow the leader gaits require that the two front legs are specifically placed,

the middle and back legs follow in the same footsteps.

 In rough terrain, periodic gaits are not very useful since there are too many locations that
the feet cannot be set down in. Large obstacle crossing gaits are commonly used for situations
such as ditch- crossing, hill climbing, step mounting, or overcoming an isolated wall as depicted
in Figure 3.1. Follow the leader gaits are useful in these situations since only the front two legs
must be carefully placed and the others fall into place. Various obstacle crossing gaits are
discussed in detail by [Song and Waldron 89]. A robot utilizing solely periodic gaits would be
unable to perform with these physical obstacles, and as a result the regions would be labeled as
non-traversable.

(a) (b)

(c) (d)

d

u

v

θ

v

Figure 3.1 Geometric representations of standard
obstacles. (a) a gradient (b) a ditch (c) a vertical
step (d) an isolated wall.

 If the terrain becomes too complex the robot may be required to use a free gait 11. A free
gait requires that each leg is lifted and placed one at a time. Usually, a robot would examine the

11 [Pal and Jayarajan 90] give a discussion of an optimal free gait for 2-D generalized motion of a quadruped

walking machine.

 51

environmental terrain and scan for a place to put down each foot. This approach requires much
computational power and additional sensing techniques. This type of gait is chosen only as a
last resort when all other gaits are ruled out.

 Ideally, a robot should be able to make use of multiple gaits. Such a robot would use a
periodic gait for perfect terrain and then switch to an obstacle crossing gait when needed.
Creating a terrain-adaptable robot with gait switching abilities was not the intention of this thesis.
The intention was to create a simply constructed robot that would achieve walking in a simplified
2-D environment. A more in-depth study would be required in order to design a robot with
terrain adaptability.

3.1.2 Gait Analysis

 The study of leg design and coordination can be quite perplexing. One aspect of
complexity is the notion of gait analysis. Various types of gaits can be analyzed to determine
their ease of use, distribution of power requirements and measuring the stability of the robot as a
whole. This section will just slightly touch upon these issues. For a more in-depth study of
these concepts, the reader is referred to [Song and Waldron 89] and [Todd 85].

 Let the duty factor, βi, be the time fraction of a cycle time in which leg i is in the support

phase as follows:

β i = time of support phase of leg i
cycle time of leg i (3.1)

 A regular gait is a gait with the same duty factor for all legs.

β i = β j = β { i, j = 1, 2, .. . , n
n is the leg number

 Let the leg phase, φi, be the fraction of a cycle period by which the contact of leg i on the

ground lags behind the contact of leg 1 (i.e. front left). The legs are numbered from left to right
starting at the front.

 52

 In order to achieve constant motion, the robot must remain stable. Every gait has a
margin of stability associated with it that indicates how stable the robot will be throughout its
locomotion cycle. [McGhee and Frank 68] have shown that for a 2n-legged gait, the gait
stability is maximized by a regular and symmetric gait defined as:

2n = 4, φ3 = β, 3/4 ≤ β ≥ 1 (3.2)
2n = 6, φ3 = β, φ5 = 2β − 1, 1/2 ≤ β ≥ 1 (3.3)

 Since stability 12 is very important, the robot designed for this thesis utilizes the regular
symmetric gait defined by equation 3.3. Equations 3.2 and 3.3 represent wave gaits. By
varying the duty factor β, various stepping patterns can be realized. These patterns can be
graphically displayed using what is known as a gait diagram. A set of gait diagrams for hexapod
wave gaits is shown in Figure 3.2. The legs are numbered from front to back, with L or R
denoting the left and right sides of the body. The darkened lines indicate the period of the
support phase. The beginning and end of a darkened line correspond respectively to the placing
and lifting of a foot.

1L
2L
3L
1R
2R
3R

Time0 1

Leg #
β = 1/2 = 3/4β

1L
2L
3L
1R
2R
3R

Time0 1

Leg #
= 2/3β

1L
2L
3L
1R
2R
3R

Time0 1

Leg #

= 5/6β
1L
2L
3L
1R
2R
3R

Time0 1

Leg #
= 11/12β

1L
2L
3L
1R
2R
3R

Time0 1

Leg #

Figure 3.2 Gait diagrams of hexapod wave gaits showing the effect of varying the duty factor, β.

 To help understand the role of the leg phase, consider the artificial insect of Figure 3.3.
The leg phase for each leg is shown with respect to the duty factor. From the diagram, it is easy
to see that by setting β to 1/2, legs 1L, 2R and 3L move in phase as well as 1R, 2L and 3R. This
dual phase represents what is commonly termed a tripod gait. The tripod gait was chosen for

12 For other methods of maintaining stability, [Messuri and Klein 85] discusses the notion of body regulation.

 53

RABI since it allows the robot to maintain stability while issuing the minimum number of legs
needed to be down at any one time. This gait has been observed in insects 13 when they require
fast motion, perhaps to avoid being eaten.

φ 2 = 1/2 φ 4 = β + 1/2 φ 6 = 2β + 1/2

1L 2L 3L

1R 2R 3R

φ 1 = 0 φ 3 = β φ 5 = 2β − 1

Figure 3.3 Leg phases representing the general wave
gait for a hexapod robot.

 In the case of a quadruped, their must be at least 3 legs down at a time in order to
maintain static stability. This is indicated in equation 3.2 which states that the duty factor must
be at least 3/4. A gait diagram representing a quadruped wave gait with the duty factor of 3/4 is
given in Figure 3.4.

= 3/4β
1L
2L
1R
2R

Time0 1

Leg #

Figure 3.4 Gait diagram of a quadruped
wave gait with duty factor 3/4.

13 [Wilson 66] investigates the various gaits observed in insect locomotion.

 54

3.1.3 Quadruped Vs. Hexapod

 The 6-legged gait of Figure 3.2 where β=1/2 and the 4-legged gait of Figure 3.4 were
both investigated in different versions of RABI. In practice, it has been observed that the 6-
legged gait is more stable than the 4-legged gait. This observation could not have been made
without the development of physical mechanical robot. The problem is related to the relative
positioning of the supporting legs over time.

Unstable

Stable Stable

Stable
(a) (b)

(c) (d)

C

Figure 3.5 Instability problem caused by leg placements.
The quadruped (a) becomes unstable if the shaded polygon
becomes too narrow, and remains stable when the polygon
widens (b). The hexapod (c) and (d) remains stable
throughout the cycle.

 In order to explain the phenomenon responsible for the instability of the 4-legged robot,
we can loosely define the stability in terms of the center of gravity. Consider the 2-D projection
of the center of gravity, C, onto a plane containing a foot-fall polygon formed from the foot
positions of the robot's supporting legs. If this projection falls within the polygonal boundaries,
then the robot is considered to be stable (i.e. standing). There are many factors left out such as
forces, slippage, inaccuracies in the construction of the legs, etc. that also play a role in stability
but do not need to be analyzed to point out the stability problem encountered. Indeed what is
happening is that in the 4-legged gait, the center of gravity sometimes falls outside the border of
the foot-fall polygon as shown in Figure 3.5. This stability problem can be subdued if the
swinging arc of the legs is reduced, or if legs on one side of the body remain far apart. This

 55

would keep the center of gravity within the foot-fall polygon. Notice that the center of gravity
shifts slightly with the leg movements.

 The hardware version of RABI went through 3 major mechanical design changes,
including both a quadruped and hexapod configuration. These leg designs are discussed in more
detail in chapter 8.

3.2 Gait Implementation

 Once a gait is selected, it must be implemented in either hardware or software. Provided
that the gait is simple enough, it may be implemented directly into hardware. The tripod gait is
easily implemented since it is periodic, regular and symmetric. There have been a variety of
methods for implementing gaits on legged machines.

3.2.1 Previous Approaches

 One of the pioneering approaches to insect-like robot design was that of [Brooks 89]. He
used a form of interconnected finite state machines (FSM's or modules) each with internal timers
to achieve walking. These FSM's are connected in a network such that signals are passed among
them. The network contains modules for walking, balancing, force control, simple obstacle
detection and steering. Each leg has a set of modules controlling the basic movements. A
single central module emits triggering pulses that control each leg module. By varying this
controlling module, various wave gaits can be realized. Brooks gives no indication of how
complex each of these FSM's are, but does mention that 57 are used in an incremental fashion.
This “add -on” property allows the steering, and obstacle detection modules to be removed
without preventing the robot from functioning in a simple walking manner. His subsumption
architecture allows additional behaviors to be added with ease, as well as providing a robust
system where components can break down without halting the entire system.

 [Ayers and Crisman 92] have implemented what is called a CCCPG (Command
Coordinating Central Pattern Generator) for generating an omni-directional gait similar to that
observed in the American lobster. The generator has a clock which specifies the period of
stepping, and neural circuitry specifying the detailed pattern coordination of each joint. The legs
are controlled individually by these CCCPG's and additional neural connections coordinate them.

 56

By varying the clock pulse rate, various stepping patterns are attained. A similar approach was
taken by [Beer 90]. Beer's control strategy consists of a network of interconnected neurons.
Each leg has its own local network as shown in Figure 3.6.

SWING

STANCE

LC

FOOT

P BACK

FRONT

Figure 3.6 Local leg network from [Beer 90]. The
pacemaker neuron P, emits a burst of energy at constant
intervals which interchanges the leg between stance and
swing phases.

 In this network, there are three basic types of neurons. The BACK and FRONT neurons
are sensor neurons. Sensor neurons are directly connected to the robot's sensors. They emit
signals corresponding to the intensity of the sensor readings. In this case, the BACK and
FRONT neurons send out a binary signal indicating whether the leg is all the way back or
forward respectively. The STANCE, SWING and FOOT neurons are called motor neurons.
These neurons are connected directly to the robot's actuators. The SWING and STANCE
neurons move the leg forward and backward respectively, while the FOOT neuron lifts and
places the leg down. Perhaps the most interesting neuron is the P neuron which is called a
pacemaker and emits a continuous pulse at constant intervals. By varying the rate of emission,
the leg moves at different speeds. When the leg reaches all the way back, the P neuron is
triggered, causing the leg to swing forward and the foot to be lifted (i.e. the transfer phase).
Once the leg travels all the way forward, the FRONT neuron disables the P neuron, causing the
foot to be placed down and the leg to stance backwards (i.e. the support phase). The P neuron
also emits pulses on its own which essentially triggers the transfer phase. The LC neuron allows
enabling and disabling of the walking mechanism as well as providing a pulse rate to P.

 57

 Although the network produces the desired motions of leg movements, it does not
provide coordination among the legs. To provide the coordination required for walking,
additional connections are made between the pacemaker neurons such that each pair of adjacent
pacemakers inhibit each other as shown in Figure 3.7.

P P

P

P P

P

1L

2L

3L

1R

2R

3R

Figure 3.7 Additional connections in which adjacent
pacemaker neurons inhibit each other allowing
coordinated walking.

 [Chiel et al. 92] have shown that this method of control is quite robust. In fact, if all
sensor input is disabled, the robot is still able to walk. This is possible since the internal pulsing
of the pacemaker neurons provide the necessary excitatory activity for the motor neurons to
operate. The robot remained functional even after a couple of links connecting the pacemaker
neurons were disabled.

 This approach to walking is simple and straight forward and has been shown to be robust.
RABI takes a similar approach to Beer's model. If only a single gait is desired, then the idea of a
pacemaker is not needed. In other words, the legs can be fixed to exhibit a single gait, only
changing phases when the leg limits are reached.

 58

3.2.2 RABI's Walking

 RABI’s legs each have two motors. One motor moves the leg in the horizontal direction,
the other in the vertical direction (See Chapter 8). In reality, motors do not move at the same
speed nor with the same efficiency. Thus, when coordinating the legs, the lagging of the motors
must be taken into account. In addition, each foot takes time to be placed. Thus, the legs must
be restrained from swinging and stancing until the foot is lifted or placed down appropriately.
The easiest way to do this is to add additional circuitry that will delay legs from swinging and
stancing until the foot is in place. Figure 3.8 shows the revised network similar to that of
Figure 3.6.

SWING

STANCE

BACK

FRONT

POS.
LEG

LEG
UP

LEG
DOWN

FOOT
UP

MOTOR
F/B

MOTOR
U/D

0.5

0.5
0.5

0.5

Figure 3.8 Revised leg network accounting for stepping delay.

 In the revised network, I have added a FOOT UP neuron that indicates whether or not the
foot is touching the ground. A micro switch placed at the bottom of the foot serves as a simple
sensor providing a binary input. Two motor neurons control the horizontal and vertical
placement of the foot. In this network, the POS. LEG neuron acts as the P neuron in the
previous model with the exception that it does not produce its own bursts internally. Here, when
the leg reaches the back-most position, the POS. LEG neuron is excited and remains excited as
long as the foot remains up. The SWING neuron consequently is excited but being a threshold
neuron, it does not allow motor movement unless the FOOT UP neuron is also excited. This
provides a method of delaying the swing phase until the foot is up off the ground. The POS.
LEG neuron also excites the LEG UP neuron. This allows the leg to be lifted immediately.

 59

Once the leg swings to the frontal limit, the FRONT neuron causes the leg to be placed down.
Once the leg is placed down, the POS. LEG neuron becomes inactive (no more active inputs) and
the leg stances backwards.

 Notice in Figure 3.8 that there are no inputs to the STANCE neuron. One more
additional neuron is needed to accomplish movement. A single WALK neuron provides
excitatory input to each STANCE neuron. This allows disabling of the walking mechanism
altogether. Figure 3.9 shows these connections.

STANCE

STANCE

STANCE

STANCE

STANCE

STANCE

WALK

0.5

0.5 0.5

0.5

0.50.5

Figure 3.9 Connecting the WALK neuron which
provides the excitatory signals needed for walking.

 Walking is enabled by exciting the WALK neuron which provides excitation to the
STANCE neuron of each leg. When the WALK neuron is not excited, the STANCE neurons are
in a sense "disabled". Note again that the STANCE neurons are threshold neurons that receive
only a 0.5 excitatory signal. The additional 0.5 needed to trigger it is explained in the next
section.

 With the networks shown so far, the basic leg movements for walking are achieved but
the lack of coordination prevents walking. A similar approach to coordination to that of [Beer
90] was used. In this approach, the POS. LEG neurons inhibit each other. Additional
inhibitory links were added to specify the tripod gait. These were needed in order to ensure
synchronized alternating phases so that the robot did not break into a generalized wave gait.
Figure 3.10(a) shows the connections required to coordinate a hexapod robot, while 3.10(b)
shows the connections for a quadruped robot. In the case of the quadruped, the connections are
made such that no leg can be lifted unless all others are on the ground. This is needed in order
to ensure stability as mentioned previously.

 60

POS.
LEG

POS.
LEG

POS.
LEG

POS.
LEG

POS.
LEG

POS.
LEG

POS.
LEG

POS.
LEG

POS.
LEG

POS.
LEG

(a) (b)

1L

2L

3L

1R

2R

3R

1L

2L 2R

1R

Figure 3.10 Interconnections of leg networks providing coordination between the legs.
(a) hexapod tripod gait connections (b) quadruped wave gait connections.

3.3 Turning

 Once the robot is able to walk, the next step is to get it to turn. There are a few ways to
implement turning capability. One mechanical approach is to design the legs in such a way that
the feet pivot towards the desired direction of turning. This would allow turning since each step
would slightly alter the trajectory causing the robot to veer off from a straight line. This
approach does not allow sharp turns since each step allows only small directional changes.
Another approach to steering is to design each leg such that they are capable of thrusting the
body in both the forward/backward and right/left directions. The CCCPG model of [Ayers and
Crisman 92] uses this method which allows the robot to move from side to side if needed. This
approach, although biologically feasible, requires a more sophisticated leg design which could
increase the weight and size of the robot.

 A simpler method of steering was taken by [Brooks 89] and [Beer 90] which involved
instructing the legs on one side of the body to not swing as far back as the legs on the other side.
With a legged insect, the smaller the swinging angle, the smaller the forward translation of the

 61

robot. Thus by keeping the forward translation on one side of the body small compared to the
other side, the robot will turn away from a straight line path 14.

3.3.1 Turning With Simple Sensors

 If the robot is only equipped with sensors that detect forward and backward leg limits (as
opposed to position measurement sensors), then a simpler method is needed. RABI achieves
turning by first stopping, then pivoting the body. To pivot the body, the legs on one side of the
body are instructed to reverse direction. Thus, a stance phase in reverse would cause a backward
translation. This allows the robot to make sharp turns since all legs are cooperating in the
turning process. Figure 3.11 shows the result of such a method.

1 2 3 4

5 6 7 8

Figure 3.11 Snapshots showing the displacement of a hexapod robot using a pivoting tripod gait to
turn right.

 The diagram shows the different snapshots of a hexapod using the pivoting method for
turning right. Note that there is no angular displacement between steps 4 and 5 since this is
when the tripod gait crossover occurs.

 Although this method is simple and is able to accomplish turning, there is a disadvantage
that the robot must stop in order to turn. This is not as biologically feasible as previous

14 This is analogous to a car running into a puddle. The wheels that hit the water will slow their revolution while

the wheels on the other side remain at full speed. At quick speeds the car will suddenly turn drastically towards
the puddle.

 62

approaches to walking since observed insects do need to stop in order to turn. The method does
however allow the robot to turn in cornered areas.

3.3.2 RABI's Turning

 In order to achieve turning, the legs on one side of the body must be reversed. To do
this, a REV. neuron is added to each leg network by connecting it to the SWING and STANCE
neurons and the BACK and FRONT sensor neurons as shown in Figure 3.12.

SWING
LIMIT

SWING

STANCE

POS.
LEG

LEG
UP

LEG
DOWN

FOOT
UP

MOTOR
F/B

MOTOR
U/D

0.5

0.5

0.5

0.5

REV.

DRAG FOOT
DOWN

BACK

FRONT

STANCE
LIMIT0.5

Figure 3.12 Expanded leg network showing additional neurons and connections needed for
turning. The DRAG neuron is required for additional coordination.

 The REV. neuron provides a special connection into the SWING, STANCE, BACK and
FRONT neurons. When these neurons receive a positive activation from this special connection,
they negate their output. Thus, when in reverse, the STANCE and SWING neurons will cause
the motor to move in a reversed direction. When not moving in reverse, the leg will remain in a
stance phase until the leg reaches the back most limit. Similarly, the swing phase will continue
until the front most limit is reached. When in reverse however, the role of these two limit
sensors is reversed. For this reason the BACK and FRONT limit sensor neurons needed to be
swapped. The STANCE LIMIT and SWING LIMIT neurons allow this swapping to occur.

 63

When reversed, the excitatory connections from a neuron become inhibitory and vice versa for
the inhibitory connections. This allows the STANCE LIMIT and SWING LIMIT neurons to
receive a signal from the appropriate sensor.

 Since each leg is given a reverse neuron, some sort of mechanism is needed to decide
which legs are to be in reverse at any given time. This mechanism is shown in Figure 3.13.

REV.

REV.

REV. REV.

REV.

REV.

TURN
LEFT

TURN
RIGHT

1L

2L

3L

1R

2R

3R

Figure 3.13 A mechanism for controlling the reverse neurons.

 Using this mechanism is simple. Turning left or right requires only that the TURN
LEFT or TURN RIGHT neurons be excited. Once excited, these two neurons turn on the
appropriate reverse neurons, thus executing a turn. Additional neural circuitry can be connected
to the TURN LEFT and TURN RIGHT neurons to provide higher level control over this low
level mechanism.

 The DRAG neuron of Figure 3.12 was added to add further coordination of the legs.
This neuron becomes excited whenever a leg is considered to be dragging on the ground. This
will happen whenever the leg has its foot down unless it is at its swing limit (i.e. waiting for the
other legs to catch up so that a stance phase can be performed).

 The additional circuitry to allow the extra coordination is shown in Figure 3.14. Here,
the tripod gait is built-in. Essentially, the network prevents opposite phase legs from stancing if
any of the other phase legs are still in the stance phase. In other words, it makes sure that all the
legs are synchronized to start their phase.

 64

STANCESTANCESTANCESTANCESTANCESTANCE

DRAGDRAGDRAGDRAGDRAGDRAG

1L 2R 3L 1R 2L 3R

Figure 3.14 Connecting the DRAG neurons such that no leg begins a
stance phase until all others of opposite phase are ready for a swing phase.

 The addition of the DRAG neurons was necessary for the hardware version of RABI
only. The legs of the hardware version moved at different speeds and consequently, there was a
need for some form of additional synchronization. The simulated version is obviously precisely
timed and thus such additional synchronized connections were not needed. Again, the
importance of building a physical robot surfaces.

3.4 Summary

 Various approaches to coordinated walking and turning have been discussed. The
previously research methods provide multiple gait capability at different speeds. They also
provide turning while walking. RABI uses a simple approach that uses simpler sensors and
coordinating techniques which may be hardwired into electronics due to the simple design.
Although RABI uses only one gait, the tripod gait, it is capable of simple walking and pivoting
without adding additional complications to the hardware. The use of neuron networks keeps the
implementation simple and proves to be adequate for walking purposes. Furthermore, the
network design allows easy interface with additional circuitry from higher level functioning such
as instinctive behaviors.

 65

∼∼

Chapter 4
Instinctive Behaviors

∼∼

 All animals are endowed with some sort of instinctive behaviors which provide basic

functioning and reflexes required for survival. An instinct is a type of behavior that does not
depend on experience. These behaviors are a result of evolutionary progress. The genes from
the ancestors that survive are passed onto future generations allowing the instinctive behaviors to
be fine tuned from generation to generation. The behaviors are fine tuned for the environment in
which the animal lives.

 Since these instincts provide basic functioning, it is reasonable to program them into
robots as a means of controlling the robot's low level decisions and actions. The first step
required for this type of programming is to identify the basic behaviors (instincts) needed to keep
the robot functioning. The robot must at least have instincts for avoiding injuries, exploration
and obtaining food if it is to survive in an environment. These behaviors provide a foundation
on which to build higher level behaviors for a more versatile and competent robot.

 Usually, robots are designed to operate in specific environments. If this is the case, then
it is possible to program specific instincts suited for this environment. Once programmed, all
that remains is to organize them in such a way to be able to handle situations in which two or
more conflicting behaviors arise. The resulting robot (agent) should be able to survive to some
extent in the environment in which it functions.

4.1 Avoiding Injuries

 Locomotion gives a robot the ability to translate its body from point to point. This is
necessary for autonomous systems, moreover, it is necessary for survival. It can however,

 66

produce a variety of hazardous situations which would not have occurred if the robot were
stationary. Terrain features such as uneven surfaces, obtrusions, ruts, holes, liquids, non-
supporting surfaces, etc. all provide a level of danger for locomotives by threatening to induce
bodily harm through collisions, tipping, rolling, submersion and plummeting. Moreover, quick
moving locomotives are further threatened by high impact collisions. For simple, flat, indoor
environments, the most common injuries would arise from collisions with obstacles.

 Most animals and insects have a mechanism that prevents them from hitting obstacles in
order to avoid self injuries. Likewise, an autonomous mobile robot must have some means of
detecting an obstacle in its path and turning appropriately to avoid contact. This brings up two
issues, that of obstacle detection and collision avoidance.

4.1.1 Obstacle Detection

 In order to detect an obstacle, some kind of sensor information must be processed.
Animals generally use visual information when available since it provides a wealth of data.
Animals and insects that rely on visual sensory information often have difficulty in preventing a
collision with transparent objects such as glass. Flies, moths and mosquitoes, for example, are
often seen flying head-on into obstacles such as lights and windows. Any autonomous robot
relying on solely visual 15 information would also collide with transparent objects. The main
drawback of visual sensors is their expense and the processing power required to extract useful
information from noisy images.

 A more widely used approach to obstacle detection is that of ultrasonics. Bats use this
type of strategy to measure distances. An ultrasonic burst is emitted in a direction towards the
obstacle. The time that it takes for the burst to return is measured, giving an indication of the
distance to the object. These electronic ultrasonic devices offer good range data but offer poor
directionality since they detect obstacles inside a cone of approximately 30� . Multiple objects
cannot be detected inside this cone. Usually, multiple sensors are arranged in a ring fashion
providing a 360� panoramic view, resulting in a low resolution obstacle detection system.
Another problem with these sensors is that they often receive noisy data due to spurious
reflections from smooth surfaces, previous bursts and crosstalk from other sensors. To help

15 Visual information extracted from a camera or similar sensor.

 67

alleviate the problem, occupancy grids or histograms 16 are used to determine the likelihood that
an object is present.

 Optical range finders are another kind of sensor used on robots. Essentially, they emit a
beam of infrared light which is reflected back if an obstacle is present. These sensors require
fine tuning to their environment and are susceptible to ambient infrared light such as that which
comes through a window from outside. As a result, the incoming data is noisy and must be
filtered. Typical range finder data for a 360� view requires about a second to obtain. [Cox 91]
discusses the use of a range finder for navigation.

 While all these sensors are being used on large "garbage can" sized robots, they are not
able to be incorporated into smaller robots. Furthermore, smaller robot life forms are more
likely to require very quick reflexes in order to survive. The 1 second delay for collision
avoidance may be fatal for the robot.

 For these reasons, designers of small robots are turning towards simpler sensors such as
proximity, antennae and touch sensors [Fylnn 87], [Brooks 89], [Beer 90], [Beer and Gallagher
92], [Koza and Rice 92] and [Mahadevan and Connell 92]. These simple sensors are less prone
to noisy data and can be made very small for use in small microbots or nanobots. Antennae
sensors are a form of mechanically activated proximity sensors found on all insects and in other
forms on animals 17. These sensors are better than "bump" sensors in that they do not require
the robot's body to contact the obstacle. They provide a flexible kind of physical interface with
the robot and the obstacle.

 RABI incorporates 6 antennae sensors as shown in Figure 4.1. The four frontal antennae
are used to detect collisions with obstacles during forward motion. The side antennae are used
to detect contact with an edge during edge following behavior. The side antennae are not used
for collision avoidance since the detection of obstacles from either of these antennae does not
indicate an obstacle obstructing the forward motion of the robot.

16 [Borenstein and Koren 91] and [Lang et al. 89] give descriptions on ultrasonic ranging, occupancy grid and

histogram techniques.
17 Some animals have whiskers and hairs which have essentially the same performance as antennae with the

exception that some antennae are used as actuators which can "feel" obstacles. The antennae can obtain active
data as opposed to passive data as seen with hairs and whiskers.

 68

Ant. 3 Ant. 2 Ant. 1 Ant. 0

Ant. RAnt. L

Figure 4.1 The 6 antennae incorporated into RABI.

 The antennae on the hardware version of RABI are made of piano wire which provides a
flexible binary "switch" whenever an object brushes up against it. As a result, the antennae are
able to detect obstacles before the body becomes too close. The software version simulates the
antennae as points representing their tips. These points are at a fixed distance away from the
robot and therefore they do not have the same bending/flexible property of the hardware version.
They do however, provide a quick means of detecting collisions with obstacles in the simulation.
Four basic obstacle features can be detected as shown in Figure 4.2.

 Since there are only 4 antennae at the front of the robot, there is a limit to the resolution
that can be detected. Consequently, such an arrangement is not able to detect small obstacles
which may pass between the antennae. In essence, altogether they can provide 4-bits of data
depicting features of the obstacle encountered.

(a) (b) (c) (d)

Figure 4.2 The four basic types of detectable obstacle features. (a) large obstacle surface detected, (b) obstacle
corner detected, (c) corridor detected and (d) small obstacle detected.

 69

4.1.2 Collision Avoidance

 Once an obstacle is detected in the path of the robot's motion, some sort of collision

avoidance 18 motion must be executed in order to prevent the robot's body from coming in
physical contact with the obstacle. The ability to detect some low resolution obstacle features
allows the robot to respond in a more efficient manner. The detection of these features calls for
two basic collision avoidance responses. In Figure 4.2(a), 4.2(c), and 4.2(d) the detection of the
obstacle is spread symmetrically among left and right antennae. In such a situation, the robot
should randomly chose to turn left or right to avoid hitting the obstacle 19. In Figure 4.2(b) the
robot detects an obstacle on one side of its body only. The appropriate response here would be
to turn in the direction in which the obstacle is not detected. That is, for the situation in 4.2(b)
the robot would turn right to avoid the obstacle detected on its left. If the robot were to turn left,
then it would be walking into the obstacle, defying the purpose of collision avoidance altogether.

 Figure 4.3 shows a table of the 16 possible frontal antennae readings and the appropriate
response needed to avoid contact. A blackened box indicates antenna contact with an obstacle.
From the figure, it can easily be seen that most of the collision avoidance task results in a
specific left or right turn, only choosing a random turn when there is no distinction between left
and right antennae readings. Furthermore, it can be seen that the direction chosen is indicated
by a majority of antennae contact readings (i.e. blackened boxes from Figure 4.3) on the opposite
side of the body.

18 The term collision avoidance used here indicates a simple directional change in order to avoid contact with an

obstacle lying directly ahead. This term as well as the term of obstacle avoidance has been previously used to
describe the notion of avoiding multiple obstacles while incorporating a path planning strategy. The use of the
term here does not touch upon any aspect of path planning.

19 If some sort of navigational behavior is present then this behavior may render a desired direction of travel
whenever the robot is faced with making a random turn.

 70

LEFT RIGHT RANDOM NONE

Figure 4.3 The 16 possible frontal antennae readings
and the appropriate response needed to avoid contact.
Each set of 4 boxes represents the antennae readings
where the rightmost box is from the rightmost antenna.

 The task of collision avoidance is more than providing an appropriate directional
response for each antennae state encountered. With only a direct sensor to action response, the
robot may enter into an oscillating pattern when encountering a corner as shown in Figure 4.4.
When at a corner, the antennae on one side will detect an obstruction. To avoid collision, the
robot will turn away from the detected obstruction, causing the antennae on the opposite side to
detect the other wall of the corner. Consequently, the robot will again turn back towards the
original obstruction and the oscillating pattern will begin.

right left

obstacle detection

Figure 4.4 Diagram showing the oscillating turning
problem encountered during collision avoidance at a
corner.

 RABI is endowed with a reflexive collision avoidance behavior which provides a control
mechanism for turning away from the obstacle in the appropriate direction. This mechanism
provides the appropriate responses as shown in Figure 4.3 while avoiding the oscillating turning
pattern shown in Figure 4.4. Figure 4.5 shows the neural circuitry to accomplish the overall
collision avoidance behavior. The circuit reads in the status of the four frontal antennae and
decides the appropriate response in order to avoid encountered obstacles. Since the circuit

 71

contains two sustain neurons, it provides a temporal response as opposed to a direct sensor to
action response.

ANT. 0ANT. 3 ANT. 2 ANT. 1

DETECT
RIGHT

DETECT
LEFT

0.8 0.70.
6 0.5

0.4 0.3
0.2 0.1

~
~

~
~

PULSE

DECIDE
LEFT

DECIDE
RIGHT

~~

RIGHT
AVOID

LEFT
AVOID

Figure 4.5 The neural circuitry depicting the
collision avoidance behavior.

 The sensor neurons read in the status of the four frontal antennae, ANT. 0 being the
rightmost antenna. These sensor neurons connect to standard neurons DETECT RIGHT and
DETECT LEFT which act as summing neurons giving an indication of the amount of detection
on each side of the body. Since they are standard neurons, they have analog (real number)
output which is fed into the DECIDE RIGHT and DECIDE LEFT neurons. These two neurons
act as "majority" operators in that they become enabled whenever the majority of the sensor
readings are obtained from their side of the body. These neurons connect to the AVOID RIGHT
and AVOID LEFT neurons, turning on the appropriate directional response.

 The AVOID RIGHT and AVOID LEFT neurons provide the resultant action desired by
the collision avoidance behavior. Moreover, the neurons mutually inhibit each other such that

 72

only one direction can be active at a time. This allows the cornering problem to be alleviated by
essentially choosing a direction to turn in and "sticking with" the decision until free from
obstruction. The remaining PULSE neuron provides a method of turning off the two sustain
neurons whenever the sensors stop reading collisions.

 In the case when the sensor readings do not bias on either side, RABI chooses a right
turn. In reality, an insect would more than likely chose a truly random turn with other external
and internal factors playing a role in the decision. However, in the absence of additional internal
and external information, a right turn is equally acceptable to a left turn. Therefore, to simplify
the circuitry by avoiding the use of additional neurons for random turning, a right bias was
chosen. This bias can be seen by observing the weights of the links from the sensor neurons.
The weights are stronger for those detecting obstacles on the left, which results in a right turn
dominance for collision avoidance. With these weights there is no sensor situation which will
result in equal detection on the left and right sides, except when there is no obstacle detection at
all. Thus, a left or right decision will be made even for symmetric sensor readings. Moreover,
the weights have been chosen such that the antennae provide biased readings for detection on the
left and right side. For example, the leftmost antennae ANT.3 provides a strong excitatory
signal to the neuron which detects left obstacles and a weak excitatory signal to the neuron which
detects right obstacles.

 The network allows RABI to walk around in the environment without hurting itself by
avoiding collisions with walls. The AVOID LEFT and AVOID RIGHT neurons are connected
directly to the TURN LEFT and TURN RIGHT neurons of Figure 3.13 that control the turning
mechanism of RABI's walking behavior. This connection will allow the robot to walk forward
turning away only when an obstacle is detected in its path. This collision avoidance technique
has been designed to avoid collisions with stationary obstacles. The information would need to
be processed dynamically in order for the robot to safely avoid moving obstacles. The antennae
neurons themselves do not provide the dynamic information necessary for the detection of
moving obstacles.

 73

4.2 Wandering : A Basis for Exploratory Behavior

 Perhaps the most basic form of exploratory behavior is that of wandering. By
wandering, a robot is able to obtain information from environmental locations that may never
have been reached with calculated paths. If, for example, a robot has been programmed to weave
between obstacles while performing a point to point path plan, it may never detect
environmental stimuli lying along edges of the obstacles. These environmental stimuli may be
critical to the survival of the robot (i.e. power source). By allowing the robot to wander around
in the environment, it is more likely to find such important stimuli 20.

4.2.1 Implementing Artificial Wandering Behavior

 For a non-changing environment, truly random wandering will eventually cover the
entire accessible portion of the environment. Although random wandering is a means of
searching for stimuli, most animals are more efficient than this, in that they rely on other
information. Some insects such as ants, emit a chemical residue that allows them to detect
where they have been before. This additional information could prevent the ant from wandering
into previously explored regions. [Steels 90] describes a simulation in which a robot is to map
out an environment through wandering behavior. The robot is able to leave behind a trail
indicating previous path choices. The wandering behavior is random only when there is a lack
of information. That is, the robot is able to sense where it has been before and therefore chooses
to wander into locations that have not been visited.

 Computers and electronics are capable of producing reasonably random effects which can
be used as a control mechanism for wandering behavior. All that is required for random
wandering is a mechanism that causes occasional directional changes in the robot's forward
motion. Although these random directional changes produce a wandering illusion, this effect is
not necessarily observed in real insects. Cockroaches, for example, utilize a combination of
circling and relatively straight movements in its wandering behavior [Bell and Adiyodi 81].
Nevertheless, a form of random wandering provides a reasonable coverage of the environment.

20 An assumption is made here that the robot has no prior knowledge as to where the critical stimuli are located,

and therefore may only encounter the stimuli "by chance".

 74

 [Beer 90] incorporates a wandering network in his simulated insect in which two neurons
randomly emit bursts of energy that directly control the turning mechanism of the insect. This
approach requires only two additional neurons which directly connect to the turning mechanisms.
RABI uses a similar approach by using a simple neural circuit as shown in Figure 4.6, containing
three random neurons that produce a form of random wandering behavior.

WANDER
RIGHT

PULSE

WANDER
LEFT

WALK

TURN
DECIDE

1/30

TURN
1/2

TURN
TIME
1/20

?

? ?

Figure 4.6 The neural circuitry depicting the wandering
behavior The WALK neuron enables the TURN DECIDE
and TURN TIME neurons that, through random output,
selects when and for how long to turn.

 When the circuit is enabled by exciting the WALK neuron, it randomly enables and
disables the WANDER LEFT and WANDER RIGHT neurons which are used as directional
change mechanisms providing wandering behavior. The WALK neuron acts as an "on" switch
which enables the TURN DECIDE and TURN TIME neurons that select when and for how long
to turn respectively. The TURN DECIDE neuron, when excited, emits a binary high output with
a probability of 1/30, otherwise emitting a low signal. The output of this neuron is used to
enable the TURN neuron which essentially chooses the direction to wander in. It does this by
enabling the appropriate sustain neuron. The TURN TIME neuron is a random neuron that
emits a binary high output with a probability of 1/20. This output is used to disable the turning
process by inhibiting both sustain neurons WANDER LEFT and WANDER RIGHT. Finally,
the PULSE neuron emits a burst whenever the explore neuron is turned off which inhibits the
sustain neurons so that the wandering influence to the overall system is eliminated.

 75

 The wandering behavior becomes functional by connecting the WANDER LEFT and
WANDER RIGHT neurons directly to the TURN LEFT and TURN RIGHT turning control
neurons of Figure 3.13. The result is a form of wandering behavior that allows the robot to walk
forward while occasionally turning off into random directions.

4.2.2 A Wandering Bias Towards Vacant Areas

 Some animals rely on visual information such as landmarks and "open" areas that provide
a global sense of location which may directly affect the actual wandering behavior. If an animal
has previously found certain stimuli (i.e. food) in an open area, then it may chose to steer clear
from all obstacles. In this case, the animal may choose to explore "open" (vacant) locations as
opposed to "crowded" (obstacle ridden) locations with its wandering behavior. [Anderson and
Donath 90] describe a method of using various attraction behaviors that allows a robot to wander
in and out between obstacles such that the robot tends to explore the vacant areas of the
environment. The implementation of their robot utilizes ultrasonic and camera sensors which are
not feasible for nanobot purposes. Nevertheless, the idea of repelling from obstacles in order to
remain in vacant areas can prove to be quite fruitful if the environment contains most of its
stimuli in these vacant areas. [Beer 90] utilizes a recoiling feature that allows his simulated
insect to "bounce away from" encountered obstacles. In his simulation, the insect first backs
away from the obstacle and then turns off into a new direction. The result is not unlike the
familiar 3-point turning technique of vehicle driving. His approach is based on observations of
cockroach recoil. This technique requires that the robot be able to move backwards as well as
being able to advance and turn simultaneously providing a nonlinear trajectory. This provides
further complications in the control of the insect's walking behavior and thus a simpler approach
was used by RABI.

 A robot equipped with simple proximity or touch sensors does not have the ability to
detect obstacles until it is very close to them. Moreover, simple sensors do not provide distance
information that may be needed to steer away from upcoming obstacles. RABI can make use of
all six of its antennae sensors to detect obstacles and turn away from them. The basic collision
avoidance behavior incorporated by RABI allows the robot to turn away from obstacles that it
encounters in its path until it no longer detects the obstacle. This collision avoidance behavior
provides part of a vacancy behavior in that it turns the robot away such that the obstacle does not
obstruct the path. Usually, once the robot has turned using the collision avoidance behavior, a

 76

side antennae remains in contact with the obstacle. All that remains to do is to further turn away
until the side antennae sensors detect no collisions either, and then head off away from the
obstacle. Figure 4.7 shows the 3 basic steps that specify vacancy behavior.

1. 2. 3.Obstacle
Detection

Collision
Avoidance

Vacancy
Behavior

Figure 4.7 The 3 basic steps of vacancy behavior. 1) Obstacle is detected. 2)
Collision avoidance turns to prevent collision. 3) Vacancy behavior makes
additional turns to repel the robot from the obstacle.

 This vacancy behavior incorporates the collision avoidance instinct. When the robot
detects an obstacle in its path, the collision avoidance instinct causes the robot to turn away.
Once the robot has turned such that its front antennae no longer touch, the collision avoidance
behavior ceases. If the vacancy behavior is enabled, then this behavior would make additional
turns such that the robot's side antennae also do not touch the obstacle. Once the antennae no
longer sense obstacles, it wanders forward into the vacant area by heading away from the
obstacle.

 Implementation of the vacancy behavior requires that the left and right side antennae be
observed for collisions with obstacles. Since the collision avoidance instinct handles all
collisions, then this behavior need not worry about the frontal antennae collisions. In fact, for
any frontal antennae collisions, the collision avoidance behavior should "kick-in" and maneuver
the robot to avoid collision. RABI does exactly this. A neural circuit providing the vacancy
behavior is depicted in Figure 4.8.

 77

VACANTVACANT
RIGHTLEFT

ANT L ANT R

Figure 4.8 Neural circuitry depicting the vacancy behavior. The
network allows the robot to turn away from any detected obstacle
along its side such that it heads back into vacant areas of the
environment.

 In this circuit, ANT L and ANT R are sensor neurons corresponding to the side antennae.
They are able to turn on the vacancy behavior by exciting the VACANT LEFT or VACANT
RIGHT turning neurons. The interconnections are made such the robot turns in the direction
opposite that which detects an obstacle. That is, if an obstacle is detected on the left, the robot
turns right towards vacant territory. When both side antennae detect obstacles (i.e. a narrow
tunnel or corridor) then neither turning neuron is excited and the robot proceeds straight ahead.
This allows the robot to exit the corridor into a more vacant area. Once again, the vacancy
behavior is consummated by connecting the VACANT RIGHT and VACANT LEFT neurons to
the TURN RIGHT and TURN LEFT neurons of Figure 3.13.

4.3 Edge Following Behavior

 A robot that wanders around aimlessly avoiding obstacles does not learn anything about
the structure of its environment. Sometimes stimuli may be known to exist along obstacle
borders, such as power outages and wall sockets in a typical indoor environment. If a robotic
life form is to survive in such an environment, then clearly there is a need to narrow the search
space when looking for such stimuli. One possible method of reducing this random searching is
to provide the robot with an edge following behavior. Such a behavior would allow the robot to
follow along obstacle boundaries (i.e. walls, boxes, foundations etc.) keeping its body parallel to
the obstacle. Such an instinct is more suitable for traversing complex environments than
random wandering. Moreover, it is also biologically plausible since [Bell and Adiyodi 81] state
that cockroaches in particular are known to spend the majority of their time within antenna
contact of an edge. This edge following behavior also allows environmental mapping to occur.

 78

 The main issue in edge following behavior is keeping the body close and parallel to the
edge. If the robot begins moving away from the edge, it must turn back towards it such that it
realigns itself. Likewise, if the robot begins to head into the obstacle it must turn away slightly
to avoid a collision. This indicates that some sort of angle measurement may be needed for
efficient parallelism. Finally, if the robot loses contact with the edge, it should attempt to regain
contact again.

 [Beer 90] uses a simple neural circuit for edge following behavior with his simulated
insect. However, the antennae of his insect are able to produce analog output such that a direct
head-on collision of the antennae provides a strong output signal while a brush against an
obstacle provides a weaker signal. Consequently, this analog output gives the insect an
indication of the angle that the antennae makes with the edge. Since the antennae are fixed on
the body, this provides a kind of measurement of the angle between the edge and the insect's
body. With RABI's simple binary antennae, this is not possible since the binary output does not
provide any indication of the angle between the edge and the body. Instead, RABI uses its front
antenna closest to the edge to detect when the robot comes too close to the edge. Veering away
from the edge is detected when the side antenna loses contact.

4.3.1 Modes of Edge Following

 There are three basic "modes" of edge following behavior. The first mode is the follow

edge mode in which the robot just walks forward as long as the side antenna remains in contact
with the edge and no frontal obstructions are detected. If the robot encounters a head-on
obstacle obstructing its forward motion, then the robot must orient itself to this new obstacle's
edge. Lastly, if the robot then loses contact with the edge, it must turn to regain contact in what
is called the realign mode.

 When in the follow edge mode, no special behavioral changes occur since the robot is
merely walking forward along an edge. The directional adjustments must be made only when
the robot loses edge contact or when it encounters an obstacle. The loss of contact can occur for
one of two reasons. Either the robot is slowly moving away from the edge because it is not quite
parallel, or the features of the boundary being followed has changed (i.e. a convex corner).
These two situations are depicted in Figure 4.9(a) and 4.9(b).

 79

(a) (b)

Figure 4.9 Situations causing loss of edge contact. (a) misalignment, and
(b) obstacle feature changes (convex corner).

 In (a), the robot must turn back to regain contact with the edge. In (b), the robot must
also turn back towards the edge but will end up re-gaining contact with a different edge on
another side of the obstacle. Usually, a sharp corner such as 90� will require a sequence of
realignment steps since the side antenna will continually lose and regain contact with the edge
during the sharp turn. This amount of fluctuation between edge follow and realign modes can be
reduced by positioning the side antennae further back towards the rear of the robot. The further
back the side antenna is placed, the longer it will take the robot to detect a loss of edge contact
when traveling past a convex corner. Consequently, the robot will be further out from the
obstacle when it starts the realignment. If far enough out, the robot may require only one
realignment phase. There is a limit to how far back the antennae may be placed, however, since
if the robot travels too far out past the obstacle, it may not be able to regain contact with the
edge. Figure 4.10 depicts antenna placement constraints.

 The diagram shows the distances from the pivotal center 21 to the tip of a frontal antenna
and two possible side antennae. Antenna A1 is suitable since its distance d1 is less than d0 even
when fully bent backward. Antenna A2 however, is not valid since when fully bent backward,
its distance d2 exceeds d0. With A2 as a side antenna, the robot would walk too far past the

convex corner before losing contact and the robot would not be able to regain contact with the
edge through turning.

21 The pivotal center is the point from which the robot pivots during a turn. Usually this is the center of the robot

if the robot is constructed symmetrically and efficiently.

 80

d0

d1

d2

< <d0d1 d2

A1

A2

Figure 4.10 Placement of a side antenna. A1 is safely
placed since the distance d1 does not exceed d0 but when
A2 is bent, its distance d2 exceeds d0. Thus, A2 should be
moved forward.

 If the robot detects any frontal antennae collisions while engaged in edge following
behavior, it should turn away from its followed edge and re-orient itself to the new edge
encountered, then continue on. There are a variety of frontal collisions that may occur and these
are depicted in Figure 4.11.

(a) (c)

(d) (f)

(b)

(e)

Figure 4.11 The different types of frontal antennae collisions calling for reorientation to a new
edge. (a) full surface contact, (b) edge obtrusion, (c) small object contact, (d) obtuse angular
edge change, (e) curved surface, (f) acute angular edge change.

 81

 In (a), the robot makes full contact with its front antennae. A similar situation appears in
(b) and (c) with the exception that only a couple of its sensors make contact. The situations in
(d), (e) and (f) are all similar in that only an outer antenna makes contact. In fact, since the
antennae provide binary output, curved edges as in (e) will be recognized as a polygonal chain
and thus (d) and (e) represent the same situation.

 Each of these types of collisions call for the robot to reorient itself to the new contacted
edge. Once realigned with the new edge, the edge following behavior continues. There are two
additional situations involving the frontal antennae. In Figure 4.12(a), the robot is not aligned
properly with the edge being followed and eventually becomes too close to the obstacle resulting
in a collision with its outer antenna. Here, the robot merely needs to adjust itself to the edge by
turning away until the collision no longer exists. This happens often since the robot's antenna
sensors provide no indication as to the distance from the edge. Consequently, alignment
adjustments can only be made once the robot becomes too close and collides with the edge.

(a) (b)

Figure 4.12 Additional frontal antennae collision situations. (a) misalignment with
the edge and (b) a narrow passage.

 In Figure 4.12(b), the robot's outer antenna detects a collision. Here, it may be possible
for the robot to squeeze in between the edge and the detected obstacle such as the case of narrow
passages or tunnels. This squeezing may be a requirement if the environment is complex and
dense with obstacles. If the squeeze is unsuccessful, due to additional antennae collisions, then
the robot should assume that the passage is not traversable and treat the initially detected obstacle
as an edge.

 This "squeezing" process is necessary for efficient traversal in an unknown environment.
Without this squeezing process, the robot could enter into an infinite looping process when
following edges as shown in Figure 4.13. Here, the robot follows along the border of the
environment. As it approaches the inner obstacle, the robot's right-most antenna would make

 82

contact, causing the robot to turn right and follow along the inner obstacle's edge. The robot
will then remain circling the inner obstacle counter clockwise since there is no antenna collision
causing it to join up with the original border. This would lead to inaccurate mappings of the
landmarks.

Figure 4.13 Circling problem during edge following
without the squeeze mode.

 A more important problem that may be encountered is that of entrapment. The robot
may be able to fit easily through a passageway when coming from one direction but not from the
other. Thus, the robot may get trapped in an area that it cannot get out of. Figure 4.14 shows
such a situation where the robot becomes trapped in the center of a spiral-shaped environment.
In fact, this kind of entrapment happens to animals such as insects; spiral designs are even used
in some fish traps.

Figure 4.14 Entrapment problem during edge
following without the squeeze mode.

 83

 Here, the robot's constructed mapping is shown with line segments and circles
representing edges and corners 22. The robot is able to travel into the spiral center, but when
attempting to follow the edge to get out, the frontal antennae collide causing the robot to turn
back inwards. A similar circling pattern emerges. This presents a problem since a trapped
robot is likely to run out of energy and die. Giving the robot the ability to squeeze will prevent
this entrapment from occurring.

 One final problem that may occur without a squeeze facility is that of discrepancies in
mapping representations. That is, the robot may be able to squeeze into certain areas on some
occasions, and unable in others. Thus, edge lengths and corners may vary depending on the
width of passageways in the environment. A narrow environment is shown in Figure 4.15 along
with two mappings constructed from RABI before the squeeze mode was developed.

Figure 4.15 Mapping discrepancies caused by narrow passageways.

 In the first mapping, the robot was unable to fit into the narrow passages, where as in the
second mapping the robot was able to enter and map out the passages. Note that the right
passage was mapped in both cases but since the robot went into the passage at a different angle,
the mappings are different. All three problems just mentioned can be solved by giving the robot
an ability to squeeze into narrow passages.

 The three modes of edge following combined with an additional mode for attempting a
squeeze are all required for a generalized edge following behavior. The interactions between
these modes can easily be shown by use of a state diagram. Figure 4.16 shows the state diagram

22 The map building strategy is discussed further in chapters 5 and 6.

 84

of the 4 modes required by RABI's edge following technique. This state machine solution has
the ability to handle all the situations mentioned above.

FOLLOW
EDGE

ALIGN
TO EDGE

ORIENT

EDGE
TO NEW

ATTEMPT
SQUEEZE

Collide Outer

C
ollide Inner

Col
lid

e I
nn

er

Collide Inner

Lo
se

 E
dg

e
Co

nt
ac

t
Re

ga
in

 E
dg

e
Co

nt
ac

t N
o M

ore C
ollide Inner

Figure 4.16 A state diagram depicting the edge following process.
The attempt squeeze is an additional mode required for the robot to
maneuver into tight situations.

 The circles in the diagram represent the modes (states) while the links indicate the events
required to transfer from one state to another. The terms "collide inner" and "collide outer"
represent the events in which one of the 3 antennae closest to the edge and the one antennae
furthest from the edge detect a collision respectively. The terms "lose edge contact" and "regain
edge contact" represent the detection state of the side antenna that is being used for edge
following. The remainder of the diagram is self-explanatory.

4.3.2 A Neural Implementation of Edge Following

 The state diagram of Figure 4.16 depicts the edge following process and the events
required to switch between modes. Direct programming of this state machine may not be a
robust approach to implementing the behavior. There may be a collection of unexpected
situations which can arise that may result in poor edge following behavior and perhaps even
failure. Since RABI is capable of collision avoidance, it may be useful to use this behavior as
part of the edge following process. For example, if the robot is following an edge and
encounters an obstacle, then the obstacle avoidance behavior could "kick-in" to turn the robot

 85

away from the obstacle 23. With this in mind, a neural circuit was designed which resembles the
state diagram of Figure 4.16. A neural circuit for following right edges is shown in Figure 4.17.

ALIGN

ANT. R

LEFT RIGHT

AHEAD

ORIENT

AHEAD
0.

5

0.5FOLLOW
RIGHT

ANT. 3 ANT. 2 ANT. 1 ANT. 0

COLLIDE
RIGHT

PULSE

0.5

0.
5

0.5 0.5

Figure 4.17 A neural circuit depicting right edge following behavior.
The FOLLOW RIGHT neuron enables the circuit by providing the
additional excitation required for the direction neurons LEFT, RIGHT
and AHEAD.

23 The use of the collision avoidance behavior is required for the squeeze mode of the edge following behavior.

 86

 The upper part of the circuit utilizes the same sensor neurons as the collision avoidance
network with an additional neuron ANT.R for the right side antenna. Another familiar set of
neurons is the ORIENT, ALIGN and AHEAD sustain neurons which represent the "orient to new
edge", "align to edge" and "follow edge" modes of the edge following behavior respectively.
These neurons are readily identified as the 3 state neurons since they are sustain neurons which
have the ability to retain energy, thus they can represent a "state" when switched on. The LEFT,
RIGHT and bottom AHEAD neurons represent the direction in which the robot should travel
during its edge following process.

 The behavior begins when the FOLLOW RIGHT neuron in excited. This neuron is a
behavioral neuron (shaded) that enables the 3 directional neurons. The ORIENT and ALIGN
neurons decide when to turn LEFT and RIGHT respectively as in the state diagram. The robot
only walks straight ahead if neither of the LEFT and RIGHT directional neurons are active. The
rest of the connections follow directly from the state diagram where the ANT.R neuron decides if
the robot loses contact with the edge, and the COLLIDE RIGHT neuron decides when the robot's
frontal antennae collide with an obstacle. Notice that the outer antennae is not included with the
others during the detection phase. This is because the robot must be able to attempt squeezes in
between narrow passages and therefore the outer antenna must be handled differently. In
software, this antenna is ignored in this circuitry and handled by the collision avoidance circuitry.
The PULSE neuron provides a method of disabling the edge orientation mode whenever the
antennae stop detecting collisions (i.e. detects stop since it's a falling edge neuron).

 The circuit of Figure 4.17 allows the robot to follow edges on its right side once the
directional neurons LEFT and RIGHT are connected to the TURN LEFT and TURN RIGHT
neurons of Figure 3.13 as done for the other instinctive behaviors. If the robot wishes to detect
obstacles on the left side of its body also, a similar symmetrical circuit is required. The
combined left and right edge following behavior circuitry is shown in Figure 4.18. Here the
edge to be followed is decided by the FOLLOW RIGHT and FOLLOW LEFT neurons which
mutually inhibit each other since only one could occur at any moment. The remainder of the
circuit represents a dual version of Figure 4.17.

 87

ANT. 3 ANT. 2 ANT. 1 ANT. 0 ANT. R ANT. L

ORIENT
LEFT

RIGHT
ALIGN

LEFT
AHEAD

LEFT
RIGHTLEFT

RIGHT

ORIENT
RIGHT

COLLIDE
RIGHT

COLLIDE
LEFT

PULSE PULSE

LEFT
ALIGN

RIGHT
AHEAD

0.5
0.

5

0.
5 0.5

0.50.5

0.
5 0.5

0.
5 0.5

0.5 0.5

FOLLOW
LEFT

FOLLOW
RIGHT

LEFT
EDGE

AHEAD
EDGE

RIGHT
EDGE

Figure 4.18 The combined left and right edge following circuitry. Two additional
directional neurons were added in order to combine the LEFT, RIGHT and AHEAD
decisions from both circuits into one set of signals.

4.4 Light Orientation: A Source of Energy

 Many insects have a form of taxic behavior that attracts them to light (phototropism).
The attraction towards light allows the insect to seek out warmer environments and even energy

 88

24. Some insects avoid light (photophobic) since it makes them a better candidate for predation.
This simple form of phototaxic behavior (photokinesis) requires two receptors that are sensitive
to light. [Braitenberg 84] describes a simple crossover connection that essentially simulates fear
and aggression taxic behaviors. In one of his examples, a simple 2-wheeled vehicle is controlled
by this simple crossover. For attraction, the right receptor connects directly to the left wheel and
the left receptor to the right. The more light received by the left receptor, the stronger the
excitatory signal sent to the right motor, causing the vehicle to turn left towards the light. For
light avoidance, the receptors are connected directly to the motor on their side, with no crossover.
 RABI uses a similar crossover approach which is embedded into a neural circuit as shown
in Figure 4.19.

LEFT
EYE

~ ~ ~~

RIGHT
EYE

L > R R > L

PHOTO
POS.

PHOTO
NEG.

TURN
LEFT

TURN
RIGHT

PHOTO
RIGHT

PHOTO
LEFT

0.5

0.5

0.5
0.50.

50.5

Figure 4.19 A neural circuit for photokinetic behavior.

24 Plants seek energy from the sun.

 89

 The robot has two light sensors at the front of its body that are oriented 5� outwards from
the center of the robot. Thus, the sensors are 10� apart from each other, and facing in opposing
directions.

 The LEFT EYE and RIGHT EYE are sensor neurons which are connected directly to the
two light receptors. These neurons emit an analog signal representing the light intensity
detected by the sensors. The L>R and R>L neurons detect which signal is stronger. This is
done by comparing the two receptor readings. Since these neurons are binary, one of them will
emit a high signal while the other emits a low. These two neurons then connect to two threshold
neurons essentially providing the crossover as seen in the vehicles of [Braitenberg 84]. These
two neurons connect to the TURN LEFT and TURN RIGHT neurons similar to the other
behaviors. The PHOTO POS and PHOTO NEG neurons are controlling neurons that allow the
behavior to be turned on or off. Note that the PHOTO NEG neuron also negates the two binary
neurons. This allows a crossover to occur, reversing the behavior 25. Additional inhibitory
connections were added from the TURN LEFT and TURN RIGHT neurons preventing the robot
from making consecutive turns in the same direction while seeking light. This was needed since
the robot does not move forward while turning. Without these additional connections the robot
would essentially toggle back and forth in one location without advancing. An example of the
light following behavior is easily shown with a screen snapshot of the simulated environment as
in Figure 4.20.

Figure 4.20 Screen snapshot of the phototropic behavior.

25 This crossover is reversed from [Braitenberg 84] since the TURN LEFT and TURN RIGHT neurons provide a

form of crossover themselves.

 90

 The snapshot shows the robot's path (black dots) during 1 minute of performing the light
attraction behavior. The two circles in the center represent the light source. Notice that the path
consists of circular trajectories surrounding and occasionally crossing the light source.

 One of the problems in implementing the light sensors is simulating the effects of the
light sources in the environment. This simulation takes a simple approach in that the light is
capable of passing through the environmental walls (i.e. glass walls). Clearly, any useful
simulated light sensor data must depend on three factors: the distance from the light, the angle
towards the light and the intensity of the light. Moreover, if there are multiple light sources,
they must also be taken into account. The method for determining each sensor reading is as
follows:

n

•
i=1

abs(a i) * 1

d i
2 -

f i
2

n
where,

n is the number of light sources
ai is the angle between the sensor and light source i
di is the distance from the sensor to light source i
fi is the intensity of light source i.

 This equation allows the robot to rely on the distance information when far away and on
angular information when close to the source. Thus facing a close light source would contribute
strongly to the overall signal, while facing a far light source will barely affect the signal. This
allows the closest light source to have the greatest effect on the sensor. The intensity f plays a
role in the distance information. If the robot becomes too close to the source (i.e. within half the
intensity) then the equation gives a negative signal causing the light source to have a negative
effect. This prevents the robot from staying directly on top of the source. In the simulation, the
intensity is an integer from 10 to 100 representing the radius of a circle around the light in
pixels. The distance is also in pixels.

 91

4.5 Food Orientation: Finding and Absorbing Energy

 Finding food is an essential behavior for all forms of life. In order to find the food, the
robot must have an ability to orient itself towards the food source. With just simple sensors, this
is more difficult than it seems. Many animals (and humans) use some form of "smell" sensor
which produces a form of klinotaxis. The animal is usually required to wander around, making
successive comparisons of sensor readings. This is essentially a form of hill climbing in which
the robot has no accurate sensor readings indicating the direction of the food at any single
location. Furthermore, smell sensors can usually only detect the odor when within a certain
distance from the source, and this distance varies depending on the odor intensity. Thus, a
mechanism for orienting towards the energy sources must be able to compare a sensor reading
with the previous value in order to determine a course of action. Figure 4.21 shows a neural
circuit that does just this.

TURN
1/2

?
TURN
OFF

RIGHT

ACCUM

ENERGY
LEFT

ENERGY
RIGHT

LEFT SEEK
ENERGY

ENERGY
SENSOR

~
+

T3

0.5

+

DIFF

~~

0.5

0.5

0.5

Figure 4.21 A neural circuit for the energy seeking behavior. The
DIFF neuron provides the successive comparisons necessary for the
energy seeking behavior.

 92

 The SEEK ENERGY neuron is used to enable the circuit. There is only one main energy
sensor used as input to the circuit. The DIFF neuron is a differential neuron that compares the
incoming sensor signal with the previous reading and emits a high binary signal whenever the
new reading is lower than the last one. This single neuron allows the robot to detect when it is
moving closer or further away from the energy source 26.

 Once the DIFF neuron has detected that the robot has moved further away from the
energy source, the random TURN neuron enables either the LEFT or RIGHT turning neurons.
These two sustain neurons enable the ENERGY LEFT and ENERGY RIGHT neurons which are
connected directly to the TURN LEFT and TURN RIGHT neurons of Figure 3.13 as in the other
instincts. Each time the robot turns, the ACCUM neuron is excited. This neuron excites the
TURN OFF threshold neuron with a weight of T3. T3 represents the number of 15� turns that
the robot will make before it moves ahead. Thus if T3 = 0.2, the robot will make 1/0.2 = 5 turns
of 15� for a total directional displacement of 75� . Once the TURN OFF neuron detects the
completion of the turn, the LEFT and RIGHT neurons are disabled, allowing a new direction to
be chosen. The effect of changing the value of T3 is shown in Figure 4.22.

 The figure represents 4 screen snapshots showing the path that the robot traveled while
using the energy seeking behavior. The rectangle in the center of the environment represents the
energy source. Notice that with larger turning angles (i.e. low values of T3), the robot is able to
remain near the source and occasionally travel over it. In the case of high value of T3, the robot
does not come in contact with the energy source and eventually loses the sensor readings by
traveling outside the intensity range of the source. The value of 0.20 was chosen for T3 since
the path allows the robot to home in closer to the source while maintaining a degree of
randomness.

 As with the light sources, the effects of the energy sources must be adequately
implemented. As with smell sensors, an energy sensor receives its readings depending mainly
on the distance from the energy source, and again multiple energy sources must be taken into
account.

26 In practical applications, the robot may need to sample the environment less often since the readings may be

identical until the robot becomes significantly closer of further from the source.

 93

T3=0.18 (90° turns) T3=0.20 (75° turns)

T3=0.25 (60° turns) T3=0.40 (45° turns)

Figure 4.22 Screen snapshots showing the effect of varying T3 during the energy seeking
process.

 The method used to determine the sensor reading is as follows:

1
n

•
i=1

1
d i

where 0 < d i < e i

 and,

n is the number of energy sources
di is the distance from the sensor to energy source i.
ei is the intensity factor of energy source i.

 This equation shows that the sensor reading depends solely on the distance from the
energy source. Thus by standing in one location, there is no indication as to the direction of the
energy source. As in the light sources, the intensity e plays a role in the distance information.

 94

Only energy sources that are within a specified distance are entered into the equation. This need
to be close to the source is related to the intensity, which can be thought of as the degree of
detectability of the energy field. In the simulation, this intensity is a constant. As a result, the
robot can only detect the energy source when it is within a certain distance.

 Once the robot finds the energy source it must have some mechanism to acquire the
energy (i.e. recharge the batteries). In the case of a wall socket, the robot would need to
accurately position itself in order to plug itself in. It is therefore helpful to add a simple sensor
that can detect when the robot is in an appropriate position for plugging in. This is discussed
further in chapter 7. RABI simplifies this process by assuming that the robot can gain energy
whenever it lies on top of the simulated socket. This assumption would be useless in practical
robot applications since the robot would need to be more accurate. One possible solution is to
customize the sockets with some form of funneling system that would allow the robot to become
aligned properly to the socket as it gets closer. A better approach may be to create some form of
docking bay in which many of these robots could enter into a docking zone. Here, a different
robot or machine could have a mechanism which would have the ability to track incoming robots
and recharge them by plugging them in. These ideas are clearly hypothetical but may eventually
become reality with colonies of simple microbots or nanobots.

4.6 Cleaning: A Task-Oriented Behavior

 If a robot is to be useful, it must have some behaviors that allow it to perform a specific
task. One simple task is that of cleaning. Consider a robot that is required to collect dirt by
scooping up morsels and bringing the dirt to the edges of its environment. This task can be
performed with a simple scooping mechanism requiring very simple sensors. The robot may
have a simple scooping mechanism fastened below it. The scoop itself would hover close to the
floor similar to a dust pan. As the robot travels in a dirty environment, the scoop becomes full
with dirt morsels. A simple micro switch can be used to detect when the scoop contains a full
load of dirt. The robot could then walk to the nearest edge and empty the scoop using a simple
dumping mechanism.

 This "scoop and dump" process represents a cleaning task that the robot could perform
whenever it is able, that is, when it is not in need of energy. The simple neuron network in
Figure 4.23 represents the cleaning behavior. The SCOOP FULL neuron is a sensor neuron that
detects when the scoop is full of dirt. The neuron excites the CLEAN AHEAD neuron which

 95

causes the robot to walk straight forward towards an edge 27. This CLEAN AHEAD neuron
inhibits the TURN LEFT and TURN RIGHT neurons similar to the EDGE AHEAD neuron of
the edge following behavior.

EMPTY
SCOOP

SCOOP
FULL

COLLIDE

DUMP

CLEAN
AHEAD

DETECT
LEFT

0.50.5

Figure 4.23 A neural circuit for the cleaning behavior.

 The DETECT LEFT neuron is from the collision avoidance network. It excites the
COLLIDE neuron whenever the robot's frontal antennae touch an obstacle. When this happens,
the CLEAN AHEAD neuron is disabled and the scoop is emptied. The DUMP motor neuron
represents the dumping mechanism that is used to empty the scoop.

 This method of cleaning is not the most effective since the robot has no sensors that allow
it to seek out food morsels. Instead, the morsels of dirt are only detected when the scoop
becomes full. As a consequence, there may be some areas in the environment that do not get
cleaned. By wandering around, the robot is able to clean a significant portion of the
environment. Figure 4.24 below represents screen snapshots of the simulated environment
before and after the cleaning behavior was used for approximately 5 minutes. The wandering
and vacancy behaviors were used in combination to allow the robot to obtain the morsels in a

27 Walking straight ahead does not always find the closest edge, but it is the easiest one to find since the

environment is closed off and the robot is sure to find an edge by walking straight.

 96

somewhat random fashion. In the second snapshot, most of the morsels have been moved to the
outer edges of the environment.

Before Cleaning After Cleaning

Figure 4.24 Screen snapshots before and after the cleaning behavior was used.

 As seen in the snapshots, the cleaning behavior can be efficient when combined with
other behaviors. This method of combining behaviors is described in the next section.

4.7 Behavior Selection

 Although an animal may exhibit a variety of instinctive behaviors, sometimes the animal
must choose between two or more conflicting behaviors. It is easier to simulate a behavior
switching agent by limiting the agent to performing only one behavior at a time. In such an
agent, there needs to be some mechanism and overall structure that provides a flexible and robust
means of switching between behaviors. [Maes 91] and [Tyrrell and Mayhew 91] present
methods of selecting behaviors according to internal factors as well as external stimuli. These
methods allow the agent to switch between behaviors using motivational aspects based on its
internal monitors. This will be discussed further in chapter 7.

 97

4.7.1 Behavior Hierarchy

 The subsumption architecture of [Brooks 86] provides a method of switching between
behaviors in a layered fashion. The architecture provides a method of selecting a behavior
which controls the overall performance of the system where the higher levels have a higher
priority in that they may subsume the roles of the lower levels.

 A similar architecture was incorporated into RABI through neural circuitry. Each of the
instinctive behaviors are connected to the TURN LEFT and TURN RIGHT neurons which
essentially control the actuators directly by way of the walking circuitry. The instinctive
behaviors act as different levels of competence similar to the subsumption architecture.
Moreover, these instincts can be added on in an incremental fashion. The remaining task of
prioritizing these behaviors becomes simple with neural circuitry. The connecting architecture
of the instinctive behaviors is shown in Figure 4.25.

TURN
LEFT

TURN
RIGHT

AVOID
RIGHT

WANDER
LEFT

RIGHT
WANDER

AVOID
LEFT

EDGE
LEFT

0.20.1

0.8

1.6

3.
2

0.20.1

0.
8

1.6

3.2

RIGHT
EDGE

AHEAD
EDGE

PHOTO
RIGHT

PHOTO
LEFT

6.4

6.4

ENERGY
LEFT

ENERGY
RIGHT

CLEAN
AHEAD

12.8

0.4

0.4

12.8

VACANT
RIGHT

VACANT
LEFT

Figure 4.25 Prioritized connections for instinctive behavior selection. Each
behavior competes for overall directional control.

 98

 In this figure, the TURN LEFT and TURN RIGHT neurons are the neurons from Figure
3.13 that provide the mechanism for steering the robot. These two neurons inhibit each other
since they represent conflicting actions 28. As a result, only one of these two neurons will be
active at a time. If both are inactive, then the robot walks straight ahead.

 The weights from the directional neurons were chosen in a priority oriented fashion.
They begin at 0.1 and increase by factors of 2 (i.e. 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 and 12.8).
This factor allows each behavior to override the ones below it in the hierarchy. That is, the
energy seeking behavior dominates all lower level behaviors since it has a weight which is higher
than all others combined. In a sense, this allows the energy seeking behavior to subsume all of
the lower level behaviors. Similarly, the collision avoidance behavior overrides the vacancy
behavior, which both override the wandering behavior etc...

 The EDGE AHEAD, EDGE RIGHT and EDGE LEFT neurons all represent the edge
following behavior, however, the EDGE AHEAD neuron has a smaller weight than the other
two. This lower weight was selected such that the collision avoidance behavior could subsume
it whenever the robot needed to squeeze into a narrow passageway. Also, the EDGE AHEAD
neuron provides an inhibiting link as opposed to an excitatory link as with the others, allowing it
to disable the left and right directional changes resulting in straight forward motion. The
CLEAN AHEAD neuron is connected in a similar manner.

4.7.2 Emergent Behaviors

 The simple hierarchical structure allows different behaviors to be added or removed
without altering the others. By combining various behaviors through their connections to the
TURN LEFT and TURN RIGHT neurons as in Figure 4.25, a variety of more complex behaviors
can emerge. Take for example, the wander and vacancy behaviors. Figure 4.26 shows a screen
snapshot depicting the effects of combining the two behaviors during a 1 minute time period.

28 Actually, in software, these two inhibiting links were not implemented. Instead, both neurons receive inhibiting

signals from the directional neurons on the opposite side such that it is disabled whenever the opposite side has
dominating signals.

 99

Wander Wander + Vacancy

Figure 4.26 Screen snapshots depicting the effects of combining the
wandering and vacancy behaviors.

 Both situations are using the collision avoidance instinct to stay within the environment.
As the images show, using only the wandering behavior, the robot spends much of its time along
the environmental boundaries. When the vacancy behavior is added, it acts as a recoil which
keeps the robot away from the walls. Clearly, this addition allows the robot to spend most of its
time away from the borders. Neither of these behaviors direct the robot to any particular
location, instead the resulting trajectory is random and has no purpose except exploration. Now
consider the effects of combining the wandering and light seeking behaviors as in Figure 4.27.

 Both cases were allowed to run for 2 minutes. In (a) the robot started near the top left
light source, making a few circles around its center. It then ventured down to the smaller light
source for a few laps before proceeding to its final destination, the top right light. The robot
remained at the top light source since the light seeking behavior had ample sensor information to
keep the robot moving in circles. With the addition of the wandering behavior in (b), there is
clearly a difference in behavior. The wandering behavior allowed random movements causing
the robot to stray from its otherwise predictable circulating path. As a consequence, the robot
spent much of its time traveling between light sources. Less time was spent near the smaller
light source since its low intensity did not attract as much attention as the higher intensity
sources.

 100

(a)

(b)

Figure 4.27 Screen snapshots showing the wander and light seeking behaviors. (a) light
seeking only, and (b) wandering + light seeking.

 101

 A last example of emergent behavior is shown in Figure 4.28. Here, the effects of the
wander, vacancy and light seeking behaviors are shown for a simple environment with an
external light source. The environment represents a situation similar to that of a fly trapped in a
box with light coming in from one wall of the box.

Light Seeking Light Seeking + Wander

Light Seeking + Vacancy Light Seeking + Wander + Vacancy

Figure 4.28 Screen snapshots showing the integration of the wander, vacancy and light seeking
behaviors.

 In the first snapshot, only the light seeking behavior is used. Here, the robot often
presses up against the glass attempting to get to the light source. The robot's path is very regular
and repetitive causing the robot to rub up along the wall. In the next snapshot, the wander
behavior is added. This addition results in a behavior that allows the robot to vary its path. The
robot still presses up against the wall but not as often.

 By using a vacancy behavior instead of the wandering behavior, as in the third snapshot,
the robot no longer presses up against the wall. Instead, each time it hits the wall, it is repelled
away from the wall. A close look at the image shows that the circular patterns are still visible.
Finally, in the last snapshot, all three behaviors are used. The resulting emergent behavior

 102

appears random. Here, no circular paths can be seen and no pressing up against the wall is
observed. At one instant, the randomness even allowed the robot to stray away from the source
altogether.

4.7.3 Making Behaviors More Efficient

 It is possible to increase the efficiency of individual behaviors by combining them with
other behaviors. Some behaviors work well with others. Take for example, the cleaning task
behavior. When just wandering around aimlessly, the robot may not be very efficient at its
cleaning task since it stumbles upon dirt morsels by chance. A more efficient cleaning behavior
could make use of the phototropic behavior. If a light source is placed at the dirtiest parts of the
environment, by using the phototropic behavior, the robot will seek out the light source, hence
spending most of its time near the light. By staying near the light, the robot is more likely to
find dirt morsels resulting in a more efficient cleanup. By varying the location of the light
source, the robot could clean up various portions of the environment one at a time. Figure 4.29
shows two screen snapshots of the cleaning behavior combined with a light seeking behavior
before and after the test.

Before Cleaning After Cleaning

Figure 4.29 Screen snapshots showing the effects of combining the cleaning and light seeking
behaviors.

 Notice that the cleanup concentrated on the area surrounding the light source. In fact, the
3 leftmost morsels and the 3 bottom-most morsels were not touched since the robot did not
venture into these areas.

 103

 Another less effective method of improving the cleaning efficiency is to make use of the
vacancy behavior. By adding the vacancy behavior, the robot will spend most of its time away
from the environmental borders allowing a quicker cleanup by remaining in the middle of the
environment where the morsels are.

4.8 Summary

 Providing a robot with basic underlying mechanisms corresponding to simple instinct-
like behaviors provides a flexible and robust method of control. The instincts of collision
avoidance, wandering, vacancy and edge following allow the robot to function safely and explore
the environment in a flexible fashion. The light and energy seeking behaviors complete the
system by providing most important survival behavior, which is that of being able to find and
obtain food in the form of energy. A cleaning behavior is easily added, giving the robot a sense
of usefulness.

 Each of these behaviors are implemented as neural circuits allowing them to be easily
integrated together. The behaviors interact through a simple subsumption style architecture also
implemented with neural circuitry. This architecture allows the various behaviors to be added
and removed without affecting the operation of the others. Moreover, by adding behaviors in
combination, more complicated behaviors can emerge resulting in a more flexible and efficient
system capable of a variety of otherwise unpredictable behaviors. Moreover, by using various
combinations of behaviors, the robot can become more efficient.

 104

∼∼

Chapter 5
Mapping out the Environment

∼∼

 Exploration refers to the active behavioral processes by which an animal assimilates

information about its environment. Animals often closely investigate novel objects in their
environment and in some cases, they regularly patrol their environment and pay particular
attention to any changes that have occurred in it. Such patrolling allows the animals to detect
new sources of food [Toates 86].

 In order to detect changes, the animal must have some idea regarding the state of the
environment ahead of time. Usually, the state of the environment corresponds to some sort of
mapping; which may be precise or very generalized (landmarks). This internal map is built up
through exploration and stored in some form of memory. As mentioned previously, it is not at
all clear how memory contents are stored or how this information is retrieved. Thus, most
robots use some form of simplified 2D mapping techniques. To my knowledge, there has not
been much research in the area of 3D mapping applied to robotics. This extra dimension
presents a host of new problems and is not touched upon by this thesis.

5.1 Mapping Strategies

 In order for a robot to map out an environment, it must have some sense of relative
distance. The robot, for example, must be able to estimate the distances between two locations
so that it may store this information in its map. This is essential so that the robot would know
which locations it may travel in and which locations are not traversable.

 There are two approaches to mapping out the traversable areas: that of mapping the free

space (open areas) and that of mapping out the obstacle space. These are discussed in turn.

 105

5.1.1 Mapping Free Space

 Many existing robots map their environment by determining the locations that the robot
can reach. The easiest method of mapping this way is to create a 2D grid, where each grid unit
represents either a free location or an occupied location (obstacle). In a maze, for example, a
"micro mouse" robot would map out the maze as a set of consecutive free units. The micro
mouse does not need to know the locations of walls, instead it needs to know the unoccupied
locations in which it may travel.

 Using a simple 2D grid and marking locations as occupied or unoccupied, may not be
very efficient in some situations. For an environment with very few obstacles, there would be
large amounts of free space. A better method of grid mapping is that of using quadtrees 29.
This method combines similar adjacent units in groups of 4 into a larger unit of size 1. The
result is a more efficient grid which requires less memory since the number of grid units is
decreased. Figure 5.1 shows an example of an environment mapped with both the standard grid
technique and the quad tree technique.

(a) (b)

Figure 5.1 Two variations of grid-based mapping. (a) a straight forward grid of equal
sized units, and (b) a more efficient grid using a quadtree structure with units of various
sizes.

 The thick lines represent the borders of the obstacles and the boundary. The standard
grid requires 16x16 = 256 units to store the map while the quadtree requires only 129 units
(approximately half). It is clear that in this situation, the quadtree mapping is more efficient.

29 [Zelinsky 92] presents a method of building quadtree maps by exploring the environment. His method also

incorporates a shortest path strategy.

 106

The efficiency of the quadtree method will vary depending on the density and complexity of the
environment. Crowded environments for example, would not contain large units since for any
location there is likely to be locations of different types nearby. Complicated environments such
as mazes, also cannot contain large units since there are many thin closely spaced obstacles
which prevent integration of smaller units. Thus, for some environments, the choice of a
quadtree over a standard grid may not provide an advantage and may even provide a
disadvantage due to overhead.

 The quadtree grid embeds additional information. Since similar units were grouped
together, then by storing the size of the new unit, one can obtain information about the relative
"openness" of the environment. That is, the robot can identify large open spaces 30.

 The quadtree representation could be improved upon even further by allowing an offset
for each unit. The quadtree representation uses a symmetric dissection of the environment into
grid units. By allowing a different dissection, the number of units can be further decreased. For
example, the tunnel of small units on the left of Figure 5.1(b) contains 3 groups of 4 adjacent
units. These could be combined, reducing the whole tunnel to just 3 units. Figure 5.2 (a) shows
the results of using this offset dissection method. Notice that the squares do not always line up
together. This further reduces the bits needed to 109, which is only 20 units less than the normal
dissection method.

 The quadtree representation provides further advantages during navigation since a dual
tree can be constructed in which each node represents a grid unit. Here, the resulting dual tree
would represent all possible paths within the free space. Figure 5.2 (b) shows the dual tree of
the offset dissection quadtree in (a).

 As far as implementation is concerned, the standard grid based approach to mapping is
simple to implement since all the units are of the same size, the robot merely needs to fill in the
bits. The quadtree approach is not as easy to implement. It requires an examination of the units
and grouping them together.

 Despite their simplicity, all of these grid-based approaches suffer from two main
problems. First, an approximate grid size must be known. In some cases, knowledge of the
starting point (unit) is also required. As a result, the grid-based approach is mostly useful in

30 Large open areas may represent the different rooms in an indoor environment.

 107

situations where there is some prior knowledge as to the structure of the environment. In cases
where the world size is unknown, some sort of map growing and appending technique must be
used.

(a) (b)

Figure 5.2 The offset dissection of a quadtree mapping. (a) the revised quadtree
combining additional units, and (b) its corresponding dual tree.

 By far the biggest problem of the grid based approach is that of positioning errors. As
mentioned in [Brooks 91], absolute coordinate systems for a robot are the source of large
cumulative errors. The robot must be able to acknowledge the fact that it has left one grid unit
and entered another. Every physical system has some degree of inaccuracy, often preventing
precise position measurements to be made. To account for errors, the robot must be able to "get
back on track" once it becomes lost or when its position uncertainty becomes too large. This
position error is a problem faced by all mapping techniques, however, it is particularly
troublesome with the grid techniques since the entire map is based on evenly spaced units.

5.1.2 Mapping the Obstacle Space

 There are some animals and insects that live under rocks, in dark areas, in small holes,
etc. These creatures spend most of their time close to and inside objects. It is rare that these
insects would wander freely in open areas unless they are exploring the environment or en route
to another location. This is somewhat of a survival instinct for insects since they tend to get
squished if seen wandering in an open area. The obstacles provide protection and shelter for the
insects, and possibly even sources of food.

 108

 For animals such as insects, it makes little sense to map out the free regions of the
environment. Instead, mapping out the obstacles would prove to be more helpful since this is
where the insect regularly travels. By identifying the obstacles and the relative distances and
directions between them, the insect can survive by limiting the amount of time spent wandering
in open areas. [Staddon 83] identifies some organisms that exhibit this free space avoidance
behavior. Perhaps these organisms tend to stay near obstacles because they receive rich sensor
information from them. In open space, there is a lot less information about the surroundings.
For insects, their antennae are used to provide a wealth of information about obstacle sizes and
shapes but they cannot present much information from a flat and open surface.

 To map out obstacles, there must be some way of distinguishing between the different
obstacles in the environment. Many robots use ultrasonic transducers, cameras and laser range
finders to detect obstacles and map out the environment. These sensors provide distance
information in the form of an environmental scan, which results in a set of points. Operations
are performed with these points (such as averaging and extrapolation) and line segments are
computed. Thus, the resulting map is a set of line segment chains. By traveling around the
obstacles, these line segment chains could then be joined, creating a set of polygons representing
the obstacles as shown in Figure 5.3.

Figure 5.3 A polygonal mapping of a simple
environment.

 109

 Although this method of mapping can produce a fairly accurate representation of an
environment, it requires accurate odometry on behalf of the robot and significant noise reduction
techniques to be performed with the sensor data. This technique would require much
computational power as well as sophisticated sensors; both of which may not be possible on
smaller sized robots. For small robots, a mapping technique must be developed which uses
simple sensors, and requires little computational burden. Landmark detection and identification
is one possible solution for mapping with simple robots.

5. 2 Landmark-Based Mapping

 Bees are known to navigate by using landmarks and image patterns. The bee uses these
landmarks as a reference for orientation and position estimation. A bee stores its landmarks as
low resolution images with space set aside for information on each landmark or image. For
example, when identifying flowers, there is space set aside for the color, odor, shape etc. [Gould
and Marker 87] discuss the instinctive image detection scheme of honey bees. Landmark
detection and mapping are commonly integrated as a single behavior; once a landmark is
detected through feature extraction, it is stored in memory. After all, the only reason for
detecting landmarks is so that they may be stored for future reference. This method of mapping
requires a mechanism for extracting various features from landmarks and storing the information.

5.2.1 Previous Approaches

 [Nehmzow and Smithers 91] present a method of mapping out the inside perimeter of a
rectilinear environment using a real robot. The robot is able to identify its location in the
environment by recognizing sequences of convex and concave corners. The sequences of
corners act as landmarks. Their method incorporates a self-organizing neural network which
stores the corner features within it. The input vector of the network contains information
regarding the present corner, previous corners as well as the distance traveled from the previous
corner. After traversing the perimeter a couple of times, the robot is able to identify some of the
corners (landmarks). A drawback of using the self-organizing neural network is that corners can
only be identified if they are significantly different from other corners with respect to the corners
around it. That is, a completely symmetric environment would not allow any of the corners to
be distinguished from the others. In Figure 5.4, environments A and B are examples of
symmetric environments that have similar corners. No corner can be distinguished. In C and D

 110

however, the corners can be distinguished since they all differ in terms of distances between
consecutive adjacent corners. Their method was designed to map out a simple perimeter and
there is no mention of mapping out inner obstacles. Moreover, by using their neural network,
they cannot directly extract corner and edge information since the network is self-organizing.
The technique does, however, allow the robot to map out an obstacle perimeter using simple
sensors.

A B C D

Figure 5.4 Identifiable and unidentifiable environment shapes. A and B are symmetric
environments in which corners can't be distinguished. Non-symmetric environments C and D
allow corners to be identified.

 [Mataric 91] presents a different approach to landmark-based mapping. His method was
tested on a real robot equipped with sonar sensors and a compass. The system is able to identify
various landmarks in the environment such as walls, corridors and long irregular boundaries.
Moreover, each of these landmarks have an attribute indicating its orientation in the
environment. His technique was tested in a cluttered environment but did not have the ability to
map out inner obstacles. Instead the method maps out the boundaries specifying the areas of the
room that are blocked off by obstacles. The mapping strategy used here was that of topological
links between landmarks indicating their physical spatial adjacency. In essence, the map is
similar to a graph whose nodes are landmarks and whose links specify spatial adjacency in the
environment. The use of range sensors (sonar) and orientation mechanisms (compass) makes
this method less attractive for the purposes of nano technology. The research does however,
present the interesting notion of topological landmark-based mappings.

5.2.2 RABI's Landmark-Based Mapping

 RABI uses a similar approach to the techniques mentioned above. The robot records
corners and edge lengths as [Nehmzow and Smithers 91] have done, however, the landmarks are
stored in a memory similar to that of [Mataric 91].

 111

5.2.2.1 Landmark Feature Identification

 Biological neural networks are able to quickly and efficiently learn input patterns by
extracting features from the sensory input 31. These networks are able to extract and analyze
features from their input and then efficiently organize the patterns in memory 32. It would be
useful to endow a robot with some kind of feature extraction technique such that it could
determine the different features from the obstacles within its environment. The difference in
features would allow one obstacle to be distinguished from another. With this ability, a robot
could map out its environment by identifying landmarks . Bees are known to employ such a
technique [Gallistel 90].

 Insects have the simplest form of obstacle sensor: the "antenna". Due to the varied
locations of antennae, whiskers and hair, obstacles can be detected all around the body. If the
antennae are moveable, as in most insects, then features from the obstacle itself can be identified
such as height, width, motion, etc. This simple sensor can be used to detect features of large
obstacles through continuous displacement along the boundary of the obstacle (i.e. edge
following). This is what is known as "active" touch, as opposed to stationary detection which is
"passive". [Gibson 62] gave quantitative results showing that active touch is superior to passive.
In his experiments, shapes were to be identified by a human subject using only the sense of
touch. The passive touch tests involved pressing the shape into the palm of the hand. The active
touch tests allowed exploration by the fingertips. The results showed that passive touch received
only half as many correct matches as active.

 [Hochberg 68] proved, at least for vision, that the serial presentation of sequential views
of a shape was sufficient for its identification. He performed experiments in which a human
subject was instructed to identify objects while looking through a small hole such that only a
small piece of the object, such as a corner, was visible at any one time. The object was the
rotated so that the subject viewed the corners in sequence. Consider the following scenario:

"If you were to take your little brother, tie his hands and blindfold him, move him to a different
location in his home and wake him up, he would probably be annoyed. If you then spin him
around and tell him to find his way back to bed, he would probably walk until he hits the nearest
obstacle. More than likely, he would then feel his way along walls and obstacles until some of
these obstacles and structures are recognized. Once an object is identified, he would then be
aware of his location and would then have little difficulty finding his way back to his bedroom."

31 In visual systems, there exists feature analyzing components that detect corners, edges, curves, motion, contrast,

etc.
32 [Linsker 88] discusses the concept of feature-analyzing cells in self-organizing neural networks.

 112

 This scenario points out the technique that is commonly used when sensor information is
reduced. Obviously, a person would make use of their sophisticated sensors such as sound,
smell, temperature and feet sensors (detect floor, rug, tile). However, the person as well as
simple robots must rely on the structural information gathered from the surroundings in order to
identify the exact location in the environment. By detecting and recognizing obstacles,
structures and the relative distances between them, a robot would have an adequate
representation of the surroundings.

 RABI uses a feature recognition method derived from the results of [Gibson 62] and
[Hochberg 68]. The robot is able to identify an obstacle by traversing its boundaries, identifying
the corner angles and edge lengths in sequential order, and then matching it with existing
landmarks in memory. The edge following behavior is used to follow along the perimeter of an
obstacle, and a separate neural circuit is used to identify the features of the obstacle in terms of
the lengths of each edge and the angle between consecutive edges. Storing only corners and
edges is sufficient for mapping a 2D environment provided that ample detail is extracted. Each
corner must be identified by both an angle (magnitude) and an orientation (concave or convex).
For example, figure 5.5 shows three environments with identical edge lengths and corner
magnitudes, but some of the corners are oriented differently. Clearly, A and B should be
distinguishable, resulting in the need to store corner orientation. For A and C however, it is not
as clear.

 The sequential features of A and C are identical in every way. The only difference is
their global orientation with respect to the outside world. If A and C are closed off from the
outside world, then they are essentially identical. If however, there exists stimuli outside of the
environment such as lighting, noises, etc., then these two environments may need to be
differentiated. More on this in chapter 6.

A B C

Figure 5.5 Three environments with identical edge lengths and corner
magnitudes.

 113

5.2.2.2 Odometry and Angle Measurements

 The measurement of angles and edge lengths requires odometry. Since RABI uses only
a tripod gait for walking, the robot either moves ahead one unit or turns one unit 33. A simple
neural circuit allows the robot's movements to be rounded off into time units. This circuit is
shown in Figure 5.6.

0.5

POS.
LEG

LEFT
TURN

RIGHT
TURN

DEC. ADV. INC.

POS.
LEG

PULSE PULSE

0.5 0.5

0.
50.5

0.
5

0.5

Front Left Front Right

0.5

Figure 5.6 Position measurement circuitry. The DEC and INC
neurons indicate a left and right angular unit change. The ADV
neuron indicates a position change of 1 unit forward.

 Since only a tripod gait is used, then the robot will move forward once during the stance
phase of each front leg, thus twice per walking cycle. The LEG POS neurons indicate a stance
phase. The pulse neurons make sure that the positioning neurons DEC, INC and ADV, only
receive a count once per stance phase. The TURN RIGHT and TURN LEFT neurons are the
directional control neurons of Figure 3.13.

 The legs are disabled in the software version of RABI, in order to speed up the
simulation. One time unit in the simulation corresponds to the updating of each neuron network
exactly once. It is assumed that in each of these time units, the robot walked either forward, left
or right. Thus, the circuit of Figure 5.6 was reduced to Figure 5.7 for the software version.

33 One unit is approximately 2 inches and occurs twice per walking cycle. When turning, one unit is

approximately 15 degrees.

 114

LEFT
TURN

RIGHT
TURN

DEC. ADV. INC.

WALK

Figure 5.7 The position measurement circuitry
for the software version of RABI.

 With both positioning circuits, the robot is able to measure angles and edge lengths by
counting the number of times that the DEC, INC and ADV neurons are excited. For example, if
the robot turned left 6 times sequentially then the DEC neuron would be excited 6 times
indicating a 6 x 15� = 90� angle.

5.2.2.3 Feature Extraction

 When following an obstacle, the lengths of the edges can be determined by counting the
number of stepping units (via the ADV neuron) from endpoint to endpoint of the edge. The
robot needs to determine where an edge ends and where the next edge begins. This
determination can be made when the robot enters the re-align mode during its edge following.
Due to the simplicity of the antennae, the robot may occasionally need to turn slightly towards
or away from the edge it is following in order to remain relatively parallel to it. In this case, the
re-align mode is also used to keep the robot parallel to the edge and thus the re-aligning mode
may not always indicate an edge endpoint. If however, the robot makes a significant turn to
regain contact during re-aligning then, more than likely, this represents an edge endpoint or
convex corner of the obstacle.

 When misaligned, the robot requires only a slight turn to regain its parallelism with the
edge. By using some form of threshold when counting turns, the robot could distinguish
between slight misalignment adjustments and corners. For example, if this turn threshold is set
at 3 units, then turning 1 or 2 units during re-aligning would represent an attempt to align to the
edge whereas turning 3 units would indicate a change in edges (i.e. a convex corner on the

 115

obstacle boundary). Similarly, concave corners are distinguished from misalignment with a
threshold. Concave and convex corners are identified by negative and positive angles
respectively.

 Figure 5.8 shows the basic neuron network for obstacle feature extraction. This network
interprets positioning and sensor information regarding the obstacle's edge lengths and angles.
The INC, DEC and ADV neurons are the positioning neurons from Figure 5.7. The ANGLE and
DISTANCE neurons are accumulative neurons that count the number of consecutive turns and
advances respectively. The DEC and INC neurons decrease and increase the total angle sum
respectively. At sharp corners, the robot may alternate between turning and advancing since it is
unable to turn and advance simultaneously. Thus, the robot must distinguish its forward
advances along an edge and its forward advances while turning a corner. The ACCUM EDGE
neuron counts the number of forward advances since the last turn was made. Once this
accumulation reaches a threshold of T1, it represents the fact that the robot is following along an
edge; as opposed to turning a corner. This threshold, T1 represents the minimum number of
forward units to be advanced in order for the robot to consider it an edge. In essence, T1
represents the minimum recognizable length of an edge. A similar threshold is used for corner
detection. Since occasional slight turns may be the result of a misalignment problem, the
number of consecutive turns must have a threshold so that the slight directional changes can be
distinguished from the larger turns at corners. T2 is the minimum number of turns required in
order to be considered a corner. That is, T2 is the minimum detectable angle.

 116

ACCUM.
EDGE

STRAIGHT

RESET
EDGE

ADV.

+

+

-

DISTANCE

+

T1

DETECT
EDGE

0.5

INC

ANGLE

AHEAD

0.5

0.5

CORNER
TURN

ANGLE
RESET

DETECT
CORNER

0.50.5

T2T2

DETECT
CORNER

DEC

Figure 5.8 The neural circuit for feature extraction.

 By decreasing the value of the cornering threshold T2, the feature detection circuit
becomes less sensitive, resulting in fewer detectable corners. Similarly, if the threshold is kept
high, the circuit is able to detect every corner with greater precision. Figure 5.9 shows the
results of varying the cornering threshold. The map of an environmental border is shown for
corner threshold values of 1.0, 0.5, 0.34 and 0.25. The darkened lines represent detected edges
and the white circles represent detected corners. With these threshold values, the robot can
detect corners of 1, 2, 3 and 4 angular units, which is approximately 15� , 30� , 45� and 60�
angles. Notice that with a threshold value of 1.0, every turn is detected, even turns that were
issued along an edge due to misalignment. Moreover, the larger-angled corners are detected as
many small corners. Clearly, this value is too precise. At the other end, a value of 0.25 can
only detect angles of 60� or more. This value omits many of the corners, resulting in a very
general and imprecise mapping representation. Values of 0.34 and 0.5 are intermediate choices

 117

that provide a reasonable representation closely resembling the actual environmental structure.
RABI uses a value of 0.34, allowing the detection of 45� angles.

T2 = 1.0 (15° angles) T2 = 0.5 (30° angles)

T2 = 0.34 (45° angles) T2 = 0.25 (60° angles)

Figure 5.9 The effects of varying the cornering threshold.

 A similar effect is observed by varying the edge threshold value of T1. By changing the
edge threshold, the minimum detectable edge length can be set. Thus, with a high threshold
value (1.0), small edges of 1 unit length 34 can be detected. With a low threshold value, only
larger edge sizes can be detected. The result of varying this threshold is similar to that of
varying the cornering threshold in that the smaller edges are combined to produce more general
representations. RABI uses a value of 0.2 so that the robot must move straight along the border
for approximately two body lengths in order for an edge to be detected. Perhaps, it would be
better to alter these threshold values over time. This would allow the robot to create specific

34 One unit length is approximately 5 pixels in the simulation. This is about half the robot body length.

 118

mappings for new or dense regions and use lower resolution mappings for the familiar or less
dense areas. This adaptivity in resolution was not incorporated into RABI but is an interesting
topic for future research.

 Note that the DEC and INC neurons increase and decrease the accumulated energy of the
ANGLE neuron. Consequently, a left turn will cancel out a right turn and vice versa in the
overall angular sum. When turning corners, however, one direction is dominant over the others
and the sign of this angle will prevail. Each DETECT CORNER neuron detects a corner as a
dominant positive or negative angle. Whenever an corner is detected, the TURN CORNER
neuron is excited indicating that the robot is turning a corner. The robot remains in this
cornering mode until a significant number of forward advances is detected. That is, the
DETECT EDGE disables the cornering process whenever the corner has been turned and the
robot begins to follow a new edge.

 The STRAIGHT and AHEAD neurons are used to ensure that the robot moves at least
two forward units before it begins adding the forward units to the distance sum. This ensures
that alternating turn and forward motions (as seen when turning a sharp corner) does not register
as part of the edge length. In a sense, it reduces the error on the
measurement of the edge lengths.

 While following an edge, the robot may often become misaligned, resulting in many
small direction adjustments which may build up energy in the ANGLE accumulative neuron.
Whenever an edge is detected, the accumulated energy of the ANGLE neuron is reset by the
RESET ANGLE neuron. This prevents the minute direction adjustments from interfering with
the angular data at the next detected corner.

 Sometimes, once a corner has been turned, there may be another turn in the opposite
direction (zig-zag shape) as shown in Figure 5.10. Since corners are only stored when the robot
begins following a new edge, then the corner C1 would not be stored because it is not followed
by an edge. Instead, C2 will undo the angle made by C1, and when E2 is reached, the angle will

be 0.

 119

E 1

2E

C1

C 2

Figure 5.10 Zig-zag path with consecutive corners C1
and C2 of opposite types.

 A mechanism is needed to detect consecutive corners of opposite direction so that each
corner could be stored. This mechanism is realized by adding more neurons and connections to
Figure 5.8 as shown in Figure 5.11. The TURNING LEFT and TURNING RIGHT neurons are
sustain neurons that indicate if the robot is turning a left or right corner. The CHANGE RIGHT
and CHANGE LEFT are used to detect when the robot turns from left to right or right to left
without advancing forward. When a change from one direction to another is detected, one of
these neurons will be excited and inhibit the TURN CORNER neuron. Consequently, if there is
a significant angle built up, then the corner will be stored.

0.
5 0.5

LEFT
TURNING

CHANGE
RIGHT

0.5

RIGHT
TURNING

CHANGE
LEFT

0.5

DEC INC

CORNER
TURN

Figure 5.11 Additional neurons in the feature
identification network.

 120

5.2.2.4 Landmark Memory

 RABI's memory is arranged in a linear fashion, essentially one long list of memory
neurons. Each neuron can store a value 35 representing a corner angle or edge length.
Moreover, adjacent memory neurons alternate between corner neurons and edge neurons.
Links join the neurons that represent adjacent features of a landmark. Figure 5.12 depicts a
simple landmark mapping. The values of the neurons correspond to the corner angles (15�
units) and the edge lengths (forward units). The bottom link connects the first and last neurons,
due to the closed nature of perimeters.

 In the general case where an environment is cluttered with obstacles, there is a need to
separate the landmarks in memory. The simplest way to do this is to fill up the memory in a
linear fashion keeping pointers to each separate obstacle. Figure 5.13 depicts the memory
contents after 3 landmarks have been identified. Note that one of these landmarks may represent
the environmental boundary but it is not distinguished from the others.

5

3

51

2
4

3
-6

4

5
2

8

4

7

5 4 3 8 5 -6 1 2 2 4 5 3 47

Environment

Mapping

Edge Neuron

Corner Neuron

Figure 5.12 The mapping of a simple environment.

 This simple linear memory has the ability to store neurons in a simple and quick manner.
There is no ordering of the different landmarks. The landmarks are stored linearly as they are
encountered. Since human memory is known to be self organizing, this method is not as
biologically plausible as that of [Nehmzow and Smithers 91]. It does however, allow a quick
and simple implementation with simple operations.

35 Biologically, the value may be stored as a threshold.

 121

A linear memory of edge and corner neurons

Figure 5.13 Storing multiple landmarks in memory keeping pointers to each landmark. The
circles represent memory neurons and the connecting lines indicate spatial adjacency.

 RABI actually uses a dual memory system consisting of a short term memory (STM) and
a long term memory (LTM). The STM has a capacity of 8 neurons whereas the LTM has an
unlimited capacity. When tracing out a landmark, the corner and edge information is stored in
the STM only. Once this memory becomes full, it is transferred to the LTM for permanent
storage. The STM is used as a means of temporary storage for use in comparing "chunks" of
sequential features to identify landmarks. The robot does not begin storing information in LTM
unless it believes that this information pertains to a new landmark. Essentially, the robot fills up
the STM and compares it with existing landmarks looking for a match. If a match is not found,
the robot then begins a complete trace. More is explained in the next chapter.

 When tracing a landmark's perimeter, a new pointer is created and new neurons are
appended to the memory for each corner and edge encountered. Appending neurons can be done
in O(1) time. Once learnt, the neurons remain in the memory 36.

5.2.2.5 Storing Data in the Memory

 During the edge following behavior, the feature extraction circuitry will detect corners
and edges. These corners and edges must be stored sequentially in memory. Because of the
alternating nature of the landmarks, each time a corner has been turned, the corner and the last
edge traveled must be stored in memory. Figure 5.8 and Figure 5.9 show the mechanisms
responsible for detecting the corners. Figure 5.14 shows the additional neurons required to
instigate the storage process.

36 There is an assumption here that the environmental landmarks remain unchanged.

 122

ACCUM.
EDGE

STRAIGHT

RESET
EDGE

FOLLOW
LEFT

PULSE

FOLLOW
RIGHT

ADV.
RESET

POSITION

+

+

-

DISTANCE

+

T1

DETECT
EDGE

0.5

INC

ANGLE

AHEAD

0.5

0.5

0.4
CORNER

TURN

0.4

PULSE

ANGLE
RESET

DETECT
CORNER

STORE

START

0.50.5

0.
2

0.
2

0.4

T2T2

DETECT
CORNER

DEC

RESET

Figure 5.14 The expanded neural circuit for feature extraction. This circuit includes neurons to instigate
memory storage.

 In the circuit, a PULSE neuron is excited by the TURN CORNER neuron. This falling-
edge pulse neuron emits a high signal whenever the TURN CORNER neuron is disabled. This
occurs once each time a corner is turned. The STORE neuron is used as a threshold to make
sure that the new corner and edge information should indeed be stored. Since each neuron in the
circuit is always computing, there is a need for a mechanism to disable the storage process unless
the robot is tracing an obstacle (i.e. exhibiting the edge following behavior). If the robot is
performing the edge following behavior and there is corner information present, then the STORE

 123

neuron will emit a high output, resulting in memory storage. The START neuron is used as a
flag to indicate that a new landmark is being traced. A PULSE neuron enables this start neuron
whenever the edge following behavior begins. The START neuron remains "on" until the first
corner/edge pair is stored.

 The memory was not implemented as a neural circuit since the process of explicitly
creating new memory locations and storing data within it is not a trivial task for a neural circuit .
Furthermore, it is not clear how the landmark pointers would be kept within the memory. A
memory system has been implemented which was coded with a top down strategy. The system
is responsible for storing and matching memory neurons as well as navigation. The memory
system was created as a separate unit which interfaces to the neural circuitry through a handful of
neurons as shown in Figure 5.15.

TRACE RECOGNIZED

START

STM

Storage
Control

Processing

Neuron
Creation

STORE

RESET
POSITION

Memory
Control

END

LTM

FOLLOW
LEFT

ANGLE DISTANCE

Memory System

NOT
RECOGNIZED

Navigation

GO
RIGHT

GO
LEFT

MAKE
LINK

TURN
TO

LINK

Figure 5.15 The external neurons connected to the memory unit.

 When the memory receives a high signal from the STORE neuron, new angle and edge
neurons are created with values pertaining to the stored energy in the DISTANCE and ANGLE

 124

neurons. The START neuron indicates whether or not the new corner and edge is part of a
brand new landmark. The POSITION RESET neuron is excited by the memory in order to reset
the accumulative neurons to begin measurements for the next corner and edge. The FOLLOW
LEFT neuron inputs a signal to the memory so that when storing the information, the proper sign
of the angles are used. That is, depending on the direction traveled along the obstacle
(clockwise or counter clockwise), the angles will differ in sign. An angle of 60� during
clockwise traversal for example, would represent an angle of -60� during a counter clockwise
traversal. The TRACE and END neurons are described in the next section; essentially they are
used to determine if the robot is tracing and obstacle and when the robot has completed the
traversal.

 Once the memory becomes full, a processing unit compares the STM with the LTM to
look for a match. The RECOGNIZED and NOT RECOGNIZED neurons are thus excited
according to whether or not the contents of the STM matched in the LTM. These neurons are
used to enable and disable appropriate instinctive behaviors. As will be mentioned below, the
NOT RECOGNIZED neuron is responsible for enabling the boundary tracing process. The GO
LEFT, GO RIGHT, MAKE LINK and TURN TO LINK neurons are all used for navigation
purposes; they are discussed in the next chapter.

5.2.2.6 Completing a Landmark

 In order to map out a perimeter, the robot must be able to detect when it has completely
gone around the obstacle once. One method of detecting this "full loop" is to store the initial
position and orientation when starting to follow the perimeter. While mapping out the border,
the position and orientation of the robot is updated with respect to the starting position. Once
the robot arrives back at the starting position with the starting orientation, the perimeter has been
completed. Though simple, this method encompasses positioning problems. Due to the
inaccuracies of robot motion, there will be a growing amount of positioning and orientation error
while traveling 37. This could lead to false detection of the start position as shown in Figure
5.16. In the diagram, the accumulated error during traversal causes the measured path to be
slightly off from the actual traveled path, and consequently the start position is believed to have
been reached when indeed it has not.

37 Weight shifting in walking robots could sometimes affect the amount of turning and forward movement per time

unit. That is, in one turn the robot may change its orientation by 10� and 14� in another.

 125

Actual Path Measured Path

Starting
Position

Figure 5.16 False detection of the starting position.

 Another possible method of attempting to identify a loop completion is to traverse the
boundary more than once, attempting to match up the features during the second lap. This
method will not work unless the obstacle has distinct features. A square perimeter, for example,
will always detect identical edges and corners no matter how many laps around the border.
Complex perimeter shapes also cause a problem if there are any repetitive sequences in its
features.

 Perhaps the best way of detecting a completion of the perimeter is to leave behind
something that can be detected at the end of the loop. This is the only feasible approach given
the lack of precise metric information and distinct landmark features. A chemical residue left at
the starting point would be the choice of ants, but a robot would need additional sensors to be
able to detect the chemical. Furthermore, the robot would need to replenish its chemical supply,
unlike ants whose chemical is biologically replenished. It is easier to create some sort of
electronic sensor that could detect a metal rather than a chemical. A robot could leave behind a
marker in the form of a small metal disk along an edge of the perimeter. [Dudek et al. 91] use a
similar type of marker as part of an exploration strategy. All that is needed is a small actuator to
deploy the disk and lift it back up once the trace is completed. One more sensor is also needed
to detect the disk when it is underneath the robot 38. The neural circuit of Figure 5.17 contains
the simple mechanism for disk dispensing.

38 The software version of RABI simulates such an actuator and sensor. Due to time constraints, the hardware

version was not blessed with such a feature.

 126

WAIT

END

0.5

0.5

DETECT
DISK

PULSE

MOTOR
DISK

PULSE TRACE

NOT
RECOG.

CORNER
TURN

MAP

0.5 0.5

0.5
COR.

ANT L ANT R

0.5
0.5

DOWN
DISK

0.5
0.5

BUILD
MAP

Figure 5.17 Obstacle tracing and disk dispensing network. The detection of the
disk during tracing indicates a completed traversal.

 The TRACE neuron is excited whenever the robot is about to begin tracing out a
landmark during the map-building process. When this sustain neuron is first excited, a PULSE
neuron excites the DISK MOTOR neuron, which is a motor neuron connected directly to the disk
dispensing actuator. By exciting this neuron, the disk is dropped. The DETECT DISK neuron
connects directly to the disk sensor. Since the disk is dropped beneath the robot, the robot's disk
sensor will detect the disk immediately. The disk must be ignored until the robot has completed
the tracing of the landmark. The DETECT DISK neuron excites a PULSE neuron whenever the
disk is no longer detected (i.e. just left behind). Once excited, this falling edge pulse neuron

 127

"turns on" a WAIT neuron which is used to indicate that the robot is now waiting until the trace
is complete before detecting the disk again.

 The WAIT neuron is initially disabled by the rising edge pulse neuron when the tracing
begins. When the disk is detected again, the combined output of the DETECT DISK and WAIT
neurons turns on the END neuron which represents the end of a trace. The END neuron then
inhibits the DISK MOTOR neuron, resulting in the disk being picked up. This END neuron
disables the TRACE neuron and disables the TURN CORNER neuron of the feature extraction
network in Figure 5.8 to ensure that the last edge and corner are stored. The MAP neuron is
used to start the tracing process whenever the robot encounters environmental features that are
not recognized while it is building a map.

 The idea of dropping a disk as a marker seems simple and efficient. There are, however,
a few problems that can arise. The robot must be able to detect the disk once it arrives back at
the starting location. If the robot is a different distance away from the wall than when it started,
the disk may not be detected. This is not a problem with a simulated robot since there are no
positioning errors. For real robots this would be a problem unless the robot had some sort of
mechanism to locate a disk that is nearby, perhaps within a few inches. Another problem occurs
when the robot drops the disk within a corridor or hole as shown in Figure 5.18 (a) and (b)
respectively.

(a) (b)

Figure 5.18 Dropping a disk in a corridor or hole.

 If the disk is dropped in a narrow passageway, the robot will detect it when coming out of
the passageway. Thus, the disk will be picked up before a complete trace is made and an
incomplete representation of the perimeter is stored in memory. The easiest way to prevent this
from happening is to disallow the robot from dropping the disk inside a narrow passageway.
That is, if the robot detects obstructions on both sides of its body, then it should not drop the disk
until it is free from one of the obstructions. One additional link is needed to solve this problem.

 128

The COR. neuron of Figure 5.17 corresponds to the neuron from the vacancy network. When a
corridor is detected, the PULSE neuron from the disk dispensing network is inhibited, preventing
the robot from dropping the disk until exiting the corridor.

5.3 Combining Mapping Techniques

 Grid-based mapping techniques can provide a simple and accurate map provided that the
robot has precise odometry mechanisms. Landmark-based mapping is useful when precise
positioning is not possible. Perhaps an integration of both techniques could provide an elegant
solution in which the robot could take advantage of both methods. Local grid maps could be
developed and embedded into a global landmark-based map or vice versa. With the quadtree
approach, open areas can easily be identified as large grid units. These large open spaces can be
labeled as landmarks and combined with a landmark-based map. This would, for example,
allow a robot to identify "rooms" in a building by comparing their sizes and structure. Figure
5.19 shows a topological mapping for an indoor environment. Each ring represents a network of
corner and edge neurons representing the boundaries of a room. The links connecting the rings
correspond to topological adjacencies of the rooms.

 This integration of mappings would also allow the robot to chose between free space or
obstacle space. If the robot wished to remain in vacant areas, then the free space (grid) map
would be used since it maps out all paths that may be traveled. When the robot wishes to remain
close to obstacles, it would then utilize the landmark map.

 The foremost advantage of this combined map, would be that of landmark identification.
The relative location in a grid would aid in identifying similar landmarks. The problems
associated with landmark identification are discussed in the next chapter. This dual mapping
strategy was not implemented for RABI due to time constraints. It is, however, a promising area
for future research.

 129

2
3

5 6

74
1

8

Topological Mapping

Figure 5.19 A topological mapping of an indoor
environment. The circles represent landmark
mappings.

5.4 Summary

 There are a variety of mapping techniques used to map out 2D environments. Among
these, landmark-based techniques can provide adequate mappings without the common
positioning problems encountered more often in the other methods. Moreover, landmark-based
mapping is possible with very simple sensors and requires less memory in general to store the
information. This approach to mapping is not without problems since the features may be
similar in a many of the landmarks, causing a problem related to landmark distinction.

 The memory system used by RABI interconnects with the neural circuits through a
handful of neurons. As a result, the memory system is essentially a "black box" whose contents
can be altered without having to change the neural circuits. The use of a dual memory allows
the features of landmarks to be grouped together in "chunks" for partial matching of landmarks.
This allows the robot to ignore landmarks that have already been investigated so as not to waste
time when mapping. It can also allow the robot to detect a landmark without having to trace the
entire perimeter. By mapping the environment, the robot is able to learn the locations of food
sources and obstacles. This learning process provides a form of adaptivity since the robot is
essentially adapting to the environment by learning the areas important for its survival needs.

 130

∼∼

Chapter 6
Navigating in the Environment

∼∼

 The use of internal maps can directly affect the behavior of an animal. These maps can

contain topological and spatial data that can allow the animal to efficiently navigate from one
location to another. The maps can also associate specific locations with certain types of stimuli
such as food, energy, hazardous regions, dead ends, unfavorable climates etc. Knowledge of the
locations of such stimuli may be crucial for survival as well as being valuable sources of
information that could improve the efficiency of the robot. A robot can use an internal map for
the same reasons, learning the locations of various energy sources etc.

 In order to use a map, a robot must handle three subproblems. First, the robot must be
able to identify its location within the map. This presents a problem due to data discrepancies,
imprecise map data and ambiguities between landmarks. The use of a landmark-based mapping
strategy provides only an estimated position and therefore the robot's location is never known to
precise detail. Second, the robot must have some sort of navigational system that continually
updates its approximate position within the internal map as it moves among landmarks. Lastly,
the robot needs a mechanism that allows it to travel efficiently from point to point. This point to
point navigation may require the robot to travel from one landmark to another. Therefore, it
may be useful for the robot to determine where it is with respect to the other obstacles in the
environment. All of these problems are discussed in this chapter along with solutions that were
implemented by RABI.

6.1 Navigation Strategies

 When navigating in an environment, the robot needs some sort of indication of where it is
in the environment so that it can travel efficiently from point to point. The position may not

 131

need to be known precisely, sometimes a rough estimate is adequate to provide a clue to the
robot's location. As long as the robot has a general idea as to where it is in relation to other
objects and locations in the environment, then navigation is possible. Usually the robot builds
up a map from which it is able to compute a path from one location to another.

 For simple mappings such as the grid-based approach, the robot relies on dead reckoning.
With this method, the robot usually has an odometer and orientation sensor. Every time the
robot moves forward or turns, the robot's position in the map is updated with respect to some
known starting location. Due to the inaccuracy of robot sensors and imprecise mappings, there
is an accumulating error associated with each position. This error must be reduced (reset)
occasionally by verifying a precise location in the environment. [Rosten and Krotkov 92] give a
description of the dead reckoning technique. Due to the imprecise measurements of RABI's
forward and angular movements, the dead reckoning approach is not reliable.

 Once the position is known, the robot could then compute a path from its current location
to its final destination. For the shortest Euclidean path, Djikstra's algorithm provides an elegant
solution. Sometimes, there are certain regions in the environment which are more traversable
than others. In this case, there may be weighted regions in the environment which could affect
the overall desired path. [Mitchell 89] describes the problems of navigating with weighted
regions. This method is useful for the polygonal mapping techniques, for which again there is a
problem with position estimation.

 Consider landmark-based mapping. A landmark-based map contains information about
the environmental structure. If these structures (landmarks) can be distinguished from one
another, then a robot could determine its location in the environment by identifying a single
landmark. Thus, a robot that is picked up and placed down in a different location would easily
be able to relocate itself by first finding an obstacle edge and tracing its boundary until the
obstacle is identified (matched in memory). Once matched, the robot has a fairly accurate
indication as to where it is in the environment and where the other landmarks are with respect to
its present location. Clearly, this approach does not require accurate position estimates since the
landmark shapes are the only cues as to the robot's location. This approach brings with it many
problems associated with landmark identification.

 132

6.2 Landmark Identification

 When tracing out landmarks as mentioned in the previous chapter, the robot builds up a
map containing representations of the obstacles in the environment. These landmarks are stored
in memory for future reference. In order to make use of this stored information, the robot must
be able to identify the landmarks it encounters by comparing it with the ones in its map. This
matching process presents a host of problems dealing with discrepancies, identical objects and
inaccurate representations.

6.2.1 Data Discrepancies

 During the tracing of an obstacle perimeter, the robot makes rough estimates of edge
lengths and corner angles. With binary collision data, there is no way of accurately measuring
these angles and distances. Moreover, since the robot cannot turn while advancing, convex
corners must be partially passed before turning begins. This presents a problem with tracing
borders clockwise and counter-clockwise. Figure 6.1 shows a snapshot of the mappings
produced from a clockwise and counter-clockwise traversal of a simple rectilinear environment.

 The snapshot shows that there are differences in edge lengths and corner angles. In
addition, there is a kind of symmetry between the two mappings. This symmetry is the direct
result of the cornering technique of the edge following behavior. These two mappings are very
similar indeed. Getting them to match with each other may not be a problem since the
differences are small.

 A bigger problem arises due to the binary characteristic of the antennae. Since the
antennae have no concept of proximity, then there is a little bit of unpredictability as to how
close the robot will get to an edge before it is detected. Thus, traversing a perimeter in the same
direction can yield a different mapping if the robot is closer or further from the edge the second
time around. This presents a misalignment problem as shown by the snapshot in Figure 6.2.

 133

Figure 6.1 CW and CCW mappings of a rectilinear environment.

Figure 6.2 Misalignment problem caused by the lack of proximity
detection.

 The snapshot shows the differences in the mappings obtained from three laps around the
environment. Only two "paths" can be seen in the image, and in the bottom right portion of the
environment, only one path is visible. This is because after one and a half times around the
environment, the robot became "aligned to the edges" This alignment ensures that any more
laps around the perimeter will result in an identical mapping. The binary characteristic of the

 134

antennae and the accuracy of the turning and forward movements of the simulated robot are
responsible for this phenomenon. This example shows that small differences in the distance
between the robot and the obstacle can significantly affect the mapping that is produced.

 Another problem that emerges from the binary nature of the antennae is that of
estimation. A mapping of a curved surface will be estimated as a polygon. An environment
such as the circular environment in Figure 6.3 would be detected as a polygonal shape. The
consequence of this estimation is an imprecise representation of the environment.

Figure 6.3 Estimating a polygon from a
circular environment.

 Furthermore, such an environment does not allow corner identification since anywhere
along the border, the edges and corners are of the same magnitude. Thus, no corner is
distinguishable from the others and there is no way of determining, with any accuracy, the robot's
location in the environment. In fact, this problem occurs for any environmental shape which is
symmetric as mentioned previously in Figure 5.4 (a) and (b).

 Each of these discrepancies must be overcome or handled such that the robot is able to
identify the landmarks solely on the basis of consecutive edge and corner information. Since
most of the errors are due to minor angle and edge length differences, the problems can be fixed
by allowing an error when matching neurons. In the case when different mappings are created
for the same obstacle as in Figure 6.2, the robot must be able to match up both paths in memory.
Since these paths have a different number of neurons, the robot should be able to generalize the
two paths by recognizing that they indeed represent the same obstacle.

 135

6.2.2 Distinguishing Between the Inner Obstacles and the Border

 The border of an environment is a unique type of landmark. It is different from all the
other landmarks since it surrounds them. It would be useful to be able to distinguish the
landmarks as being either an inside landmark or the environmental border landmark. Insects
when trapped, spend much of their time searching the enclosing boundaries in order to determine
a way out. In the case of indoor robots, the energy sources may lie on walls (i.e. sockets) which
are part of the environmental border.

 As it turns out, this task is easily accomplished. Each landmark can be represented as a
simple polygon. Due to the winding (spiraling) properties of polygons, a traversal of the interior
angles of a polygon will yield an angle sum of either 360� or -360� . This is proved by [Carmo
76]. Furthermore, since the outer environmental perimeter contains all other obstacles, it is
similar to a polygon with holes in which the border has an opposite orientation. Following the
boundary of an inner obstacle on the left will always result in a counter clockwise traversal. The
outer border however, would result in a clockwise traversal.

 The winding property of polygons ensures that by summing all the values of all the
corner neurons, their sum should be 24 (i.e. 15� x 24 = 360�) or -24 units 39. Assuming that all
tracing keeps the border to the left of the robot, then the outer border will yield a -24 unit sum
where as the interior obstacles will yield a +24 unit sum; with an error associated with each value
of course. This angular sum provides a method of distinguishing the outer environmental
perimeter from the inner obstacles. Actually, the sign of the angle sum is adequate for making
the distinction.

6.2.3 Identical and Similar Obstacles

 When mapping out an environment, the robot may encounter two identical objects. If
this is the case, then there is no way of distinguishing between the two obstacles since the
landmark-based mapping technique does not record spatial adjacency. In the environments of
Figure 6.4 for example, only two obstacles can be distinguished; the outer border and the inner
obstacle. Moreover, due to the lack of spatial information and allowable error, both
environments would appear identical.

39 In practice, the sums are not usually too accurate resulting in approximately + or - 10� .

 136

Figure 6.4 Two environments that appear identical due to the lack of spatial information
and the allowable error during matching.

 This example points out an important shortcoming with the landmark-based approach.
As mentioned in the last chapter, perhaps a combination of different mapping strategies can
combine the landmark map with a spatial map obtained from dead reckoning. This combination
would enhance the overall map allowing the two environments to be distinguished. This is a
topic for future research but for now , an assumption is made that the environment is sufficiently
complex with obstacles of different shapes.

6.2.4 The Matching Process

 The problem of matching features with an internal map is not as trivial as it may seem.
Due to the discrepancies discussed, the robot may actually map out the same obstacle more than
once, each time producing a slightly different map. An efficient pattern matching process
should be able to somehow recognize that two slightly different mapping sequences actually
represent the same obstacle. It is impossible to match sequences with 100% accuracy since the
amount of discrepancy of any one mapping is unknown. The best that the robot could do is to
allow a specific error in the corner and edge sizes during the matching process. As a result, if
any two mapping sequences match within the error allowed, then they are considered to be
mappings of the same obstacle. For this reason, similar obstacles cannot be distinguished using
solely their features.

 137

 Given two sequences of obstacle mappings, it must be determined if they represent the
same obstacle. If they do, then the two mappings are combined into one map, storing the
differences. This process represents a form of generalization in which two or more mappings
are generalized into one map with multiple paths. Figure 6.5 gives an example of three similar
mappings of the same obstacle and the generalized map resulting from the matching process.

(a) (b) (c) (d)

Figure 6.5 Three similar obstacle mappings (a), (b) and (c) and the resulting generalization (d).

 Note that the three mappings have small differences in the corner angles. These
differences cause the mappings to have a different number of neurons since some corners are
occasionally not detected (due to their small angle). The generalized map combines the similar
paths of all three mappings and adds additional paths that correspond to the differences. The
memory neurons in these additional paths are termed bypass neurons since they bypass the
existing path. This generalization technique prevents the memory from storing duplicate copies
of mappings.

 The generalization process is essentially a matching problem in which neurons from two
layers 40 are matched sequentially until there is a discrepancy or until all neurons have been
matched. The pseudo code for the basic matching algorithm is described with three routines
which are presented in Appendix A. The algorithm attempts to match each layer in memory
with the new layer. It does this by matching the neurons sequentially one by one. Since the
layers are circular linked lists of neurons, there may be a problem in determining the starting
point for matching the two layers. That is, a complete match can only be determined whenever
the two starting neurons indeed represent the same landmark. Figure 6.6 for example, shows

40 A layer here indicates a sequential list of memory neurons representing edges and corners from an obstacle

mapping.

 138

two sequences of neurons that are indeed identical, but they are offset due to the circular nature
of the lists.

34 3 17 5 8 -4 20 6 4 -6

-4 20 6 4 -6 34 3 17 5 8

Figure 6.6 Two identical matching sequences which
are offset due to the circular nature of the linked list.

 In order to rectify this offset problem, the algorithm chooses the first neuron from each
layer and attempts a match. If no match is found, the next neuron in one of the layers is chosen
as a starting offset and then a match is attempted again. In worst case, each neuron of a layer is
used as a starting point requiring the matching process to be attempted once for every neuron in
the layer. Since each neuron in each layer may be processed for matching, this method has a
worse case time complexity of O(nm2) where n is the number of layers and m is the maximum
number of neurons per layer.

 The generalization algorithm uses the basic matching algorithm discussed with additional
processing during the matching process. Since there may be two mappings of an obstacle that
have a different number of neurons, then there may be a need to match a single neuron from one
layer with multiple neurons from another layer so that slightly different mappings will match and
be generalized as seen in Figure 6.5. To do this, the algorithm adds an additional condition to
the matching process. If a neuron does not match another, the algorithm looks ahead to
determine whether several neurons can be combined to make a match. Figure 6.7 (a) and (b)
represent the layered neurons from two obstacle mappings. The generalized mapping is shown
in (c). Note that the two layers match (within a small error) except for the darkened edges.
When doing a sequential mapping, the generalization algorithm will match darkened edge 14 of
layer (a) with the 7, 2, 7 piece of layer (b) since the combined edge length of the piece matches
(within a small allowable error) with the edge length of 14 from layer (a). Similarly, the 6, 3, 14
piece of layer (a) matches with edge 21 of (b) for the same reasons. The algorithm keeps track
of these "special piece-matches" and uses them to create a combined, generalized map as shown
in (c).

 139

(a) (b) (c)

-4
-7

2

-4

-9

3

-7

19

9

3

14

15
6

14

7
27

-5

13

-9

21

-7

18

-4
-7 9

3 2
7
2

7

-9

21

-7

-4
-7 9

3 2

14

3
14

6

19

15

-4

Figure 6.7 Two layers of neurons (a) and (b) that represent the same
obstacle mapping. The darkened lines show the areas that differ. The
resulting generalized mapping (c).

 This process of matching pieces with a single neuron does not add to the overall time
complexity since each neuron is being examined only once per match attempt. Once combined,
the two original layers are discarded and the combined layer is stored. This generalization
process is useful since it eliminates duplicate information from similar obstacle mappings,
storing only the differences.

6.3 Improving Identification Through Additional Sensor Information

 By now it is clear that the landmark-based mapping technique is unable to accurately
represent the environment in some situations. It is easy to restrict the robot to certain
environments in which the landmark-based mapping technique flourishes. If the robot is
required to operate in a simple environment, then a problem arises with using this technique.
The problem is mainly due to the lack of sensor information. The robot is equipped with only
simple sensors and thus must make many assumptions to fill in the gaps. By adding additional
sensors such as a compass, gyroscope, beacon detector etc, the robot may be able to better
distinguish the environmental obstacles. This thesis however, is not aimed at developing a
complex map building robot, instead the topic of interest is to determine just how well a robot
can perform with a minimal amount of sensor information. Nevertheless, this section presents a
couple of ways in which the landmark identification process can be improved upon by adding
additional sensors.

 140

6.3.1 Global Orientation and Outside Influence

 One method of improving the identification process is to determine spatial adjacency.
This can be done by using external cues such as natural magnetic fields (north on a compass),
lights or beacons. Overhead lights for example, have been known to affect the way in which a
mouse learns and travels through a maze. In fact, in some cases, the internal map of a rat was
found to be highly dependent upon such external cues. It is possible for a robot to make use of
an outside influence to give it a sense of global orientation similar to that of a compass. An
external light source can act as a direction indicator which would allow the robot to determine
the orientation of the obstacle edges relative to one another. This additional orientation
mechanism could also provide a useful tool for determining spatial adjacency. The robot could
determine the corner of an obstacle that is closest to the outside source. The dotted lines in
Figure 6.8 represent the path from the closest corner of each obstacle towards the light source.

Outside Light Source

Figure 6.8 Additional spatial information obtained from an external cue.

 In the first environment, the top two obstacles are distinguishable from the lower two
since their corners are closer to the external source. Furthermore, the obstacles can be
distinguished from left to right by the angle that each corner makes with the source. In the
second environment, all obstacles are distinguishable in a similar manner. This method may be
better than using a simple compass since the additional angular information is not present in a
compass.

 141

 It is clear that external cues can play an important role in the gathering of spatial
information which is useful for map building. The external cue however, must be fixed and
easily identified. Using the sun as a guidance tool may cause problems due to the earth's
rotation. In addition, clouds and nightfall can prevent the robot from obtaining the external cue
information. Indoor environments also have problems with lighting as there may be many light
sources within it. Perhaps a better external cue could take the form of a beacon which emits
ultrasonic bursts or infrared light, but these require the environment to be altered which may not
be suitable for many nanobot applications.

6.3.2 Single, Dual and Infinite Disks

 It has been shown that a disk can be used as a marker for detecting the end of a complete
traversal of an obstacle. With only one disk, the disk must be picked up after each obstacle trace
for use in the next trace. This means that a robot has no indication as to whether or not it has
traced out an obstacle except by comparing it with the obstacles in memory. It would be useful
to have the robot leave behind a special marker at each obstacle so that it knows if the obstacle
has been traced before without having to retrace.

 Consider a robot equipped with N + 1 disks in an environment with N obstacles
(including the border). Now, the robot does not need to pick up a disk that has been laid down
since the robot has enough to leave one at each obstacle border. Clearly, the robot now has an
indication as to whether it has visited an obstacle border before, since a disk will be encountered
along the edge during a traversal. If all these disks are indistinguishable however, the robot
would not be able to use them as a means of detecting a full trace. As in Figure 6.9, the robot
would begin a trace of obstacle A by dropping disk d1. During the traversal of obstacle A, the
robot would detect disk d2 which had been left behind from a previous traversal and would not
be able to distinguish it from d1. Thus, the obstacle will be assumed to have been completely

traversed resulting in an incomplete traversal.

 This is indeed a problem since the existing tracing algorithm depends on the detection of
the disk laid down at the start of a trace. Thus, if multiple disks are to be used, they should be of
a different type. That is, a type 1 disk could be used for tracing as done previously and all other
N disks (of type 2) could be used as markers indicating a previous traversal. Thus, disk d2

would not present a problem since the robot wouldn't detect it as a type 1 disk and could continue
on until d1 is found.

 142

A

d 2

d1

B

D

C

Figure 6.9 Tracing problem with similar disk types.

 There is one small matter of efficiency that must be dealt with. Assume that the situation
in Figure 6.9 has occurred where the robot detects disk d2. The robot now knows that it has
traced out this obstacle border before, therefore further tracing is not needed. But disk d1 must

be picked up again for use in the next traversal. Thus, even though the robot does not need to
trace the obstacle again, it must continue the trace in order to arrive back at d1 so that it can be

picked up again. This is rather inefficient. Perhaps it would be more efficient if the robot could
detect if an obstacle has been traced previously without having to trace it out until the marker is
found.

 One possible method of immediate detection is to place disks all along the border of an
obstacle as it is traced as in Figure 6.10. When the robot encounters any edge which has been
traced previously, it will immediately detect a disk and thus will not need to trace out the border
at all. This method, however, would require a large supply of disks since they are required
throughout the environment. Chemical residue may provide a more efficient marker since the
robot could easily spray the chemical along its path, similar to ants. The chemical would have
to be strong enough with a slow decaying factor so that it is easily detectable over a longer period
of time. This spraying would require some form of pumping system and "smell" sensor which
may increase the size of the robot.

 143

A

B

D

C

Figure 6.10 Using an infinite number of disks for
tracing out obstacles.

 Despite the need for more complicated sensors and actuators, this method of using a large
disk supply would make the exploratory behavior much more efficient since new obstacles can
be found without having to trace out any of the obstacles previously traced. This would allow
the robot to trace out all obstacles even if their features are identical.

6.4 Simplified Spatial Adjacency

 As mentioned in Chapter 5, [Nehmzow and Smithers 91] and [Mataric 91] present
methods of landmark-based mapping techniques that map out only environmental perimeters.
Their methods do not handle the mapping of interior obstacles. Clearly, this limits the scope of
the usefulness of their techniques. A more realistic and useful mapping should be able to map
out the inner obstacles as well. The mapping out of interior obstacles is a simple task when
using RABI's technique. All obstacles are automatically mapped and generalized as
encountered. For a robot that must compute efficient point to point paths however, the
additional mappings of interior obstacles presents a small problem. The robot may not need to
know exactly where these inner obstacles are with respect to the other obstacles and
environmental border, but it may need to know how to get from one to another. If for instance,
the only energy sources lie at obstacles which are in the middle of the environment, the robot
must be able to reach these locations. It would be useful to know which edges of an obstacle's
border lie near the energy sources so that the robot could shoot out in the appropriate direction
towards the energy sources when needed. Essentially, the robot needs to recognize the spatial
adjacency among the obstacles.

 144

6.4.1 Adjacency Links

 This simple form of spatial adjacency can be stored as special links that connect adjacent
obstacles as shown with dotted lines in Figure 6.11. Here the dotted lines represent the paths
that need to be taken to get from one obstacle to another in the environment. They are termed
adjacency links and are stored in the memory mapping. The endpoints of these links are termed
adjacency points.

A

B

C
D

Figure 6.11 Adjacency links (dotted) required to record spatial
adjacency among obstacle mappings.

 The simplest method of determining these links is to traverse outwards from the inner
obstacles. Since the environment is closed off, the robot could walk away perpendicular to an
inner obstacle edge until colliding with another obstacle. As long as the robot knows which
edge it walked away from and which edge it just encountered, then a link can be created joining
these two edges in memory.

 The robot will eventually use this adjacency information for obstacle to obstacle path
planning. The question that must now be answered is: How does the robot travel along an
adjacency link when there is no physical sensor information to guide it ? As will be seen later,
the answer to this question involves dead reckoning. By just creating a link that joins two edges
in memory, not enough information is stored since one edge may lead to many others as seen in
the example environment of Figure 6.12.

 145

A

B

D

E

C

Figure 6.12 The edge displacement problem. One of the edges of E
can lead to an edge of A, B, C or D.

 The example shows that an edge of obstacle E can lead to many other obstacles
depending on where along the edge the robot turns away. This presents a problem if the robot
wanted to go from E to D for instance. The robot needs to know how far along the edge of E it
must go before turning away so as to reach obstacle D. For this reason, the adjacency link
stored in memory must also record the distance along E that the robot must travel before
"shooting out" towards the desired obstacle.

 To keep things simple, the robot could always turn perpendicular to the inner obstacle
edge when creating the adjacency link. The other end of the link however, generally will not
have the same 90� angle. The link from E to A in Figure 6.12 for example starts with a 90�
angle and ends with approximately a 115� angle. When traveling from A to E along the same
link, the robot would need to turn 115� to get to E. Thus, the adjacency link must also store the
angles that the adjacency points make with the edges.

 146

 This information can be stored in memory by creating adjacency corner and adjacency

edge neurons which are similar to the corner end edge neurons in the basic memory system.
Figure 6.13 shows an example of how the adjacency links are added. In the example, the
mappings of two obstacles (an inner obstacle and a border) is shown before and after the addition
of two adjacency links.

12 4

65 30 -6-6-6-6 35 10 -6

530 -4 28

14 22

35

42

30

510

32

8

18 26

24

6

-6

6

6

6

6

-6

-6

-6-6

A

B

Map before adjacency links Map after adjacency links

adjacency corner neuron
adjacency edge neuron

3530

5

10

8

18

6

-6

6

6

6

6

-6

-6

-6-6

16
8

17

9

14

28 4

30 12

22

6

6

5

-4

42

32

26

24

42 32

8 9

18 8

616 617

-6 -6 -6 -624 26

A

B

Figure 6.13 Environmental mappings before and after two adjacency links are added. The shaded
region contains the additional connections required to store the adjacency links.

 Each addition of an adjacency link creates two additional edges corresponding to the
partitioning of the edges on which the endpoints of the link lie. These two edges are joined by
an adjacency corner neuron in a similar fashion to the basic memory system. Two adjacency
corner neurons of an adjacency link are joined by means of an adjacency edge neuron. This

 147

method of adding adjacency links allows the already existing memory to be unaltered. Instead,
the link is added as a set of bypass neurons as done in the generalization process.

6.4.2 Creating an Adjacency Link

 In order to create these adjacency links, the robot needs to have a mechanism that allows
it to turn perpendicular to an inner obstacle edge, walk straight until another edge is detected,
turn until it is parallel to the detected edge and record the distance and angle information at the
adjacency points. This entire process is easily coded with a neural circuit which can be initiated
by exciting a single neuron. The circuit is given in Figure 6.14.

TURN
OFF

ACCUM
TURN

ADJ.
LEFT

ADJ.
RIGHT

+

0.18

FOLLOW
LEFT

FOLLOW
RIGHT

ANT L ANT R

MAKE
LINK

+

COLLIDE
RIGHT

COLLIDE
LEFT

PULSE

DECADV. INC

DISTANCE ANGLE

ADJ.
AHEAD

+
-

DISABLE
ADJ.

+

0.50.5

0.5

Figure 6.14 The neural circuit for the adjacency link mechanism.

 148

 The MAKE LINK neuron is responsible for instigating the adjacency link creation
process. This neuron is excited by the memory system whenever the robot recognizes a
sequence of features 41 from an inner obstacle. The signal excites the ADJ. LEFT and ADJ.
RIGHT neurons which provide the turning mechanism. Only one of these neurons is excited
depending on the side of the obstacle that the robot was following. These neurons connect to the
TURN LEFT and TURN RIGHT neurons as with the instinctive behaviors with a weight equal to
the weight of the follow edge behavior neurons. The ACCUM TURN neuron counts the number
of turns made and the TURN OFF neuron emits a high signal whenever the robot makes 6 turns
(i.e. 0.18 x 6 ♠ 1) representing 90� .

 Once the robot has finished turning, the TURN OFF neuron inhibits the follow edge
neurons as well as the turning neurons and excites the ADJ. AHEAD neuron. The ADJ.
AHEAD neuron connects to the turning network similar to the EDGE AHEAD neuron. Once
this neuron is excited, the robot continues walking straight. It is disabled whenever one of the
robot's side antennae touches an obstacle. The COLLIDE RIGHT and COLLIDE LEFT neurons
are from the edge follow network. They make sure that the robot turns parallel to the detected
edge before disabling the adjacency behavior 42.

 The DISTANCE and ANGLE neurons are accumulative neurons that are used to measure
the length of the adjacency link and the angle that the link makes with the ending edge. They
are reset when the robot begins forward motion. The memory system monitors the ADJ.
AHEAD neuron and stores the distance and angle information whenever it is turned off. When
turned off, the DISTANCE neuron is reset again so that it may be used to measure the distance
along the ending edge for partitioning purposes.

 Once the adjacency behavior is disabled (when the robot reaches the outer obstacle), then
the edge following behavior "kicks in" allowing the robot to trace a small portion of the obstacle
so that the edge can be identified. Once the edge is identified, the link is created using the
method previously mentioned.

 Figure 6.15 shows an example of the path that the robot needs to follow (darkened) in
order to make an adjacency link from the top edge of the inner obstacle to the top edge of the
outer border. The robot is assumed to have already created a mapping of the obstacle borders.
In this example, the robot started to follow the edges of the inner obstacle in a clockwise

41 This occurs when the short term memory becomes full.
42 The robot is assumed to be parallel provided that a side antenna has contact and the frontal antennae do not.

 149

direction at S. Once it had traced out 4 complete edges (i.e. a full STM), the robot recognizes
the features as being part of an inner obstacle. Then at point A, the robot begins to create the
link by turning perpendicular to the current edge and walks straight ahead until colliding. The
robot then turns right until it is parallel to the new edge. At this point, the robot has stored the
distance of the adjacency link and the corner angles. The robot then continues to follow the new
border in a clockwise direction until the features are recognized at point E. If the features are
recognized, then a new adjacency link is created as described previously. If no features are
recognized then the adjacency link is abandoned.

E

S

A

Figure 6.15 Path traveled during the creation of an
adjacency link. The robot begins tracing the obstacle at
S, starts the creation of the adjacency link at A, and then
completes the link at point E.

6.5 Point to Point Navigation

 Any animal that builds an internal map of its environment must use it for some purpose.
The map gives the animal a sense of where it is with respect to other locations in the
environment. Internal maps are usually used for point to point navigation. That is, an animal
can use the map to navigate from one location to another. The use of such structured path
planning can result in a quicker and more efficient animal. It could allow an animal to
remember locations of food and navigate back to these locations when it is hungry. Similarly, a
robot could remember locations of wall outlets and navigate back to them in order to receive a
battery recharge.

 150

6.5.1 Self Location

 The first step in navigating the environment is to determine the robot's current location.
To do this, the robot must compare nearby features with an internal map to find a match. As
already discussed, this matching task can pose problems due to discrepancies in feature
characteristics between sensor readings and the internal map.

 Assuming that the robot has a fairly accurate map, the robot could attempt to make a
match whenever it encounters a corner feature. Since there may be many similar corners in the
environment, the matching process may yield a collection of matching corners. Thus, the robot
may be unable to determine an exact location by examining just one corner. A better method of
matching is to trace out a small portion of the environment, obtaining a group of sequential
features. RABI does this by filling up its short term memory as it travels along a border. Once
the memory becomes full (i.e. 8 neurons = 4 corners and 4 edges), then this sequence of features
is compared with the features in the long term memory to determine a match. Again, the
sequence may match more that once in the memory, but the chance of duplicate matches is
reduced. Assuming that the environment is sufficiently complex with few similarities in the
sequential features, then an exact match would likely be found. Once a match has been made,
the robot knows its present location with respect to the other edges and corners of the
environment.

 Lets assume that the robot performs the matching operation which results in a list of
plausible locations. By continuing onward tracing the border, the robot would receive additional
sequential feature information in the form of neurons from the short term memory. This
additional information can be used to trim the list of plausible locations. Consider Table 1,
which shows a set of 5 sequences of neurons in memory. All of the sequences begin with a
corner neuron having a value of -4. Assuming that the robot has matched up to the -4 neuron,
the robot must be at a location pertaining to one of the 5 sequences in the table. Now, by
continuing onward along the border, assume that the robot encounters features as follows: 20, 6,
4 -6, 34, 3, 17, 5, 8. Thus, we can see that the first sequence represents the path traveled. By
encountering the features one by one, the list of plausible locations can be reduced as sequences
stop matching. Sequence 5 for example, will stop matching as soon as neuron 20 has been
encountered. Thus, sequence 5 is eliminated from the list. Continuing onward, receiving a 6
and then a 4, sequence 3 will stop matching and thus will be eliminated. Sequence 2 and 4 are
eliminated in a similar manner. Thus, after encountering the initial -4 feature, the robot must

 151

trace out 7 more sequential features before it is able to identify its location since after this
additional tracing, sequence 1 will be the only one remaining.

420-4 6 -6 5334 17 8
22 30420-4 6 -6 3

30420-4 6
-6 3

-3 3421
17

811
22420-4 6 -6 334

4 5-4 6

-6

34 -1234 11

1
2
3
4
5

Stored Memory SequenceID
...
...
...

...

...

...

...

...

...

... 5

Table 1 Possible matching memory sequences.

 Assuming that the environment is sufficiently complex (without symmetries and many
similar edge lengths), the robot should always be able to identify its location using this method
of sequential feature extraction. Once the robot knows its position, it simply needs to compare
sequential features to ensure that its location is valid. As it moves along a border, the current
location will also move adjacently in the memory. Thus, provided that the robot has an accurate
mapping, the position can be determined while the robot moves along the borders.

6.5.2 Determining a Path

 When traveling from point to point in the environment, the robot should choose the most
efficient path such that it does not waste time and energy. The shortest path from one location to
another depends mostly upon the distance traveled. Perhaps in some cases, the shortest path
should take into account the number of turns made, since for walking robots, the turning process
can extract additional energy that would not have been used up during straight motion. For
simplicity sake, RABI examines only the Euclidean distance; the additional turning constraints
are easily added.

 With neurons, the simplest way of determining a shortest path is to use a form of
spreading activation 43. That is, by exciting a neuron in memory, a chain of activation spreads
outwards from its adjacent neurons. This activation can be increased or decreased as it passes

43 [Mataric 91] uses spreading activation in his robot to determine the shortest path between landmarks.

 152

through a neuron. An edge neuron for example can add activation corresponding to its stored
energy (i.e. the edge length).

 In order for this to happen, each memory neuron must have an adjustable output (set by
the spreading activation) as well as a stored energy value (representing the corner angle or edge
length). The stored energy value remains constant while the output changes according to the
spreading activation.

 Determining a shortest path from one point to another is a trivial problem. The problem
becomes more interesting as multiple destinations are possible. A robot, for example, may
choose between a dozen wall outlets to receive energy from. It would be most efficient if the
robot were able to choose the closest outlet. This problem of selecting the closest destination
point is easily handled with the spreading activation concept. Essentially, the activation spreads
outwards from each destination.

 The activation algorithm consists of a handful of simple functions which are given in
Appendix A. The algorithm works by initially giving the destination neurons an output of 1 and
all other neurons an output of zero. Activation then spreads outwards from the destination
neurons in such a way that any neuron that receives an activation less than its current output uses
this smaller activation value as its output. When an edge neuron receives an activation, it adds
its stored energy and spreads the new activation to adjacent neurons. Depending on the
direction that the activation is passed (i.e. forward or backwards in the memory), the sign of the
activation is altered. Activation going backwards through the memory has a negative sign,
while activation going forward has a positive sign.

 Once the activation stops, each neuron will have an output corresponding to the
activation that has passed through it. Since the edge neurons added activation pertaining to an
edge length, the output of each neuron corresponds to the Euclidean distance required to get from
one neuron to the other during navigation. Moreover, the sign of the output indicates the
direction (left or right) that the robot must travel in order to get to the nearest destination.

 Figure 6.16 depicts an example showing the effects of selecting 1, 2 and 4 possible
destination points. The destination neurons are shown with blackened boxes around them. The
number above each neuron represents the output of the neuron after the activation process has
completed. Note that the top three neurons represent bypass neurons that represent another
possible path in the memory.

 153

8 4 12 -7 20 10 10 2 4 -5 17 3

4 18 2

8 4 12 -7 20 10 10 2 4 -5 17 3

4 18 2

8 4 12 -7 20 10 10 2 4 -5 17 3

4 18 2

9 1 1 -1 -21

-21 -39 -31

-21 -31 30 30 26 26 9

9 1 1 -1 -21

29 11

11 11 1 1 -1 -18 9

9 1 1 -1

1 1 -1

-1 1 1 -1 -18 9

1 Destination

2 Destinations

4 Destinations

-21

1 11

Figure 6.16 Results from spreading activation for 1, 2 and 4 destination points.

 In the diagram, each of the destination neurons is an edge neuron with an output of 1
indicating that they are indeed destinations. For each corner neuron in the diagram, their output
indicates the distance (in terms of edge length sums) and direction required to travel from that
location to the nearest destination edge. Thus as soon as the current location is identified, the
robot can use this activation information to choose a direction in which to travel which will result
in the shortest path to the destination. This method of point to point navigation is simple to
implement and provides an efficient path to the desired destination.

 This method is also able to incorporate the adjacency links during the spreading
activation process since the neurons are part of the same memory. The activation through an
adjacency corner or adjacency edge neuron is similar to the regular corner and edge neurons.
Since this activation process results in an efficient path plan, the robot can easily travel from
obstacle to obstacle using the adjacency links.

 154

6.5.3 Selecting the Destination Points

 More often than not, animals have many choices as to where they can obtain food.
When this is so, the animal must choose only one location at a time in which to eat. The
selection of destination may depend upon other factors such as the amount of food, quantity of
food, variety of food or other external factors such as danger zones which make the food risky to
obtain. A robot may be in a similar predicament. These complexities require a weight to be
placed upon each location indicating the strength of the tendency to travel to that location. This
weighted selection strategy was not implemented since it is more complicated and the objective
was to keep the robot as simple as possible.

 When in need of energy , the robot must prepare for navigation by instigating spreading
activation from all sources of food. This would allow the robot to determine which direction to
travel to reach an energy source. There is a need for some type of mechanism that maps energy
sources to environmental locations. This can be done by adding special links that activate
memory locations that contain the desired source. The mechanism required to do this consists of
just two neurons as shown in Figure 6.17.

 The SEEK ENERGY neuron is used to excite the RESET and LOCATE neurons
whenever the robot is searching for food. The RESET neuron provides a special signal to the
memory unit that resets all of the memory neurons to have zero activation whenever the robot
stops seeking energy. This gets the memory set up for the next time by resetting any activation
from a previous navigation. The LOCATE neuron emits a special signal through its output links
whenever the robot begins to seek energy. This special signal initiates spreading activation to
each memory neuron that is connected to the LOCATE neuron. Once the activation has been
spread, the memory is set up for navigation purposes and the memory neurons will retain their
output until the robot no longer seeks energy.

 155

LOCATERESET

SEEK
ENERGY

Memory Neurons

Figure 6.17 Connecting neurons that control the activation process.

 Initially, there are none of these special links connected to the memory neurons. The
links are added as the robot encounters locations that induce an energy signature. That is,
whenever the robot senses an energy source when traveling along an edge, it adds a link from the
LOCATE neuron to the memory neuron representing the current edge. This linking strategy
represents a form of associative learning in which energy sources are paired with environmental
locations.

 Assuming that each food (or energy) location has equal weight, there may still be other
problems related to conflicting motivations. A robot may find energy at one location, work at
another and other items at yet another. In this case, the robot must choose which item to seek
out and spread activation corresponding only to this type of item. The spreading activation
algorithm will not work when destinations of different types are allowed to interfere with the
activation of other types. Thus, each time the robot decides to seek a specific type of item, the
memory must be reset so that previous activation data does not interfere with the new activation
information. This can be done by adding inhibitory links between the neurons that represent
different destination types as shown in Figure 6.18.

 In the diagram, the neurons 1, 2 and 3 represent different types of item seeking behaviors
similar to the SEEK ENERGY neuron. The R and L neurons correspond to the RESET and
LOCATE neurons. Each of the LOCATE neurons connects independently to the memory
neurons as before. Sometimes the links may actually share a memory neuron which indicates

 156

that there are multiple items at one location. The circuit works the same with the exception that
the RESET neurons inhibit the LOCATE neurons of other types. This ensures that the memory
is reset before the spreading activation occurs. RABI is only able to associate energy sources
with locations and thus does not use these extra inhibitory links.

R

L

1 2 3

R

L

R

L

Memory Neurons

Figure 6.18 Additional neurons needed to handle conflicting destination types.

6.5.4 Turning Around

 When the robot is navigating in an environment by following edges, it may need to turn
around and follow the edge with the other side of its body. This would occur after the robot has
determined that it is going the wrong way during point to point navigation. The task of turning
around is simple. It involves turning 180� and switching from following left to following right
or vice versa. The circuit of Figure 6.19 accomplishes this.

 The GO RIGHT and GO LEFT neurons connect to the output of the memory system.
They are excited when the robot decides to go right or left during navigation. The AROUND
RIGHT and AROUND LEFT neurons are excited whenever the robot is going in the wrong
direction. They connect directly to the TURN LEFT and TURN RIGHT neurons with a weight
of 6.4 so that they override all but the edge follow and energy seeking behaviors. The remaining
neurons are similar to those of the adjacency mechanism. They are responsible for counting 12

 157

turns (180�) and then disabling the turning process and disabling the edge following. The edge
following will start up in the correct direction at the next time step.

FOLLOW
LEFT

FOLLOW
RIGHT

AROUND
RIGHT

AROUND
LEFT

AROUND
TURN

TURN
OFF

ACCUM
TURN

+

0.09

GO
RIGHT

GO
LEFT

0.5
0.50.50.5

Figure 6.19 Neural circuit for turning around.

6.5.5 Using an Adjacency Link

 Once an adjacency link has been created, it is stored permanently in memory. In order
to use this link path during navigation, the robot must be able to extract the distance and angle
information so that it may leave one obstacle and travel directly towards another. Thanks to the
spreading activation process, the required information is embedded within the memory neurons.

 Whenever the robot is navigating along an obstacle border it uses the spreading activation
results to determine which direction to follow along the obstacle. A memory neuron's output is
either negative or positive indicating a desired left or right traversal. Since the output can be
only positive or negative, there is no way of indicating a third direction (outwards away from the
obstacle) which is required for adjacency link traversal. Therefore, the navigation system must
handle adjacency links separately. The navigation system must constantly look ahead to

 158

determine if it needs to stop following the edges of one obstacle and start following the edges of
another.

 Figure 6.20 shows an example of a simple environmental mapping and the results of
spreading activation across an adjacency link. Note that the sign of the output of the adjacency
corner neurons does not matter since these corners are handled specially.

35

30

5

10

8

18

16
8

17

9

14
30 12

42

32

26

24

-70

83

98

93

9

2353 -35

1

1

-1

-19

-27

Edge lengths Output after spreading activation

Figure 6.20 Example showing the output of neurons after activation is spread across an
adjacency link. The darkened line in the second diagram represents the point at which the
activation is initiated (i.e. an energy source lies close to this edge).

 By examining the top right and top left corners of the outer border, it is clear that their
output differs in sign. If the robot did not have a mechanism that allowed it to travel across an
adjacency link, then it robot would pace back and forth along the top edge of the environment
due to the change in sign of the edge corners.

 By adding one more simple neural circuit, the robot could shoot out into the appropriate
direction along the adjacency link so that it can reach the inner obstacle. This simple circuit is
shown in Figure 6.21.

 159

TURN
OFF

ACCUM
TURN

LINK
LEFT

LINK
RIGHT

+

FOLLOW
LEFT

FOLLOW
RIGHT

ANT L ANT R

LINK
ANGLE

+

COLLIDE
RIGHT

COLLIDE
LEFT

LINK
AHEAD

TURN
TO

LINK

~
~

TURN
OFF

~
~

0.9
6

0.04

0.96

0.04

PULSEPULSE

TURN
DELAY

TURN
DELAY

ACCUM
TURN~ ~

Figure 6.21 A neural circuit for using the adjacency links.

 The TURN TO LINK neuron is excited by the navigational system whenever the robot
decides to take the path along an adjacency link. This would occur whenever the robot has
reached the adjacency point. The LINK ANGLE neuron is a standard neuron which is set by the
navigation system and has a value equal to the number of turns required to align the robot along
the adjacency link. This number is derived directly from the stored angles of the adjacency
corner neurons.

 160

 Once these two neurons are excited, one of either the LINK LEFT or LINK RIGHT
neurons is excited depending on the sign of the output of the LINK ANGLE neuron. The
threshold values are 0.96 and 0.04 which represent values of approximately 23/24 and 1/24.
These values ensure that both neurons need to be excited in order to enable the turning process
44. The LINK LEFT, LINK RIGHT and LINK AHEAD neurons all connect to the TURN
LEFT and TURN RIGHT neurons in a similar fashion to the network for adjacency link creation.
The ACCUM TURN and TURN OFF neurons are responsible for counting the appropriate
number of turns. Once the appropriate number of turns are made, the turning is disabled and the
LINK AHEAD neuron is excited, subsuming the follow edge behavior. The behavior is
disabled whenever the robot comes in contact with the new obstacle. Once the robot reaches the
new obstacle, it continues to navigate from its current location towards the desired location.

 This method of traveling among adjacency links does not necessarily produce shortest
paths since the adjacency links act as bridges in which the robot may cross at certain locations.
Over time however, as the robot explores its territory, multiple adjacency links will eventually be
created and the robot will become more efficient.

6.6 SUMMARY

 Internal maps can store a great deal of spatial, topological and associative data which can
prove to be advantageous to an adaptive robot. The neuron style memory employed by RABI
allows efficient navigation through the use of spreading activation. Moreover, this navigation
technique is easily interfaced with the neural circuitry of the instinctive behaviors. Due to the
non-spatial nature of the landmark-based mapping technique, various problems occur when
attempting to identify the robot's current location. Provided that the environment is sufficiently
complex, the landmark identification process of matching sequences of neurons is a sufficient
method for determining the robot's location. With the navigational technique used by RABI, the
robot is able to identify various edges and corners in the environment. By using a simple form
of spatial adjacency, the robot is able to efficiently travel from landmark to landmark.

44 The value of 24 represents 24 turns (24 x 15� = 360�). The LINK ANGLE neuron will never have a value

above 24 or less than -24.

 161

∼∼

Chapter 7
Motivation and Behavior Selection

∼∼

 Many of the instincts presented in chapter 4 can be combined to produce more

complicated emergent behaviors. Sometimes however, there are certain behaviors that cannot be
performed at the same time. Phototropic and photophobic behaviors for example, are conflicting
behaviors that cannot be performed simultaneously. A less obvious example may be the energy
seeking and map building behaviors. A robot may search for energy while building a map, but if
the energy is in the center of the environment, the map building behavior may prevent the robot
from attaining it.

 It is clear that some kind of behavior switching technique must be incorporated into the
robot such that conflicting behaviors are not active at any one time. Furthermore, the behaviors
must be selected in such a fashion so as to keep the robot functioning ("alive") at all times. This
area of selecting behaviors at appropriate times is strongly related to the area of motivational

systems . This chapter discusses the notions of motivated behavior and behavior selection, and
also describes the mechanisms required to implement them in RABI.

7.1 Motivated Behavior

 What causes an animal to behave the way it does ? This question brings up the notion of
motivated behavior. [Toates 86] defines motivation as follows:

"Motivation is the strength of the tendency to engage in behavior when taking into
account not only internal factors but also appropriate external factors."

 The statement suggests that motivation arises as a function of both internal state (or
drive) and external incentives. This would mean that an animal's behavior will change as its

 162

internal state changes or if external cues are presented. This is partially intuitive since many
animals will only engage in foraging behavior when their internal energy state decreases (when
they are hungry). Furthermore, this foraging behavior becomes more apparent when external
energy sources are present (near food).

 [Toates 86] states that although reflexes constitute a crucial part of behavior, they clearly
cannot account for all aspects. The consequences of behavior are such as to change the internal
state underlying motivation and hence reduce the neural activity of the motivation circuits. It
would seem that certain behaviors are selected and performed depending on some motivational
aspect whether internal or external.

7.1.1 Homeostatic and Externally Driven Behaviors

 Homeostasis is the term used to refer to the ability of the body to maintain its essential
parameters near constant and to take corrective action to return them to normal following a
disturbance. As mentioned in [Toates 86], some feel that homeostasis is a key element of
motivational systems. An example of homeostatic behaviors would be the eating and drinking
behaviors associated with a decrease in an internal state such as energy depletion and
dehydration.

 Not all behaviors are directed towards maintaining an internal state. Other behaviors
such as sex, exploration, aggression, etc., depend largely upon external stimuli such as sexual
partners , environmental structures or intruders. In some cases, it is not always obvious as to
what the external cues are; such as when an animal just gets up and goes. Exploration is an
example of a behavior which is not accentuated by internal state or external stimuli. Rather it is
an external stimulus in the context of the animal's expectations about the environment that causes
exploratory behavior. New environments however, do present a form of external stimuli.

7.1.2 The Role of Past Experiences

 Many experiments have been performed to show that animals can be conditioned to
respond to certain types of stimuli with a certain type of behavior. This conditioning may take
the form of reinforcement learning where an animals response to a specific stimuli is
strengthened. For example, if a particular response (turning left in a maze) is followed by a

 163

particular event (presentation of food), then the frequency with which the animal turns left
increases. In this example, the food reinforces the response. This example shows that past
experiences play an important role in motivated behavior.

7.2 Behavior Selection

 At any one time, an animal is performing a behavior according to some form of
motivational selection. There are lower level reflexes and mechanisms that are performed as
part of a higher level behavior. A foraging behavior for example, may be composed of a set of
lower level reflexes or mechanisms such as walking, avoiding collisions, seeking light, etc. An
animal must have some method of selecting which mechanisms to enable or disable for any
given behavior. In addition, there may be conflicting motivations in which two behaviors
compete for overall control of the animal's muscles or actuators. For robots, this problem of
conflicting behaviors must be handled such that only one overall motivated behavior can be
active at any one time.

 It is clear from observations that a change in an animal's external environment may cause
a change in behavior. But animals also change behavior even in the absence of external cues.
Hence, it seems that the process of behavior selection should depend upon both the external
stimuli as well as internal state.

 [Maes 91] presents a bottom-up mechanism for behavior selection in an artificial creature.
In her simulation, the creature is endowed with various behaviors pertaining to obstacle
avoidance, exploration, fighting, fleeing, eating, sleeping and drinking. Each of these behaviors
has a corresponding motivation associated with it. This motivation is in the form of a monitor
which keeps a strength value pertaining to the desire to satisfy the motivation. In her system,
the highest strength motivation is selected and the corresponding behavior is performed. The
system also contains a set in links that allows the creature to enable and disable certain
behavioral mechanisms. If hungry, for example, the creature would explore until it sees food,
then go towards the food, and finally eat the food. Some of these links are innate while others
are learnt. Her system for behavior selection is robust, efficient, reactive and flexible. The
system is also situation oriented and exhibits opportunism.

 [Tyrrell and Mayhew 91] also present a simulation for behavior selection. They
concentrated on creating a significantly complex environmental model so as investigate the

 164

mechanisms behind behavior selection. They discuss certain issues of opportunism, conflicting
behaviors and cooperative behaviors.

 While both of these simulations appear successful in mimicking the behavior of a
possible biological creature, they deal with issues that will not be necessary for robotic purposes.
Drinking, fighting, sex and fatigue for instance, are not issues that need to be dealt with in
robotic systems. Thus, to some extent, the simulations have a degree of overkill. Their purpose
was to investigate behavior switching strategies with multiple conflicting motivated behaviors.
Their research may prove useful for robots that must be able to efficiently select among several
behaviors, although simplified robots such as nanobots will more than likely contain hardwired
instincts. If this is the case, then it may be simpler and more efficient to hardwire a behavior
selection strategy within the hardware.

7.3 RABI's Motivation and Behavior Selection

 For a robot that is "artificially alive" it must be highly motivated to keep itself
functioning. This motivation is responsible for finding energy sources. Since RABI was
developed to concentrate on the survival aspects, there are only 3 types of motivation: obtaining
energy, exploration and the motivation to work. As the robot is given additional instinctive
behaviors (other tasks to perform), then there will be motivation to exhibit other types of
behavior.

 Since RABI does not get tired, it should always be moving unless it is re-charging.
Thus, every behavior should keep the robot walking. To do this, the motivated behaviors excite
the WALK neuron as in Figure 7.1.

WORK
SEEK

ENERGY

WALK

BUILD
MAP

Figure 7.1 Excitation of the WALK neuron
by the motivated behaviors.

 165

 The simplest method of handling multiple motivated behaviors is to allow only one to be
selected at a time. Therefore, the robot must decide which motivated behavior to pursue at any
one time. There is a need to determine when a behavior should be enabled or disabled and
which behaviors are more important than others.

7.3.1 Obtaining Energy

 The energy seeking behavior of RABI is the most important behavior since it allows the
robot to seek out energy sources which are crucial for survival. If the robot were to spend all of
its time seeking out energy however, then the robot would be of no use for any practical
application. There should be some type of mechanism that allows this behavior to be selected at
the appropriate time; when the robot's energy becomes too low. The motivation for the energy
seeking behavior should depend on both the internal energy level and the external cues such as
the presence of energy sources. In order for this to happen, the robot must have some form of
energy monitor indicating the current level of energy. When this energy lowers to some
threshold value, the robot should then begin to search for energy sources. This process is easily
implemented with neural circuitry as shown in Figure 7.2.

 The ENERGY MONITOR is a monitor neuron which emits an output signal (0.0 to 1.0)
reflecting the current energy level of the robot. The neuron excites the HIGH neuron with a
weight of T4. This value of T4 represents the threshold at which the robot is considered to have
adequate energy (i.e. a battery low indicator) 45. The signals from the HIGH, ENABLE and
DETECT SOCKET neurons are responsible for instigating the ingestive process. The DETECT
SOCKET neuron is a sensor neuron that ensures the robot is at an energy source in order for the
ingestion to take place. Once the START neuron is excited, the ingestion begins. During
ingestion, the WALK, TURN LEFT and TURN RIGHT neurons are disabled (i.e. remain still
while charging) and the ABSORB motor neuron is excited.

45 T4 ranges from 1 to •. If for example, T4 was set at 4, then an energy value of 0.25 or more would be required

to excite the HIGH neuron. Thus, the low indicator would be at 25%.

 166

HIGH

INGEST SEEK
ENERGY

START

DETECT
SOCKET

ENERGY
MONITOR

ENABLE STOP

ABSORB WALK

T4

0.
5

0.5
TURN
LEFT

TURN
RIGHT

25
.6 25.6

Figure 7.2 Neural circuitry representing the ingestion
mechanism. The energy seeking behavior is enabled when the
energy monitor reads a significantly low value.

 The ABSORB neuron represents some form of physical mechanism responsible for
increasing the robot's energy. This may be a simple plug-in actuator or perhaps something more
complicated. As in the case of docking situations discussed in chapter 4, this motor may not be
needed at all since the energy refill may be performed by some external mechanism.

 Once the energy monitor detects a full energy reading, the STOP neuron is sufficiently
excited so as to disable the ingestion process. This neural mechanism is linked to the energy
seeking behavior by connecting it to the SEEK ENERGY neuron from the energy seeking
network in a manner such that the behavior is enabled as soon as the energy level becomes too
low.

 167

7.3.2 Seeking Energy Vs. Map Building

 Since the robot can only detect energy sources when they are close by, the robot may
wander around the environment for a long time without finding an energy source. It would be
advantageous for the robot to explore the environment to search for energy sources. These
energy sources may lie along walls and thus, it would be useful to build a map of the obstacle
borders. This map building should take place before the robot becomes energy deficient so that
it has time to locate the energy sources. Thus, when not "hungry", the robot should engage in
exploratory map-building behavior.

 The robot must not however, spend all of its time seeking energy and building maps since
it was also given a task to work by cleaning up the environment. The map building behavior
should therefore be both enabled and disabled during the robot's life time. In fact, animals spend
much of their time exhibiting exploratory behavior [Toates 86]. Moreover, the exploratory
behavior is highly active when the animal is placed down into a new environment. It would be
prudent to devise such a scheme for robots.

 RABI uses a curiosity monitor that essentially indicates the amount of exploration that
should be performed. The curiosity is initially very high when the robot starts out and decreases
very slowly over time. Whenever the robot traces out a portion of the environment that is not
recognized, this curiosity is increased. When the robot recognizes certain environmental
features, the curiosity is decreased 46. Figure 7.3 shows the connections required to select one of
the three motivated behaviors. Notice that the cleaning behavior has no excitatory signals.
That's because it is always enabled. Hence, whenever the robot is not seeking energy or
building a map, then it is cleaning up the environment.

46 The monitor value ranges from 0.0 to 1.0. The time decrease is approximately 0.001. The increase when the

features are not recognized is 0.1 . When features are recognized, the decrease is 0.1 also.

 168

SEEK
ENERGY

BUILD
MAP

WAITCREATE
LINK

NAVIGATE
CLEAN
AHEAD

CURIOSITY
MONITOR

Figure 7.3 Neural circuit for selecting the motivated
behaviors.

 In the network, the map building behavior is enabled whenever there is any amount of
curiosity. This behavior is dominated by the energy seeking behavior which is selected
according to the energy monitor as mentioned previously. Both of these behaviors override the
cleaning behavior since they are more important for survival. There is no need for the map
building neuron to inhibit the clean ahead neuron since the robot is always following edges when
building a map and the edge following behavior already overrides the cleaning behavior. The
energy seeking behavior is disabled by the CREATE LINK and WAIT neurons. This ensures
that the robot has completed an adjacency link or obstacle trace before turning off the map
building behavior. This is important so that the robot does not leave behind its disk (along the
edge of an obstacle being traced) and wander off; otherwise the disk could not be found easily.

 An excitatory link is shown from the SEEK ENERGY neuron to the NAVIGATE neuron.
This link is initially absent and is permanently added if and when the robot finds an energy
source near an obstacle edge (as opposed to the center of a vacant region). The link allows the
robot to use navigation to find an energy source.

 When initially placed in the environment, the robot spends most of its time tracing out
obstacles and building a map. It occasionally finds dirt morsels and brings them to an obstacle
border. Eventually the robot begins to recognize the obstacles and the curiosity decreases
significantly. Once the curiosity diminishes, the robot begins performing its cleaning task,
occasionally taking a break to obtain energy. With so few instinctive behaviors, the robot's

 169

overall behavior is somewhat predictable. As more and more instinctive behaviors are added
(more tasks) then the global behavior would be more difficult to predict.

7.3.3 Enabling and Disabling the Edge Following Behavior

 Since the robot should not always follow edges (i.e. there may be interesting things in the
middle of the environment), there must be some method of enabling and disabling the edge
following behavior. The simplest method of instigating the behavior is to begin edge following
whenever a side antenna comes in contact with an obstacle. The robot could then trace out the
obstacle's edges and turn away once it has completely traced the obstacle or when it has
motivation to perform some other behavior. Figure 7.4 shows the connections responsible for
enabling the edge following process.

FOLLOW
LEFT

FOLLOW
RIGHT

PULSE

BUILD
MAP

NAVIGATEANT L ANT R

ENABLE
RIGHT

ENABLE
LEFT

0.
250.75 0.

75

0.25

0.2
5 0.25

0.50.5

Figure 7.4 Neural connections responsible for the enabling
of the edge following process.

 The side antennae provide a strong excitatory signal that enables the appropriate edge
following neuron; provided that the robot is building a map or navigating. A pulse neuron is
used to disable edge following whenever the map-building ceases.

 When navigating, the robot uses the spreading activation to determine which edge to head
towards. It may be the case that the energy source does not lie along the edge, but instead it lies

 170

close by. If this is so, the robot should stop following edges and head towards the energy source
using its energy seeking network. Figure 7.5 shows the additional circuitry for disabling the
edge following whenever the robot is close to an energy source.

AT
ENERGY

DISABLE

ENERGY
SENSOR

SEEK
ENERGY

FOLLOW
LEFT

FOLLOW
RIGHT

0.5

0.5

Figure 7.5 Neural circuitry to disable edge
following when near an energy source.

 The ENERGY SENSOR and SEEK ENERGY neurons from the energy seeking network
are used in combination to disable edge following. The AT ENERGY neuron produces the
required binary output for the threshold neuron.

 The presence of energy is not the only reason to stop following an edge. The robot
should stop following an edge when it finishes tracing an obstacle or when it recognizes a portion
of an obstacle while exploring. In addition, when the robot is navigating, it should turn away
whenever it arrives at a location that has no activation level. That is, if an edge of an obstacle
mapping has no activation level, then there is no known path from this current location to an
energy source. The robot should therefore turn away from the obstacle.

 Turning away from an obstacle is the action performed by the vacancy behavior. This
behavior is always active but the edge following behavior subsumes it. If the robot wants to turn
away from an obstacle it should therefore disable the edge following behavior. Figure 7.6 shows
a neural circuit that does this disabling.

 171

FOLLOW
LEFT

FOLLOW
RIGHT

WAIT END

PULSE

ANT L ANT R

RECOGNIZE

AWAY
TURN

DECIDE
AWAY

NAVIGATE
NO

EDGE
INFO

0.5

1.0

0.25 0.
250.5

Figure 7.6 A neural circuit to disable the edge following behavior.

 The DECIDE AWAY neuron determines when the robot needs to turn away from the
edge it is following. The neurons at the top of the network do this as described. The WAIT
neuron is also used to inhibit the disabling since the robot should not stop following an edge if it
has left a disk behind. With the edge following behavior disabled, the vacancy behavior will
take over and turn the robot away from the edge. The side antennae are used to disable this
network whenever the robot no longer has contact with an edge.

7.3.4 Instinctive Behavior Selection

 Nothing has been mentioned about the photokinetic behaviors. When are these
behaviors selected? Ideally, an adaptive robot should be able to learn various associations such
as: light leads to energy, dark leads to morsels, loud noises lead to danger, etc. Since RABI has

 172

only antennae, energy, light and dirt sensors, then there is not much interesting to be learnt.
Essentially the robot could learn only four associations:

LIGHT ---> ENERGY
DARK ---> ENERGY
LIGHT ---> DIRT MORSELS
DARK ---> DIRT MORSELS

 Moreover, the associations may be valid at some point in time and invalid later in the
robot's life time. Dirt for instance, may be cleaned up from around a light source when the
LIGHT ---> DIRT MORSELS association is used. Once the dirt around the light is cleaned up,
the association is no longer valid. Since there are only four associations to learn, the learning
process was not incorporated into RABI Instead, they may be selected by hardwiring additional
links in the neural networks. Figure 7.7 shows the four links that enable these instinctive
associations.

WORKSEEK
ENERGY

PHOTO
POS.

PHOTO
NEG.

Figure 7.7 Neural links used to
associate light with energy and dirt
morsels.

 Note that only one link should be added from each of the SEEK ENERGY and WORK
neurons since the other link represents a conflicting association. With the addition of any of
these links, the robot's wandering behavior is subsumed by the phototaxic behavior allowing the
robot to go towards or away from light. Thus, without the mapping and navigational circuitry,
the robot could still function in the environment by placing energy sources in light or dark areas
and maneuvering the light sources near or away from dirty locations.

 173

7.4 SUMMARY

 Motivation and behavior selection are important issues that must be considered when
designing autonomous artificial life forms. Care must be taken to ensure that the robot takes
precedence in remaining "alive" as opposed to performing some task. Traditional robots
concentrate on task performance, allowing the robot to stop functioning at regular intervals.
This is not acceptable for colonies of robots that must survive on their own.

 RABI has a strong motivation to remain functioning. When its energy level drops too
low, it seeks out energy. When it is not seeking energy, it explores the environment in search
for energy sources and remembers the locations. Only when it has sufficiently explored the
environment, does the robot concentrate on the given task of cleaning. With colonies of
nanobots, their given task is spread among hundreds or thousands of others. It is not wise for an
individual nanobot to risk its "life" by performing a task when it is low on energy. It would be
more efficient if the nanobots could remain functioning for extended periods of time, maybe
even working in shifts.

 174

∼∼

Chapter 8
Hardware Construction of RABI

∼∼

 The hardware version of RABI is a 6-legged robot platform allowing various robot

control and behavioral techniques to be tested in a real environment. As already mentioned, it
was important to create a physical device since these robots must operate in the real world once
completed. By basing a robot on only simulated research, the robot ends up being brittle,
inefficient, faulty and often fails due to unpredicted situations.

 Approximately 6 months of work went into building this physical robot and another 3
months just getting it to simply walk around. RABI has undergone a tremendous amount of
redesign and construction, each version improving upon the last. This chapter explains the
mechanical changes encountered in each version and points out the problems with each failed
design. The electronic control and interface circuitry is also presented along with the
communication protocol required to control the robot.

8.1 Frame Construction and Materials

 Most of the materials used for construction are made of plastic or aluminum of various
sizes which were all hand drilled and cut. Very small nuts and bolts are used to hold these
pieces together. Two basic types of wire were used to connect the electronics. The power and
ground wire is twisted pair wire from a long microphone cable. Jumpers were made from cut-up
computer ribbon cables, and used to interconnect the electronic boards. The robot was built as
light as possible by using only plastics and aluminum.
 Each leg uses two geared down 3v dc motors allowing 2 dimensional movement. These
motors come from Tamiya gear box kits which contain a set of gears to provide enough power to
move the legs. The housing and all the gears are plastic providing a light weight gear box. The

 175

bulk of the weight is the motor itself and the turning shaft to which the gears are connected,
which is made of metal. These motors make up about one third of the robot's total weight.

 The worm gear kit of Figure 8.1 contains a worm gear that allows the turning shaft to
lock into place when the motor is at rest. This locking is important so that the weight of the
robot does not cause the motor shaft to turn. The gear set provides a 336:1 gear ratio providing
enough power to lift the robot's legs. There is however, a considerable amount of slack in the
gears hindering precise position measurements. Nevertheless, the gear box provides enough
strength.

3v Electric Motor

Worm Gear

36T Gear

40T Gear

Gear Joint
Output Shaft

28T Helical Gear

Figure 8.1 Worm gearbox set from Tamiya.

 The planetary gear box kit of Figure 8.2 contains many small gears. The gears are
layered onto each other so as to provide a higher reduction ration while keeping the housing
small enough. These gears provide a 400:1 gear ratio satisfactory for horizontal leg movements.
The shaft for this gear box is short and less rigid than the worm gear box. Three long bolts hold
the housing layers together. These bolts must be tight enough to hold the housing together, but

 176

not too tight as to prevent the gears from movement. In fact, the bolts had to be kept reasonably
loose, resulting in occasional gear slippage. Consequently, some of the gear housing had to be
glued into place.

3v Electric Motor

Arm Disk
Housing Case

Gear Box Mount

18T Planetary Gear

12T Sun Gear

16T Planetary Gear

16T Sun Gear Outlet Shaft

Figure 8.2 Planetary gearbox set from Tamiya.

 The frame of the final version of RABI consists of side shafts made of square plastic
tubes obtained from a hobby store. Aluminum cross bars are fastened horizontally across the
shafts to hold the side bars together. There is an upper and lower level each identical in
construction. The upper and lower layers are held together by the 6 planetary gear boxes which
provide the horizontal movement of the legs. All electronics and wiring are attached to this two
layer frame as well as the head motor which is currently not being used. Figure 8.3 shows the
two layer frame with the planetary gear boxes holding them in place.

 Each version of RABI has ping-pong ball eyes attached. Photocells were fastened inside
them so that they may be used as light sensors. Although the light sensor circuitry is not used at
the moment, the eyes provide aesthetics. These eyes were fastened to the frame of the robot and
in some versions, fastened to a head motor.

 177

planetary gear box

(horizontal leg movement)

plastic side shafts

aluminum cross bars

Figure 8.3 The two layer mechanical frame construction on which all electronic boards, sensors and wiring are
attached.

8.1.1 Version 1.0 - The Inauguration

 The very first version of RABI used 12 worm gear sets, two for each leg. One gear box
was used to pivot the leg horizontally, the other was attached to this pivoting gear box, providing
vertical pivoting motion. The initial frame was constructed with thin aluminum in the shape of a
topless box. The horizontal motors were fastened to the inside walls of the frame with the shafts
protruding through the bottom. The second set of gear boxes were then attached to these shafts.
The leg itself was a 1 inch rigid aluminum plate with half a ping-pong ball for a foot. The ping-
pong ball was glued to the end of a push button switch which was fastened to the leg. This leg
design is shown in Figure 8.4. Each leg initially had 3 micro switches with extended levers.
These switches were to be used to detect collisions in the front back and outwards directions.
The switches were eventually discarded since the legs were unable to provide precise positioning
measurements. These "bump" sensors were later replaced by an antennae system mounted at the
front of the robot.

 178

micro switches

foot switch

ping pong ball

aluminum plate

Figure 8.4 Initial leg design.

 Once the legs were attached, the motors were connected to a power supply to determine if
they had the ability to lift the robot up. The legs were able to support the robot's weight but
were not strong enough to lift the body. Moreover, the entire robot was very wobbly and
unstable. Much of this flimsiness was due to the slack in the gears, the plastic shaft fastening
end piece and the leg design. It was clear that some changes had to be made. Plate 1 shows a
photograph of the first version of RABI without the feet or microswitches attached.

Plate 1 Photograph of RABI version 1.0.

 179

8.1.2 Version 1.1 - Beetle

 The next version of RABI was an attempt to solve the body lifting problem encountered
in the version 1.0. The worm gear motors providing the vertical leg movement were replaced by
planetary gear box units since the gear boxes provided a larger gear ratio and thus more power.
These motors were attached to the shaft of the horizontal worm gear motors as before. The
frame of the robot remained unchanged. Once connected, these new planetary gear motors had
the ability to lift the body but they were not without problems. This new gear kit does not have
a worm gear and thus, when the motor was turned off, the weight of the robot caused the motor
shafts to slowly turn. As a result, the robot would slowly sink to the ground when the motors
were turned off. A photograph of the mechanical design of version 1.1 is shown in Plate 2. The
horizontal worm gear motors are hidden inside the casing however, the tops of the shafts can be
seen.

Plate 2 Photograph of RABI version 1.1.

 180

8.1.3 Version 2.0 - Spider

 After the two failed attempts at leg construction, it was clear that a different leg design
was required. The motors were not able to provide adequate torque needed to move the leg
vertically since the legs were connected directly on the shafts. Furthermore, pressure on the foot
of a leg easily turned the motor shaft since the design allowed enough leverage. This prompted
a new leg design in which the motors were used in a push/pull fashion. A diagram of this leg
design is given in Figure 8.5. A threaded rod was attached to the shaft of the planetary gearbox.
The legs were re-constructed from rigid plastic shafts in which part of the shaft was locked in
place, allowing a vertical pivot. A nut (in the form of a threaded square aluminum chunk) was
then attached to the top of the leg and screwed onto the threaded rod. The nut was attached
using a holding pin on each side such that it was able to tilt. The feet were held on with elastics,
allowing the foot to pivot and providing a more flexible surface contact.

threaded rod

planetary gear box

leg attachment brackets

outer shaft

foot switch

ping-pong ball

elastic

threaded nut shaft holder

leg extension

Inner shaft fits smoothly into outer shaft.
The center is carverd out of the inner shaft
to allow the bolt holding the outer shaft to
slide within it.

boltpartial outer shaftinner shaft

inner shaft

outer shaft bolt

Figure 8.5 Leg design of RABI version 2.0. The motor spins the threaded rod causing the
threaded nut to move in the horizontal direction, resulting in vertical leg movement.

 181

 When the leg contracts and expands, it must have some way of stretching since it is fixed
at one point. To allow stretching, a smaller shaft was placed inside the outer leg shaft. The
middle of the inner shaft was carved out such that the bolt holding the outer shaft did not prevent
the leg from stretching. This leg design resulted in slow vertical leg movements. Moreover, the
inner plastic shaft was easily bent and the leg was not very rigid. After a while, the threaded nut
became worn out and the leg began to slip and snag. Once all the electronics and wiring were
placed on the robot, it weighed too much and the legs were not able to lift the body. Thus the
saying: "back to the old drawing board". Two photographs of RABI version 2.0 are shown in
Plate 3 and Plate 4. Notice that this version of RABI used proximity sensors as obstacle
detectors instead of antennae. These proximity sensors never quite worked correctly due to their
sensitivity of ambient light.

Plate 3 Photograph of RABI version 2.0 - side view.

 182

Plate 4 Photograph of RABI version 2.0 - top view.

8.1.4 Version 3.0 - Quadruped

 Versions 1.0, 1.1 and 2.0 all had one thing in common; a weight problem. In all 3 trials,
the legs were not strong enough to lift the body and remain stable. Thus, an attempt was made
to reduce the overall weight. Since most of the weight is attributed to the legs and motors, two
of the legs were eliminated resulting in a quadruped robot. Moreover, the legs were redesigned
as shown in Figure 8.6.

 All previous versions of legs shared the same basic type of movement. All of the leg
joints were rotational, requiring the motor to produce a strong torque to achieve lifting. Version
2.0 had the additional problem of friction between the foot and the ground since the legs were
designed to slide outward during the process of standing up. It was clear that a rotational joint
would not suffice for vertical leg movement. As a result, a prismatic joint was constructed
based on a "rack and pinion". This design was successful and provided enough power to elevate
the body.

 183

brass rack

up limit switch

down limit switch

planetary gear box

worm gear box

rubber footing

spur gear

shaft

leg extension

plastic shaft side frame shafts

brackets

extended bolt

extended bolt
Plastic Shaft
Plastic Gear Casing
Aluminum
Hard Plastic
Bolt and Nut

side view

Figure 8.6 The prismatic leg joint for vertical movement.

 The leg itself consists of a brass rack that translates up and down by a turning spur gear
that interlocks with the rack. An attempt was made to construct a rack made of aluminum by
cutting evenly spaced groves in a square aluminum bar. Due to the lack of sophisticated cutting
equipment, the resulting aluminum rack contained uneven slots of imprecise depths and shape.
The aluminum racks were initially used on the leg but they did not function smoothly, and the
gears often jammed in the misguided groves. Heavier brass racks were eventually used since
they were available and professionally constructed.

 184

 The brass rack slides freely through a plastic shaft which is bolted down with brackets.
There are two extended bolts that prevent the brass rack from sliding out from the shaft. These
two bolts are also used a triggers for the leg limit micro switches. When the leg is placed down
(up) far enough, the bolt closes the down (up) limit switch causing the motor to stop. At the
bottom of the leg is a rubber footing as found on the bottom of most large electronic devices.
This rubber footing was only used in the final version of RABI; it is shown here only to avoid
duplicating the diagram in the sections to follow. Version 3.0 actually utilized the same footing
structure of version 2.0 with the exception that the elastics were removed, and the ping-pong ball
was fastened to the switch using silicon. Like the elastics, this silicon also allowed a somewhat
flexible foot to surface contact.

 This leg was fastened to a planetary gear motor shaft which was attached to the plastic
side shafts as in previous versions. The completed quadruped version with electronics attached
is shown in Plate 5 and Plate 6 47.

Plate 5 Photograph of RABI quadruped version 3.0 - top view.

47 The string in the center of the robot was used to hang the robot up during construction and repair.

 185

Plate 6 Photograph of RABI quadruped version 3.0 - front view.

 Once constructed, the quadruped had the ability to lift itself up with ease. However,
there were problems with stability (see chapter 3). The robot often tipped in all directions and
was not able to walk continually without falling. After rigorous testing and failed attempts at
maintaining stability, it was decided that 6 legs were necessary.

8.1.5 Version 4.0 - Hexapod

 The success of the leg design in version 4.0 simplified the conversion of the quadruped
into a hexapod. Two more legs were duplicated and the body was extended. Plate 7 shows the
completed mechanics of the revised hexapod without the electronics. This version of RABI was
capable of walking and turning without falling over. Occasionally, a leg twitch would cause
tipping, but RABI's software usually recovered.

 186

Plate 7 Photograph of the revised hexapod; RABI version 4.0.

8.1.6 Version 4.1 - Insect With Antennae

 During the programming of the instinctive behaviors, it became clear that the infrared
proximity sensors were not adequate for detecting obstacles. They constantly received spurious
data from stray light sources and did not operate at the desired proximity. This problem could
only be detected through experimentation with a physical device. This situation demonstrates
the importance of designing physical systems rather than simulated systems. The infrared
sensors were replaced by an antennae system as shown in Figure 8.7.

 This antennae system consists of 4 antennae made of piano wire. The piano wire
provided a flexible means of detecting data. The piano wire was fastened at one end with a nut
and bolt and the other end protrudes outwards. The antennae passes through a washer which is
fixed to a plastic shaft. Wire leads are placed at the fastened point of the antenna and on the
washer. When the antennae makes contact with the side of the washer, a current passes through
one of the wire leads into the other thus acting as a binary switch. Due to the small opening of
the washer, the antenna had to be finely adjusted such that it hovered in the center of the washer
hole when at rest.

 187

Antennae (piano wire)

plastic shafts

wire leads

washers

fastened endings

wire leads

Figure 8.7 The 4-antennae system for detecting obstacles.

8.1.7 Version 4.2 - The Final RABI

 The final (current) version of RABI has a number of improvements from the last version.
The first improvement was the antennae. The adjusting of the previous antennae was difficult,
involving slight bending of the piano wire with a pair of pliers. The antennae of version 4.1
were improved upon allowing easier adjustments to be made to the antennae. The new design is
shown below in Figure 8.8. This design left access holes allowing the antennae to be adjusted
easily. The design also reduced the size of the fastening system and gave it a more aesthetic
appearance. This version of RABI also included side antennae with similar construction. These
antennae extend from underneath the robot, fitting between the first two legs on each side.

 Another improvement was in the foot design. The foot switch on the bottom of the leg
often provided inaccurate readings. The switch would not make contact unless a sufficient
amount of weight was issued on the leg. Furthermore, the flexibility of the ping pong ball
caused the switch to snag and miss contact. These problems were ignored since it was not a
major problem. Eventually, one of the foot switches broke off resulting in a decision to redesign
the feet. The pin pong ball was discarded and replaced by a rubber footing as mentioned in
version 3.0. The foot switch was replaced by a micro switch at the top of the leg such that it
made contact when the leg was fully extended (down). The placement of the switch will prevent

 188

it from breaking off, but results in a different function. This final version of RABI is depicted
in Plate 8.

Antennae (piano wire)

solder joint

wire leads

washer

plastic shaftsaccess hole

Figure 8.8 The improved antennae system design.

Plate 8 Side view of the final version of RABI.

 189

 The new switch does not detect when the foot has contact, instead it detects when the leg
is down 48. This new functioning is acceptable since RABI only uses a tripod gait which works
in level environments. Therefore, if the environment has no holes, there will not be a problem
using this new switch in the same manner as the previous foot switch.

8.2 The RABI / Computer Interface

 The hardware version of RABI interfaces to a PC compatible computer. More
specifically, the robot is actually connected to a 386 computer via a Quatech PXB-241 interface
card which is a 24 buffered digital input/output adapter. The robot has a tether of 20 lines
representing 3 buses which plug directly into the PXB-241. In addition, there are two power
lines attached to the tether providing +5v power, +3v power and ground to the robot. This
power comes from a Condor 5v power supply and an EDLaboratory regulated DC power supply
respectively. Figure 8.9 displays the setup.

PXB-241

Hardware
Interface

386 Computer

RABI

TETHER:
20 data lines + 2 power lines + 1 ground

3v Power Supply

ED Laboratory

5v
Power Supply

Condor

Figure 8.9 The hardware setup for RABI. A tether connects the robot to the PXB-241 interface for control,
and to 2 power supplies for power.

48 This switch provides the same function as the leg down limit switch. The leg limit switch could not be used as

foot down detection since electronically, it is used as a cutoff switch.

 190

 By keeping the power supplies off the robot, considerable weight problems are
eliminated. Furthermore, by keeping the controlling software separate from the robot, it is easier
to make modifications to the various networks and algorithms. As a consequence of keeping the
computer off-line, the robot must have some method of communicating with it. The simplest
method was to connect it, using a tether, to a commercial interface card which provides the
necessary electronics and buffering.

 The communicating interface consists of 3 buses. An 8-bit input bus reads sensor
information from the robot and an 8-bit output bus sends data to the robot for actuator control.
Finally, data from a 4-bit control bus sends a command to the robot's control electronics
telling the robot to either read its output bus or send something onto the input bus.

 All of RABI's software is written in Smalltalk 49. This language provides a rich object
oriented environment suitable for robotic software design. It also allows easy access to the
PXB-241 interface board by using just two DOS instance methods: outByte:toPort: and
inByteFromPort. These two methods allow data to be sent to and read from the interface
card, thus allowing the sending and receiving of data from the robot. There is however, a limit
to the transfer speed of the data through the PXB-241 ports, and thus additional electronic
circuitry was added to the robot to reduce the transfer rate required for control. Most existing
robots require real time control, but RABI is a relatively slow walking machine that does not
require real time interaction.

8.3 Electronics

 Most of the robot's electronics consists of simple IC's, transistors and resistors. Since all
of the behaviors are programmed by the interfaced computer, the electronics merely need to read
in actuator commands and communicate sensor values back to the computer. There are separate
electronics boards for leg positioning, leg interfacing and control, sensor interfacing and leg
selection. Additional boards were created for head positioning and control, proximity detection
and light sensing but these are not used on the final version of RABI and will thus not be
discussed.

49 Smalltalk V/286 version 1.1 from Digitalk Inc.

 191

8.3.1 Leg Positioning

 For all types of actuator control, some form of position feedback is necessary. For
RABI, there is a need to know roughly where each leg is at any one time so that coordinated
walking is possible. On level surfaces, a precise indication of the vertical position of a leg is not
required. The horizontal position of the leg is more important in this type of environment, thus
there is a need to measure the horizontal position of the leg. A simple method is to construct an
analog to digital converter using simple IC's and some resistors as shown in Figure 8.10. By
connecting a potentiometer to the shaft of the geared down motor, an analog signal can be
obtained giving an indication as to the leg's position. This analog signal can easily be converted
into digital 3-bit data.

339
+-

1K 1K1K1K

+5v

12

3

4 5 6 7 8 9

12

1110

1314

100K

+5v

100K

10 11 12 13 1 2 3 4

 SN74LS148
 8-to-3 Line Priority Encoder5

8
16

6 7 9

A2 A1 A0

3-bit output

Connect
to

Motor

a
123

+5v

339
+-

339
+-

339
+-

a a a
339

+-

1K 1K1K1K

12

4 5 6 7 8 9 1110

1314
b

339
+-

339
+-

339
+-

b b b

Figure 8.10 The schematic diagram for a 3-bit analog to digital converter used to obtain horizontal positioning
information for each leg.

 In the diagram, the left most 100K potentiometer connects directly to the geared motor
shaft. The analog voltage from the potentiometer passes through a series of 1K resistors and
then to another 100K potentiometer used to adjust the sensitivity. By sampling the voltage at
different points in this resistor series, different voltages are obtained. In fact, the voltage is cut in
a linear fashion such that the voltage drop after each resistor is approximately equal. By
connecting a series of voltage comparators (LM339) at these different sampling points and
comparing the voltage to a common reference voltage, an indication to the amount of resistance

 192

in the potentiometer is obtained. Each of these voltage comparators emits a high signal when
the voltage of the potentiometer exceeds their reference voltage. An 8-to-3 line priority encoder
(74LS148) then reads in the 8 signals from the voltage comparators and outputs 3-bit data
indicating the position of the potentiometer, hence the position of the leg. For leg movement in
the vertical direction, only 3 states can be identified: fully extended, fully contracted or
somewhere in between. This positioning information can be obtained by reading the leg limit
switches, hence no positioning circuitry is required.

8.3.2 Leg Control

 Each of RABI's 6 legs has a small circuit board allowing it to interface to the input and
output buses as well as interpreting commands and moving the leg appropriately. The schematic
for this interface is given in Figure 8.11.

+5v

+3v

To F/B
motor

To U/D

+3v

motor

O
ut

pu
t B

us

0

1

2

3

4

5

6

7
In

pu
t B

us

0

1

2

3

4

5

6

7

 S
N

74
L

S3
73

 S
N

74
L

S2
44

 S
N

74
L

S8
5

1K 1K

1K1K

1K

1K

1K

1K

TIP41C

TIP41C

TIP41C

TIP41C

TIP41CTIP41C

TIP41C TIP41C

Front Collision

Down
Limit

Up Limit

+5v

Foot
Down

3
4

7

8

13

14

17

18

2

5

6
9

12

10 1

20 11

1 19

20

15

13

11
8

2

4

6 14

16

18

12

9

7

5

3

10

Read
Enable

Write
Enable

13

12

10

9

11

14

124 815

3 16

7

5
1

0

2

1

0

2

po
si

tio
n

Figure 8.11 The schematic diagram for the leg control circuitry.

 193

 The circuit can be decomposed into pieces making analysis easy. The two left most
chunks of circuitry represent the motor control circuitry using an "H" network of transistors 50.
This piece of circuitry requires a 2-bit binary signal indicating the direction of the motor. A
binary input of 01 or 10 causes the motor to move in clockwise and counter-clockwise directions.
An input of 00 causes the motor to shut off. An input of 11 is not allowed since it will attempt
to turn the motor on in both directions causing overheating of the transistors. The 74LS85 is a
4-bit magnitude comparator which handles the horizontal positioning of the leg. The output bus
provides a desired 3-bit horizontal position for the leg. The comparator compares the desired 3-
bit horizontal position with the actual position and produces a less than, greater than or equal to
resulting signal. The less than and greater than signals provide the necessary 2-bit information
required for motor control. Thus, the leg is always being positioned unless the comparator
receives a match between the actual and desired position.

 During construction, an overshooting problem arose due to this method of positioning.
During leg movement, the comparator shuts off the motor once the leg has reached the desired
position. When shut off, the motor does not stop immediately, instead it slows down to a stop.
While slowing down, the leg passes the desired position, causing the comparator to reverse the
motor in order for the leg to backup to the desired position. Once reached again, the motor is
shut off. Again, the leg overshoots and the process enters into an oscillating pattern around the
desired leg position, never stopping at the desired position. This problem causes a kind of
"twitching" in the legs making walking impossible. Since the leg motors had much slack in the
gears, the legs are not accurate enough for 3-bit precision. Thus, the positioning circuitry was
reduced to 2 bits to help alleviate the oscillation problem. Actually, for the tripod walking used,
only the 2 most extreme leg positions are required.

 A further problem was encountered with the strength of the motors. The earlier designs
of RABI all failed due to the accumulated weight of the robot, causing the motors to struggle and
even fail to support the weight. A part of the problem was in the leg design itself but another
part of the problem lied in the electronics. The controlling circuitry was not powerful enough to
drive the motors. As a result, the motors were pulling excessive current from the electronics,
causing failure. To fix the problem, an additional circuit was designed for each leg to provide
enough current to the motors so they would not draw current from the electronics. The
schematic for this circuit is shown in Figure 8.12(a) and 8.12(b).

50 This motor control circuit is based upon the circuit given by [McComb 87] page 99.

 194

 There are two copies of each of these circuits for a total of 4 additional circuit pieces that
connect to the motor control "H" network. Essentially, the inverters (74HC04) provide low
current buffers for incoming signals from the electronics. For (a), this incoming signal comes
from pins 9 and 12 of the 74LS373 which specify the vertical direction to move the leg. For (b),
the incoming signal comes from pins 5 and 7 of the comparator which controls the horizontal leg
direction. The signal then passes through a 10K biasing resistor which drives a small switching
MPSA13 NPN transistor. For the vertical positioning, the signal also passes through the limit
switch allowing disabling of the motor as shown in (a). The transistor acts as a switch providing
direct power to the motor control circuitry, solving the problem of current draw from the
electronics. In (b), an additional inverter is added to undo the inversion of the first inverter so
that the binary signal remains unchanged. That is, a signal of 00 must not be inverted to 11
otherwise an illegal state will occur for the motor control circuitry.

+5v

74HC04

10K

Leg Limit

2.2K

MPSA13

74HC04

10K2.2K

MPSA13

+5v

(a)

(b)

Motor
Control

Motor
Control

from
74LS85

from
74LS373

No Switch

Figure 8.12 Additional circuitry providing the necessary current to the motors. (a) circuit
for vertical motor and (b) circuit for horizontal motor.

 The two right most ICs of Figure 8.11 handle the interfacing to the input and output
buses. In this circuit a tri-state buffer (74LS244) was used to interface sensor data to the input
bus. When the READ ENABLE line is set low, the sensor data is buffered onto the input bus
and remains on the bus until the READ ENABLE line is set high again. The output bus uses a
tri-state octal D-type transparent latch (74LS373). When the WRITE ENABLE signal is set

 195

high, the data on the output bus is latched and stored in the IC. This data remains stored until
new data replaces it with a high WRITE ENABLE signal again.

 The 7 bits of data buffered onto the input bus is sensor data corresponding to the leg
position and switch settings as shown below in Figure 8.13. The 5 bits of output data are also
shown in this figure.

foot down

front collision
up limit

down limit

3-bit leg position

U D

lift up
place down

3-bit leg position

7 6 5 4 3 2 1 0

F C P2 P1 P0

7 6 5 4 3 2 1 0

LU LD

INPUT DATA OUTPUT DATA

P2 P1 P0

Figure 8.13 The 8-bit data format for the input and output buses. Note that bit 7 is null
on the input data and 5, 6 &7 are ignored from the output data.

 Here, the F, C, LU and LD bits are all readings for the foot, collision, leg up limit and leg

down limit switches respectively. The F bit is low if the foot is touching the ground and high
otherwise. Similarly, the C bit would be low if the leg has collided or bumped into an object
and high otherwise. The circuitry was designed such that forward leg movement is halted
whenever this switch is touched. Since the robot walks by lifting its leg and swinging it forward
at the same time, the leg would continue to lift when the switch is closed. This allowed the
forward leg movement to wait until the leg fully lifted over the obstacle before it completed its
swing. This notion is analogous to a reflexive reaction to an obstacle stimulus. In essence it is
an electronic reflex. The collision switch was eliminated from the final version of RABI since,
the legs were not accurate enough to warrant this additional sensor. The LU and LD bits indicate

whether the leg is fully up or down respectively. The leg limit switches are in a "closed" state
normally and become "open" when they are touched. This allows the switches to cut off power
to the motor circuitry preventing the leg from extending past its limit.

 The data on the output line represents actuator commands needed to move the leg to the
appropriate position. If the U bit is low, the leg will lift up. Similarly, if the D bit is low, the
leg will be placed down. Care must be taken not to send a binary 0 for both these bits at the
same time, otherwise the leg will not move and the transistors would overheat. Bits 0, 1 and 2

 196

represent 8-bit data for the desired leg position. Once this data has been latched, the leg will
begin to move to the desired position and up or down as specified. The electronic circuitry will
halt leg motion once the desired position has been reached. This "self-moving" method of leg
control frees the programming software from having to continually specify consecutive positions,
reducing the need for real time control.

8.3.3 Robot Interface Circuitry

 Each leg must be able to extract information from the output bus and send sensor
information onto the input bus. At any one time the data on the output bus contains a command
for only one leg, and thus the other legs should ignore the data. Furthermore, only one leg can
place data onto the input bus at a time, otherwise the data would clash resulting in garbage
information and perhaps circuit burnouts. It should be clear that there must be some circuitry
directing the data on these two buses. For this reason, a third bus, called the control bus was
created. The control bus is a 4-bit bus that contains controlling information allowing the various
legs to be selected for input or output data transmissions. The circuitry required for connecting
this bus is shown in the schematic diagram of Figure 8.14.

 In this circuit, there are two 3 to 8 line decoders (74LS138) are used to decode the control
bus signals into 8 control lines each. One decoder is used to turn on the WRITE ENABLE for
the appropriate leg 51. The other decoder is used to turn on the READ ENABLE for the
appropriate leg or sensor to be read. The high bit 4 of the control bus is used to select either a
read or write operation with a 0 and 1 value respectively. The use of the inverters (74LS04) is
required since the decoders emit a low signal on the selected line; the OUTPUT ENABLE signal
must be set high to latch the data in the leg control circuitry.

51 There is room for expansion here if additional actuators are to be added, such as head movements.

 197

LEG 1L
LEG 2L
LEG 3L
LEG 1R
LEG 2R
LEG 3R

(not used)

 (not used)
Antennae

LEG 1L
LEG 2L
LEG 3L
LEG 1R
LEG 2R
LEG 3R

74
L

S1
38

74
L

S1
38

0

1

2

3

6

15

14

13

12

11

10

9

78

5

4

16

16 6

1

2

3

1

2

3

8
15

14

13

12

11

10

9

7

4 5

1

3

5

9

11

13

2

4

6

8

10

12

74LS04

+5v

7 14

Control
Bus

R
ea

d
E

na
bl

e

W
ri

te
 E

na
bl

e

(not used)

Figure 8.14 A schematic diagram for the control bus circuitry.

 The Antennae signal coming from the bottom decoder of Figure 8.14 is used to enable the
reading of the robot's body sensors. This signal is fed into an additional circuit that latches
various sensor data onto the input bus. A schematic for the additional circuitry is given in
Figure 8.15.

 There are actually two copies of this circuit; one for head sensors and one for body
sensors. Only one is being used now since RABI only needs 6 lines for its antennae, leaving 10
data lines for expansion. The 6 antennae signals come directly from the sensors and are latched
onto the input bus when the READ ENABLE line is set low.

 198

74
L

S2
44

119

+5v

10

12
14
16
18
9
7
5
3

6

15
13
11

8

4
2

17

20

Read
Enable

ANT.0
ANT.1
ANT.2
ANT.3
ANT.L
ANT.R

0
1
2
3
4
5
6
7

Input Bus

Figure 8.15 A schematic diagram for the sensor latching
circuitry.

 With both these circuits the PXB-241 interface allows RABI's software to send
commands on the output bus resulting in leg movement, and read in sensor values from the input
bus. Table 2 depicts all possible functions (commands) that may be sent to the robot. The first
half of the commands represent input commands in which the computer can read sensor and
switch values from the robot. The second half of the commands represent actuator or control
functions allowing the legs to be moved to a specified horizontal position and vertical direction.

8.4 Future plans

 If RABI was to be redesigned, all of the electronic circuitry would be modified and some
even eliminated. Some of the electronic circuits could have been simplified greatly since the
resolution of the horizontal leg position was reduced to 2 bits. Furthermore, the software only
makes use of the most extreme leg positions. Thus, the position sensor circuitry is not needed
since limit switches would perform the same task.

 All of the basic neural circuits for the instinctive behaviors would be electronically
constructed. This would allow the computer interface to be greatly simplified since the interface
would only need to communicate through a higher level protocol. For example, the computer
could send out commands such as "walk forward", "stop", "turn left", "turn right", "follow
edges", "wander", "stay in vacant areas", "go to light", etc. The electronic neuron networks
would actually perform the desired functions and send back only sensor information such as

 199

antennae readings and light sensor readings. In fact, if the robot is to be programmed with only
instinctive behaviors and no learning or map building is required, then the computer interface is
not needed and the addition of batteries to the robot would make it completely autonomous and
self contained.

0000
0001

0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

A2A 1A0AR A3A L

Read leg L1 sensors
Read leg L2 sensors
Read leg L3 sensors
Read leg R1 sensors
Read leg R2 sensors
Read leg R3 sensors

0010

(Unused)
Read antennae

Move leg L1
Move leg L2
Move leg L3
Move leg R1
Move leg R1
Move leg R3
(Unused)
(Unused)

F C P2 P1 P0LU LD-

- - - - - - - -
- -

- - - U D P2 P1 P0

F C P2 P1 P0LU LD-
F C P2 P1 P0LU LD-
F C P2 P1 P0LU LD-
F C P2 P1 P0LU LD-
F C P2 P1 P0LU LD-

- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

- - - - - - - -
- - - - - - - -

- - - U D P2 P1 P0

- - - U D P2 P1 P0

- - - U D P2 P1 P0

- - - U D P2 P1 P0

- - - U D P2 P1 P0

Function Cntrl. Input Data Output Data

Table 2 All possible robot commands. For commands from 0 to 7 the resulting input data is described.
Also, for each command from 8-15, the required output data format is specified.

 As for future mechanical changes, the entire robot would be reduced in size. Since the
robot walks using only a tripod gait, then only two motors are actually required to achieve this.
Consider a small tank-like robot with 3 wheels per side. The legs could be attached to each of
these wheels such that they operate in a kind of stirring motion with three legs down at any one
time. This reduction in motors would reduce most of the weight problems allowing the use of
smaller motors, therefore reducing the overall size of the robot. With nanotechnology and VLSI
technology, it is possible to create a very small robot with the performance of RABI. It is
unclear, however, as to the reducibility of the map building and learning features of the software
version of RABI. Thus, more experimentation needs to be done with the reducing of software,
hardware and power requirements needed for learning.

 200

8.5 Summary

 The various versions of RABI provided insight into the mechanical and physical
problems of legged robot design. As the robot evolved, the leg designs became more efficient
and stable. The electronic circuitry required to control RABI is simple and inexpensive, and
provided a suitable interface for robot / computer interaction. With the use of simple
mechanical and electronic sensors, the overall robot is reduced in size and weight. Eventually,
these sensors may be improved upon so as to reduce their size and increase their efficiency,
resulting in an even lighter weight design. RABI's physical design has the potential to be
drastically reduced in size through the elimination of the computer interface. Such a reduction is
a step towards smaller and smaller robots of the future.

 201

∼∼

Appendix A

∼∼

A1 Spreading Activation

 The following is a list of pseudo code routines required for spreading activation between
the memory neurons (see section 6.5.2). The routines are used to spread activation such that a
shortest path can be determined to multiple destinations.

InitiateSpreadingActivation(D1, D2, D3, ..., Dn)
 {
 "Initiate the spreading of activation from each of the given neurons"

 Reset all memory neurons to have zero activation.
 FOR each destination neuron Di DO
 {
 Set output of Di to 1.
 SpreadActivationAdjacent (Di).
 }
 }

SpreadActivationAdjacent (N)
 {
 "Spread activation adjacent to neuron N"

 FOR all prev neurons Pi of Di DO
 SpreadActivation (Pi)
 FOR all next neurons Ni of Di DO
 SpreadActivation (Ni)
 }

SpreadingActivationFrom (N)
 {
 "Spread the activation from a neuron N"

 IF N is an edge neuron THEN
 SpreadActivationFromEdge (N)
 ELSE
 SpreadActivationFromCorner (N)
 }

 202

SpreadingActivationFromEdge (N)
 {
 "Update the activation of an edge neuron N and continue the activation spreading it adjacent"

 LET Pn = previous neuron of N.
 IF DominatesEdge (Pn, N) THEN {
 IF output of Pn > 0 THEN
 set output of N to (output of Pn + storedEnergy of N) * -1.
 ELSE
 self output of N to (output of Pn - storedEnergy of N).
 SpreadActivationAdjacent (N) }

 LET Nn = next neuron of N.
 IF DominatesEdge (Nn, N) THEN {
 IF output of Nn > 0 THEN
 set output of N to (output of Nn + storedEnergy of N).
 ELSE
 self output of N to (output of Nn - storedEnergy of N).
 SpreadActivationAdjacent (N) }
 }

SpreadingActivationFromCorner (N)
 {
 "Update the activation of a corner neuron N and continue the activation spreading it adjacent"

 LET Pn = previous neuron of N .
 IF DominatesCorner (Pn, N) THEN {
 IF output of Pn > 0 THEN
 set output of N to output of Pn * -1.
 ELSE
 self output of N to output of Pn.
 SpreadActivationAdjacent (N) }

 LET Nn = previous neuron of N .
 IF DominatesCorner (Nn, N) THEN
 set output of N to output of Nn
 SpreadActivationAdjacent (N)
 }

DominatesCorner (N1, N2)
 {
 "Return whether or not N1 has an activation that dominates N2"

IF output of N1 is 0 THEN RETURN (false).
 IF output of N2 is 0 THEN RETURN (true).
 IF abs(output of N1) < abs(output of N2) THEN RETURN (true)

 ELSE RETURN (false)
 }

 203

Dominates Edge(N1, N2)
 {
 "Return whether or not N1 has an activation that dominates N2"

 IF output of N1 is 0 THEN RETURN (false).
 IF output of N2 is 0 THEN RETURN (true).
 IF (abs(output of N1) + stored energy of N2) < abs(output of N2) THEN RETURN (true)
 ELSE RETURN (false)
 }

A2 Generalization

 The following is a list of pseudo code routines required for the basic matching algorithm
that determines whether or not two layers of neurons match (see section 6.2.4).

Match (L1, L2)

{
"Determine whether the two layers match"
LET S = the first neuron of layer L1.
FOR each neuron Ni of layer L2 DO

MatchFrom(Ni,S)
}

MatchFrom (N1, N2)
{

"Determine whether the two layers match from these two neurons"
IF Matches(N1, N2) THEN

RETURN (MatchFrom (N1 next , N2 next)
ELSE RETURN (false)

}

Matches (N1, N2)
{

"Determine whether the two neurons match"
IF N1 is a different type of neuron than N2 (i.e. corner and edge) THEN

RETURN (false)
IF the stored energy of N1 is within an allowable error from the stored energy of N2 THEN

RETURN (true)
ELSE

RETURN (false)
}

 204

∼∼

References

∼∼

[Anderson and Anderson, James A.; Rosenfeld, E., Neurocomputing:
 Rosenfeld 89] Foundations of Research, 1989, MIT Press, London.

[Anderson and Anderson, Tracy L.; Donath, Max, Animal Behavior as a
 Donath 90] Paradigm for Developing Robot Autonomy, Designing
 Autonomous Agents, 1990, MIT Press, Elsevier, pp. 145-168.

[Ayers and Ayers, Joseph; Crisman, Jill, Biologically-based Control of
 Crisman 92] Omnidirectional Leg Coordination, IEEE/RSJ International
 Conference on Intelligent Robots and Systems, Vol. 1, July 1992,
 Raleigh, NC, pp. 574-581.

[Beer 90] Beer, Randall D., Intelligence as Adaptive Behavior, 1990
 Academic Press, London.

[Beer and Beer, Randall D.; Gallagher, John C., Evolving Dynamical
 Gallagher 92] Neural Networks, Adaptive Behavior , 1992, MIT Press, London,
 pp. 91-122.

[Bell and Bell, W.J.; Adiyodi, K.G., The American Cockroach, 1981,
 Adiyodi 81] New York: Chapman and Hall, pp. 372-376.

[Bernstein 67] Bernstein, N. A., The Co-ordination and Regulation of Movements
 1967, Oxford: Pergamon Press.

[Booker et al. 89] Booker, L.B.; Goldberg, D.E.; Holland, J.H., Classifier Systems
 and Genetic Algorithms, Artificial Intelligence, Vol. 40, 1989,
 pp. 235-282.

[Borenstein Borenstein, Johann; Koren, Yoram, Histogramic In-Motion
 and Koren 91] Mapping for Mobile Robot Obstacle Avoidance, IEEE Trans. on
 Robotics and Automation, Vol.7, No.4, August 1991, pp. 535-539.

[Braitenberg 84] Braitenberg, Valentino, Vehicles, 1984 Bradford Books,
 MIT Press.

 205

[Brooks 86] Brooks, Rodney A., A Layered Intelligent Control System for a
 Mobile Robot, Third International Symposium on Robotics
 Research, Vol. 3, 1986, MIT Press, London, pp. 365-372.

[Brooks 89] Brooks, Rodney A., A Robot that Walks; Emergent Behaviors
 from a Carefully Evolved Network, Neural Computation, Vol. 1,
 No. 3, 1989, pp. 253-262.

[Brooks 91] Brooks, Rodney A., Intelligence Without Representation,
 Artificial Intelligence, Vol. 47, 1991, Elsevier, pp. 253-262.

[Camhi 84] Camhi, J.M., Neuroethology, 1984, Sunderland, MA, Sinauer
 Associates.

[Carmo 76] Carmo, M.P., Differential Geometry of Curves and Surfaces,
 Prentice-Hall, Eaglewood Cliffs, NJ, 1976, pp. 30-32, 267, 396.

[Carew 85] Carew, T.J., The Control of Reflex Action, Principles of Neural
 Science, 1985, E.R. Kandel and J.H.Schwartz, New York,
 Elsevier, pp. 457-468.

[Chiel et al. 92] Chiel, Hillel J.; Beer Randall.D.; Quinn R.D.; Espenschied K.S,
 Robustness of a Distributed Neural Network Controller for
 Locomotion in a Hexapod Robot, IEEE Transactions on Robotics
 and Automation, Vol. 8, No.3, June 1992, pp. 293-302.

[Cox 91] Cox, Ingemar J., Blanche - An Experiment in Guidance and
 Navigation of an Autonomous Robot Vehicle, IEEE Transactions
 on Robotics and Automation, Vol.7, No.2, April 1991,
 pp. 193-204.

[Dario et al. 91] Dario, P.; Ribechini F.; Genovese V.; Sandini G., Instinctive
 Behaviors and Personalities in Societies of Cellular Robots,
 Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation,
 April 1991, pp. 1927-1932.

[Dudek et al. 91] Dudek, Gregory; Jenkin, M.; Milios, E.; Wilkes, D., Robotic
 Exploration as Graph Construction, IEEE Transactions on
 Robotics and Automation, Vol. 7, No. 6, Dec. 1991, pp. 859-865.

[Fylnn 87] Flynn, Anita M., Gnat Robots, AI Expert, Vol.2, No.12, Dec.
 1987, pp. 34-41.

[Gallistel 90] Gallistel, Charles R., The Organization of Learning, 1990,
 MIT Press.

[Gibson 62] Gibson, J.J., Observations on Active Touch, Psychological
 Review, Vol.169, 1962, pp.477-491.

 206

[Gould and Gould, James L.; Marler, Peter, Learning By Instinct, Scientific
 Marker 87] American, Vol. 256, No. 1, Jan. 1987, pp. 74-85.

[Graham 85] Graham, D., Pattern and Control of Walking in Insects, Advances
 in Insect Physiology, Vol. 18, 1985, pp. 111-114.

[Hochberg 68] Hochberg, Julian, In the Mind's Eye, Contemporary Theory and
 Research in Visual Perception, 1968, R.N. Haber, ed. New York:
 Holt, Rinehart and Winston, pp.309-331.

[Koza and Rice 92] Koza, John R.; Rice, James P., Automatic Programming of
 Robots using Genetic Programming, Proc. 10th National Conf. on
 A.I., San Jose, July 1992, MIT Press, London, pp. 194-201.

[Kweon et al. 92] Kweon, I.; Kuno, Y.; Watanabe, M.; Onoguchi, K., Behavior-
 Based Intelligent Robot in Dynamic Indoor Environments,
 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol.2,
 Raleigh, NC, July 1992, pp. 1339-1346.

[Lang et al. 89] Lang, S.T.; Korba, L.W.; Wong A.K.C., Characterizing and
 Modelling a Sonar Ring, Proc. of SPIE, Advances in Intelligent
 Robotics Systems: Mobile Robots IV, Philadelphia, PA, Nov. 1989,
 pp. 291-304.

[Langton 89] Langton, Christopher G., Artificial Life VI, 1989, Addison-
 Wesley, Santa Fe Institute.

[Lewis and Lewis, Anthony M.; Bekey, George A., The Behavioral Self-
 Bekey 92] Organization of Nanorobots Using Local Rules, Proc. of the
 1992 IEEE/RSJ Int.Conf. on Intelligent Robots and Systems,
 Vol.2, July 1992, Raleigh, NC, pp. 1333-1338.

[Linsker 88] Linsker, R., Development of Feature-analyzing Cells and their
 Columnar Organization in a Layered Self-adaptive Network,
 Computer Simulation in Brain Science, 1988, New York:
 Cambridge University Press, pp.416-431.

[Linsker 90] Linsker, R., Self-Organization in a Perceptual System: How
 Network Models and Information Theory May Shed Light on
 Neural Organization, Connectionist Modeling and Brain Function,
 1990, MIT Press, London, Ch.10, pp.351-392.

[McComb 87] McComb, Gordon, The Robot Builder's Bonanza: 99 Inexpensive
 Robotics Projects, 1987, Tab Books, Blue Ridge Summit, PA.

 207

[Maes 91] Maes, Pattie, A Bottom-Up Mechanism for Behavior Selection in
 an Artificial Creature, From Animals to Animats: Proc. of the 1st
 Int. Conf. on Simulation of Adaptive Behavior, 1991, MIT Press,
 London, pp. 238-246.

[Mahadevan Mahadevan, Sridhar; Connell, Jonathan, Automatic
 and Connell 92] Programming of Behavior-Based Robots using Reinforcement
 Learning, Artificial Intelligence, Vol.55, 1992, Elsevier,
 pp. 311-365.

[Mataric 91] Mataric, Maja J., Navigating With a Rat Brain: A
 Neurobiologically-Inspired Model for Robot Spatial
 Representation, From Animals to Animats: Proc. of the 1st Int.
 Conf. on Simulation of Adaptive Behavior, 1991, MIT Press,
 London, pp. 169-175.

[McGhee McGhee, R.B.; Frank, A.A., Some Finite State Aspects of
 and Frank 68] Legged Locomotion, Mathematical Biosciences, Vol. 2,
 No.1/2, 1968, pp.67-84.

[Messuri and Messuri Dominic A.; Klein, Charles A., Automatic Body
 Klein 85] Regulation for Maintaining Stability of a Legged Vehicle During
 Rough-Terrain Locomotion, IEEE Journal of Robotics and
 Automation, Vol. RA-1, No.3, September 1985, pp. 132-141.

[Mitchell 89] Mitchell, Joseph S.B., An Algorithmic Approach to Some
 Problems in Terrain Navigation, Geometric Reasoning, 1889,
 MIT Press, pp. 171-201.

[Nehmzow and Nehmzow, Ulrich; Smithers, Tim, Mapbuilding Using Self-
 Smithers 91] Organizing Networks in "Really Useful Robots", From Animals to
 Animats: Proc. of the 1st Int. Conf. on Simulation of Adaptive
 Behavior, 1991, MIT Press, London, pp. 152-159.

[Pal and Pal, P.K.; Jayarajan, K., A Free Gait for Generalized Motion,
 Jayarajan 90] IEEE Transactions on Robotics and Automation, Vol. 6, No. 5,
 Oct. 1990, pp. 597-600.

[Rosenblatt 58] Rosenblatt, F., The Perceptron: A Probabilistic Model for
 Information Storage and Organization in the Brain, Psychological
 Review, Vol. 65, 1958, pp.286-408.

[Rosten and Roston, Gerald P.; Krotkov, Eric P., Dead Reckoning Navigation
 Krotkov 92] for Walking Robots, Proc. of the 1992 IEEE/RSJ International
 Conference on Intelligent Robots and Systems, Raleigh, NC,
 July 1992, pp. 607-612.

 208

[Song and Song, Shin-Min; Waldron, Kenneth J., Machines That Walk,
 Waldron 89] 1989, Mit Press, London, Ch. 3.

[Staddon 83] Staddon, J. E. R., Adaptive Behavior and Learning, 1983,
 Cambridge University Press, Cambridge, Ch. 2 & 3.

[Steels 90] Steels, Luc, Exploiting Analogical Representations, Designing
 Autonomous Agents, 1990, MIT Press, Elsevier, pp. 71-88.

[Toates 86] Toates, Frederick M., Motivational Systems, 1986, Cambridge
 University Press, Cambridge.

[Todd 85] Todd, D.J., Walking Machines: An introduction to Legged
 Robots, 1985, Kogan Page Ltd, London.

[Tyrrell and Tyrrell, Toby; Mayhew, John E. W., Computer Simulation of
 Mayhew 91] an Animal Environment,From Animals to Animats: Proc. of the 1st
 Int. Conf. on Simulation of Adaptive Behavior, 1991, MIT Press,
 London, pp. 263-272.

[Wilson 66] Wilson, D.M., Insect Walking, Annual Review of Entomology
 Vol. 11, 1966, pp.103-122.

[Wilson 85] Wilson, Stewart W., Knowledge Growth in an Artificial Animal,
 Proc. of an Int. Conf. on Genetic Algorithms and Their
 Applications, 1987, Pittsburgh, PA., pp.16-23.

[Wilson 87] Wilson, Stewart W., Classifier Systems and the Animat Problem,
 Machine Learning, Vol. 2, 1987, pp.199-228.

[Zelinsky 92] Zelinsky, Alexander, A Mobile Robot Exploration Algorithm,
 IEEE Transactions on Robotics and Automation, Vol. 8, No. 6,
 December 92, pp. 707-717.

