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ABSTRACT 

 
 Recent approaches towards designing autonomous robots have concentrated on the 
bottom-up approach by programming them with instinctive behaviors in which the overall 
behavior of the robot emerges from the interaction of the robot with the environment.   This 
thesis describes how these instincts can be coded using simple fixed weight neural networks 
which reduce the need for computational speed and power.   Furthermore, with these simple low 
level behaviors, only simple sensors are required.   The resulting robot is therefore simpler, 
smaller and cheaper.   The potential of simply constructed robots that use a minimal complement 
of basic sensors is investigated.   A hardware and simulated version of a robotic insect is 
presented which have the capability of adapting to a static, initially unknown environment.   The 
hardware version was developed to determine if such a robot could operate in the unpredictable 
and noisy real world.  Various problems were encountered during its development that points out 
the importance of developing a physical device.   The robot is endowed with instincts pertaining 
to obstacle avoidance, wandering, vacancy and edge following.   Instincts from the simulated 
version also include photokinesis, floor cleaning and landmark-based navigation. 
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 There has been a growing amount of research in the area of autonomous mobile robots 

and animats  1.  Much of the work has been the designing of task-oriented mobile robots many of 
which use sophisticated sensors (i.e. cameras, range finders) and require much computational 
speed and power.   While this approach seems to create robots that are able to impressively 
perform simple tasks, it usually results in a highly complex and expensive system that can only 
operate in a constrained environment.   In addition, the sophisticated sensors suffer from noisy 
data, resulting in the need to alter the environment to reduce noise 2. 
 
 By creating robots with simple sensors, the noise factor is sufficiently reduced allowing 
the robot to function in an unaltered environment.   The drawback of simplifying the sensors is 
that the information extracted from the environment is reduced and the resulting robot would 
only be able to perform simple tasks.   However, the elimination of complex sensors allows the 
robot to be reduced in size since the computational power requirements diminish.   With such a 
small size, perhaps many of these simplified robots could perform as a whole the same tasks as a 
more complex robot but at a fraction of the expense.   Nanotechnology  research may eventually 
lead to efficient nano motors and pumps, allowing these simplified robots to become reality 
[Flynn 87]. 
 
 Although there has been some recent research in the area of colonies of nanobots [Dario 
et al. 91], [Lewis and Bekey 92], there is a need to determine just what types of complex 

                                                 
1  The term animat is used to describe an artifical animal ; in this case, a simulated robotic life form. 
2  In the case of laser  range finders, ambient light from outside the environment must be blocked off.   For cameras, 

the obstacle contrasts must be altered in order for the camera to single out the desired objects.  An example of this 
is creating a black and white environment. 
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behaviors can emerge from these simple robots individually.   By experimenting with simplified 
robot control mechanisms and sensors, one may gain insight as to their usefulness. 
 
 The first step towards creating these individual robots is to determine the basic primitive 
behaviors that are needed for survival.   At the lowest level of control, the robot can be 
programmed with simple behaviors such as obstacle avoidance, wandering, edge following, 
phototropism, photophobia and searching for food.  Additional behaviors could then be added 
allowing the robot to learn and adapt to its environment as well as perform a repertoire of simple 
tasks.   A robot of this nature takes precedence in keeping itself functioning by learning to adapt 
and survive in its environment, performing its given tasks only when its needs are met.   Such a 
robotic system would represent a kind of mechanical artificial life form. 
 
 
1.1  Traditional Robotics 

  
 Many researchers have taken a common approach towards designing so-called 
"intelligent" autonomous robots and robotic systems.   Many of their robots were developed in a 
straight forward manner with software that instructed the robot to perform some action whenever 
a specific event had occurred.   In this approach, the sensor data is fused into an internal model of 
the environment.   The robot would often have a set of rules or strategies which completely 
governed its overall actions.   The internal model was then used to reason about and plan 
intelligent actions.   A main problem with using such an internal model of the environment is in 
the representation.   The world must be represented with enough information to allow reasoning.   
When there is a lack of information, the reasoning and decision making process may not come up 
with an appropriate response for a given event.   The need for accurate representations resulted in 
the need to increase sensor power.  The addition of more complex sensors further required a large 
quantity of processing power in order to process the information.    
 
 The traditional programming approach used what is known as a top-down strategy in 
which a main controller was responsible for the overall actions performed by the robot.   With 
this approach, it was difficult to add functionality to the robot since it involved making changes 
to the existing software and/or hardware.   Moreover, by adding additional features to the robot, 
there was often a need to increase the computational power since in order to keep the robot 
operating with a reasonable response time.   Due to the need for processing sensor data, this type 
of design is of no practical use in situations that demand a quick response time. 
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 The computers on-board these traditional robots were often required to make complex 
calculations to solve problems related to 3D transformations, data analysis and extrapolation, and 
noise reduction techniques.   In addition, the algorithms demanded the computer's processing 
power for computational geometry and decision making problems as well as positioning and 
control for the robot's actuators.   During the development of such systems it was often the case 
that the computer could not meet the real-time demands of the control software, leaving the 
designers with the choice of increasing the computational power or reducing the computational 
requirements of the system.   The latter solution leads to a reduction in functionality of the 
overall system. 
 
 Usually, as the robot went through its many design phases, the final version ended up 
being quite complex and loaded with massive computational hardware and sophisticated sensors.   
Needless to say, these robots were usually bulky, and heavy and often contained software and 
hardware problems that were difficult to predict ahead of time.   Thus, the resulting robot was 
expensive, complex and often not very robust.  
 
 Perhaps the biggest problem was that of developing algorithms with the ability to handle 
the many different situations that could be encountered.   Often the algorithms were improved 
upon to account for different situations, but this improvement often resulted in quite complex 
algorithms which were more difficult to code.   Moreover, these algorithms could only be 
improved upon up to a certain point before they become too complex to implement in a robotic 
system. 
 
 Despite the many shortcomings, this traditional top-down approach to programming was 
used for many years.   Perhaps the reasoning for this was that computers were becoming smaller, 
quicker,  and cheaper, leading researchers to believe that eventually the computer would be quick 
enough to handle even the most demanding computations.   But as these robots became larger, 
heavier and more heavily equipped with sophisticated sensors, it was clear that another approach 
had to be taken towards the design of autonomous systems.  
 
 
1.2 The Subsumption Architecture - A Different Perspective 

 
 After a while, some researchers began to ask a simple question: "How could it be that a 
simple ant could outperform these highly complex and expensive robots ?".   After all, an ant is 
equipped with only simple sensors and little or no computational power at all.   Clearly, there 
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was a problem with the traditional approach to robot design since their performance did not meet 
their expectations.   Furthermore, there is a growing suspicion that the traditional approach to 
intelligent behavior is inadequate for systems that must operate in realistic environments, since 
they involve explicit reasoning by manipulating symbolic representations of the world [Beer 90]. 
 
 One researcher in particular decided to make a radical change towards the design of 
robotic systems.   This researcher is Rodney Brooks.   In 1985-1986 R. Brooks published papers 
describing a radically new architecture for use in designing autonomous systems.   This 
architecture is known as the subsumption architecture  [Brooks 86].   This new architecture 
emphasizes a more direct coupling of sensors to actuators.   It is a distributed and decentralized 
structure that provides a more dynamic interaction with the environment.   Moreover, by having 
multiple parallel activities, and by removing the idea of a central representation, there is less 
chance that any given change in the class of properties enjoyed by the world can cause total 
collapse of the system [Brooks 91]. 
 
 The subsumption architecture (SA) represents a bottom-up approach to the design of 
intelligent robotic systems.   This meant that the robot was designed by building the simplest 
reactive components first, and then adding the higher level functioning.   The SA allows the 
robot to be developed one piece (level) at a time such that after each level is completed, the robot 
is able to perform some simple behavior.   Additional levels are added only when it is fairly 
certain that the existing layers are operating properly.   With the SA, the behaviors are 
programmed in a priority oriented fashion in which higher levels of behavior subsume the lower 
levels.   Thus the higher level behaviors can override or suppress the signals in the lower level 
behaviors.   These higher levels of behavior correspond to higher levels of competence.   The SA 
represents a parallel and distributed structure for connecting sensors to actuators as shown in 
Figure 1.1. 
 
 The architecture allows for incremental development, where additional layers can be 
"added on" to the existing structure without the need to modify the previous layers.   The SA 
concentrates on getting the robot to function in a simple reactive manner, adding additional 
functionality on top of the simple behaviors.   The result is a more robust and reactive system 
than with the traditional top-down approach.   Furthermore, with the SA, there is no need for 
decision making as to when certain behaviors (actions) should be performed since it is 
automatically done through the subsumption process.   This allowed the system components to 
be separated, reducing the computational requirements of the overall system. 
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Level  3

Level  2

Level  1
Sensors Actuators  

 
Figure 1.1   The subsumption architecture.  Higher levels subsume lower levels when they 
wish to take control. 

 

 
 The main drawback of this approach is that there is no learning component.   Traditional 
approaches, although far too complex and bulky, at least had the ability to learn.   As it turns out, 
the SA shares a similarity to the notion of "instinctive behaviors" since they are built-in to the 
robot and no learning is required.   Some say that the subsumption architecture is limited in that 
only simple behaviors can be implemented and that the approach could never have the ability to 
perform complex tasks that require reasoning. 
 
 The SA approach, although limited in its learning and task abilities, can lead to a robotic 
system that closely resembles a simple life form.   As seen by observing ants, even a simple life 
form without the ability to learn or reason can perform rather well.   Moreover, through 
cooperation, more complicated behaviors emerge from the system as a whole.   It is the author's 
opinion that the SA approach represents a significant leap towards the development of 
"intelligent" robots and robotic systems. 
 
 
1.3  Artificial Life 
 
 Can a robot be created that simulates the life of a simple biological organism ?  This 
question is not easy to answer.   In fact, there are many different aspects that must be considered 
in the creation of artificial life.  Before answering this question, one must have an understanding 
as to what artificial life represents. 
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 Artificial Life (A.L.) is the study of man-made systems that exhibit behaviors 
characteristic of natural living systems [Langton 89].   It attempts to capture the behavior of the 
components of a living system and to endow artificial components with similar behaviors.   If the 
artificial parts and behaviors are organized correctly, then the artificial system should exhibit the 
same dynamic behavior as the natural system.   The approach of A.L. is not concerned with 
building systems that reach some sort of solution.   For these systems, the ongoing dynamics is 
the behavior of interest, not the state ultimately reached by that dynamics.   Traditional task 
oriented robots would be discarded from the area of A.L., since the resulting task performance is 
the only topic of interest.  In essence, they are built as "slaves" with no desire for survival. 

 
 The key concept in A.L. is emergent behavior.   Natural life emerges out of the organized 
interactions of a great number of non-living molecules, with no global controller responsible for 
the behavior of every part.   Rather, every part is a behavior itself, and life is the behavior that 
emerges from the local interactions among individual behaviors.  It is this bottom-up, distributed, 
local determination of behavior that artificial life employs in its primary methodological 
approach to the generation of life-like behaviors [Langton 89].   This bottom-up approach favors 
the subsumption architecture since simple behaviors can be created separately, allowing the more 
complicated behaviors to emerge. 
 
 
1.3.1  Linear Vs. Nonlinear systems 

 
 Linear  systems are those for which the behavior of the whole is just the sum of the 
behavior of its parts.    Linear systems obey the superposition principle in that by studying the 
parts in isolation, we can learn everything we need to know about the complete system.   
Nonlinear  systems on the other hand, do not obey the superposition principle.    In these 
systems, the primary behaviors of interest are properties of the interactions between parts, rather 
than being the properties of the parts themselves, and these interaction-based properties 
necessarily disappear when the parts are studied independently. 
 
 Behaviors themselves can constitute the fundamental parts of nonlinear systems (virtual 
parts) which depend on nonlinear interactions between physical parts for their very existence.   
By programming a robot with many simple behaviors, complex behavioral patterns can emerge 
through the interaction of the robot with its environment.    
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1.3.2  Local Vs. Global Behavior 

 
 There are two basic approaches to creating a nonlinear robotic system.   These are 
through local  and global  specification.   With local specification (subsumption architecture), 
each basic component of the system has a set of local rules that determine its behavior.   With 
global specification (traditional robotics), there is one set of rules that governs the behavior of all 
the components as a whole.   It is easier to generate complex behavior from the application of 
simple local rules than it is to generate complex behavior from the application of complex global 
rules.   This is because complex global behavior is usually due to nonlinear interactions occurring 
at the local level.   With bottom-up specifications, the system computes the local, nonlinear 
interactions explicitly and the global behavior (which was implicit in the local rules) emerges 
spontaneously without being treated explicitly. 
 
 With top-down specifications, however, local behavior must be implicit in global rules.    
The global rules must “predict” the effects on global structure of many local, nonlinear 
interactions - something which we have seen is intractable, even impossible in the general case.   
Thus, top-down systems must take computational shortcuts and explicitly deal with special cases, 
which results in inflexible, brittle and unnatural behavior. 
 
 Furthermore, in a system of any complexity the number of possible global states is 
astronomically enormous and grows exponentially with the size of the system.    Systems that 
attempt to supply global rules for global behavior  simple cannot provide a different rule for 
every global state.   On the other hand, systems that supply local rules for local behavior can 
provide a different rule for each and every possible local state.  In addition, the size of the local 
state-space can be  completely independent of the size of the system.   The only special cases 
explicitly dealt with in locally determined systems are exactly the set of all possible local states, 
and the rules for these are just exactly the set of all local rules governing the system. 
 
 Consider modeling a colony of ants.   One could create many instances of different 
classes of ants such that each class of ants has its own unique behavior.   One could then start up 
a simulation of a simple 2-D environment by specifying an initial configuration of these classes 
of ants.   Once started, the behavior of this system would depend entirely on the collective results 
of all the local interactions between individual ants and between each ant and the environment.   
There would be no “drill-sergeant” ant choreographing the ongoing dynamics according to some 
sort of high-level rules for colony behavior.   The behavior of the colony of ants would emerge 
from the behaviors of the individual ants themselves, just as in a colony of biological ants. 
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1.4  Adaptive Behavior 
 
 Part of the definition of life itself is that the organism must have some way of finding and 
absorbing food.   Many life forms have adapted to their environments through genetic selection, 
although there may be some degree of adaptability during their life cycle.   This brings up the 
notion of adaptability in robotic behaviors.  Adaptive behavior  is behavior which is adjusted to 
environmental conditions.   A robot with this type of behavior must be able to react in some 
appropriate manner to these changing conditions such that it remains functional.   Perhaps, this 
adaptation may correspond to the fine-tuning of behaviors to suit the current environment, thus 
increasing the efficiency of the robot over time. 
 
 Learning  is the process by which behavior remains adaptive throughout an agent's 3 life 
in the face of a non-stationary environment [Beer 90].   Conversely, if a robot is functioning in a 
non-changing environment, then the process of learning is not always necessary.   Initially, the 
robot will have learnt the environmental conditions and since they are non-changing, the learning 
process will diminish since the robot has learned all it needs to know about the environment to 
function adequately.   There is an interlocking of both learning and adaptive behavior since each 
relies on the other.   It can be said that adaptive behavior is the direct result of learning. 
 
 A robot functioning in an environment may exhibit various forms of behavior.   In fact, a 
short sequence of simple behaviors can sometimes appear as a complicated behavior.   
Researchers [Brooks 86] [Beer 90] agree that insects exhibit very simple reactive  behaviors 
which interact to realize a complicated sequence of actions.   These reactive behaviors take the 
form of either reflex behaviors or taxes.  A reflex  is a fast stereotyped response triggered by a 
particular class of environmental stimuli.   The intensity and duration of the response is entirely 
governed by the intensity and duration of the stimulus [Carew 85].   Taxes  on the other hand 
involve the orientation of an animal toward or away from some environmental stimulus such as 
light, gravity or chemical signals [Camhi 84]. 
 
 
 
 

                                                 
3  The term agent is synonymous with robot. 
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1.4.1  Types of Reflexes 
 
 Most reflexes are used for avoiding, escaping or minimizing the effects of noxious 
stimuli.   The immediacy of reflexes, and their relative independence of the animal's past history, 
make them easy to study.   [Staddon 83] states that a reflex is the name for the properties of the 
relation between stimulus and response, and that these reflexes incorporate seven main 
properties: 
 
1)  Threshold :  The minimum stimulus level required to elicit a reflexive response.  (This may 

depend on the animal's state of attention, motivational state and its past history). 
 
2)  Latency :  The time between stimulus onset and the occurrence of the reflex response.   (This 

may depend on stimulus intensity where a more intense stimulus elicits a more rapid 
response.   The strength as well as the speed of most reflex responses is directly related to 
stimulus intensity). 

 
3)  Refractory Period :  A brief period of time in which the threshold of a reflex is elevated after 

the reflex has occurred. 
 
4)  Temporal Summation :  The situation in which two sub threshold stimuli, spaced closely in 

time, excite a reflex but separately they elicit no response.   (A cat, for example,  will turn 
towards a sound, looking at the direction of the sound with its ears pricked forward waiting 
for additional stimuli before responding). 

 
5)  Spatial Summation :  The situation in which two individually sub-threshold stimuli excite a 

response when presented together.   (A dog for example, may ignore a single itch but 
additional itching stimuli around the same area will result in a scratching reflex). 

 
6)  Momentum :  The measure of time in which the reflex continues its excitation once the 

stimulus has been removed.  (The scratch reflex is an example of a reflex with momentum). 
 
7) Habituation :  The decrease in vigor and eventual cessation of a response due to repeated 

elicitation of a reflex response. 
 
 Automatic variation in the strengths of these properties gives the organism a kind of 
adaptation to the environmental stimuli.   In a sense, a higher level organism can become familiar 
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with certain types of stimuli which may lead to more efficient reactions.   For simple low level 
organisms incapable of learning, the strengths of these properties are usually fine tuned from the 
genetic process.   This fine tuning represents a kind of evolutionary adaptation.   The changing of 
reactions as a function of time also represents a form of adaptability; habituation and warm up 
effects are examples. 
 
 In addition to the properties mentioned, there are three principles of reflex interaction: 
 
1)  Reciprocal inhibition :  The competition of incompatible reflexes for control. 
 
2)  Cooperation :  A blending response of two or more reflexes when they are simultaneously 

excited. 
 
3)  Successive Induction :  The sequential excitation of reflexes in which the former reflex 

induces the later. 
 
 It is these principles of interaction that determine which reflexes have control of the 
organism at any one time.  This is closely related to the aspect of motivation and behavior 
selection which is discussed further in chapter 7. 
 
 
1.4.2  Types of Taxes 
 
 Many forms of life posses either no, or only the most rudimentary nervous system.   With 
their simple construction they are somehow able to survive by finding food and a proper habitat.   
Thus, orientation mechanisms (taxes) exhibit the properties of adaptive behavior in their clearest 
form. 
 
 The simplest example of an orientation mechanism is that of climbing plants.     Plants 
grow vertically and seek the highest best-lighted point, unless there are other factors such as 
obstacle avoidance, predators and wind effects which may inhibit this process.   This behavior 
can be explained by the combined effects of negative geotropism (orientation away from 
gravity), circumnutation (winding orientation) and positive phototropism  (orientation towards 
light).   
 
 Another form of orientation is that of chemotaxis, which represents the ability to orient 
towards chemical stimuli.   Bacteria use this type of orientation mechanism to move up and down 
chemical gradients.   Since these bacteria have only simple chemical sensors and thus the only 



 24 

way to find a chemical source is by means of hill climbing.   The bacteria are required to use 
kinetic orientation in that they must make successive comparisons. 
 
 [Staddon 83] distinguishes taxic reactions as being one of 4 main types: 
 
1)  Klinotaxis :   The use of successive comparisons to orient towards a stimulus. 
 
2)  Tropotaxis :   The outcome of a balancing process; the animal turns until the two receptors are 

equally stimulated and then proceeds forward. 
 
3)  Telotaxis :   The orientation between two symmetrically disposed stimuli by directly 

approaching one of the stimuli.   Here the animal is somehow able to identify the bearing of 
the stimuli. 

 
4)  Light-compass reaction :   Maintaining a fixed angle between the path of motion and the 

direction of the stimulus. 
 
 These classes represent the basic types of orientation strategies found in animals.   These 
types of orientation specify the basic underlying mechanisms of simple orientation reactions.   
There are many simple orientation reactions observed in animals; some of them being: 
 
 - Attraction to light or dark (skototaxis) areas and objects, 
 - Attraction to warm areas, 
 - Postural reactions to light and gravity (geotaxis), 
 - Reactions to physical contact (seeking out and conforming to crevices and corners), 
 - Reactions to fluid flow (rheotaxis), 
 - Reactions to chemical (chemotaxis) and humidity gradients . 
 
 These taxes allow the animal to orient towards certain stimuli while avoiding others.   It 
allows the animal to seek out safe locations and food; the necessities for survival.   These 
orientation mechanisms represent survival instincts and thus are a form of adaptive behavior.   In 
some taxes, such as the Mysis crustaceans in the Naples Aquarius, periodic taxic reversals 
provide an additional degree of adaptability. 
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1.4.3  Integrating Behaviors 

 
 Despite the relative simplicity of each reaction analyzed in isolation, when combined, 
they can lead to complicated, "intelligent" behavior.   [Staddon 83] states the following:  
 

"The function of reflexes is the integration of behavior, which would 
be impossible without well-defined rules of interaction". 

 
 Although reflexes and taxes can provide a repertoire of reactive behaviors, it is the 
interaction of these reactions that provides an integrated overall behavior of the organism.   Thus, 
one must specify rules of interaction in order to integrate the reactions and produce complex 
behaviors.  Cooperation and competition represent the two kinds of combination rules of 
behavior  and these will be discussed in a later chapter.   With a set of such well-defined 
reactions, one might think that the behavior of an organism is somewhat predictable; but the 
behavior is often unpredictable.   One of the aspects of this unpredictability is due to the 
variability in behavior.   In some cases, the variability is intrinsic to the mechanism and serves as 
a function of random sampling of the environment.   A degree of variability will also prevent the 
organism from getting trapped in certain situations; like corners, local maxima and minima, and 
continuous circling.   An example of this can be seen when a fly is observed buzzing at a 
window.   The fly does not utilize a systematic searching strategy to find a way out, instead a 
degree of randomness is used which may eventually find an opening. 
 
 For conflicting reactive mechanisms, the animal must choose between the two reactions 
or issue a compromise.   If this were not so, then when faced with a stimulus requiring one of 
many responses, the animal's reactive behaviors would be in continuous conflict.   As a result the 
animal would not react appropriately, leading to trappings, circulation or even fatality.   A degree 
of variability allows the animal to avoid these conflicting situations.   The protozoan Euglema, 
for example, is photo-positive in weak light and photo-negative in strong light.   Consequently, 
these animals congregate in intermediate levels of illumination; this may represent a compromise 
between the bright light that provides energy and the dim light that provides greater protection 
from predators [Straddon 83]. 
 
 There may also be a degree of systematic variation in which the rules of interaction 
depend on contextual variables such as the time of day, condition of light, presence of other 
animals, etc.   In each situation the animal's behavior may be predictable, yet the animal may be 
sensitive to a variety of situations resulting in a large repertoire of behaviors.    
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 Reflexes and taxes both depend only on recent events which limits their overall 
usefulness towards adaptable behavior.   Reflexes are further limited in that they are not readily 
modified by their consequences; they are almost independent of feedback.   If an animal or robot 
is to be able to adapt to its environment, it must be able to cope with different situations which 
may require different reactions in different circumstances.   With the ability of an animal to learn, 
adaptation can be enhanced allowing the animal to function more efficiently and possibly avoid 
fatal situations. 
 
 This learning ability plays a large role in higher level decision making to such an extent 
that past experience may drastically alter the previous functioning of the robot.   This may 
pertain to paranoia, eagerness, reduction in curiosity, etc.  Nevertheless, this learning ability is 
required for adaptive behavior since it may be crucial for survival. 
 
 
1.5  Why an Insect Model ? 
 
 Animals are naturally able to adapt their behaviors to the environment in which they are 
embedded.   As mentioned previously, through evolution, these behaviors are fine-tuned to suit 
their natural environment.   Of all animals, insects perform amazingly well considering their 
small size.   Their biological control systems are versatile and robust.   These simple creatures 
have adaptive control systems that allow them to walk in complex terrains and even upside 
down.   Insects are also able to adapt while coping with sensor damage and leg amputations 
[Graham 85]. 
 
 In general, insects can have an instinctive ability for cooperation.   Ant and bee colonies 
are rather efficient due to the cooperative efforts of the individuals.   These cooperative efforts 
are instincts which are embedded into the control mechanisms of each individual.   An example 
of such a mechanism is the receptors on a worker ant which allows them to follow a chemical 
residue left behind from other ants. 
 
 A colony of small cooperating robots would closely resemble a colony of biological 
insects in the way they function individually and the way they function as a whole.   It makes 
sense to model each of these individual robots as an insect since they are biologically similar to a 
natural insect. 
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1.6  Problems With Simulated Robots 
 
 Many researchers have developed simulations of robots and animats.   While their 
experiments clearly show that simple life forms can be mimicked by a computer, they are limited 
to the domain of their specialized "ideal" environments.   Often, the designer creates a simplified 
environment such that the robot's simulated sensors produce accurate data and the actuators 
always perform to specifications.   This is hardly the case in the real world.   To help validate 
their simulated experiments, some researchers have attempted to program errors into sensor 
readings by simulating noisy data.   This attempts to bring the research a step closer to the 
development of real robots but it is never possible to accurately simulate the effects that are 
caused by the vast randomness of the physical world. 
 
 [Brooks 91] has concentrated his research on designing actual robots.   His robots are 
created incrementally; at each step letting them loose in the real world.   By doing this, the robots 
are designed to perform in an environment as opposed to altering the environment to suit the 
robot.   He states: 
 

"When we examine very simple level intelligence we find that explicit representations 
and models of the world simply get in the way.   It turns out to be better to use the world 
as its own model". 

 
 Although simulated robots and animats may provide insight as to the interaction of 
various behaviors and mechanisms, they would likely fail in the noisy and unpredictable world of 
reality. 
 
 
1.7  RABI 

 
 This thesis presents a robot RABI (Robotic Adaptive Behavioral Insect) which was 
developed to investigate the usefulness of robots with simple sensors.   It is important to study 
the usefulness of robots equipped with minimal control circuitry and minimal sensors  so that 
future robots could be developed simpler and smaller.   By using a similar architecture to 
[Brooks 86] and a simple control structure based on [Beer 90], a simplified robot can be created 
that exhibits similar behaviors to that of biological insects. 
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 RABI represents a simplified robotic insect capable of learning in a static, yet initially 
unknown environment.   There is both a hardware and a software version of RABI 4, both using 
touch sensors in the form of antennae and motor actuators to move the legs.   The software 
version also contains a sensor and motor to detect a disk (used as a marker) which can be 
dropped and picked up by the robot.   The hardware version was built to determine if such a 
robot could indeed function in a real world environment.  As was expected, the walking 
mechanisms of the simulated robot had to be altered to control the hardware robot due to the 
unforseen nature of the robot's actuators and sensor readings.  
 
 In addition, the software version has simulated taxic sensors to detect light areas and 
energy sources.   Robots do not eat, instead they must consume some sort of electrical energy 
(battery charging) or light (solar powered).   The energy sensor may be thought of as a sensor 
that detects power surges so that the robot would be able to find wall sockets and other types of 
electrical outlets.   In outdoor environments, perhaps the only source of energy would be the sun.   
Here, the robot must be equipped with solar cells to extract energy from the light. 
 
 Chapter 2 discusses the issues involved in modeling a biological system.   The remaining 
chapters discuss the implementation of RABI.   Chapter 3 discusses the walking mechanisms.   
Chapter 4 discusses the programmed instinctive behaviors of the robot.   Chapters 5 and 6 deal 
with the map learning and navigation aspects of RABI.  Chapter 7 discusses the motivational 
aspects involved with behavior selection and Chapter 8 describes the hardware design of RABI. 
 
 
1.8  Summary 
 
 Since artificial life  is concerned with generating life-like behaviors, a good place to start 
is to identify the mechanisms by which behavior is generated and controlled in natural systems, 
and to recreate these mechanisms in artificial systems.   Traditional approaches to robot design 
attempted to create a complex  robot capable of performing some simple task using sophisticated 
reasoning about sensor data.  This approach led to complicated, expensive and brittle robots that 
were not at all reactive.   [Brooks 86] pioneered an approach using the subsumption architecture 
that utilized a bottom-up approach to programming.   This new approach allowed for incremental 
development of a reactive-based robot capable of performing with levels of capability.   Robots 
using this architecture are simpler, cheaper and more robust than the traditional approach. 
                                                 
4  Chapter 8 discusses the design phase of the hardware version of RABI.   The simulated version is discussed 

throughout the thesis. 
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 By combining techniques of [Brooks 86] and [Beer 90],  a robot can be developed that 
exhibits simpler reactive behaviors.   These simple behaviors take the form of reflexes and taxes 
which provide the survival instincts of the robot.   The more complex adaptive behaviors emerge 
from the interactions of these simple behaviors with the environment.   By simplifying individual 
behaviors, the need for sophisticated sensors can be eliminated, resulting in a smaller, cheaper, 
and simple robot. 
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 The task of modeling a biological system is not at all trivial.   [Linsker 90] states the 

following:   "Unlike conventional computer hardware designs, neural circuitry is not hard-wired 
or specified as an explicit set of point-to-point connections.  Instead, it develops under the 
influence of a genetic specification and epigenetic factors both before and after birth".   This 
statement implies that the functionality of a neural network model arises from the 
interconnections which are learnt, rather that explicitly programmed.  Thus, standard 
programming techniques do not provide a biologically feasible solution to the model being 
developed.  Another strategy must be used to allow the model to develop, through learning, into 
a functional system. 
 
 Biological development processes are far too complex to warrant a complete 
understanding of the organizational and computational aspects of biological neural networks.   In 
order to understand such a complex computational instrument, it helps to create simplified 
models which mimic various parts of the whole.  Some feel that it may eventually be possible to 
combine the various parts to create a device capable of performing similar tasks to that of a 
biological system.   By making simplifications and assumptions to the operations involved with 
biological neural networks, a complete understanding of the simplified model can be ascertained. 
 
 As stated by [Rosenblatt 58], if we are eventually to understand the capability of higher 
organisms for perceptual recognition, generalization, recall, and thinking, we must first have 
answers to three fundamental questions: 

1. How is information about the physical world sensed or detected by the biological 
system ? 

2. In what form is the information stored, or remembered ? 
3. How does information contained in memory, influence recognition and behavior ? 
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 The answer to the first question is fairly well understood compared to the other two.  This 
may be due to the fact that the mechanisms related to sensory input have certain construction and 
connections that are readily visible, allowing a more complete study.   The other two questions 
are not so easily answered.  Biological memory is quite complex.   It is capable of remembering 
detailed information while generalizing and matching to previous experiences.   Amazingly 
enough, this detailed information is able to be extracted in an instant.  Memory organization and 
operation is a baffling yet prominent area of research.   Unfortunately, this area is beyond the 
scope of this thesis. 
 
 
2.1  Artificial Learning 

 
 Due to genetic selection, animals are born with a certain degree of instinctiveness.   Thus 
the animal is born with a set of associations between environmental signals and actions that will 
lead to satisfaction of its needs [Wilson 87].   The rest of the associations are learned through 
experience.   For an "intelligent" autonomous robot (animat) one possible method of representing 
these associations is in the form of condition-action rules.   Here an action is performed 
whenever its condition is met.   It would be useful for the animat to use its past experience to 
update its set of rules.   The learning of simple rules of behavior (i.e. associations) represents a 
kind of adaptability required for artificial life forms. 
 
 The learning problem is difficult because useful information is hard to obtain.   First of 
all, environmental events relevant to particular rules come in arbitrary order and one by one.   
Thus, a truly "intelligent" animat must have some means of extracting the relevant cues in order 
to develop its rules.   Secondly, there is no "teacher" indicating when the animat has performed 
the correct action in each situation.   Thus, the animat must be self-taught by somehow rating its 
actions according to the degree of satisfaction it receives after they are performed.   The term 
payoff  is used to describe this rating.   The payoff constraint actually poses another problem, 
since the  animat may not be rewarded immediately after an action has been issued.   It may take 
a sequence of correct actions in order to receive a payoff, which may come only after the last 
action is performed.   This sequence of correct movements can be called "stage-setting".   Thus, 
the animat should be able to learn under a payoff that may be delayed.   Finally,  since the 
environment is diverse, there may be many similar situations that call for similar actions.   Thus, 
the animat should be able to discover significant combinations of the features, generalizing them 
as much as possible. 
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 There are three popular approaches that represent artificial learning systems.   These are 
artificial neural networks , genetic programming  and classifier systems.   The feasibility of these 
approaches is discussed in the sections to follow. 
 

 
2.1.1  Neural Networks 
 
 Since learning is a task which is handled by the brain, it makes sense to model a brain for 
use in an artificial system.   The most straight forward approach to mimicking a biological brain 
is to attempt to construct a model that closely resembles its structure and operating principles.  A 
biological brain is known to be composed of neural networks .  These massively parallel 
networks are composed of massive amounts of interconnected neurons which provide all brain 
operations in a massively parallel computational manner.5   There are various portions of the 
brain which are understood better than others.  In particular, as mentioned previously, the area 
associated with memory is not well understood. 
 
 [Rosenblatt 58] did some pioneering research with the idea of a perceptron.  Since then, 
there has been a growing amount of research in developing neural networks that achieve different 
forms of learning and organization.  A collection of papers describing the fundamental research 
in the area of neural networks is given by [Anderson and Rosenfeld 89]. 
 
 Neural networks generally have an input layer, one or more internal (hidden) layers and 
an output layer, where each layer is composed of a collection of neurons as shown in Figure 2.1.  
Excitatory and Inhibitory links connect neurons from each layer in a highly interconnected 
fashion.   Each of these links has a weight associated with it that indicates the strength of the 
connection.   
 

                                                 
5  From this point onward, the term "neural networks" will refer to artificially constructed (i.e. computer or 

electronically implemented) neural networks. 
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Figure 2.1   A neural network with one hidden layer. 

 
 The neurons are simple processing elements that merely compute their activation, 
perform a simple operation and emit an output 6.   Figure 2.2 depicts an example representing a 
"summation" neuron X that simply outputs a sum of the input neurons' signals multiplied by their 
weights. 
 
 

NEURON
W2

Wn

x

O1

2O

nO

Ox =
n

•
i=1

OiWi

W1

 
 

Figure 2.2   Model of a simple summation neuron. 

 
 There have been many variations in the processing aspect of this simple neuron model, 
however, they will not be discussed here.   Again the reader is referred to [Anderson and 
Rosenfeld 89] for examples of neural network structures and the neurons therein. 

                                                 
6  With computers, the inputs, weights and outputs are usually represented as floating point numbers between 0.0 

and 1.0. 
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 The networks are able to learn by matching specific input patterns to specific output 
patterns.   The weights of the interconnecting links are altered to reflect the information that has 
been learnt.   In fact, some networks actually begin with random weights assigned to all links, 
thus learning is required in order to set the weights to any meaningful values.   After a period of 
learning (multiple input patterns are entered), the network maps the set of input patterns to a set 
of output patterns.  These networks are capable of accomplishing pattern matching feats which 
would prove to be difficult to achieve through traditional straight forward programming.  One 
shortcoming of neural networks is that they require the environment (or supervisor) to supply the 
correct value for each set of circumstances.   This requirement can hinder the use of neural 
networks for animat purposes since in an unknown environment the robot rarely knows the 
correct response for a particular situation.   At most, the robot can only take a best guess as to 
which action should be performed at any one instant.  Moreover, it is not clear how feedback in 
the form of payoff could be used in these networks. 
 
 
2.1.2  Genetic Algorithms 

 
 The theory of evolution states that complex animals evolved from lower, more primitive 
forms of life.  This evolution results in physical and behavioral changes from generation to 
generation.   In fact, some believe that sophisticated forms of life have evolved from other very 
primitive forms of life.   If this is so, then the structure and organization of the sensory and 
control mechanisms must have evolved greatly.  This physical evolution is the result of 
adaptation of the animal to its environment.   It would be reasonable to assume that with 
adaptation, these animals would learn "rules of thumb" for survival in their environment.   With 
genetic selection, these rules are passed onto future generations in the form of instincts.   It is 
also reasonable to assume that these instincts are improved upon from generation to generation.   
[Staddon 83] gives a convincing argument for these assumptions, with the example of Orb-web 
spiders.   Orb-web spiders have devised a most efficient net for catching flying insects, yet 
researchers can trace no history of trial and error in the life of an individual spider that could 
explain the excellence of the web's design.   Spider's don't learn how to weave good webs and no 
spider designs a variety of different webs, discarding all but the most efficient.  This instant web-
building perfection represents a solid example of an evolutionary instinct. 
 
 Due to the enormous complexity of biological neural networks, it seems reasonable to 
assume that an animal's central nervous system is not completely determined genetically.   
Nevertheless, the assumption that all forms of life are endowed with instincts, through genetics, 
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is also reasonable.   Insects for example, do not have the brain capacity required for learning, and 
therefore rely mostly on instinctive mechanisms for survival.   These instincts may pertain to 
hardwired reactive and performance mechanisms representing reflexive and taxic behaviors 
which eventually become fine tuned to environmental stimuli over time through evolution. 
 
 Genetic programming is a computational tool that attempts to mimic the process of 
genetic selection and evolution.   Stated simply, the idea of this strategy is to create a population 
of agents 7,  and select the ones with the best performance, for use in the next generation 
(population).   Eventually, by continually selecting the best agents from generation to generation, 
the agents in the later generations will perform well. 
 
 A genetic algorithm (GA) usually represents an agent as a string of bits, called a 
chromosome  (schema), where each bit represents some aspect of the agent.   In the case of a 
simulated robot or animat, the bits may pertain to sensor and actuator information.   The genetic 
process begins by creating a population of random schema and placing them into an environment 
for a specific period of time.   After this time has elapsed some schemas are then selected on the 
basis of best performance.   There must be some method of determining which schemas are better 
than others.   To do this, the genetic algorithm incorporates what is called a fitness function.   By 
applying this function to each schema, an indication as to their relative prosperity is acquired.   
For example, an agent attempting to find food may have a fitness function that measures the 
Euclidean distance from the agent to the food source.   The agents with better performance would 
have a smaller distance value. 
 
 Using the fitness function, the best schemas are selected.   These schemas are selected in 
pairs for reproduction of offspring.   The process takes a pair of schema and performs a crossover 
in which a random split is made in the two strings of bits.   The split partitions the parents into 
two pieces each.   The right piece of one parent is concatenated to the left piece of the other to 
produce two new offspring as shown in Figure 2.3.   These offspring then undergo a mutation in 
which one of their bits is randomly flipped.   This allows for a degree of randomness in the 
genetic process.   The resulting offspring are used in the next schema population. 
 

                                                 
7  The term agent represents the object being studied (i.e. an animal, animat, robot, ...). 
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Figure 2.3   Generating offspring schema through crossover and 
mutation. 

 
  There has been some recent work in the area of genetically programming robot instincts.   
[Koza and Rice 92] have developed a simulation of a genetically programmed robot capable of 
the simple task of pushing a box from the middle of a room towards a wall.   The robot is 
equipped with 12 sonar sensors which report distances to the nearest object and is capable of 
moving in the forward, left and right directions.   The first few generations of robots are not 
always able to find the box.  Those that find it, are not able to push it correctly towards the wall.   
However, after a few generations of robots, they are capable of finding the box and pushing it to 
the wall. 
 
 The foremost advantage of using this genetic programming technique is that very little 
programming needs to be done.  Instead, most of the design work corresponds to defining the 
problem, in which a major part is determining a useful fitness function.  The robot does not know 
a priori what the sensors mean nor what the primitive motor functions do.   That is to say that the 
robot actually learns to perform the box pushing task from scratch. 
 
 However, there are some drawbacks to using genetic algorithms.   GAs are subtle in that 
it often takes many generations of schema before a reasonable performance is achieved.   Thus 
the need for high speed computations.   Despite the impressive results of [Koza and Rice 92], the 
robot's task is quite simple and may not prove to be useful.  Another disadvantage of using a GA 
surfaces when the robot must perform a variety of tasks which may involve switching among 
them at different points in time.   Such a system would require a large bit string size and may 
take a long time to evolve.  Moreover, as the bit string becomes longer and more complex, the 
determination of a feasible fitness function becomes increasingly difficult. 
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2.1.3  Classifier Systems 

 
 A classifier system  (CS) combines a rule-based approach with genetic algorithms.   The 
system uses a set of classifiers (rules) to control an agent.   These classifiers are similar to 
schemas of GAs in that they consist of a string of bits.   Like GA applications to animat agents, 
these bits represent sensor information and actions.   The classifiers consist of a condition/action 
pair representing a rule.   The system keeps a list of all classifiers as shown in Figure 2.4.   There 
is an input interface that translates the current state of the environment into standard messages, 
and an output interface that translates messages into effector actions.   Finally, a message list 
keeps track of incoming and outgoing messages. 
 

condition

message list

input interface output interface

classifiers
action

 
 

Figure 2.4   The basic parts of a classifier system. 
 
 
 As stated in [Booker et al. 89] the classifier system works as follows: 
 
Step 1: Translate all incoming messages from the input interface to the message list. 
Step 2: Compare all messages on the message list with the conditions of all classifiers and 

record the matches. 
Step 3: For each match, post the message representing the action part of the classifier onto the 

message list; removing all previous messages on the message list. 
Step 4: Combine the requirements of all the messages on the message list into one message and 

send it onto the output interface. 
Step 5: Return to step 1. 
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 The system allows an animat to perform according to the rules imbedded in the 
classifiers.   Thus, by beginning with a set of basic classifiers, the animat is able to perform in an 
instinctive manner. 
 
 The system has two additional components used for learning purposes corresponding to 
credit assignment and discovery.   Assigning credit to rules that achieve rewards is a difficult 
task since many of the rules need to be rewarded for their role in the "stage setting" process.   By 
adding a payoff strength to each classifier, the classifiers are rated as to their relative usefulness 
in specific situations.   The system uses a bucket brigade algorithm that adjusts the strengths to 
reflect the classifier's overall usefulness to the system.   Each time step, the classifiers make 
"bids" according to their strength.   Only the highest bidding classifiers get their messages on the 
message list.   The bucket brigade ensures that the "stage setting" rules eventually receive credit 
if they are coupled into sequences that eventually lead to payoff. 
 
 The discovery component of a CS uses a genetic algorithm, which applies genetic 
operators of crossover and mutation to classifiers selected according to their strength.   The 
weakest classifiers are replaced by the new offspring.   This process ensures that the animat will 
learn, over time, the rules which best solve the problem at hand.   The credit assignment and 
discovery process are a little more involved than mentioned here.   For further reading, the reader 
is referred to [Booker et al. 89]. 
 
 [Wilson 85] used a classifier system for an animat that lived in an environment 
containing 92 distinct sensory vectors.   The animat's objective was to satisfy its need for food.   
With no initial knowledge of what food looked like, the animat evolved classifiers that led it to 
move towards visible food.   It was also able to move in efficient paths towards food that could 
not be seen immediately, by using other objects as clues to the proximity of the food.   This 
example shows that classifiers can prove to be quite useful for animat purposes. 
 
 [Wilson 87] suggests that a classifier system is suited to learn multiple disjunctive 
concepts incrementally under payoff.   That is, classifier systems were designed to handle a 
complex and perpetually novel stream of data which makes them adaptively efficient.   
Moreover, in a CS, some relevant generalization of rules is achieved automatically.   This may be 
due to the fact that a CS recognizes the importance of tightly coupling induction mechanisms 
with problem solving. 
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 It is suggested that a CS works well when there is a large amount of sensor information, 
with relevant data being sparse.   For simple robots with little sensor information, the system 
cannot take advantage of the environmental input and thus may not perform as well as a simple 
rule-based approach.   A shortcoming of the CS is that the rules are written in a language that 
lacks descriptive power.   This makes it difficult to debug and/or reason about.   In addition, 
since several rules are allowed to be fired simultaneously, there are control issues that must be 
handled that do not appear in the other strategies. 
 
 
2.1.4  Combined Strategies 

 
 Perhaps a compromise between neural networks and genetic programming may prove to 
be more efficient for robotic control.  Such a system could make use of the neural network 
structure, while using genetic algorithms to specify the interconnecting links.   [Beer and 
Gallagher 92] have experimented with combining neural networks and genetic programming.   
Their approach was to construct a neural network whose interconnected weights are determined 
genetically.   The experiments involved the development of a chemotaxis  behavior as well as a 
control technique for coordinated walking.   The first set of experiments resulted in generations 
of robots that exhibited four classes of chemotaxis behavior.   These four classes were observed 
as different movement patterns in the area of food patches.   The results show that genetic 
programming, combined with neural networks can capture the subtle intricacies of biological 
behavior. 
 
 Classifier systems, themselves represent a combined strategy of rule-based systems and 
genetic algorithms.   To my knowledge, the combination of neural networks and classifier 
systems has not been studied.   [Booker et al. 89] gives a comparison between classifier systems 
and the connectionist approach (neural networks).   Perhaps, all three strategies combined could 
produce a sophisticated architecture for use in A.I. problems.   It is unclear however, if much will 
be gained from using the combined strategies as opposed to any single one. 
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2.2  The Hardwired Approach 

 
 There has been much research using neural networks, genetic algorithms and classifier 
systems to allow animats and robots to learn how to perform simple behaviors and control 
problems.   Some examples are learning to walk, learning to orient towards a light source, 
learning to push a box etc.   Since these behaviors are rather simple, it is possible to design a 
hardwired approach for each behavior.   It is the author's opinion that little is gained by allowing 
a robot to learn how to perform a simple behavior that could have been hardwired in a simpler, 
quicker and straight forward manner.   A robot insect learning to walk with a neural network for 
example, would probably end up using a simple tripod gait.   If this is so, then why not hardwire 
the tripod gait instead of wasting valuable resources trying to learn. 
 
 Sometimes however, unpredictable behaviors can arise from allowing the behavior to be 
learnt from scratch as in [Beer and Gallagher 92].   The variation in chemotaxis behavior in their 
research does resemble the unpredictability (chaos) of natural systems.   Sometimes this chaos is 
an important part of life itself, and by omitting this randomness, it may not be possible to mimic 
life forms to any degree of satisfaction. 
 
 After a few generations, their robot was able to perform a chemotaxis behavior, and 
eventually the developed behavior was at a stage in which no further generations would improve 
upon it.   At this point in time, the behavior remains relatively unchanged, thus fixed.   The 
resulting neural network could then be hardwired into electronic hardware, thus reducing the size 
and cost of the robot and achieving the same performance. 
 
 Now consider a robot that is able to perform a variety of these "instinctive" types of 
behaviors.   A neural network or classifier system would require a lot of processing power if it 
were to learn these behaviors from scratch.   This processing speed and power may not be 
available for nanobots.   It would be better to hardwire these behaviors into electronic gates so as 
to reduce the need for processing power.   The foremost advantage, however, of employing 
predetermined instinctive behaviors as a control tactic is that the system in which they reside will 
have a quick response time when encountering environmental stimuli.  Quick reactions may be 
necessary for systems that operate in potentially dangerous fast pace environments. 
 
 A main disadvantage of this hardwired approach would be that learning mechanisms 
cannot be hard wired directly into electronic hardware.   Thus, the instinctive behaviors would be 
fixed and unable to be improved upon.   This is not so bad since for an unchanging environment, 
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the learning process of neural networks, GAs and classifier systems eventually diminishes as 
time passes.   By choosing behaviors that have resulted from using any of these strategies, the 
performance of the hardwired robot will be very similar.   If the environment is changing 
dynamically however, then the hardwired approach would not be able to handle the changes due 
to the lack of learning.   Another problem is with robustness.   The hardwired approach is not as 
robust as a neural network, since it is composed of a much, much, smaller number of processing 
units.   That is, the death or malfunction of a single unit with the hardwired approach may lead to 
ill behavior or robot fatality, whereas in a neural network no change may even be observed, 
unless massive malfunction occurs (i.e. brain damage).   However, for an average robot in a 
nonhazardous environment, if the instinctive neural circuitry is well designed and constructed, 
then the issue of robustness may not even be considered a problem. 
 
 
2.3  Fixed Weight Neural Networks 
 
 If instincts are to be hardwired into electronic circuitry, it would be helpful to have the 
behaviors coded in some form that is similar to electronic gates.   Of the strategies mentioned so 
far, neural networks are closest to electronics since they are composed of simple processing units 
which are similar to gates.   The only aspect of neural networks that is difficult to code into 
electronics is the ever-changing weights associated with each link.   Since these weights are used 
for learning purposes, they do not need to change over time if the network is used to code an 
instinctive behavior. 
 
 [Beer 90] presents a model of robot control consisting of a network of interconnected 
neurons that use fixed weights.   The term neuron network  is given to this model in order to 
make the distinction between standard artificial neural networks.   The model differs from 
traditional neural networks in a number of ways: 
 

1) The network does not learn; the weights of the interconnecting links have fixed 
values. 

2) There is no input, middle and output layers per se.   The activation through the 
network does however have a main direction of flow. 

3) The number of neurons in a neuron network is much less than a neural network and 
therefore, a neuron network is usually quite smaller. 

4) The neuron networks are not as heavily interconnected as a neural network. 
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5) A neuron network typically has a variety of different types of neurons whereas a 
neural network usually has just one type throughout. 

 
 Although the two types of networks have these differences, they share the same basic 
fundamental computational strategy in which neurons are excited or inhibited by others.   A 
neuron network is made up of neuron 8 objects.   Each neuron receives input signals from its 
adjacent "input" neurons, computes some simple function using these input signals and then 
produces an output.  Like the formal neurons of artificial neural networks, the neuron model 
ignores the details of action potential generation and most of the complexities of synaptic and 
dendritic interactions.   The neurons are most similar to those of [Hopfield 84], but differ in the 
choice of input/output function, inclusion of time-dependent properties and the nonuniformity of 
the network elements and their connections.   The input/output function is characterized by three 
parameters: a threshold at which the neuron begins to fire, a firing frequency, and the gain.   By 
varying these parameters, the behavior of the neuron can vary. 
 
 
2.4  RABI's Neuron Networks 

 
 The neuron model of [Beer 90] allows the neurons to vary slightly in behavior by 
adjusting various parameters.   It is reasonable to speculate that there may be a variety of 
different types of computational functions exhibited by biological neurons since there are various 
parameters associated with them.   [Caudill and Butler 90] state that biological neurons display a 
large repertoire of input-combining treatments.   They also state that there may be several kinds 
of special purpose direct inputs to a neuron and that the neurons may vary their input threshold.   
With this in mind,  the neuron network model was slightly altered by allowing a variety of 
different types of neurons by essentially varying these parameters. 

                                                 
8 The term neuron is borrowed from traditional neural networks, however, it is simplified greatly from actual 

biological neurons. 



 43 

2.4.1  The Neurons 

 
 Since the neuron networks may eventually be hardwired, it would be useful to design 
neurons that easily convert to electronic circuitry.   The interfacing would probably be digital and 
require binary signals.   Thus, we could create neurons that emit binary signals of either 0 or 1 
depending on whether they are excited.   Borrowing from the notion of digital logic, we could 
create neurons that perform simple operations such as an AND gate, pulsing signals, flip-flops, 
comparators, summing, differentials etc.   Figure 2.5 shows function diagrams of neurons that 
perform similar operations by connecting a variety of simple mechanisms. 
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Figure 2.5   Functionality of the neurons in the neuron networks. 
 

 
 Each neuron takes a sum of its inputs and produces a single output representing the sum.   
The standard  neuron emits this "analog" 9 signal as its output.   Binary neurons on the other 
hand, pass this summated signal through a threshold mechanism.   If the value is positive, the 
binary neuron emits a binary signal of 1; otherwise it emits a 0.   Another similar neuron is the 
threshold neuron which uses a threshold on the input signals and on the output signals.   Thus, 
the neuron emits a binary high signal if its input sum exceeds the input threshold.   This neuron 
can be used as an AND gate where two or more high input signals are required in order to 
produce a high output signal. 

                                                 
9  With computers, the inputs, weights and outputs are usually represented as floating point numbers between 0.0 

and 1.0. 
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 An accumulative  neuron is similar to an accumulator as seen in microprocessors.   It 
keeps a summation of all excitatory and inhibitory signals from the input lines and emits an 
"analog" signal indicating the current sum.   This sum may be negative (i.e. in the case where 
inhibitory signals dominate the excitatory ones.   The neuron has a special input signal that when 
high, resets the accumulated sum to zero.   This neuron does not seem biologically feasible  but 
nevertheless it provides a useful neural tool for counting which is required for measurement 
purposes. 
 
 A random  neuron emits a random binary output whenever its input activation is positive 
and emits no signal otherwise.   The neuron has an internal probability factor indicating the 
probability of outputting a binary high signal.   The idea of a random neuron is not as readily 
accepted since there is no well known biological neuron that performs this function.   All animals 
however have an unpredictable aspect related to chaos theory that endows them with a kind of 
randomness. 
 
 The pulse  neuron is similar to a rising edge or falling edge 10 detector in electronics.   It 
monitors the incoming signals and emits an energy pulse (a high binary signal) whenever the 
input sum switches from high to low or vice-versa.   This neuron is used as an on or off switch 
that enables or disables other neurons occasionally. 
 
 The sustain  neuron contains a state, thus it is similar to an electronic flip-flop.   When 
the incoming signal summation is positive, the state is set to "on" and the neuron emits a binary 
high signal.   The neuron continues to emit this high signal until the input summation is negative; 
it then sets the state to an "off" position and the neuron emits nothing.   This neuron does not 
seem biologically plausible since it is capable of indefinitely emitting a high signal, even after 
the inputs are removed.   This neuron is needed however, since there is often a need for 
maintaining a state (1 unit memory). 
 
 Finally, the differential  neuron is used as a comparator, by comparing the current input 
with the last input.   If the difference is positive, the neuron emits a binary high signal, otherwise 
it emits a low.   The neuron is capable of remembering the last input summation for use in 
comparison.   Thus, this neuron uses a kind of volatile memory which could be implemented as a 
feedback loop with a delay. 

                                                 
10  The rising-edge and falling-edge neurons are identified by a  and   symbol  respectively. 
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2.4.2  The Networks 

 
 RABI's programming involved the creation of simple instinctive behaviors.   Since there 
is no learning aspect to the behavior mechanisms, they were coded with neuron networks using 
the repertoire of neurons mentioned in the previous section.   The various networks are described 
throughout this thesis with diagrams showing their components.   The visual form of neurons of 
Figure 2.5 can cause a neuron network diagram to look cluttered and complex; therefore their 
appearance has been altered for the network diagrams for the sake of keeping the diagrams 
simple.   The appearance of the various neurons  are shown in Figure 2.6.    
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Figure   2.6   Appearance of the neurons in the neuron networks. 
 

 
 Note the addition of sensor, monitor  and motor  neurons.  These neurons represent the 
input and output neurons similar to traditional neural networks respectively.   The sensor (or 
monitor) neurons receive input directly from a sensor (or monitor) which they are connected to, 
and output a signal whose strength reflects that of the sensor (or monitor) reading.   Similarly, a 
motor neuron connects directly to an actuator.   When the motor neuron receives an input 
activation, this activation directly affects the actuator. 

 

 Interconnecting the neurons are links as shown in Figure 2.7.   Each link has a weight 
associated with it.   Inhibitory  links result in a negative activation whereas excitatory  links 
result in positive activation, each with an associated weight.   Most of the interconnections are 
composed of these two kinds of links.   The additional negating  link provides a method of 
negating a neuron's output.   Any neuron that receives positive activation from a negating link 
will negate its output.   This is useful for changing directions of a motor neuron.   Finally, the 
resetting  link is used to reset the accumulated energy of an accumulative neuron.   When an 
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accumulative neuron receives a positive activation from a link of this type, its internal stored 
energy is reset to zero. 

 
 

Inhibitory

Excitatory

Negating

Resetting

1.0

1.0

1.0

1.0
 

 
Figure 2.7   Various interconnecting link types 
used in RABI's neuron networks. 

 
 
 Since these neuron networks are simulated, the various timing and delay properties of the 
neurons can be directly controlled.  With direct hardware implementations, however, there are 
certain neuron characteristics (such as feedback) that require additional care so that they  have 
similar performance to the software versions.   The technicalities of the construction of these 
neuron networks in electronic hardware has not been investigated.   This is a future area of study 
towards the development of a fully self contained version of RABI. 
 
 
2.4.3  Neuron Networks and the Subsumption Architecture 

 
 The subsumption architecture(SA) of [Brooks 86] provides a form of task-level 
decomposition in which the various basic functions (or instincts) can be programmed separately 
and then linked together.   The SA in its original form uses state machines to code the behaviors.   
Previous robots designed using the SA required microprocessors to program and control these 
state machines which controlled the overall performance of the robot.   RABI presents a 
simplified approach towards coding these simple behaviors.   By using neuron networks, 
processors are not needed since the networks can be hardwired into electronic circuitry.   By 
interconnecting the neural circuits in a hierarchical subsumption-style fashion, the overall 
structure of the system would have a similar performance as the SA, but with reduced size and 
complexity. 
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2.5  Summary 
 
 Many techniques have been used to develop "intelligent" robotic systems.   Among these, 
neural networks, genetic algorithms and classifier systems are the most widely used for learning 
purposes.  Much of the research using these techniques has focused on learning simple behaviors 
from scratch.   While these methods of learning provide insight as to the mimicking of the 
behaviors of biological systems, they often require much computational power.   This high 
computational requirement can lead to larger, more complex and expensive robotic systems. 
 
 By hardwiring the simple behaviors into the robot, the computational requirements 
diminish, allowing the robot to be reduced in size and complexity.   This hardwired approach 
could be implemented using neuron networks, which are similar to the notion of fixed weight 
neural networks [Beer 90].   By using a repertoire of simple neuron-like elements, these neuron 
networks can provide a variety of different functional behaviors.   The arrangement of these 
behaviors in a subsumption-style arrangement allows the overall system to perform in a similar 
manner to the robots of [Brooks 86] but with the possibility of reduced size and complexity. 
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 All autonomous robots require some form of movement.   More often than not, this 

movement is realized through wheeled motion.   However, this form of movement is not a 
natural form of locomotion.   Most visible forms of life use some form of joint movements in 
order to achieve motion.   Insects for example have a simple yet efficient mechanical structure.   
An example of the efficiency is the fact that ants can lift many times their own body weight.   In 
fact, insects perform rather well considering their very small size.   An insect is defined to have 6 
legs, however, there are insect-like organisms with 4, 6, 8 or more legs that perform similarly. 
 
 Giving a robot the ability to walk has its advantages but adds a great deal of complexity 
to the aspect of control.   A walking machine has the ability to step over small obstacles of 
various kinds as well as being able to perform efficiently in rough terrain environments.   Legs 
allow the robot to access environments that wheeled robots would normally fail to perform in 
due to obstacles, ruts, uneven surfaces, etc.   Conversely, robots with wheels have the advantage 
that they can move quicker, provided that the terrain is suitable, and require a less complex 
control strategy.   The reason for this ease of control is due to the small number of degrees of 
freedom (i.e. usually just two motors forward and backward) as well as the simplified terrain 
necessary for wheeled locomotion.   A robot that is required to adapt to its surroundings would 
prove to be more useful if it were able to handle a variety of terrains.   There is a tradeoff, 
however, since legged vehicles usually require more complex control techniques and 
complicated mechanics as well as heavier power requirements. 
 
 Controlling walking robots is a difficult problem due to complications such as 
maintaining stability, choosing an appropriate gait and coordinating the legs [Bernstein 67].   In 
many cases, the robot must be precisely controlled and may be required to deliver payloads.   
This causes additional problems related to force, compliance, energy, stress and power 
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computations.   RABI does not take on these extra computational burdens since it is only walking 
around in a simplified environment. 
 
 
3.1  Gaits 

 
 When designing a legged robot, all the legs must be coordinated otherwise the legs will 
just flop around and the robot will not achieve motion.   Let the transfer phase of a leg be the 
period in which the foot is not on the ground.   Similarly, the support phase  of a leg is to be the 
period in which the foot is on the ground, providing support.     A leg does not exhibit continuous 
motion.   The leg must be lifted at the end of each stroke and placed down again in preparation 
for another stroke.  This alternating phenomenon creates a phasing problem that is described by 
the term gait.  A gait represents the combined coordinated motion of the legs, defined as the time 
and location of the placing of each foot.   There are various types of gaits that may be used by a 
legged robot, each with its own unique movement pattern. 
 
 
3.1.1  Gait Selection 
 
 Selecting an appropriate gait depends upon certain conditions such as the terrain 
condition, stability requirements, ease of control, smoothness of body motion, speed, mobility 
and power requirements.   The selection depends greatly on the type of terrain that is to be 
traversed by the robot.   Consider dividing the terrain into foot-sized cells.   Each cell can be 
labeled as a valid or forbidden zone.   A forbidden zone is a zone that does not provide support.   
These may be cells with weak soil structure, steep gradients, interference between terrain and 
legs, etc.   Terrains can be categorized as perfect, fair or rough depending on whether they have 
none, few or many forbidden cells respectively.     
 
 At this point it will help to define two characteristics that a gait may possess.   A gait is 
symmetric  if the motion of the legs of any right-left pair is exactly half a cycle out of phase.   A 
gait is periodic  if similar states of the same leg during successive strokes occur at the same 
interval for all legs.   That interval is called the cycle time, T, which is the time that it takes to 
complete one cycle of leg locomotion.    
 
 Periodic gaits work well in perfect terrain since they are easily implemented.   There are 3 
main types of periodic gaits described as follows. 
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1. Wave gaits  provide optimum stability.   In a wave gait, stepping motion occurs in a 

wave-like fashion from the back legs to the front legs. 
 
2. Equal phase gaits can easily distribute the placing and lifting events in a locomotion 

cycle, minimizing fluctuations in power consumption.   
 
3. Continuous follow the leader  gaits require that the two front legs are specifically placed, 

the middle and back legs follow in the same footsteps.  
 
 In rough terrain, periodic gaits are not very useful since there are too many locations that 
the feet cannot be set down in.  Large obstacle crossing gaits are commonly used for situations 
such as ditch- crossing, hill climbing, step mounting, or overcoming an isolated wall as depicted 
in Figure 3.1.   Follow the leader gaits are useful in these situations since only the front two legs 
must be carefully placed and the others fall into place.   Various obstacle crossing gaits are 
discussed in detail by [Song and Waldron 89].   A robot utilizing solely periodic gaits would be 
unable to perform with these physical obstacles,  and as a result the regions would be labeled as 
non-traversable. 
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Figure 3.1   Geometric representations of standard 
obstacles.  (a) a gradient  (b) a ditch  (c) a vertical 
step  (d) an isolated wall. 

 
 If the terrain becomes too complex the robot may be required to use a free gait 11.   A free 
gait requires that each leg is lifted and placed one at a time.    Usually, a robot would examine the 

                                                 
11 [Pal and Jayarajan 90] give a discussion of an optimal free gait for 2-D generalized motion of a quadruped 

walking machine. 
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environmental terrain and scan for a place to put down each foot.   This approach requires much 
computational power and additional sensing techniques.   This type of gait is chosen only as a 
last resort when all other gaits are ruled out.  
 
 Ideally, a robot should be able to make use of multiple gaits.   Such a robot would use a 
periodic gait for perfect terrain and then switch to an obstacle crossing gait when needed.   
Creating a terrain-adaptable robot with gait switching abilities was not the intention of this thesis.   
The intention was to create a simply constructed robot that would achieve walking in a simplified 
2-D environment.   A more in-depth study would be required in order to design a robot with 
terrain adaptability.    
 
 
3.1.2  Gait Analysis 

 
 The study of leg design and coordination can be quite perplexing.   One aspect of 
complexity is the notion of gait analysis.   Various types of gaits can be analyzed to determine 
their ease of use, distribution of power requirements and measuring the stability of the robot as a 
whole.   This section will just slightly touch upon these issues.   For a more in-depth study of 
these concepts, the reader is referred to [Song and Waldron 89] and [Todd 85].    

 
 Let the duty factor, βi, be the time fraction of a cycle time in which leg i  is in the support 

phase as follows: 
 

β i = time of support phase of leg i
cycle time of leg i (3.1)

 
 
 A regular gait  is a gait with the same duty factor for all legs. 

 

β i = β j = β { i, j = 1, 2, .. . , n
n is the leg number

 
 

 Let the leg phase, φi,  be the fraction of a cycle period by which the contact of leg i on the 

ground lags behind the contact of leg 1 (i.e. front left).   The legs are numbered from left to right 
starting at the front. 
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 In order to achieve constant motion, the robot must remain stable.   Every gait has a 
margin of stability associated with it that indicates how stable the robot will be throughout its 
locomotion cycle.  [McGhee and Frank 68] have shown that for a 2n-legged gait, the gait 
stability is maximized by a regular and symmetric gait defined as: 
 

2n = 4, φ3 = β, 3/4 ≤ β ≥ 1 (3.2) 
2n = 6, φ3 = β, φ5 = 2β − 1, 1/2 ≤ β ≥ 1 (3.3) 

 
 Since stability 12 is very important, the robot designed for this thesis utilizes the regular 
symmetric gait defined by equation 3.3.   Equations 3.2 and 3.3 represent wave gaits.   By 
varying the duty factor β, various stepping patterns can be realized.   These patterns can be 
graphically displayed using what is known as a gait diagram.   A set of gait diagrams for hexapod 
wave gaits is shown in Figure 3.2.   The legs are numbered from front to back, with L or R 
denoting the left and right sides of the body.   The darkened lines indicate the period of the 
support phase.   The beginning and end of a darkened line correspond respectively to the placing 
and lifting of a foot. 
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Figure 3.2   Gait diagrams of hexapod wave gaits showing the effect of varying the duty factor, β. 
 
 
 To help understand the role of the leg phase, consider the artificial insect of Figure 3.3.   
The leg phase for each leg is shown with respect to the duty factor.   From the diagram, it is easy 
to see that by setting β to 1/2, legs 1L, 2R and 3L move in phase as well as 1R, 2L and 3R.   This 
dual phase represents what is commonly termed a tripod gait.   The tripod gait was chosen for 

                                                 
12 For other methods of maintaining stability, [Messuri and Klein 85] discusses the notion of body regulation. 
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RABI since it allows the robot to maintain stability while issuing the minimum number of legs 
needed to be down at any one time.   This gait  has been observed in insects 13 when they require 
fast motion, perhaps to avoid being eaten.     
 

φ 2 = 1/2 φ 4 = β + 1/2 φ 6 = 2β + 1/2 

1L 2L 3L

1R 2R 3R

 
φ 1 = 0 φ 3 = β φ 5 = 2β − 1 
 

Figure 3.3   Leg phases representing the general wave 
gait for a hexapod robot. 

 
 
 In the case of a quadruped, their must be at least 3 legs down at a time in order to 
maintain static stability.   This is indicated in equation 3.2 which states that the duty factor must 
be at least 3/4.   A gait diagram representing a quadruped wave gait with the duty factor of 3/4 is 
given in Figure 3.4. 
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Figure 3.4   Gait diagram of a quadruped 
wave gait with duty factor 3/4. 

                                                 
13  [Wilson 66] investigates the various gaits observed in insect locomotion. 
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3.1.3  Quadruped Vs. Hexapod 

 
 The 6-legged gait of Figure 3.2 where β=1/2 and the 4-legged gait of Figure 3.4 were 
both investigated in different versions of RABI.   In practice, it has been observed that the 6-
legged gait is more stable than the 4-legged gait.   This observation could not have been made 
without the development of physical mechanical robot.   The problem is related to the relative 
positioning of the supporting legs over time. 
 

Unstable

Stable Stable

Stable
(a) (b)

(c) (d)

C

 
 

Figure 3.5   Instability problem caused by leg placements.   
The quadruped (a) becomes unstable if the shaded polygon 
becomes too narrow, and remains stable when the polygon 
widens (b).   The hexapod (c) and (d) remains stable 
throughout the cycle. 

 
 
 In order to explain the phenomenon responsible for the instability of the 4-legged robot, 
we can loosely define the stability in terms of the center of gravity.   Consider the 2-D projection 
of the center of gravity, C, onto a plane containing a foot-fall  polygon  formed from the foot 
positions of the robot's supporting legs.   If this projection falls within the polygonal boundaries, 
then the robot is considered to be stable (i.e. standing).   There are many factors left out such as 
forces, slippage, inaccuracies in the construction of the legs, etc. that also play a role in stability 
but do not need to be analyzed to point out the stability problem encountered.   Indeed what is 
happening is that in the 4-legged gait, the center of gravity sometimes falls outside the border of 
the foot-fall polygon as shown in Figure 3.5.   This stability problem can be subdued if the 
swinging arc of the legs is reduced, or if legs on one side of the body remain far apart.   This 
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would keep the center of gravity within the foot-fall polygon.   Notice that the center of gravity 
shifts slightly with the leg movements. 
 
 The hardware version of RABI went through 3 major mechanical design changes, 
including both a quadruped and hexapod configuration.   These leg designs are discussed in more 
detail in chapter 8. 
 
 
3.2  Gait Implementation 
 
 Once a gait is selected, it must be implemented in either hardware or software.   Provided 
that the gait is simple enough, it may be implemented directly into hardware.   The tripod gait is 
easily implemented since it is periodic, regular and symmetric.   There have been a variety of 
methods for implementing gaits on legged machines. 
 
 
3.2.1  Previous Approaches 
 
 One of the pioneering approaches to insect-like robot design was that of [Brooks 89].   He 
used a form of interconnected finite state machines (FSM's or modules) each with internal timers 
to achieve walking.   These FSM's are connected in a network such that signals are passed among 
them.   The network contains modules for walking, balancing, force control, simple obstacle 
detection and steering.   Each leg has a set of modules controlling the basic movements.   A 
single central module emits triggering pulses that control each leg module.   By varying this 
controlling module, various wave gaits can be realized.   Brooks gives no indication of how 
complex each of these FSM's are, but does mention that 57 are used in an incremental fashion.   
This “add -on” property allows the steering, and obstacle detection modules to be removed 
without preventing the robot from functioning in a simple walking manner.   His subsumption 
architecture allows additional behaviors to be added with ease, as well as providing a robust 
system where components can break down without halting the entire system. 
 
 [Ayers and Crisman 92] have implemented what is called a CCCPG (Command 
Coordinating Central Pattern Generator) for generating an omni-directional gait similar to that 
observed in  the American lobster.   The generator has a clock which specifies the period of 
stepping, and neural circuitry specifying the detailed pattern coordination of each joint.   The legs 
are controlled individually by these CCCPG's and additional neural connections coordinate them.   
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By varying the clock pulse rate, various stepping patterns are attained.   A similar approach was 
taken by [Beer 90].    Beer's control strategy consists of a network of interconnected neurons.   
Each leg has its own local network as shown in Figure 3.6. 
 

SWING

STANCE

LC

FOOT

P BACK

FRONT

 
 

Figure 3.6   Local leg network from [Beer 90].  The 
pacemaker neuron P, emits a burst of energy at constant 
intervals which interchanges the leg between stance and 
swing phases. 

 
 
 In this network, there are three basic types of neurons.   The BACK and FRONT neurons 
are sensor  neurons.   Sensor neurons are directly connected to the robot's sensors.   They emit 
signals corresponding to the intensity of the sensor readings.   In this case, the BACK and 
FRONT neurons send out a binary signal indicating whether the leg is all the way back or 
forward respectively.   The STANCE, SWING and FOOT neurons are called motor  neurons.   
These neurons are connected directly to the robot's actuators.   The SWING and STANCE 
neurons move the leg forward and backward respectively, while the FOOT neuron lifts and 
places the leg down.   Perhaps the most interesting neuron is the P neuron which is called a 
pacemaker and emits a continuous pulse at constant intervals.   By varying the rate of emission, 
the leg moves at different speeds.   When the leg reaches all the way back, the P neuron is 
triggered, causing the leg to swing forward and the foot to be lifted (i.e. the transfer phase).   
Once the leg travels all the way forward, the FRONT neuron disables the P neuron, causing the 
foot to be placed down and the leg to stance backwards (i.e. the support phase).   The P neuron 
also emits pulses on its own which essentially triggers the transfer phase.   The LC neuron allows 
enabling and disabling of the walking mechanism as well as providing a pulse rate to P. 
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 Although the network produces the desired motions of leg movements,  it does not 
provide coordination among the legs.   To provide the coordination required for walking, 
additional connections are made between the pacemaker neurons such that each pair of adjacent 
pacemakers inhibit each other as shown in Figure 3.7. 
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Figure 3.7  Additional connections in which adjacent 
pacemaker neurons inhibit each other allowing 
coordinated walking. 

 
 
 [Chiel et al. 92] have shown that this method of control is quite robust.   In fact, if all 
sensor input is disabled, the robot is still able to walk.   This is possible since the internal pulsing 
of the pacemaker neurons provide the necessary excitatory activity for the motor neurons to 
operate.   The robot remained functional even after a couple of links connecting the pacemaker 
neurons were disabled. 
 
 This approach to walking is simple and straight forward and has been shown to be robust.   
RABI takes a similar approach to Beer's model.   If only a single gait is desired, then the idea of a 
pacemaker is not needed.   In other words, the legs can be fixed to exhibit a single gait, only 
changing phases when the leg limits are reached. 
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3.2.2  RABI's Walking 
 
 RABI’s legs each have two motors.   One motor moves the leg in the horizontal direction, 
the other in the vertical direction (See Chapter 8).   In reality, motors do not move at the same 
speed nor with the same efficiency.   Thus, when coordinating the legs, the lagging of the motors 
must be taken into account.   In addition, each foot takes time to be placed.   Thus, the legs must 
be restrained from swinging and stancing until the foot is lifted or placed down appropriately.   
The easiest way to do this is to add additional circuitry that will delay legs from swinging and 
stancing until the foot is in place.   Figure 3.8 shows the revised  network similar to that of 
Figure 3.6. 
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Figure 3.8   Revised leg network accounting for stepping delay. 
 
 
 In the revised network, I have added a FOOT UP neuron that indicates whether or not the 
foot is touching the ground.   A micro switch placed at the bottom of the foot serves as a simple 
sensor providing a binary input.   Two motor neurons control the horizontal and vertical 
placement of the foot.   In this network, the POS. LEG neuron acts as the P neuron in the 
previous model with the exception that it does not produce its own bursts internally.   Here, when 
the leg reaches the back-most position, the POS. LEG neuron is excited and remains excited as 
long as the foot remains up.   The SWING neuron consequently is excited but being a threshold 
neuron, it does not allow motor movement unless the FOOT UP neuron is also excited.   This 
provides a method of delaying the swing phase until the foot is up off the ground.   The POS. 
LEG neuron also excites the LEG UP neuron.   This allows the leg to be lifted immediately.   
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Once the leg swings to the frontal limit, the FRONT neuron causes the leg to be placed down.   
Once the leg is placed down, the POS. LEG neuron becomes inactive (no more active inputs) and 
the leg stances backwards. 
 
 Notice in Figure 3.8 that there are no inputs to the STANCE neuron.   One more 
additional neuron is needed to accomplish movement.   A single WALK neuron provides 
excitatory input to each STANCE neuron.   This allows disabling of the walking mechanism 
altogether.   Figure 3.9 shows these connections. 
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Figure 3.9   Connecting the WALK neuron which 
provides the excitatory signals needed for walking. 

 
 
 Walking is enabled by exciting the WALK neuron which provides excitation to the 
STANCE neuron of each leg.   When the WALK neuron is not excited, the STANCE neurons are 
in a sense "disabled".   Note again that the STANCE neurons are threshold neurons that receive 
only a 0.5 excitatory signal.   The additional 0.5 needed to trigger it is explained in the next 
section. 
 
 With the networks shown so far, the basic leg movements for walking are achieved but 
the lack of coordination prevents walking.   A similar approach to coordination to that of [Beer 
90] was used.   In this approach, the POS. LEG neurons inhibit each other.   Additional 
inhibitory links were added to specify the tripod gait.   These were needed in order to ensure 
synchronized alternating phases so that the robot did not break into a generalized wave gait.   
Figure 3.10(a) shows the connections required to coordinate a hexapod robot, while 3.10(b) 
shows the connections for a quadruped robot.   In the case of the quadruped, the connections are 
made such that no leg can be lifted unless all others are on the ground.   This is needed in order 
to ensure stability as mentioned previously. 
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Figure 3.10   Interconnections of leg networks providing coordination between the legs.  
(a)  hexapod tripod gait connections (b) quadruped wave gait connections. 

 
 
 

3.3  Turning 
 
 Once the robot is able to walk, the next step is to get it to turn.   There are a few ways to 
implement turning capability.   One mechanical approach is to design the legs in such a way that 
the feet pivot towards the desired direction of turning.   This would allow turning since each step 
would slightly alter the trajectory causing the robot to veer off from a straight line.   This 
approach does not allow sharp turns since each step allows only small directional changes.   
Another approach to steering is to design each leg such that they are capable of thrusting the 
body in both the forward/backward and right/left directions.   The CCCPG model of [Ayers and 
Crisman 92] uses this method which allows the robot to move from side to side if needed.   This 
approach, although biologically feasible, requires a more sophisticated leg design which could 
increase the weight and size of the robot.  
 
 A simpler method of steering was taken by [Brooks 89] and [Beer 90] which involved 
instructing the legs on one side of the body to not swing as far back as the legs on the other side.   
With a legged insect, the smaller the swinging angle, the smaller the forward translation of the 
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robot.   Thus by keeping the forward translation on one side of the body small compared to the 
other side, the robot will turn away from a straight line path 14.  
 
 
3.3.1  Turning With Simple Sensors 
 
 If the robot is only equipped with sensors that detect forward and backward leg limits (as 
opposed to position measurement sensors), then a simpler method is needed.   RABI achieves 
turning by first stopping, then pivoting the body.   To pivot the body, the legs on one side of the 
body are instructed to reverse direction.   Thus, a stance phase in reverse would cause a backward 
translation.   This allows the robot to make sharp turns since all legs are cooperating in the 
turning process.   Figure 3.11 shows the result of such a method. 
 

1 2 3 4
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Figure 3.11   Snapshots showing the displacement of a hexapod robot using a pivoting tripod gait to 
turn right. 

 
 The diagram shows the different snapshots of a hexapod using the pivoting method for 
turning right.   Note that there is no angular displacement between steps 4 and 5 since this is 
when the tripod gait crossover occurs. 
 
 Although this method is simple and is able to accomplish turning, there is a disadvantage 
that the robot must stop in order to turn.   This is not as biologically feasible as previous 

                                                 
14  This is analogous to a car running into a puddle.   The wheels that hit the water will slow their revolution while 

the wheels on the other side remain at full speed.   At quick speeds the car will suddenly turn drastically towards 
the puddle. 



 62 

approaches to walking since observed insects do need to stop in order to turn.  The method does 
however allow the robot to turn in cornered areas. 
 
 
3.3.2  RABI's Turning 

 
 In order to achieve turning, the legs on one side of the body must be reversed.   To do 
this, a REV. neuron is added to each leg network by connecting it to the SWING and STANCE 
neurons and the BACK and FRONT sensor neurons as shown in Figure 3.12. 
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Figure 3.12   Expanded leg network showing additional neurons and connections needed for 
turning.   The DRAG neuron is required for additional coordination. 

 
 The REV. neuron provides a special connection into the SWING, STANCE, BACK and 
FRONT neurons.   When these neurons receive a positive activation from this special connection, 
they negate their output.   Thus, when in reverse, the STANCE and SWING neurons will cause 
the motor to move in a reversed direction.   When not moving in reverse, the leg will remain in a 
stance phase until the leg reaches the back most limit.   Similarly, the swing phase will continue 
until the front most limit is reached.   When in reverse however, the role of these two limit 
sensors is reversed.   For this reason the BACK and FRONT limit sensor neurons needed to be 
swapped.   The STANCE LIMIT and SWING LIMIT neurons allow this swapping to occur.   
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When reversed, the excitatory connections from a neuron become inhibitory and vice versa for 
the inhibitory connections.   This allows the STANCE LIMIT and SWING LIMIT neurons to 
receive a signal from the appropriate sensor. 
 
 Since each leg is given a reverse neuron, some sort of mechanism is needed to decide 
which legs are to be in reverse at any given time.   This mechanism is shown in Figure 3.13. 
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Figure 3.13   A mechanism for controlling the reverse neurons. 
 
 Using this mechanism is simple.   Turning left or right requires only that the TURN 
LEFT or TURN RIGHT neurons be excited.   Once excited, these two neurons turn on the 
appropriate reverse neurons, thus executing a turn.   Additional neural circuitry can be connected 
to the TURN LEFT and TURN RIGHT neurons to provide higher level control over this low 
level mechanism. 
 
 The DRAG neuron of Figure 3.12 was added to add further coordination of the legs.   
This neuron becomes excited whenever a leg is considered to be dragging on the ground.   This 
will happen whenever the leg has its foot down unless it is at its swing limit (i.e. waiting for the 
other legs to catch up so that a stance phase can be performed). 
 
 The additional circuitry to allow the extra coordination is shown in Figure 3.14.   Here, 
the tripod gait is built-in.   Essentially, the network prevents opposite phase legs from stancing if 
any of the other phase legs are still in the stance phase.   In other words, it makes sure that all the 
legs are synchronized to start their phase. 
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Figure 3.14   Connecting the DRAG neurons such that no leg begins a 
stance phase until all others of opposite phase are ready for a swing phase. 

 

 The addition of the DRAG neurons was necessary for the hardware version of RABI 
only.   The legs of the hardware version moved at different speeds and consequently, there was a 
need for some form of additional synchronization.    The simulated version is obviously precisely 
timed and thus such additional synchronized connections were not needed.   Again, the 
importance of building a physical robot surfaces. 
 
 
3.4  Summary 

 
 Various approaches to coordinated walking and turning have been discussed.   The 
previously research methods provide multiple gait capability at different speeds.   They also 
provide turning while walking.   RABI uses a simple approach that uses simpler sensors and 
coordinating techniques which may be hardwired into electronics due to the simple design.   
Although RABI uses only one gait, the tripod gait, it is capable of simple walking and pivoting 
without adding additional complications to the hardware.   The use of neuron networks keeps the 
implementation simple and proves to be adequate for walking purposes.   Furthermore, the 
network design allows easy interface with additional circuitry from higher level functioning such 
as instinctive behaviors. 
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 All animals are endowed with some sort of instinctive behaviors which provide basic 

functioning and reflexes required for survival.   An instinct  is a type of behavior that does not 
depend on experience.  These behaviors are a result of evolutionary progress.  The genes from 
the ancestors that survive are passed onto future generations allowing the instinctive behaviors to 
be fine tuned from generation to generation.  The behaviors  are fine tuned for the environment in 
which the animal lives. 
 
 Since these instincts provide basic functioning, it is reasonable to program them into 
robots as a means of controlling the robot's low level decisions and actions.   The first step 
required for this type of programming is to identify the basic behaviors (instincts) needed to keep 
the robot functioning.   The robot must at least have instincts for avoiding injuries, exploration 
and obtaining food if it is to survive in an environment.   These behaviors provide a foundation 
on which to build higher level behaviors for a more versatile and competent robot. 
 
 Usually, robots are designed to operate in specific environments.   If this is the case, then 
it is possible to program specific instincts suited for this environment.   Once programmed, all 
that remains is to organize them in such a way to be able to handle situations in which two or 
more conflicting behaviors arise.   The resulting robot (agent) should be able to survive to some 
extent in the environment in which it functions. 
 
 
4.1  Avoiding Injuries 

 
 Locomotion gives a robot the ability to translate its body from point to point.   This is 
necessary for autonomous systems, moreover, it is necessary for survival.   It can however, 
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produce a variety of hazardous situations which would not have occurred if the robot were 
stationary.   Terrain features such as uneven surfaces, obtrusions, ruts, holes, liquids, non-
supporting surfaces, etc. all provide a level of danger for locomotives by threatening to induce 
bodily harm through collisions, tipping, rolling, submersion and plummeting.   Moreover, quick 
moving locomotives are further threatened by high impact collisions.   For simple, flat, indoor 
environments, the most common injuries would arise from collisions with obstacles. 
 
 Most animals and insects have a mechanism that prevents them from hitting obstacles in 
order to avoid self injuries.   Likewise, an autonomous mobile robot must have some means of 
detecting an obstacle in its path and turning appropriately to avoid contact.   This brings up two 
issues, that of obstacle detection  and collision avoidance.    
 
 
4.1.1  Obstacle Detection 

 
 In order to detect an obstacle, some kind of sensor information must be processed.   
Animals generally use visual information when available since it provides a wealth of data.   
Animals and insects that rely on visual sensory information often have difficulty in preventing a 
collision with transparent objects such as glass.   Flies, moths and mosquitoes, for example, are 
often seen flying head-on into obstacles such as lights and windows.    Any autonomous robot 
relying on solely visual 15 information would also collide with transparent objects.   The main 
drawback of visual sensors is their expense and the processing power required to extract useful 
information from noisy images. 
 
 A more widely used approach to obstacle detection is that of ultrasonics.    Bats use this 
type of strategy to measure distances.   An ultrasonic burst is emitted in a direction towards the 
obstacle.   The time that it takes for the burst to return is measured, giving an indication of the 
distance to the object.   These electronic ultrasonic devices offer good range data but offer poor 
directionality since they detect obstacles inside a cone of approximately 30� .   Multiple objects 
cannot be detected inside this cone.   Usually, multiple sensors are arranged in a ring fashion 
providing a 360�  panoramic view, resulting in a low resolution obstacle detection system.   
Another problem with these sensors is that they often receive noisy data due to spurious 
reflections from smooth surfaces, previous bursts and crosstalk from other sensors.   To help 

                                                 
15  Visual information extracted from a camera or similar sensor. 
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alleviate the problem, occupancy grids or histograms 16 are used to determine the likelihood that 
an object is present.  
 
 Optical range finders are another kind of sensor used on robots.   Essentially, they emit a 
beam of infrared light which is reflected back if an obstacle is present.   These sensors require 
fine tuning to their environment and are susceptible to ambient infrared light such as that which 
comes through a window from outside.   As a result, the incoming data is noisy and must be 
filtered.   Typical range finder data for a 360�  view requires about a second to obtain.   [Cox 91] 
discusses the use of a range finder for navigation. 
 
 While all these sensors are being used on large "garbage can" sized robots, they are not 
able to be incorporated into smaller robots.   Furthermore, smaller robot life forms are more 
likely to require very quick reflexes in order to survive.   The 1 second delay for collision 
avoidance may be fatal for the robot.    
 
 For these reasons, designers of small robots are turning towards simpler sensors such as 
proximity, antennae and touch sensors [Fylnn 87], [Brooks 89],  [Beer 90], [Beer and Gallagher 
92], [Koza and Rice 92] and [Mahadevan and Connell 92].   These simple sensors are less prone 
to noisy data and can be made very small for use in small microbots or nanobots.   Antennae 
sensors are a form of mechanically activated proximity sensors found on all insects and in other 
forms on animals 17.   These sensors are better than "bump" sensors in that they do not require 
the robot's body to contact the obstacle.  They provide a flexible kind of physical interface with 
the robot and the obstacle. 
 
 RABI incorporates 6 antennae sensors as shown in Figure 4.1.   The four frontal antennae 
are used to detect collisions with obstacles during forward motion.   The side antennae are used 
to detect contact with an edge during edge following behavior.  The side antennae are not used 
for collision avoidance since the detection of obstacles from either of these antennae does not 
indicate an obstacle obstructing the forward motion of the robot. 
 

                                                 
16  [Borenstein and Koren 91] and [Lang et al. 89]  give descriptions on ultrasonic ranging, occupancy grid and 

histogram techniques. 
17  Some animals have whiskers and hairs which have essentially the same performance as antennae with the 

exception that some antennae are used as actuators which can "feel" obstacles.   The antennae can obtain active 
data as opposed to passive data as seen with hairs and whiskers. 
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Figure 4.1   The 6 antennae incorporated into RABI. 
 
 
 The antennae on the hardware version of RABI are made of piano wire which provides a 
flexible binary "switch" whenever an object brushes up against it.   As a result, the antennae are 
able to detect obstacles before the body becomes too close.   The software version simulates the 
antennae as points representing their tips.   These points are at a fixed distance away from the 
robot and therefore they do not have the same bending/flexible property of the hardware version.   
They do however, provide a quick means of detecting collisions with obstacles in the simulation.   
Four basic obstacle features can be detected as shown in Figure 4.2. 
 
 Since there are only 4 antennae at the front of the robot, there is a limit to the resolution 
that can be detected.   Consequently, such an arrangement is not able to detect small obstacles 
which may pass between the antennae.   In essence, altogether they can provide 4-bits of data 
depicting features of the obstacle encountered. 
 

(a) (b) (c) (d)  
 

Figure 4.2   The four basic types of detectable obstacle features.   (a) large obstacle surface detected, (b) obstacle 
corner detected, (c) corridor detected and (d) small obstacle detected. 
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4.1.2  Collision Avoidance 

 
 Once an obstacle is detected in the path of the robot's motion, some sort of collision 

avoidance  18 motion must be executed in order to prevent the robot's body from coming in 
physical contact with the obstacle.   The ability to detect some low resolution obstacle features 
allows the robot to respond in a more efficient manner.   The detection of these features calls for 
two basic collision avoidance responses.  In Figure 4.2(a), 4.2(c), and 4.2(d) the detection of the 
obstacle is spread symmetrically among left and right antennae.  In such a situation, the robot 
should randomly chose to turn left or right to avoid hitting the obstacle 19.   In Figure 4.2(b) the 
robot detects an obstacle on one side of its body only.   The appropriate response here would be 
to turn in the direction in which the obstacle is not detected.  That is, for the situation in 4.2(b) 
the robot would turn right to avoid the obstacle detected on its left.  If the robot were to turn left, 
then it would be walking into the obstacle, defying the purpose of collision avoidance altogether. 
 
 Figure 4.3 shows a table of the 16 possible frontal antennae readings and the appropriate 
response needed to avoid contact.  A blackened box indicates antenna contact with an obstacle.   
From the figure, it can easily be seen that most of the collision avoidance task results in a 
specific left or right turn, only choosing a random turn when there is no distinction between left 
and right antennae readings.   Furthermore, it can be seen that the direction chosen is indicated 
by a majority of antennae contact readings (i.e. blackened boxes from Figure 4.3) on the opposite 
side of the body. 
 
 
 
 
 

                                                 
18  The term collision avoidance  used here indicates a simple directional change in order to avoid contact with an 

obstacle lying directly ahead.   This term as well as the term of obstacle avoidance  has been previously used to 
describe the notion of avoiding multiple obstacles while incorporating a path planning strategy.   The use of the 
term here does not touch upon any aspect of path planning. 

19  If some sort of navigational behavior is present then this behavior may render a desired direction of travel 
whenever the robot is faced with making a random turn. 
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Figure 4.3   The 16 possible frontal antennae readings 
and the appropriate response needed to avoid contact.   
Each set of 4 boxes represents the antennae readings 
where the rightmost box is from the rightmost antenna. 
 
 

 The task of collision avoidance is more than providing an appropriate directional 
response for each antennae state encountered.   With only a direct sensor to action response, the 
robot may enter into an oscillating pattern when encountering a corner as shown in Figure 4.4.   
When at a corner, the antennae on one side will detect an obstruction.   To avoid  collision, the 
robot will turn away from the detected obstruction, causing the antennae on the opposite side to 
detect the other wall of the corner.   Consequently, the robot will again turn back towards the 
original obstruction and the oscillating pattern will begin. 
 

right left

obstacle detection

 
 

Figure 4.4   Diagram showing the oscillating turning 
problem encountered during collision avoidance at a 
corner. 
 

 
 RABI is endowed with a reflexive collision avoidance behavior which provides a control 
mechanism for turning away from the obstacle in the appropriate direction.   This mechanism 
provides the appropriate responses as shown in Figure 4.3 while avoiding the oscillating turning 
pattern shown in Figure 4.4.   Figure 4.5 shows the neural circuitry to accomplish the overall 
collision avoidance behavior.   The circuit reads in the status of the four frontal antennae and 
decides the appropriate response in order to avoid encountered obstacles.   Since the circuit 
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contains two sustain neurons, it provides a temporal response as opposed to a direct sensor to 
action response. 
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Figure 4.5   The neural circuitry depicting the 
collision avoidance behavior. 

 
 
 The sensor neurons read in the status of the four frontal antennae, ANT. 0 being the 
rightmost antenna.   These sensor neurons connect to standard neurons DETECT RIGHT and 
DETECT LEFT which act as summing neurons giving an indication of the amount of detection 
on each side of the body.   Since they are standard neurons, they have analog (real number) 
output which is fed into the DECIDE RIGHT and DECIDE LEFT neurons.   These two neurons 
act as "majority" operators in that they become enabled whenever the majority of the sensor 
readings are obtained from their side of the body.   These neurons connect to the AVOID RIGHT 
and AVOID LEFT neurons, turning on the appropriate directional response. 
 
 The AVOID RIGHT and AVOID LEFT neurons provide the resultant action desired by 
the collision avoidance behavior.   Moreover, the neurons mutually inhibit each other such that 
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only one direction can be active at a time.   This allows the cornering problem to be alleviated by 
essentially choosing a direction to turn in and "sticking with" the decision until free from 
obstruction.  The remaining PULSE neuron provides a method of turning off the two sustain 
neurons whenever the sensors stop reading collisions. 
 
 In the case when the sensor readings do not bias on either side, RABI chooses a right 
turn.   In reality, an insect would more than likely chose a truly random turn with other external 
and internal factors playing a role in the decision.   However, in the absence of additional internal 
and external information, a right turn is equally acceptable to a left turn.   Therefore, to simplify 
the circuitry by avoiding the use of additional neurons for random turning,  a right bias was 
chosen.   This bias can be seen by observing the weights of the links from the sensor neurons.  
The weights are stronger for those detecting obstacles on the left, which results in a right turn 
dominance for collision avoidance.  With these weights there is no sensor situation which will 
result in equal detection on the left and right sides, except when there is no obstacle detection at 
all.   Thus, a left or right decision will be made even for symmetric sensor readings.   Moreover, 
the weights have been chosen such that the antennae provide biased readings for detection on the 
left and right side.   For example, the leftmost antennae ANT.3 provides a strong excitatory 
signal to the neuron which detects left obstacles and a weak excitatory signal to the neuron which 
detects right obstacles. 
 
 The network allows RABI to walk around in the environment without hurting itself by 
avoiding collisions with walls.   The AVOID LEFT and AVOID RIGHT neurons are connected 
directly to the TURN LEFT and TURN RIGHT neurons of Figure 3.13 that control the turning 
mechanism of RABI's walking behavior.   This connection will allow the robot to walk forward 
turning away only when an obstacle is detected in its path.   This collision avoidance technique 
has been designed to avoid collisions with stationary obstacles.   The information would need to 
be processed dynamically in order for the robot to safely avoid moving obstacles.   The antennae 
neurons themselves do not provide the dynamic information necessary for the detection of 
moving obstacles. 
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4.2  Wandering : A Basis for Exploratory Behavior 
 
 Perhaps the most basic form of exploratory behavior is that of wandering.   By 
wandering, a robot is able to obtain information from environmental locations that may never 
have been reached with calculated paths.  If, for example, a robot has been programmed to weave 
between obstacles while performing a point to point path plan,  it may never detect 
environmental stimuli lying along edges of the obstacles.  These environmental stimuli may be 
critical to the survival of the robot (i.e. power source).   By allowing the robot to wander around 
in the environment, it is more likely to find such important stimuli 20. 
 
 
4.2.1  Implementing  Artificial Wandering  Behavior 

 
 For  a non-changing environment, truly random wandering will eventually cover the 
entire accessible portion of the environment.   Although random wandering is a means of 
searching for stimuli, most animals are more efficient than this, in that they rely on other 
information.   Some insects such as ants, emit a chemical residue that allows them to detect 
where they have been before.   This additional information could prevent the ant from wandering 
into previously explored regions.   [Steels 90] describes a simulation in which a robot is to map 
out an environment through wandering behavior.   The robot is able to leave behind a trail 
indicating previous path choices.   The wandering behavior is random only when there is a lack 
of information.   That is, the robot is able to sense where it has been before and therefore chooses 
to wander into locations that have not been visited. 
 
 Computers and electronics are capable of producing reasonably random effects which can 
be used as a control mechanism for wandering behavior.   All that is required for random 
wandering is a mechanism that causes occasional directional changes in the robot's forward 
motion.   Although these random directional changes produce a wandering illusion, this effect is 
not necessarily observed in real insects.   Cockroaches, for example, utilize a combination of 
circling and relatively straight movements in its wandering behavior [Bell and Adiyodi 81].   
Nevertheless, a form of random wandering provides a reasonable coverage of the environment. 

                                                 
20  An assumption is made here that the robot has no prior knowledge as to where the critical stimuli are located, 

and therefore may only encounter the stimuli "by chance". 
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 [Beer 90] incorporates a wandering network in his simulated insect in which two neurons 
randomly emit bursts of energy that directly control the turning mechanism of the insect.   This 
approach requires only two additional neurons which directly connect to the turning mechanisms.   
RABI uses a similar approach by using a simple neural circuit as shown in Figure 4.6, containing 
three random neurons that produce a form of random wandering behavior. 
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Figure 4.6   The neural circuitry depicting the wandering 
behavior  The WALK neuron enables the TURN DECIDE 
and TURN TIME neurons that, through random output, 
selects when and for how long to turn. 

 
 
 When the circuit is enabled by exciting the WALK neuron, it randomly enables and 
disables the WANDER LEFT and WANDER RIGHT neurons which are used as directional 
change mechanisms providing wandering behavior.   The WALK neuron acts as an "on" switch 
which enables the TURN DECIDE and TURN TIME neurons that select when and for how long 
to turn respectively.   The TURN DECIDE neuron, when excited, emits a binary high output with 
a probability of 1/30, otherwise emitting a low signal.   The output of this neuron is used to 
enable the TURN neuron which essentially chooses the direction to wander in.   It does this by 
enabling the appropriate sustain neuron.   The TURN TIME neuron is a random neuron that 
emits a binary high output with a probability of 1/20.   This output is used to disable the turning 
process by inhibiting both sustain neurons WANDER LEFT and WANDER RIGHT.   Finally, 
the PULSE neuron emits a burst whenever the explore neuron is turned off which inhibits the 
sustain neurons so that the wandering influence to the overall system is eliminated. 
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 The wandering behavior becomes functional by connecting the WANDER LEFT and 
WANDER RIGHT neurons directly to the TURN LEFT and TURN RIGHT turning control 
neurons of Figure 3.13.   The result is a form of wandering behavior that allows the robot to walk 
forward while occasionally turning off into random directions. 
 
 
4.2.2  A Wandering Bias Towards Vacant Areas 

 
 Some animals rely on visual information such as landmarks and "open" areas that provide 
a global sense of location which may directly affect the actual wandering behavior.   If an animal 
has previously found certain stimuli (i.e. food) in an open area, then it may chose to steer clear 
from all obstacles.   In this case, the animal may choose to explore "open" (vacant) locations as 
opposed to "crowded" (obstacle ridden) locations with its wandering behavior.   [Anderson and 
Donath 90] describe a method of using various attraction behaviors that allows a robot to wander 
in and out between obstacles such that the robot tends to explore the vacant areas of the 
environment. The implementation of their robot utilizes ultrasonic and camera sensors which are 
not feasible for nanobot purposes.   Nevertheless, the idea of repelling from obstacles in order to 
remain in vacant areas can prove to be quite fruitful if the environment contains most of its 
stimuli in these vacant areas.   [Beer 90] utilizes a recoiling feature that allows his simulated 
insect to "bounce away from" encountered obstacles.   In his simulation, the insect first backs 
away from the obstacle and then turns off into a new direction.   The result is not unlike the 
familiar 3-point turning technique of vehicle driving.   His approach is based on observations of 
cockroach recoil.   This technique requires that the robot be able to move backwards as well as 
being able to advance and turn simultaneously providing a nonlinear trajectory.   This provides 
further complications in the control of the insect's walking behavior and thus a simpler approach 
was used by RABI. 
 
 A robot equipped with simple proximity or touch sensors does not have the ability to 
detect obstacles until it is very close to them.   Moreover, simple sensors do not provide distance 
information that may be needed to steer away from upcoming obstacles.   RABI can make use of 
all six of its antennae sensors to detect obstacles and turn away from them.   The basic collision 
avoidance behavior incorporated by RABI allows the robot to turn away from obstacles that it 
encounters in its path until it no longer detects the obstacle.   This collision avoidance behavior 
provides part of a vacancy  behavior in that it turns the robot away such that the obstacle does not 
obstruct the path.   Usually, once the robot has turned using the collision avoidance behavior, a 
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side antennae remains in contact with the obstacle.  All that remains to do is to further turn away 
until the side antennae sensors detect no collisions either, and then head off away from the 
obstacle.   Figure 4.7  shows the 3 basic steps that specify vacancy behavior. 
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Figure 4.7   The 3 basic steps of vacancy behavior.  1) Obstacle is detected.  2) 
Collision avoidance turns to prevent collision.  3) Vacancy behavior makes 
additional turns to repel the robot from the obstacle. 

 
 
 This vacancy behavior incorporates the collision avoidance instinct.   When the robot 
detects an obstacle in its path, the collision avoidance instinct causes the robot to turn away.   
Once the robot has turned such that its front antennae no longer touch, the collision avoidance 
behavior ceases.  If the vacancy behavior is enabled, then this behavior would make additional 
turns such that the robot's side antennae also do not touch the obstacle.   Once the antennae no 
longer sense obstacles, it wanders forward into the vacant area by heading away from the 
obstacle. 
 
 Implementation of the vacancy behavior requires that the left and right side antennae be 
observed for collisions with obstacles.   Since the collision avoidance instinct handles all 
collisions, then this behavior need not worry about the frontal antennae collisions.   In fact, for 
any frontal antennae collisions, the collision avoidance behavior should "kick-in" and maneuver 
the robot to avoid collision.   RABI does exactly this.   A neural circuit providing the vacancy 
behavior is depicted in Figure 4.8.    
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Figure 4.8   Neural circuitry depicting the vacancy behavior.  The 
network allows the robot to turn away from any detected obstacle 
along its side such that it heads back into vacant areas of the 
environment. 

 
 
 In this circuit,  ANT L and ANT R are sensor neurons corresponding to the side antennae.   
They are able to turn on the vacancy behavior by exciting the VACANT LEFT or VACANT 
RIGHT turning neurons.   The interconnections are made such the robot turns in the direction 
opposite that which detects an obstacle.   That is, if an obstacle is detected on the left, the robot 
turns right towards vacant territory.   When both side antennae detect obstacles (i.e. a narrow 
tunnel or corridor) then neither turning neuron is excited and the robot proceeds straight ahead.   
This allows the robot to exit the corridor into a more vacant area.   Once again, the vacancy 
behavior is consummated by connecting the VACANT RIGHT and VACANT LEFT neurons to 
the TURN RIGHT and TURN LEFT neurons of Figure 3.13. 
 
 
4.3  Edge Following Behavior 

 
 A robot that wanders around aimlessly avoiding obstacles does not learn anything about 
the structure of its environment.   Sometimes stimuli may be known to exist along obstacle 
borders, such as power outages and wall sockets in a typical indoor environment.   If a robotic 
life form is to survive in such an environment, then clearly there is a need to narrow the search 
space when looking for such stimuli.   One possible method of reducing this random searching is 
to provide the robot with an edge following  behavior.   Such a behavior would allow the robot to 
follow along obstacle boundaries (i.e. walls, boxes, foundations etc.) keeping its body parallel to 
the obstacle.   Such an instinct is more suitable for traversing complex environments than 
random wandering.   Moreover, it is also biologically plausible since [Bell and Adiyodi 81] state 
that cockroaches in particular are known to spend the majority of their time within antenna 
contact of an edge.   This edge following behavior also allows environmental mapping to occur. 
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 The main issue in edge following behavior is keeping the body close and parallel to the 
edge.   If the robot begins moving away from the edge, it must turn back towards it such that it 
realigns itself.   Likewise, if the robot begins to head into the obstacle it must turn away slightly 
to avoid a collision.   This indicates that some sort of angle measurement may be needed for 
efficient parallelism.   Finally, if the robot loses contact with the edge, it should attempt to regain 
contact again. 
 
 [Beer 90] uses a simple neural circuit for edge following behavior with his simulated 
insect.   However, the antennae of his insect are able to produce analog output such that a direct 
head-on collision of the antennae provides a strong output signal while a brush against an 
obstacle provides a weaker signal.   Consequently, this analog output gives the insect an 
indication of the angle that the antennae makes with the edge.   Since the antennae are fixed on 
the body, this provides a kind of measurement of the angle between the edge and the insect's 
body.   With RABI's simple binary antennae, this is not possible since the binary output does not 
provide any indication of the angle between the edge and the body.   Instead, RABI uses its front 
antenna closest to the edge to detect when the robot comes too close to the edge.   Veering away 
from the edge is detected when the side antenna loses contact. 
 
 
4.3.1  Modes of Edge Following 
 
 There are three basic "modes" of edge following behavior.   The first mode is the follow  

edge  mode in which the robot just walks forward as long as the side antenna remains in contact 
with the edge and no frontal obstructions are detected.   If the robot encounters a head-on 
obstacle obstructing its forward motion, then the robot must orient  itself to this new obstacle's 
edge.  Lastly, if the robot then loses contact with the edge, it must turn to regain contact in what 
is called the realign  mode.    
 
 When in the follow edge mode, no special behavioral changes occur since the robot is 
merely walking forward along an edge.   The directional adjustments must be made only when 
the robot loses edge contact or when it encounters an obstacle.   The loss of contact can occur for 
one of two reasons.   Either the robot is slowly moving away from the edge because it is not quite 
parallel, or the features of the boundary being followed has changed (i.e. a convex corner).   
These two situations are depicted in Figure 4.9(a) and 4.9(b). 
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(a) (b)  
 

Figure 4.9   Situations causing loss of edge contact. (a) misalignment, and 
(b) obstacle feature changes (convex corner). 

 
 
 In (a), the robot must turn back to regain contact with the edge.   In (b), the robot must 
also turn back towards the edge but will end up re-gaining contact with a different edge on 
another side of the obstacle.   Usually, a sharp corner such as 90�  will require a sequence of 
realignment steps since the side antenna will continually lose and regain contact with the edge 
during the sharp turn.   This amount of fluctuation between edge follow and realign modes can be 
reduced by positioning the side antennae further back towards the rear of the robot.   The further 
back the side antenna is placed, the longer it will take the robot to detect a loss of edge contact 
when traveling past a convex corner.   Consequently, the robot will be further out from the 
obstacle when it starts the realignment.   If far enough out, the robot may require only one 
realignment phase.   There is a limit to how far back the antennae may be placed, however, since 
if the robot travels too far out past the obstacle, it may not be able to regain contact with the 
edge. Figure 4.10 depicts antenna placement constraints.  
 
 The diagram shows the distances from the pivotal center 21 to the tip of a frontal antenna 
and two possible side antennae.   Antenna A1 is suitable since its distance d1 is less than d0 even 
when fully bent backward.   Antenna A2 however, is not valid since when fully bent backward, 
its distance d2 exceeds d0.   With A2 as a side antenna, the robot would walk too far past the 

convex corner before losing contact and the robot would not be able to regain contact with the 
edge through turning. 
 

                                                 
21  The pivotal center is the point from which the robot pivots during a turn.   Usually this is the center of the robot 

if the robot is constructed symmetrically and efficiently. 
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Figure 4.10   Placement of a side antenna.   A1 is safely 
placed since the distance d1 does not exceed d0 but when 
A2 is bent, its distance d2 exceeds d0.   Thus, A2 should be 
moved forward. 

 
 

 If the robot detects any frontal antennae collisions while engaged in edge following 
behavior, it should turn away from its followed edge and re-orient itself to the new edge 
encountered, then continue on.   There are a variety of frontal collisions that may occur and these 
are depicted in Figure 4.11. 

 

 

(a) (c)

(d) (f)

(b)

(e)  
 

Figure 4.11   The different types of frontal antennae collisions calling for reorientation to a new 
edge.  (a) full surface contact,  (b)  edge obtrusion, (c) small object contact,  (d) obtuse angular 
edge change,  (e)  curved surface,  (f)  acute angular edge change. 
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 In (a), the robot makes full contact with its front antennae.  A similar situation appears in 
(b) and (c) with the exception that only a couple of its sensors make contact.   The situations in 
(d), (e) and (f) are all similar in that only an outer antenna makes contact.   In fact, since the 
antennae provide binary output, curved edges as in (e) will be recognized as a polygonal chain 
and thus (d) and (e) represent the same situation. 
 
 Each of these types of collisions call for the robot to reorient itself to the new contacted 
edge.   Once realigned with the new edge, the edge following behavior continues.   There are two 
additional situations involving the frontal antennae.   In Figure 4.12(a), the robot is not aligned 
properly with the edge being followed and eventually becomes too close to the obstacle resulting 
in a collision with its outer antenna.   Here, the robot merely needs to adjust itself to the edge by 
turning away until the collision no longer exists.    This happens often since the robot's antenna 
sensors provide no indication as to the distance from the edge.   Consequently, alignment 
adjustments can only be made once the robot becomes too close and collides with the edge. 
 
 

(a) (b)  
 

Figure 4.12   Additional frontal antennae collision situations. (a) misalignment with 
the edge and (b)  a narrow passage. 

 
 

 In Figure 4.12(b), the robot's outer antenna detects a collision.   Here, it may be possible 
for the robot to squeeze  in between the edge and the detected obstacle such as the case of narrow 
passages or tunnels.   This squeezing may be a requirement if the environment is complex and 
dense with obstacles.   If the squeeze is unsuccessful, due to additional antennae collisions, then 
the robot should assume that the passage is not traversable and treat the initially detected obstacle 
as an edge. 
 
 This "squeezing" process is necessary for efficient traversal in an unknown environment.   
Without this squeezing process, the robot could enter into an infinite looping process when 
following edges as shown in Figure 4.13.   Here, the robot follows along the border of the 
environment.   As it approaches the inner obstacle, the robot's right-most antenna would make 
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contact, causing the robot to turn right and follow along the inner obstacle's edge.   The robot 
will then remain circling the inner obstacle counter clockwise since there is no antenna collision 
causing it to join up with the original border.   This would lead to inaccurate mappings of the 
landmarks. 
 

 
 

Figure 4.13   Circling problem during edge following 
without the squeeze mode. 

 
 
 A more important problem that may be encountered is that of entrapment.   The robot 
may be able to fit easily through a passageway when coming from one direction but not from the 
other.   Thus, the robot may get trapped in an area that it cannot get out of.   Figure 4.14 shows 
such a situation where the robot becomes trapped in the center of a spiral-shaped environment.   
In fact, this kind of entrapment happens to animals such as insects; spiral designs are even used 
in some fish traps. 
 

 
 

Figure 4.14   Entrapment problem during edge 
following without the squeeze mode. 
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 Here, the robot's constructed mapping is shown with line segments and circles 
representing edges and corners 22.   The robot is able to travel into the spiral center, but when 
attempting to follow the edge to get out, the frontal antennae collide causing the robot to turn 
back inwards.   A similar circling pattern emerges.   This presents a problem since a trapped 
robot is likely to run out of energy and die.   Giving the robot the ability to squeeze will prevent 
this entrapment from occurring. 
 
 One final problem that may occur without a squeeze facility is that of discrepancies in 
mapping representations.   That is, the robot may be able to squeeze into certain areas on some 
occasions, and unable in others.   Thus, edge lengths and corners may vary depending on the 
width of passageways in the environment.   A narrow environment is shown in Figure 4.15 along 
with two mappings constructed from RABI before the squeeze mode was developed. 
 

 
 

Figure 4.15   Mapping discrepancies caused by narrow passageways. 
 
 

 In the first mapping, the robot was unable to fit into the narrow passages, where as in the 
second mapping the robot was able to enter and map out the passages.   Note that the right 
passage was mapped in both cases but since the robot went into the passage at a different angle, 
the mappings are different.   All three problems just mentioned can be solved by giving the robot 
an ability to squeeze into narrow passages. 
 
 The three modes of edge following combined with an additional mode for attempting a 
squeeze are all required for a generalized edge following behavior.   The interactions between 
these modes can easily be shown by use of a state diagram.   Figure 4.16 shows the state diagram 

                                                 
22  The map building strategy is discussed further in chapters 5 and 6. 
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of the 4 modes required by RABI's edge following technique.   This state machine solution has 
the ability to handle all the situations mentioned above. 
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Figure 4.16   A state diagram depicting the edge following process.   
The attempt squeeze is an additional mode required for the robot to 
maneuver into tight situations. 

 
 
 The circles in the diagram represent the modes (states) while the links indicate the events 
required to transfer from one state to another.   The terms "collide inner" and "collide outer" 
represent the events in which one of the 3 antennae closest to the edge and the one antennae 
furthest from the edge detect a collision respectively.   The terms "lose edge contact" and "regain 
edge contact" represent the detection state of the side antenna that is being used for edge 
following.   The remainder of the diagram is self-explanatory. 
 
 
4.3.2  A Neural Implementation of Edge Following 

 
 The state diagram of Figure 4.16 depicts the edge following process and the events 
required to switch between modes.   Direct programming of this state machine may not be a 
robust approach to implementing the behavior.   There may be a collection of unexpected 
situations which can arise that may result in poor edge following behavior and perhaps even 
failure.   Since RABI is capable of collision avoidance, it may be useful to use this behavior as 
part of the edge following process.   For example, if the robot is following an edge and 
encounters an obstacle, then the obstacle avoidance behavior could "kick-in" to turn the robot 
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away from the obstacle 23.   With this in mind, a neural circuit was designed which resembles the 
state diagram of Figure 4.16.  A neural circuit for following right edges is shown in Figure 4.17.    
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Figure 4.17   A neural circuit depicting right edge following behavior.   
The FOLLOW RIGHT neuron enables the circuit by providing the 
additional excitation required for the direction neurons LEFT, RIGHT 
and AHEAD. 

                                                 
23  The use of the collision avoidance behavior is required for the squeeze mode of the edge following behavior. 
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 The upper part of the circuit utilizes the same sensor neurons as the collision avoidance 
network with an additional neuron ANT.R for the right side antenna.   Another familiar set of 
neurons is the ORIENT, ALIGN and AHEAD sustain neurons which represent the "orient to new 
edge", "align to edge" and "follow edge" modes of the edge following behavior respectively.   
These neurons are readily identified as the 3 state neurons since they are sustain neurons which 
have the ability to retain energy, thus they can represent a "state" when switched on.   The LEFT, 
RIGHT and bottom AHEAD neurons represent the direction in which the robot should travel 
during its edge following process. 
 
 The behavior begins when the FOLLOW RIGHT neuron in excited.   This neuron is a 
behavioral neuron (shaded) that enables the 3 directional neurons.   The ORIENT and ALIGN 
neurons decide when to turn LEFT and RIGHT respectively as in the state diagram.   The robot 
only walks straight ahead if neither of the LEFT and RIGHT directional neurons are active.   The 
rest of the connections follow directly from the state diagram where the ANT.R neuron decides if 
the robot loses contact with the edge, and the COLLIDE RIGHT neuron decides when the robot's 
frontal antennae collide with an obstacle.   Notice that the outer antennae is not included with the 
others during the detection phase.   This is because the robot must be able to attempt squeezes in 
between narrow passages and therefore the outer antenna must be handled differently.  In 
software, this antenna is ignored in this circuitry and handled by the collision avoidance circuitry.   
The PULSE neuron provides a method of disabling the edge orientation mode whenever the 
antennae stop detecting collisions (i.e. detects stop since it's a falling edge neuron). 
 
 The circuit of Figure 4.17 allows the robot to follow edges on its right side once the 
directional neurons LEFT and RIGHT are connected to the TURN LEFT and TURN RIGHT 
neurons of Figure 3.13 as done for the other instinctive behaviors.   If the robot wishes to detect 
obstacles on the left side of its body also, a similar symmetrical circuit is required.   The 
combined left and right edge following behavior circuitry is shown in Figure 4.18.   Here the 
edge to be followed is decided by the FOLLOW RIGHT and FOLLOW LEFT neurons which 
mutually inhibit each other since only one could occur at any moment.   The remainder of the 
circuit represents a dual version of Figure 4.17. 
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Figure 4.18   The combined left and right edge following circuitry.   Two additional 
directional neurons were added in order to combine the LEFT, RIGHT and AHEAD 
decisions from both circuits into one set of signals. 

 
 
4.4  Light Orientation: A Source of Energy 

 
 Many insects have a form of taxic behavior that attracts them to light (phototropism).  
The attraction towards light allows the insect to seek out warmer environments and even energy 
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24.   Some insects avoid light (photophobic) since it makes them a better candidate for predation.   
This simple form of phototaxic behavior (photokinesis) requires two receptors that are sensitive 
to light.   [Braitenberg 84] describes a simple crossover connection that essentially simulates fear 
and aggression taxic behaviors.   In one of his examples, a simple 2-wheeled vehicle is controlled 
by this simple crossover.   For attraction, the right receptor connects directly to the left wheel and 
the left receptor to the right.   The more light received by the left receptor, the stronger the 
excitatory signal sent to the right motor, causing the vehicle to turn left towards the light.   For 
light avoidance, the receptors are connected directly to the motor on their side, with no crossover.
 RABI uses a similar crossover approach which is embedded into a neural circuit as shown 
in Figure 4.19. 
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Figure 4.19   A neural circuit for photokinetic behavior. 
 
 
 

                                                 
24  Plants seek energy from the sun. 
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 The robot has two light sensors at the front of its body that are oriented 5�  outwards from 
the center of the robot.   Thus, the sensors are 10�  apart from each other, and facing in opposing 
directions. 
 
 The LEFT EYE and RIGHT EYE are sensor neurons which are connected directly to the 
two light receptors.   These neurons emit an analog signal representing the light intensity 
detected by the sensors.   The L>R and R>L neurons detect which signal is stronger.   This is 
done by comparing the two receptor readings.   Since these neurons are binary,  one of them will 
emit a high signal while the other emits a low.   These two neurons then connect to two threshold 
neurons essentially providing the crossover as seen in the vehicles of [Braitenberg 84].   These 
two neurons connect to the TURN LEFT and TURN RIGHT neurons similar to the other 
behaviors.  The PHOTO POS and PHOTO NEG neurons are controlling neurons that allow the 
behavior to be turned on or off.   Note that the PHOTO NEG neuron also negates the two binary 
neurons.   This allows a crossover to occur, reversing the behavior 25.    Additional inhibitory 
connections were added from the TURN LEFT and TURN RIGHT neurons preventing the robot 
from making consecutive turns in the same direction while seeking light.   This was needed since 
the robot does not move forward while turning.   Without these additional connections the robot 
would essentially toggle back and forth in one location without advancing.    An example of the 
light following behavior is easily shown with a screen snapshot of the simulated environment as 
in Figure 4.20.  
 

 
 

Figure 4.20   Screen snapshot of the phototropic behavior. 
 
 

                                                 
25  This crossover is reversed from [Braitenberg 84] since the TURN LEFT and TURN RIGHT neurons provide a 

form of crossover themselves. 
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 The snapshot shows the robot's path (black dots) during 1 minute of performing the light 
attraction behavior.   The two circles in the center represent the light source.   Notice that the path 
consists of circular trajectories surrounding and occasionally crossing the light source. 
 
 One of the problems in implementing the light sensors is simulating the effects of the 
light sources in the environment.   This simulation takes a simple approach in that the light is 
capable of passing through the environmental walls (i.e. glass walls).   Clearly, any useful 
simulated light sensor data must depend on three factors:  the distance from the light, the angle 
towards the light and the intensity of the light.   Moreover, if there are multiple light sources, 
they must also be taken into account.   The method for determining each sensor reading is as 
follows: 
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i=1

abs(a i) * 1

d i
2 -

f i
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n  
where,  
 

n is the number of light sources 
ai is the angle between the sensor and light source i 
di  is the distance from the sensor to light source i 
fi  is the intensity of light source i. 

 
 This equation allows the robot to rely on the distance information when far away and on 
angular information when close to the source.    Thus facing a close light source would contribute 
strongly to the overall signal, while facing a far light source will barely affect the signal.   This 
allows the closest light source to have the greatest effect on the sensor.   The intensity f plays a 
role in the distance information.   If the robot becomes too close to the source (i.e. within half the 
intensity) then the equation gives a negative signal causing the light source to have a negative 
effect.   This prevents the robot from staying directly on top of the source.   In the simulation, the 
intensity is an integer from  10 to 100 representing the radius of a circle around the light in 
pixels.   The distance is also in pixels. 
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4.5  Food Orientation: Finding and Absorbing Energy 

 
 Finding food is an essential behavior for all forms of life.   In order to find the food, the 
robot must have an ability to orient itself towards the food source.   With just simple sensors, this 
is more difficult than it seems.   Many animals (and humans) use some form of "smell" sensor 
which produces a form of klinotaxis.   The animal is usually required to wander around, making 
successive comparisons of sensor readings.   This is essentially a form of hill climbing in which 
the robot has no accurate sensor readings indicating the direction of the food at any single 
location.   Furthermore, smell sensors can usually only detect the odor when within a certain 
distance from the source, and this distance varies depending on the odor intensity.   Thus, a 
mechanism for orienting towards the energy sources must be able to compare a sensor reading 
with the previous value in order to determine a course of action.   Figure 4.21 shows a neural 
circuit that does just this.    
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Figure 4.21   A neural circuit for the energy seeking behavior.   The 
DIFF neuron provides the successive comparisons necessary for the 
energy seeking behavior. 
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 The SEEK ENERGY neuron is used to enable the circuit.   There is only one main energy 
sensor used as input to the circuit.   The DIFF neuron is a differential neuron that compares the 
incoming sensor signal with the previous reading and emits a high binary signal whenever the 
new reading is lower than the last one.   This single neuron allows the robot to detect when it is 
moving closer or further away from the energy source 26.    
 
 Once the DIFF neuron has detected that the robot has moved further away from the 
energy source, the random TURN neuron enables either the LEFT or RIGHT turning neurons.   
These two sustain neurons enable the ENERGY LEFT and ENERGY RIGHT neurons which are 
connected directly to the TURN LEFT and TURN RIGHT neurons of Figure 3.13 as in the other 
instincts.   Each time the robot turns, the ACCUM neuron is excited.   This neuron excites the 
TURN OFF threshold neuron with a weight of T3.  T3 represents the number of 15�  turns that 
the robot will make before it moves ahead.  Thus if T3 = 0.2, the robot will make 1/0.2 = 5 turns 
of 15�  for a total directional displacement of 75� .   Once the TURN OFF neuron detects the 
completion of the turn, the LEFT and RIGHT neurons are disabled, allowing a new direction to 
be chosen.   The effect of changing the value of T3 is shown in Figure 4.22.    
 
 The figure represents 4 screen snapshots showing the path that the robot traveled while 
using the energy seeking behavior.   The rectangle in the center of the environment represents the 
energy source.   Notice that with larger turning angles (i.e. low values of T3), the robot is able to 
remain near the source and occasionally travel over it.   In the case of high value of T3, the robot 
does not come in contact with the energy source and eventually loses the sensor readings by 
traveling outside the intensity range of the source.   The value of 0.20 was chosen for T3 since 
the path allows the robot to home in closer to the source while maintaining a degree of 
randomness. 
 
 As with the light sources, the effects of the energy sources must be adequately 
implemented.   As with smell sensors, an energy sensor receives its readings depending mainly 
on the distance from the energy source, and again multiple energy sources must be taken into 
account.    

                                                 
26  In practical applications, the robot may need to sample the environment less often since the readings may be 

identical until the robot becomes significantly closer of further from the source. 
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T3=0.18  (90° turns) T3=0.20  (75° turns)

T3=0.25  (60° turns) T3=0.40  (45° turns)  
 

Figure 4.22   Screen snapshots showing the effect of varying T3 during the energy seeking 
process. 

 
 
 The method used to determine the sensor reading is as follows: 
 

1
n

•
i=1
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d i

where 0 < d i < e i

 
 and,  

n is the number of energy sources 
di  is the distance from the sensor to energy source i. 
ei  is the intensity factor of energy source i. 

 
 This equation shows that the sensor reading depends solely on the distance from the 
energy source.    Thus by standing in one location, there is no indication as to the direction of the 
energy source.   As in the light sources, the intensity e plays a role in the distance information.   
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Only energy sources that are within a specified distance are entered into the equation.   This need 
to be close to the source is related to the intensity, which can be thought of as the degree of 
detectability of the energy field.   In the simulation, this intensity is a constant.   As a result, the 
robot can only detect the energy source when it is within a certain distance. 
 
 Once the robot finds the energy source it must have some mechanism to acquire the 
energy (i.e. recharge the batteries).   In the case of a wall socket, the robot would need to 
accurately position itself in order to plug itself in.   It is therefore helpful to add a simple sensor 
that can detect when the robot is in an appropriate position for plugging in. This is discussed 
further in chapter 7.    RABI simplifies this process by assuming that the robot can gain energy 
whenever it lies on top of the simulated socket.   This assumption would be useless in practical 
robot applications since the robot would need to be more accurate.   One possible solution is to 
customize the sockets with some form of funneling system that would allow the robot to become 
aligned properly to the socket as it gets closer.   A better approach may be to create some form of 
docking bay in which many of these robots could enter into a docking zone.   Here, a different 
robot or machine could have a mechanism which would have the ability to track incoming robots 
and recharge them by plugging them in.   These ideas are clearly hypothetical but may eventually 
become reality with colonies of simple microbots or nanobots. 
 
 
4.6  Cleaning: A Task-Oriented Behavior 

 
 If a robot is to be useful, it must have some behaviors that allow it to perform a specific 
task.   One simple task is that of cleaning.   Consider a robot that is required to collect dirt by 
scooping up morsels and bringing the dirt to the edges of its environment.   This task can be 
performed with a simple scooping mechanism requiring very simple sensors.   The robot may 
have a simple scooping mechanism fastened below it.   The scoop itself would hover close to the 
floor similar to a dust pan.   As the robot travels in a dirty environment, the scoop becomes full 
with dirt morsels.   A simple micro switch can be used to detect when the scoop contains a full 
load of dirt.   The robot could then walk to the nearest edge and empty the scoop using a simple 
dumping mechanism. 
 
 This "scoop and dump" process represents a cleaning task that the robot could perform 
whenever it is able, that is, when it is not in need of energy.   The simple neuron network in 
Figure 4.23 represents the cleaning behavior.   The SCOOP FULL neuron is a sensor neuron that 
detects when the scoop is full of dirt.   The neuron excites the CLEAN AHEAD neuron which 
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causes the robot to walk straight forward towards an edge 27.   This CLEAN AHEAD neuron 
inhibits the TURN LEFT and TURN RIGHT neurons similar to the EDGE AHEAD neuron of 
the edge following behavior. 
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Figure 4.23   A neural circuit for the cleaning behavior. 
 
 

 The DETECT LEFT neuron is from the collision avoidance network.   It excites the 
COLLIDE neuron whenever the robot's frontal antennae touch an obstacle.   When this happens, 
the CLEAN AHEAD neuron is disabled and the scoop is emptied.   The DUMP motor neuron 
represents the dumping mechanism that is used to empty the scoop. 
 
 This method of cleaning is not the most effective since the robot has no sensors that allow 
it to seek out food morsels.   Instead, the morsels of dirt are only detected when the scoop 
becomes full.   As a consequence, there may be some areas in the environment that do not get 
cleaned.   By wandering around, the robot is able to clean a significant portion of the 
environment.   Figure 4.24 below represents screen snapshots of the simulated environment 
before and after the cleaning behavior was used for approximately 5 minutes.   The wandering 
and vacancy behaviors were used in combination to allow the robot to obtain the morsels in a 

                                                 
27  Walking straight ahead does not always find the closest edge, but it is the easiest one to find since the 

environment is closed off and the robot is sure to find an edge by walking straight. 
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somewhat random fashion.   In the second snapshot, most of the morsels have been moved to the 
outer edges of the environment. 
 

Before Cleaning After Cleaning  
 

Figure 4.24   Screen snapshots before and after the cleaning behavior was used. 
 
 
 As seen in the snapshots, the cleaning behavior can be efficient when combined with 
other behaviors.   This method of combining behaviors is described in the next section. 
 
 
4.7  Behavior Selection 

 
 Although an animal may exhibit a variety of instinctive behaviors, sometimes the animal 
must choose between two or more conflicting behaviors.  It is easier to simulate a behavior 
switching agent by limiting the agent to performing only one behavior at a time.   In such an 
agent, there needs to be some mechanism and overall structure that provides a flexible and robust 
means of switching between behaviors.   [Maes 91] and [Tyrrell and Mayhew 91] present 
methods of selecting behaviors according to internal factors as well as external stimuli.   These 
methods allow the agent to switch between behaviors using motivational aspects based on its 
internal monitors.   This will be discussed further in chapter 7.  
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4.7.1  Behavior Hierarchy 

 
  The subsumption architecture of [Brooks 86] provides a method of switching between 
behaviors in a layered fashion.   The architecture provides a method of selecting a behavior 
which controls the overall performance of the system where the higher levels have a higher 
priority in that they may subsume the roles of the lower levels. 
 
 A similar architecture was incorporated into RABI through neural circuitry.   Each of the 
instinctive behaviors are connected to the TURN LEFT and TURN RIGHT neurons which 
essentially control the actuators directly by way of the walking circuitry.   The instinctive 
behaviors act as different levels of competence similar to the subsumption architecture.   
Moreover, these instincts can be added on in an incremental fashion.   The remaining task of 
prioritizing these behaviors becomes simple with neural circuitry.   The connecting architecture 
of the instinctive behaviors is shown in Figure 4.25. 
 
 

TURN
LEFT

TURN
RIGHT

AVOID
RIGHT

WANDER
LEFT

RIGHT
WANDER

AVOID
LEFT

EDGE
LEFT

0.20.1

0.8

1.6

3.
2

0.20.1

0.
8

1.6

3.2

RIGHT
EDGE

AHEAD
EDGE

PHOTO 
RIGHT

PHOTO 
LEFT

6.4

6.4

ENERGY 
LEFT

ENERGY 
RIGHT

CLEAN 
AHEAD

12.8

0.4

0.4

12.8

VACANT
RIGHT

VACANT
LEFT

 
 

Figure 4.25   Prioritized connections for instinctive behavior selection.   Each 
behavior competes for overall directional control. 
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 In this figure, the TURN LEFT and TURN RIGHT neurons are the neurons from Figure 
3.13 that provide the mechanism for steering the robot.   These two neurons inhibit each other 
since they represent conflicting actions 28.   As a result, only one of these two neurons will be 
active at a time.   If both are inactive, then the robot walks straight ahead. 
 
 The weights from the directional neurons were chosen in a priority oriented fashion.   
They begin at 0.1 and increase by factors of 2 (i.e.  0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 and 12.8).   
This factor allows each behavior to override the ones below it in the hierarchy.   That is, the 
energy seeking behavior dominates all lower level behaviors since it has a weight which is higher 
than all others combined.   In a sense, this allows the energy seeking behavior to subsume all of 
the lower level behaviors.   Similarly, the collision avoidance behavior overrides the vacancy 
behavior, which both override the wandering behavior etc... 
 
 The EDGE AHEAD, EDGE RIGHT and EDGE LEFT neurons all represent the edge 
following behavior, however, the EDGE AHEAD neuron has a smaller weight than the other 
two.   This lower weight was selected such that the collision avoidance behavior could subsume 
it whenever the robot needed to squeeze into a narrow passageway.   Also, the EDGE AHEAD 
neuron provides an inhibiting link as opposed to an excitatory link as with the others, allowing it 
to disable the left and right directional changes resulting in straight forward motion.   The 
CLEAN AHEAD neuron is connected in a similar manner. 
 
 
4.7.2  Emergent Behaviors 

 
 The simple hierarchical structure allows different behaviors to be added or removed 
without altering the others.   By combining various behaviors through their connections to the 
TURN LEFT and TURN RIGHT neurons as in Figure 4.25, a variety of more complex behaviors 
can emerge.   Take for example, the wander and vacancy behaviors.   Figure 4.26 shows a screen 
snapshot depicting the effects of combining the two behaviors during a 1 minute time period. 
 

 
 

                                                 
28  Actually, in software, these two inhibiting links were not implemented.   Instead, both neurons receive inhibiting 

signals from the directional neurons on the opposite side such that it is disabled whenever the opposite side has 
dominating signals. 
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Wander Wander + Vacancy  
 

Figure 4.26   Screen snapshots depicting the effects of combining the 
wandering and vacancy behaviors. 
 
 

 Both situations are using the collision avoidance instinct to stay within the environment.   
As the images show, using only the wandering behavior, the robot spends much of its time along 
the environmental boundaries.   When the vacancy behavior is added, it acts as a recoil which 
keeps the robot away from the walls.   Clearly, this addition allows the robot to spend most of its 
time away from the borders.   Neither of these behaviors direct the robot to any particular 
location, instead the resulting trajectory is random and has no purpose except exploration.   Now 
consider the effects of combining the wandering and light seeking behaviors as in Figure 4.27. 
 
 Both cases were allowed to run for 2 minutes.   In (a) the robot started near the top left 
light source,  making a few circles around its center.   It then ventured down to the smaller light 
source for a few laps before proceeding to its final destination, the top right light.   The robot 
remained at the top light source since the light seeking behavior had ample sensor information to 
keep the robot moving in circles.   With the addition of the wandering behavior in (b), there is 
clearly a difference in behavior.   The wandering behavior allowed random movements causing 
the robot to stray from its otherwise predictable circulating path.   As a consequence, the robot 
spent much of its time traveling between light sources.   Less time was spent near the smaller 
light source since its low intensity did not attract as much attention as the higher intensity 
sources.    
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(a)  
 

(b)  
 

Figure 4.27   Screen snapshots showing the wander and light seeking behaviors. (a) light 
seeking only, and (b) wandering + light seeking. 
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 A last example of emergent behavior is shown in Figure 4.28.   Here, the effects of the 
wander, vacancy and light seeking behaviors are shown for a simple environment with an 
external light source.   The environment represents a situation similar to that of a fly trapped in a 
box with light coming in from one wall of the box. 
 
 

Light Seeking Light Seeking + Wander

Light Seeking + Vacancy Light Seeking + Wander + Vacancy  
 

Figure 4.28   Screen snapshots showing the integration of the wander, vacancy and light seeking 
behaviors. 

 
 
 In the first snapshot, only the light seeking behavior is used.   Here, the robot often 
presses up against the glass attempting to get to the light source.   The robot's path is very regular 
and repetitive causing the robot to rub up along the wall.   In the next snapshot, the wander 
behavior is added.   This addition results in a behavior that allows the robot to vary its path.   The 
robot still presses up against the wall but not as often. 
 
 By using a vacancy behavior instead of the wandering behavior, as in the third snapshot, 
the robot no longer presses up against the wall.   Instead, each time it hits the wall,  it is repelled 
away from the wall.   A close look at the image shows that the circular patterns are still visible.   
Finally, in the last snapshot, all three behaviors are used.   The resulting emergent behavior 



 102 

appears random.   Here, no circular paths can be seen and no pressing up against the wall is 
observed.  At one instant, the randomness even allowed the robot to stray away from the source 
altogether. 
 
 
4.7.3  Making Behaviors More Efficient 
 
 It is possible to increase the efficiency of individual behaviors by combining them with 
other behaviors.   Some behaviors work well with others.   Take for example, the cleaning task 
behavior.   When just wandering around aimlessly, the robot may not be very efficient at its 
cleaning task since it stumbles upon dirt morsels by chance.   A more efficient cleaning behavior 
could make use of the phototropic behavior.   If a light source is placed at the dirtiest parts of the 
environment, by using the phototropic behavior, the robot will seek out the light source, hence 
spending most of its time near the light.   By staying near the light, the robot is more likely to 
find dirt morsels resulting in a more efficient cleanup.   By varying the location of the light 
source, the robot could clean up various portions of the environment one at a time.   Figure 4.29 
shows two screen snapshots of the cleaning behavior combined with a light seeking behavior 
before and after the test. 
 

Before Cleaning After Cleaning  
 

Figure 4.29  Screen snapshots showing the effects of combining the cleaning and light seeking 
behaviors. 
 
 

 Notice that the cleanup concentrated on the area surrounding the light source.  In fact, the 
3 leftmost morsels and the 3 bottom-most morsels were not touched since the robot did not 
venture into these areas. 
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 Another less effective method of improving the cleaning efficiency is to make use of the 
vacancy behavior.   By adding the vacancy behavior, the robot will spend most of its time away 
from the environmental borders allowing a quicker cleanup by remaining in the middle of the 
environment where the morsels are. 
 
 
4.8  Summary 

 
 Providing a robot with basic underlying mechanisms corresponding to simple instinct-
like behaviors provides a flexible and robust method of control.  The instincts of collision 
avoidance, wandering, vacancy and edge following allow the robot to function safely and explore 
the environment in a flexible fashion.   The light and energy seeking behaviors complete the 
system by providing most important survival behavior, which is that of being able to find and 
obtain food in the form of energy.   A cleaning behavior is easily added, giving the robot a sense 
of usefulness. 
 
 Each of these behaviors are implemented as neural circuits allowing them to be easily 
integrated together. The behaviors interact through a simple subsumption style architecture also 
implemented with neural circuitry.   This architecture allows the various behaviors to be added 
and removed without affecting the operation of the others.   Moreover, by adding behaviors in 
combination, more complicated behaviors can emerge resulting in a more flexible and efficient 
system capable of a variety of otherwise unpredictable behaviors.   Moreover, by using various 
combinations of behaviors, the robot can become more efficient. 
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Mapping out the Environment 
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 Exploration refers to the active behavioral processes by which an animal assimilates 

information about its environment.   Animals often closely investigate novel objects in their 
environment and in some cases, they regularly patrol their environment and pay particular 
attention to any changes that have occurred in it.   Such patrolling allows the animals to detect 
new sources of food [Toates 86]. 
 
 In order to detect changes, the animal must have some idea regarding the state of the 
environment ahead of time.   Usually, the state of the environment corresponds to some sort of 
mapping; which may be precise or very generalized (landmarks).   This internal map is built up 
through exploration and stored in some form of memory.   As mentioned previously, it is not at 
all clear how memory contents are stored or how this information is retrieved.   Thus, most 
robots use some form of simplified 2D mapping techniques.   To my knowledge, there has not 
been much research in the area of 3D mapping applied to robotics.   This extra dimension 
presents a host of new problems and is not touched upon by this thesis. 
 
 
5.1  Mapping Strategies 

 
 In order for a robot to map out an environment, it must have some sense of relative 
distance.   The robot, for example, must be able to estimate the distances between two locations 
so that it may store this information in its map.   This is essential so that the robot would know 
which locations it may travel in and which locations are not  traversable. 
 
 There are two approaches to mapping out the traversable areas: that of mapping the free 

space  (open areas) and that of mapping out the obstacle space.   These are discussed in turn. 
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5.1.1  Mapping Free Space 

 
 Many existing robots map their environment by determining the locations that the robot 
can reach.   The easiest method of mapping this way is to create a 2D grid, where each grid unit 
represents either a free location or an occupied location (obstacle).  In a maze, for example, a 
"micro mouse" robot would map out the maze as a set of consecutive free units.   The micro 
mouse does not need to know the locations of walls, instead it needs to know the unoccupied 
locations in which it may travel. 
 
 Using a simple 2D grid and marking locations as occupied or unoccupied, may not be 
very efficient in some situations.   For an environment with very few obstacles, there would be 
large amounts of free space.   A better method of grid mapping is that of using quadtrees 29.   
This method combines similar adjacent units in groups of 4 into a larger unit of size 1.   The 
result is a more efficient grid which requires less memory since the number of grid units is 
decreased.   Figure 5.1 shows an example of an environment mapped with both the standard grid 
technique and the quad tree technique. 
 

(a) (b)  
 

Figure 5.1   Two variations of grid-based mapping.  (a) a straight forward grid of equal 
sized units, and (b) a more efficient grid using a quadtree structure with units of various 
sizes. 

 
 
 The thick lines represent the borders of the obstacles and the boundary.   The standard 
grid requires 16x16 = 256 units to store the map while the quadtree requires only 129 units 
(approximately half).   It is clear that in this situation, the quadtree mapping is more efficient.   
                                                 
29  [Zelinsky 92] presents a method of building quadtree maps by exploring the environment.   His method also 

incorporates a shortest path strategy. 
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The efficiency of the quadtree method will vary depending on the density and complexity of the 
environment.   Crowded environments for example, would not contain large units since for any 
location there is likely to be locations of different types nearby.   Complicated environments such 
as mazes, also cannot contain large units since there are many thin closely spaced obstacles 
which prevent integration of smaller units.   Thus, for some environments, the choice of a 
quadtree over a standard grid may not provide an advantage and may even provide a 
disadvantage due to overhead. 
 
 The quadtree grid embeds additional information.   Since similar units were grouped 
together, then by storing the size of the new unit, one can obtain information about the relative 
"openness" of the environment.   That is, the robot can identify large open spaces 30. 
 
 The quadtree representation could be improved upon even further by allowing an offset 
for each unit.   The quadtree representation uses a symmetric dissection of the environment into 
grid units.   By allowing a different dissection, the number of units can be further decreased.   For 
example, the tunnel of small units on the left of Figure 5.1(b) contains 3 groups of 4 adjacent 
units.   These could be combined, reducing the whole tunnel to just 3 units.   Figure 5.2 (a) shows 
the results of using this offset dissection method.   Notice that the squares do not always line up 
together.   This further reduces the bits needed to 109, which is only 20 units less than the normal 
dissection method. 
 
 The quadtree representation provides further advantages during navigation since a dual 
tree can be constructed in which each node represents a grid unit.   Here, the resulting dual tree 
would represent all possible paths within the free space.   Figure 5.2 (b) shows the dual tree of 
the offset dissection quadtree in (a). 
 
 As far as implementation is concerned, the standard grid based approach to mapping is 
simple to implement since all the units are of the same size, the robot merely needs to fill in the 
bits.   The quadtree approach is not as easy to implement.   It requires an examination of the units 
and grouping them together. 
 
 Despite their simplicity, all of these grid-based approaches suffer from two main 
problems.   First, an approximate grid size must be known.   In some cases, knowledge of the 
starting point (unit) is also required.   As a result, the grid-based approach is mostly useful in 

                                                 
30  Large open areas may represent the different rooms in an indoor environment. 
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situations where there is some prior knowledge as to the structure of the environment.   In cases 
where the world size is unknown, some sort of map growing and appending technique must be 
used. 
 
 

(a) (b)  
 

Figure 5.2   The offset dissection of a quadtree mapping.  (a) the revised quadtree 
combining additional units, and (b) its corresponding dual tree. 

 
 
 By far the biggest problem of the grid based approach is that of positioning errors.   As 
mentioned in [Brooks 91], absolute coordinate systems for a robot are the source of large 
cumulative errors.   The robot must be able to acknowledge the fact that it has left one grid unit 
and entered another.   Every physical system has some degree of inaccuracy, often preventing 
precise position measurements to be made.   To account for errors, the robot must be able to "get 
back on track" once it becomes lost or when its position uncertainty becomes too large.   This 
position error is a problem faced by all mapping techniques, however, it is particularly 
troublesome with the grid techniques since the entire map is based on evenly spaced units.  
 
 
5.1.2  Mapping the Obstacle Space 

 
 There are some animals and insects that live under rocks, in dark areas, in small holes, 
etc.   These creatures spend most of their time close to and inside objects.   It is rare that these 
insects would wander freely in open areas unless they are exploring the environment or en route 
to another location.   This is somewhat of a survival instinct for insects since they tend to get 
squished if seen wandering in an open area.   The obstacles provide protection and shelter for the 
insects, and possibly even sources of food. 
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 For animals such as insects, it makes little sense to map out the free regions of the 
environment.   Instead, mapping out the obstacles would prove to be more helpful since this is 
where the insect regularly travels.   By identifying the obstacles and the relative distances and 
directions between them, the insect can survive by limiting the amount of time spent wandering 
in open areas.  [Staddon 83] identifies some organisms that exhibit this free space avoidance 
behavior.   Perhaps these organisms tend to stay near obstacles because they receive rich sensor 
information from them.   In open space, there is a lot less information about the surroundings.   
For insects, their antennae are used to provide a wealth of information about obstacle sizes and 
shapes but they cannot present much information from a flat and open surface. 
 
 To map out obstacles, there must be some way of distinguishing between the different 
obstacles in the environment.   Many robots use ultrasonic transducers, cameras and laser range 
finders to detect obstacles and map out the environment.   These sensors provide distance 
information in the form of an environmental scan, which results in a set of points.   Operations 
are performed with these points (such as averaging and extrapolation) and line segments are 
computed.   Thus, the resulting map is a set of line segment chains.   By traveling around the 
obstacles, these line segment chains could then be joined, creating a set of polygons representing 
the obstacles as shown in Figure 5.3. 
 
 

 
 

Figure 5.3   A polygonal mapping of a simple 
environment. 
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 Although this method of mapping can produce a fairly accurate representation of an 
environment, it requires accurate odometry on behalf of the robot and significant noise reduction 
techniques to be performed with the sensor data.   This technique would require much 
computational power as well as sophisticated sensors; both of which may not be possible on 
smaller sized robots.   For small robots, a mapping technique must be developed which uses 
simple sensors, and requires little computational burden.   Landmark detection and identification 
is one possible solution for mapping with simple robots. 
 
 
5. 2  Landmark-Based Mapping 
 
   Bees are known to navigate by using landmarks and image patterns.   The bee uses these 
landmarks as a reference for orientation and position estimation.   A bee stores its landmarks as 
low resolution images with space set aside for information on each landmark or image.   For 
example, when identifying flowers, there is space set aside for the color, odor, shape etc.  [Gould 
and Marker 87] discuss the instinctive image detection scheme of honey bees.   Landmark 
detection and mapping are commonly integrated as a single behavior; once a landmark is 
detected through feature extraction, it is stored in memory.   After all, the only reason for 
detecting landmarks is so that they may be stored for future reference.   This method of mapping 
requires a mechanism for extracting various features from landmarks and storing the information. 
 
 
5.2.1  Previous Approaches 

 
 [Nehmzow and Smithers 91] present a method of mapping out the inside perimeter of a 
rectilinear environment using a real robot.   The robot is able to identify its location in the 
environment by recognizing sequences of convex and concave corners.   The sequences of 
corners act as landmarks.  Their method incorporates a self-organizing neural network which 
stores the corner features within it.   The input vector of the network contains information 
regarding the present corner, previous corners as well as the distance traveled from the previous 
corner.   After traversing the perimeter a couple of times, the robot is able to identify some of the 
corners (landmarks).   A drawback of using the self-organizing neural network is that corners can 
only be identified if they are significantly different from other corners with respect to the corners 
around it.   That is, a completely symmetric environment would not allow any of the corners to 
be distinguished from the others.   In Figure 5.4, environments A and B are examples of 
symmetric environments that have similar corners.   No corner can be distinguished.   In C and D 
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however, the corners can be distinguished since they all differ in terms of distances between 
consecutive adjacent corners.   Their method was designed to map out a simple perimeter and 
there is no mention of mapping out inner obstacles.   Moreover, by using their neural network, 
they cannot directly extract corner and edge information since the network is self-organizing.   
The technique does, however, allow the robot to map out an obstacle perimeter using simple 
sensors. 

 
 

A B C D

 
 

Figure 5.4   Identifiable and unidentifiable environment shapes.  A and B are symmetric 
environments in which corners can't be distinguished.   Non-symmetric environments C and D 
allow corners to be identified. 

 
 
 [Mataric 91] presents a different approach to landmark-based mapping.  His method was 
tested on a real robot equipped with sonar sensors and a compass.   The system is able to identify 
various landmarks in the environment such as walls, corridors and long irregular boundaries.   
Moreover, each of these landmarks have an attribute indicating its orientation in the 
environment.   His technique was tested in a cluttered environment but did not have the ability to 
map out inner obstacles.   Instead the method maps out the boundaries specifying the areas of the 
room that are blocked off by obstacles.   The mapping strategy used here was that of topological 
links between landmarks indicating their physical spatial adjacency.  In essence, the map is 
similar to a graph whose nodes are landmarks and whose links specify spatial adjacency in the 
environment.   The use of range sensors (sonar) and orientation mechanisms (compass) makes 
this method less attractive for the purposes of nano technology.   The research does however, 
present the interesting notion of topological landmark-based mappings. 
 
 
5.2.2  RABI's Landmark-Based Mapping 
 
 RABI uses a similar approach to the techniques mentioned above.  The robot records 
corners and edge lengths as [Nehmzow and Smithers 91] have done, however, the landmarks are 
stored in a memory similar to that of [Mataric 91].    
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5.2.2.1  Landmark Feature Identification 
 
 Biological neural networks are able to quickly and efficiently learn input patterns by 
extracting features from the sensory input 31.  These networks are able to extract and analyze 
features from their input and then efficiently organize the patterns in memory 32.   It would be 
useful to endow a robot with some kind of feature extraction technique such that it could 
determine the different features from the obstacles within its environment.   The difference in 
features would allow one obstacle to be distinguished from another.   With this ability, a robot 
could map out its environment by identifying landmarks .  Bees are known to employ such a 
technique [Gallistel 90]. 
 
 Insects have the simplest form of obstacle sensor: the "antenna".  Due to the varied 
locations of antennae, whiskers and hair, obstacles can be detected all around the body.   If the 
antennae are moveable, as in most insects, then features from the obstacle itself can be identified 
such as height, width, motion, etc.   This simple sensor can be used to detect features of large 
obstacles through continuous displacement along the boundary of the obstacle (i.e. edge 
following).  This is what is known as "active" touch, as opposed to stationary detection which is 
"passive".   [Gibson 62] gave quantitative results showing that active touch is superior to passive.   
In his experiments, shapes were to be identified by a human subject using only the sense of 
touch.  The passive touch tests involved pressing the shape into the palm of the hand.  The active 
touch tests allowed exploration by the fingertips.  The results showed that passive touch received 
only half as many correct matches as active. 
 
 [Hochberg 68] proved, at least for vision, that the serial presentation of sequential views 
of a shape was sufficient for its identification.   He performed experiments in which a human 
subject was instructed to identify objects while looking through a small hole such that only a 
small piece of the object, such as a corner, was visible at any one time.  The object was the 
rotated so that the subject viewed the corners in sequence. Consider the following scenario: 

 
"If you were to take your little brother, tie his hands and blindfold him, move him to a different 
location in his home and wake him up, he would probably be annoyed.   If you then spin him 
around and tell him to find his way back to bed, he would probably walk until he hits the nearest 
obstacle.   More than likely, he would then feel his way along walls and obstacles until some of 
these obstacles and structures are recognized.   Once an object is identified, he would then be 
aware of his location and would then have little difficulty finding his way back to his bedroom." 

                                                 
31  In visual systems, there exists feature analyzing components that detect corners, edges, curves, motion, contrast, 

etc. 
32  [Linsker 88] discusses the concept of feature-analyzing cells in self-organizing neural networks. 
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 This scenario points out the technique that is commonly used when sensor information is 
reduced.   Obviously, a person would make use of their sophisticated sensors such as sound, 
smell, temperature and feet sensors (detect floor, rug, tile).   However, the person as well as 
simple robots must rely on the structural information gathered from the surroundings in order to 
identify the exact location in the environment.   By detecting and recognizing obstacles, 
structures and the relative distances between them, a robot would have an adequate 
representation of the surroundings. 
 
 RABI uses a feature recognition method derived from the results of [Gibson 62] and 
[Hochberg 68].   The robot is able to identify an obstacle by traversing its boundaries, identifying 
the corner angles and edge lengths in sequential order, and then matching it with existing 
landmarks in memory.   The edge following behavior is used to follow along the perimeter of an 
obstacle, and a separate neural circuit is used to identify the features of the obstacle in terms of 
the lengths of each edge and the angle between consecutive edges.   Storing only corners and 
edges is sufficient for mapping a 2D environment provided that ample detail is extracted.   Each 
corner must be identified by both an angle (magnitude) and an orientation (concave or convex).  
For example, figure 5.5 shows three environments with identical edge lengths and corner 
magnitudes, but some of the corners are oriented differently.   Clearly, A and B should be 
distinguishable, resulting in the need to store corner orientation.   For A and C however, it is not 
as clear. 

 
 The sequential features of A and C are identical in every way.   The only difference is 
their global orientation with respect to the outside world.   If A and C are closed off from the 
outside world, then they are essentially identical.   If however, there exists stimuli outside of the 
environment such as lighting, noises, etc., then these two environments may need to be 
differentiated.   More on this in chapter 6. 
 

A B C

 
 

Figure 5.5   Three environments with identical edge lengths and corner 
magnitudes. 
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5.2.2.2  Odometry and Angle Measurements 

 
 The measurement of angles and edge lengths requires odometry.   Since RABI uses only 
a tripod gait for walking, the robot either moves ahead one unit or turns one unit 33.   A simple 
neural circuit allows the robot's movements to be rounded off into time units.   This circuit is 
shown in Figure 5.6. 
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Figure 5.6   Position measurement circuitry.   The DEC and INC 
neurons indicate a left and right angular unit change.   The ADV 
neuron indicates a position change of 1 unit forward. 

 
 Since only a tripod gait is used, then the robot will move forward once during the stance 
phase of each front leg, thus twice per walking cycle.   The LEG POS  neurons indicate a stance 
phase.   The pulse neurons make sure that the positioning neurons DEC, INC and ADV, only 
receive a count once per stance phase.   The TURN RIGHT and TURN LEFT neurons are the 
directional control neurons of Figure 3.13. 
 
 The legs are disabled in the software version of RABI, in order to speed up the 
simulation.   One time unit in the simulation corresponds to the updating of each neuron network 
exactly once.   It is assumed that in each of these time units, the robot walked either forward, left 
or right.  Thus, the circuit of Figure 5.6 was reduced to Figure 5.7 for the software version. 
                                                 
33  One unit is approximately 2 inches and occurs twice per walking cycle.   When turning, one unit is 

approximately 15 degrees. 
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Figure 5.7   The position measurement circuitry 
for the software version of RABI. 

 
 With both positioning circuits, the robot is able to measure angles and edge lengths by 
counting the number of times that the DEC, INC and ADV neurons are excited.   For example, if 
the robot turned left 6 times sequentially then the DEC neuron would be excited 6 times 
indicating a 6 x 15�  = 90�  angle. 
 
 
5.2.2.3  Feature Extraction 

 
 When following an obstacle, the lengths of the edges can be determined by counting the 
number of stepping units (via the ADV neuron) from endpoint to endpoint of the edge.   The 
robot needs to determine where an edge ends and where the next edge begins.   This 
determination can be made when the robot enters the re-align mode during its edge following.   
Due to the simplicity of the antennae, the robot may occasionally  need to turn slightly towards 
or away from the edge it is following in order to remain relatively parallel to it.   In this case, the 
re-align mode is also used to keep the robot parallel to the edge and thus the re-aligning mode 
may not always indicate an edge endpoint.   If however, the robot makes a significant turn to 
regain contact during re-aligning then, more than likely, this represents an edge endpoint or 
convex corner of the obstacle. 
 
 When misaligned, the robot requires only a slight turn to regain its parallelism with the 
edge.   By using some form of threshold when counting turns, the robot could distinguish 
between slight misalignment adjustments and corners.   For example, if this turn threshold is set 
at 3 units, then turning 1 or 2 units during re-aligning would represent an attempt to align to the 
edge whereas turning 3 units would indicate a change in edges (i.e. a convex corner on the 
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obstacle boundary).   Similarly, concave corners are distinguished from misalignment with a 
threshold.  Concave and convex corners are identified by negative and positive angles 
respectively. 
 
 Figure 5.8 shows the basic neuron network for obstacle feature extraction.  This network 
interprets positioning and sensor information regarding the obstacle's edge lengths and angles.   
The INC, DEC and ADV neurons are the positioning neurons from Figure 5.7.  The ANGLE and 
DISTANCE neurons are accumulative neurons that count the number of consecutive turns and 
advances respectively.   The DEC and INC neurons decrease and increase the total angle sum 
respectively.   At sharp corners, the robot may alternate between turning and advancing since it is 
unable to turn and advance simultaneously.   Thus, the robot must distinguish its forward 
advances along an edge and its forward advances while turning a corner.   The ACCUM EDGE 
neuron counts the number of forward advances since the last turn was made.   Once this 
accumulation reaches a threshold of T1, it represents the fact that the robot is following along an 
edge; as opposed to turning a corner.   This threshold, T1 represents the minimum number of 
forward units to be advanced in order for the robot to consider it an edge.   In essence, T1 
represents the minimum recognizable length of an edge.   A similar threshold is used for corner 
detection.   Since occasional slight turns may be the result of a misalignment problem, the 
number of consecutive turns must have a threshold so that the slight directional changes can be 
distinguished from the larger turns at corners.   T2 is the minimum number of turns required in 
order to be considered a corner.   That is, T2 is the minimum detectable angle.    
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Figure 5.8   The neural circuit for feature extraction. 
 
 
 By decreasing the value of the cornering threshold T2, the feature detection circuit 
becomes less sensitive, resulting in fewer detectable corners.   Similarly, if the threshold is kept 
high, the circuit is able to detect every corner with greater precision.   Figure 5.9 shows the 
results of varying the cornering threshold.   The map of an environmental border is shown for 
corner threshold values of 1.0, 0.5, 0.34 and 0.25.   The darkened lines represent detected edges 
and the white circles represent detected corners.   With these threshold values, the robot can 
detect corners of 1, 2, 3 and 4 angular units, which is approximately 15� , 30� , 45�  and 60�  
angles.   Notice that with a threshold value of 1.0, every turn is detected, even turns that were 
issued along an edge due to misalignment.   Moreover, the larger-angled corners are detected as 
many small corners.   Clearly, this value is too precise.   At the other end, a value of 0.25 can 
only detect angles of 60�  or more.   This value omits many of the corners, resulting in a very 
general and imprecise mapping representation.   Values of 0.34 and 0.5 are intermediate choices 
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that provide a reasonable representation closely resembling the actual environmental structure.   
RABI uses a value of 0.34, allowing the detection of 45�  angles. 
 

T2 = 1.0   (15° angles) T2 = 0.5   (30° angles)

T2 = 0.34   (45° angles) T2 = 0.25   (60° angles)  
 

Figure 5.9   The effects of varying the cornering threshold. 
 
 

 A similar effect is observed by varying the edge threshold value of T1.   By changing the 
edge threshold, the minimum detectable edge length can be set.   Thus, with a high threshold 
value (1.0), small edges of 1 unit length 34 can be detected.   With a low threshold value, only 
larger edge sizes can be detected.   The result of varying this threshold is similar to that of 
varying the cornering threshold in that the smaller edges are combined to produce more general 
representations.   RABI uses a value of 0.2 so that the robot must move straight along the border 
for approximately two body lengths in order for an edge to be detected.   Perhaps, it would be 
better to alter these threshold values over time.   This would allow the robot to create specific 
                                                 
34  One unit length is approximately 5 pixels in the simulation.  This is about half the robot body length. 
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mappings for new or dense regions and use lower resolution mappings for the familiar or less 
dense areas.   This adaptivity in resolution was not incorporated into RABI but is an interesting 
topic for future research. 
 
 Note that the DEC and INC neurons increase and decrease the accumulated energy of the 
ANGLE neuron.   Consequently, a left turn will cancel out a right turn and vice versa in the 
overall angular sum.   When turning corners, however, one direction is dominant over the others 
and the sign of this angle will prevail.   Each DETECT CORNER neuron detects a corner as a 
dominant positive or negative angle.   Whenever an corner is detected, the TURN CORNER 
neuron is excited indicating that the robot is turning a corner.   The robot remains in this 
cornering mode until a significant number of forward advances is detected.   That is, the 
DETECT EDGE disables the cornering process whenever the corner has been turned and the 
robot begins to follow a new edge. 
 
 The STRAIGHT and AHEAD neurons are used to ensure that the robot moves at least 
two forward units before it begins adding the forward units to the distance sum.   This ensures 
that alternating turn and forward motions (as seen when turning a sharp corner) does not register 
as part of the edge length.   In a sense, it reduces the error on the 
measurement of the edge lengths. 
 
 While following an edge, the robot may often become misaligned, resulting in many 
small direction adjustments which may build up energy in the ANGLE accumulative neuron.   
Whenever an edge is detected, the accumulated energy of the ANGLE neuron is reset by the 
RESET ANGLE neuron.   This prevents the minute direction adjustments from interfering with 
the angular data at the next detected corner. 
 
 Sometimes, once a corner has been turned, there may be another turn in the opposite 
direction (zig-zag shape) as shown in Figure 5.10.   Since corners are only stored when the robot 
begins following a new edge, then the corner C1 would not be stored because it is not followed 
by an edge.   Instead, C2 will undo the angle made by C1, and when E2 is reached, the angle will 

be 0.    
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Figure 5.10   Zig-zag path with consecutive corners C1 
and C2 of opposite types. 

 
 
 A mechanism is needed to detect consecutive corners of opposite direction so that each 
corner could be stored.   This mechanism is realized by adding more neurons and connections to 
Figure 5.8 as shown in Figure 5.11.    The TURNING LEFT and TURNING RIGHT neurons are 
sustain neurons that indicate if the robot is turning a left or right corner.   The CHANGE RIGHT 
and CHANGE LEFT are used to detect when the robot turns from left to right or right to left 
without advancing forward.   When a change from one direction to another is detected, one of 
these neurons will be excited and inhibit the TURN CORNER neuron.   Consequently, if there is 
a significant angle built up, then the corner will be stored. 
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Figure 5.11   Additional neurons in the feature 
identification network. 
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5.2.2.4  Landmark Memory 

 
 RABI's memory is arranged in a linear fashion, essentially one long list of memory 
neurons.   Each neuron can store a value 35 representing a corner angle or edge length.   
Moreover, adjacent memory neurons alternate between corner neurons  and edge neurons.   
Links join the neurons that represent adjacent features of a landmark.  Figure 5.12 depicts a 
simple landmark mapping.   The values of the neurons correspond to the corner angles (15�  
units) and the edge lengths (forward units).   The bottom link connects the first and last neurons, 
due to the closed nature of perimeters. 
 
 In the general case where an environment is cluttered with obstacles, there is a need to 
separate the landmarks in memory.   The simplest way to do this is to fill up the memory in a 
linear fashion keeping pointers to each separate obstacle.   Figure 5.13 depicts the memory 
contents after 3 landmarks have been identified.   Note that one of these landmarks may represent 
the environmental boundary but it is not distinguished from the others. 
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Figure 5.12   The mapping of a simple environment. 
 
 
 This simple linear memory has the ability to store neurons in a simple and quick manner.   
There is no ordering of the different landmarks.   The landmarks are stored linearly as they are 
encountered.   Since human memory is known to be self organizing, this method is not as 
biologically plausible as that of [Nehmzow and Smithers 91].   It does however, allow a quick 
and simple implementation with simple operations. 

                                                 
35  Biologically, the value may be stored as a threshold. 
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A linear memory of edge and corner  neurons  
 

Figure 5.13   Storing multiple landmarks in memory keeping pointers to each landmark.   The 
circles represent memory neurons and the connecting lines indicate spatial adjacency. 

 
 
 RABI actually uses a dual memory system consisting of a short term memory (STM) and 
a long term memory  (LTM).   The STM has a capacity of 8 neurons whereas the LTM has an 
unlimited capacity.   When tracing out a landmark, the corner and edge information is stored in 
the STM only.   Once this memory becomes full, it is transferred to the LTM for permanent 
storage.   The STM is used as a means of temporary storage for use in comparing "chunks" of 
sequential features to identify landmarks.   The robot does not begin storing information in LTM 
unless it believes that this information pertains to a new landmark.   Essentially, the robot fills up 
the STM and compares it with existing landmarks looking for a match.   If a match is not found, 
the robot then begins a complete trace.   More is explained in the next chapter. 
 
 When tracing a landmark's perimeter, a new pointer is created and new neurons are 
appended to the memory for each corner and edge encountered.   Appending neurons can be done 
in O(1) time.   Once learnt, the neurons remain in the memory 36. 
 
 
5.2.2.5  Storing Data in the Memory 

 
 During the edge following behavior, the feature extraction circuitry will detect corners 
and edges.   These corners and edges must be stored sequentially in memory.   Because of the 
alternating nature of the landmarks, each time a corner has been turned, the corner and the last 
edge traveled must be stored in memory.   Figure 5.8 and Figure 5.9 show the mechanisms 
responsible for detecting the corners.  Figure 5.14 shows the additional neurons required to 
instigate the storage process. 

                                                 
36  There is an assumption here that the environmental landmarks remain unchanged. 
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Figure 5.14   The expanded neural circuit for feature extraction.  This circuit includes neurons to instigate 
memory storage. 
 
 

 In the circuit, a PULSE neuron is excited by the TURN CORNER neuron.   This falling-
edge pulse neuron emits a high signal whenever the TURN CORNER neuron is disabled.   This 
occurs once each time a corner is turned.   The STORE neuron is used as a threshold to make 
sure that the new corner and edge information should indeed be stored.   Since each neuron in the 
circuit is always computing, there is a need for a mechanism to disable the storage process unless 
the robot is tracing an obstacle (i.e. exhibiting the edge following behavior).   If the robot is 
performing the edge following behavior and there is corner information present, then the STORE 
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neuron will emit a high output, resulting in memory storage.   The START neuron is used as a 
flag to indicate that a new landmark is being traced.   A PULSE neuron enables this start neuron 
whenever the edge following behavior begins.   The START neuron remains "on" until the first 
corner/edge pair is stored.    
 
 The memory was not implemented as a neural circuit since the process of explicitly 
creating new memory locations and storing data within it is not a trivial task for a neural circuit .   
Furthermore, it is not clear how the landmark pointers would be kept within the memory.   A 
memory system has been implemented which was coded with a top down strategy.   The system 
is responsible for storing and matching memory neurons  as well as navigation.   The memory 
system was created as a separate unit which interfaces to the neural circuitry through a handful of 
neurons as shown in Figure 5.15. 
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Figure 5.15   The external neurons connected to the memory unit. 

 When the memory receives a high signal from the STORE neuron, new angle and edge 
neurons are created with values pertaining to the stored energy in the DISTANCE and ANGLE 
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neurons.   The START neuron indicates whether or not the new corner and edge is part of a 
brand new landmark.   The POSITION RESET neuron is excited by the memory in order to reset 
the accumulative neurons to begin measurements for the next corner and edge.   The FOLLOW 
LEFT neuron inputs a signal to the memory so that when storing the information, the proper sign 
of the angles are used.   That is, depending on the direction traveled along the obstacle 
(clockwise or counter clockwise), the angles will differ in sign.   An angle of 60�  during 
clockwise traversal for example, would represent an angle of -60�  during a counter clockwise 
traversal.   The TRACE and END neurons are described in the next section; essentially they are 
used to determine if the robot is tracing and obstacle and when the robot has completed the 
traversal. 
 
 Once the memory becomes full, a processing unit compares the STM with the LTM to 
look for a match.   The RECOGNIZED and NOT RECOGNIZED neurons are thus excited 
according to whether or not the contents of the STM matched in the LTM.   These neurons are 
used to enable and disable appropriate instinctive behaviors.   As will be mentioned below, the 
NOT RECOGNIZED neuron is responsible for enabling the  boundary tracing process.   The GO 
LEFT, GO RIGHT, MAKE LINK and TURN TO LINK neurons are all used for navigation 
purposes; they are discussed in the next chapter. 
 
 
5.2.2.6  Completing a Landmark 
 
    In order to map out a perimeter, the robot must be able to detect when it has completely 
gone around the obstacle once.   One method of detecting this "full loop" is to store the initial 
position and orientation when starting to follow the perimeter.   While mapping out the border, 
the position and orientation of the robot is updated with respect to the starting position.   Once 
the robot arrives back at the starting position with the starting orientation, the perimeter has been 
completed.   Though simple, this method encompasses positioning problems.   Due to the 
inaccuracies of robot motion, there will be a growing amount of positioning and orientation error 
while traveling 37.   This could lead to false detection of the start position as shown in Figure 
5.16.   In the diagram, the accumulated error during traversal causes the measured path to be 
slightly off from the actual traveled path, and consequently the start position is believed to have 
been reached when indeed it has not. 
 
                                                 
37  Weight shifting in walking robots could sometimes affect the amount of turning and forward movement per time 

unit.   That is, in one turn the robot may change its orientation by 10�  and 14�  in another. 
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Figure 5.16   False detection of the starting position. 
 

 Another possible method of attempting to identify a loop completion is to traverse the 
boundary more than once, attempting to match up the features during the second lap.   This 
method will not work unless the obstacle has distinct features.   A square perimeter, for example,  
will always detect identical edges and corners  no matter how many laps around the border.   
Complex perimeter shapes also cause a problem if there are any repetitive sequences in its 
features. 
 
 Perhaps the best way of detecting a completion of the perimeter is to leave behind 
something that can be detected at the end of the loop.   This is the only feasible approach given 
the lack of precise metric information and distinct landmark features.   A chemical residue left at 
the starting point would be the choice of ants, but a robot would need additional sensors to be 
able to detect the chemical.   Furthermore, the robot would need to replenish its chemical supply, 
unlike ants whose chemical is biologically replenished.   It is easier to create some sort of 
electronic sensor that could detect a metal rather than a chemical.   A robot could leave behind a 
marker in the form of a small metal disk along an edge of the perimeter.   [Dudek et al. 91] use a 
similar type of marker as part of an exploration strategy.   All that is needed is a small actuator to 
deploy the disk and lift it back up once the trace is completed.   One more sensor is also needed 
to detect the disk when it is underneath the robot 38.   The neural circuit of Figure 5.17 contains 
the simple mechanism for disk dispensing. 

                                                 
38  The software version of RABI simulates such an actuator and sensor.   Due to time constraints, the hardware 

version was not blessed with such a feature. 
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Figure 5.17   Obstacle tracing and disk dispensing network.  The detection of the 
disk during tracing indicates a completed traversal. 

 
 

 The TRACE neuron is excited whenever the robot is about to begin tracing out a 
landmark during the map-building process.   When this sustain neuron is first excited, a PULSE 
neuron excites the DISK MOTOR neuron, which is a motor neuron connected directly to the disk 
dispensing actuator.    By exciting this neuron, the disk is dropped.   The DETECT DISK neuron 
connects directly to the disk sensor.   Since the disk is dropped beneath the robot, the robot's disk 
sensor will detect the disk immediately.   The disk must be ignored until the robot has completed 
the tracing of the landmark.   The DETECT DISK neuron excites a PULSE neuron whenever the 
disk is no longer detected (i.e. just left behind).   Once excited, this falling edge pulse neuron 
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"turns on" a WAIT neuron which is used to indicate that the robot is now waiting until the trace 
is complete before detecting the disk again.    
 
 The WAIT neuron is initially disabled by the rising edge pulse neuron when the tracing 
begins.   When the disk is detected again, the combined output of the DETECT DISK and WAIT 
neurons turns on the END neuron which represents the end of a trace.   The END neuron then 
inhibits the DISK MOTOR neuron, resulting in the disk being picked up.   This END neuron 
disables the TRACE neuron and disables the TURN CORNER neuron of the feature extraction 
network in Figure 5.8 to ensure that the last edge and corner are stored.   The MAP neuron is 
used to start the tracing process whenever the robot encounters environmental features that are 
not recognized while it is building a map. 
 
 The idea of dropping a disk as a marker seems simple and efficient.   There are, however,  
a few problems that can arise.   The robot must be able to detect the disk once it arrives back at 
the starting location.   If the robot is a different distance away from the wall than when it started, 
the disk may not be detected.   This is not a problem with a simulated robot since there are no 
positioning errors.   For real robots this would be a problem unless the robot had some sort of 
mechanism to locate a disk that is nearby, perhaps within a few inches.   Another problem occurs 
when the robot drops the disk within a corridor or hole as shown in Figure 5.18 (a) and (b) 
respectively. 
 

(a) (b)  
 

Figure 5.18   Dropping a disk in a corridor or hole. 
 
 

 If the disk is dropped in a narrow passageway, the robot will detect it when coming out of 
the passageway.   Thus, the disk will be picked up before a complete trace is made and an 
incomplete representation of the perimeter is stored in memory.   The easiest way to prevent this 
from happening is to disallow the robot from dropping the disk inside a narrow passageway.   
That is, if the robot detects obstructions on both sides of its body, then it should not drop the disk 
until it is free from one of the obstructions.   One additional link is needed to solve this problem.   
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The COR. neuron of Figure 5.17 corresponds to the neuron from the vacancy network.   When a 
corridor is detected, the PULSE neuron from the disk dispensing network is inhibited, preventing 
the robot from dropping the disk until exiting the corridor. 
 
 
5.3  Combining Mapping Techniques 

 
 Grid-based mapping techniques can provide a simple and accurate map provided that the 
robot has precise odometry mechanisms.   Landmark-based mapping is useful when precise 
positioning is not possible.   Perhaps an integration of both techniques could provide an elegant 
solution in which the robot could take advantage of both methods.   Local grid maps could be 
developed and embedded into a global landmark-based map or vice versa.   With the quadtree 
approach, open areas can easily be identified as large grid units.   These large open spaces can be 
labeled as landmarks and combined with a landmark-based map.   This would, for example, 
allow a robot to identify "rooms" in a building by comparing their sizes and structure.   Figure 
5.19 shows a topological mapping for an indoor environment.   Each ring represents a network of 
corner and edge neurons representing the boundaries of a room.   The links connecting the rings 
correspond to topological adjacencies of the rooms. 
 
 This integration of mappings would also allow the robot to chose between free space or 
obstacle space.   If the robot wished to remain in vacant areas, then the free space (grid) map 
would be used since it maps out all paths that may be traveled.   When the robot wishes to remain 
close to obstacles, it  would then utilize the landmark map. 
 
 The foremost advantage of this combined map, would be that of landmark identification.   
The relative location in a grid would aid in identifying similar landmarks.   The problems 
associated with landmark identification are discussed in the next chapter.   This dual mapping 
strategy was not implemented for RABI due to time constraints.   It is, however, a promising area 
for future research. 
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Figure 5.19   A topological mapping of an indoor 
environment.  The circles represent landmark 
mappings. 
 
 
 

5.4  Summary 

 
 There are a variety of mapping techniques used to map out 2D environments.   Among 
these, landmark-based techniques can provide adequate mappings without the common 
positioning problems encountered more often in the other methods.   Moreover, landmark-based 
mapping is possible with very simple sensors and requires less memory in general to store the 
information.   This approach to mapping is not without problems since the features may be 
similar in a many of the landmarks, causing a problem related to landmark distinction. 
 
 The memory system used by RABI interconnects with the neural circuits through a 
handful of neurons.   As a result, the memory system is essentially a "black box" whose contents 
can be altered without having to change the neural circuits.   The use of a dual memory allows 
the features of landmarks to be grouped together in "chunks" for partial matching of landmarks.   
This allows the robot to ignore landmarks that have already been investigated so as not to waste 
time when mapping.   It can also allow the robot to detect a landmark without having to trace the 
entire perimeter.   By mapping the environment, the robot is able to learn the locations of food 
sources and obstacles.   This learning process provides a form of adaptivity since the robot is 
essentially adapting to the environment by learning the areas important for its survival needs. 
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 The use of internal maps can directly affect the behavior of an animal.   These maps can 

contain topological and spatial data that can allow the animal to efficiently navigate from one 
location to another.   The maps can also associate specific locations with certain types of stimuli 
such as food, energy, hazardous regions, dead ends, unfavorable climates etc.   Knowledge of the 
locations of such stimuli may be crucial for survival as well as being valuable sources of 
information that could improve the efficiency of the robot.   A robot can use an internal map for 
the same reasons, learning the locations of various energy sources etc. 
 
 In order to use a map, a robot must handle three subproblems.   First, the robot must be 
able to identify its location within the map.   This presents a problem due to data discrepancies, 
imprecise map data and ambiguities between landmarks.   The use of a landmark-based mapping 
strategy provides only an estimated position and therefore the robot's location is never known to 
precise detail.   Second, the robot must have some sort of navigational system that continually 
updates its approximate position within the internal map as it moves among landmarks.   Lastly, 
the robot needs a mechanism that allows it to travel efficiently from point to point.   This point to 
point navigation may require the robot to travel from one landmark to another.   Therefore, it 
may be useful for the robot to determine where it is with respect to the other obstacles in the 
environment.   All of these problems are discussed in this chapter along with solutions that were 
implemented by RABI. 
 

 

6.1  Navigation Strategies 

 
 When navigating in an environment, the robot needs some sort of indication of where it is 
in the environment so that it can travel efficiently from point to point.   The position may not 
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need to be known precisely, sometimes a rough estimate is adequate to provide a clue to the 
robot's location.   As long as the robot has a general idea as to where it is in relation to other 
objects and locations in the environment, then navigation is possible.   Usually the robot builds 
up a map from which it is able to compute a path from one location to another. 
 
 For simple mappings such as the grid-based approach, the robot relies on dead reckoning.   
With this method, the robot usually has an odometer and orientation sensor.   Every time the 
robot moves forward or turns, the robot's position in the map is updated with respect to some 
known starting location.   Due to the inaccuracy of robot sensors and imprecise mappings, there 
is an accumulating error associated with each position.   This error must be reduced (reset) 
occasionally by verifying a precise location in the environment.   [Rosten and Krotkov 92] give a 
description of the dead reckoning technique.   Due to the imprecise measurements of RABI's 
forward and angular movements, the dead reckoning approach is not reliable. 
 
 Once the position is known, the robot could then compute a path from its current location 
to its final destination.   For the shortest Euclidean path, Djikstra's algorithm provides an elegant 
solution.   Sometimes, there are certain regions in the environment which are more traversable 
than others.   In this case, there may be weighted regions in the environment which could affect 
the overall desired path.   [Mitchell 89] describes the problems of navigating with weighted 
regions.   This method is useful for the polygonal mapping techniques, for which again there is a 
problem with position estimation. 
 
 Consider landmark-based mapping.   A landmark-based map contains information about 
the environmental structure.   If these structures (landmarks) can be distinguished from one 
another, then a robot could determine its location in the environment by identifying a single 
landmark.   Thus, a robot that is picked up and placed down in a different location would easily 
be able to relocate itself by first finding an obstacle edge and tracing its boundary until the 
obstacle is identified (matched in memory).   Once matched, the robot has a fairly accurate 
indication as to where it is in the environment and where the other landmarks are with respect to 
its present location.   Clearly, this approach does not require accurate position estimates since the 
landmark shapes are the only cues as to the robot's location.   This approach brings with it many 
problems associated with landmark identification. 
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6.2  Landmark Identification 

 
 When tracing out landmarks as mentioned in the previous chapter, the robot builds up a 
map containing representations of the obstacles in the environment.  These landmarks are stored 
in memory for future reference.   In order to make use of this stored information, the robot must 
be able to identify the landmarks it encounters by comparing it with the ones in its map.   This 
matching process presents a host of problems dealing with discrepancies, identical objects and 
inaccurate representations. 
 
 
6.2.1  Data Discrepancies 

 
 During the tracing of an obstacle perimeter, the robot makes rough estimates of edge 
lengths and corner angles.   With binary collision data, there is no way of accurately measuring 
these angles and distances.   Moreover, since the robot cannot turn while advancing, convex 
corners must be partially passed before turning begins.   This presents a problem with tracing 
borders clockwise and counter-clockwise.    Figure 6.1 shows a snapshot of the mappings 
produced from a clockwise and counter-clockwise traversal of a simple rectilinear environment. 
 
 The snapshot shows that there are differences in edge lengths and corner angles.   In 
addition, there is a kind of symmetry between the two mappings.   This symmetry is the direct 
result of the cornering technique of the edge following behavior.   These two mappings are very 
similar indeed.   Getting them to match with each other may not be a problem since the 
differences are small. 
 
 A bigger problem arises due to the binary characteristic of the antennae.   Since the 
antennae have no concept of proximity, then there is a little bit of unpredictability as to how 
close the robot will get to an edge before it is detected.   Thus, traversing a perimeter in the same 
direction can yield a different mapping if the robot is closer or further from the edge the second 
time around.   This presents a misalignment problem as shown by the snapshot in Figure 6.2. 
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Figure 6.1   CW and CCW mappings of a rectilinear environment. 
 
 

 
 

Figure 6.2   Misalignment problem caused by the lack of proximity 
detection. 

 
 
 The snapshot shows the differences in the mappings obtained from three laps around the 
environment.   Only two "paths" can be seen in the image, and in the bottom right portion of the 
environment, only one path is visible.   This is because after one and a half times around the 
environment, the robot became "aligned to the edges"   This alignment ensures that any more 
laps around the perimeter will result in an identical mapping.   The binary characteristic of the 
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antennae and the accuracy of the turning and forward movements of the simulated robot are 
responsible for this phenomenon.   This example shows that small differences in the distance 
between the robot and the obstacle can significantly affect the mapping that is produced. 
 
 Another problem that emerges from the binary nature of the antennae is that of 
estimation.   A mapping of a curved surface will be estimated as a polygon.   An environment 
such as the circular environment in Figure 6.3 would be detected as a polygonal shape.   The 
consequence of this estimation is an imprecise representation of the environment. 
 

 
 

Figure 6.3   Estimating a polygon from a 
circular environment. 

 
 
 Furthermore, such an environment does not allow corner identification since anywhere 
along the border, the edges and corners are of the same magnitude.   Thus, no corner is 
distinguishable from the others and there is no way of determining, with any accuracy, the robot's 
location in the environment.   In fact, this problem occurs for any environmental shape which is 
symmetric as mentioned previously in Figure 5.4 (a) and (b).    
 
 Each of these discrepancies must be overcome or handled such that the robot is able to 
identify the landmarks solely on the basis of consecutive edge and corner information.   Since 
most of the errors are due to minor angle and edge length differences, the problems can be fixed 
by allowing an error when matching neurons.   In the case when different mappings are created 
for the same obstacle as in Figure 6.2,  the robot must be able to match up both paths in memory.   
Since these paths have a different number of neurons, the robot should be able to generalize the 
two paths by recognizing that they indeed represent the same obstacle. 
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6.2.2  Distinguishing Between the Inner Obstacles and the Border 

 
 The border of an environment is a unique type of landmark.   It is different from all the 
other landmarks since it surrounds them.   It would be useful to be able to distinguish the 
landmarks as being either an inside landmark or the environmental border landmark.   Insects 
when trapped, spend much of their time searching the enclosing boundaries in order to determine 
a way out.   In the case of indoor robots, the energy sources may lie on walls (i.e. sockets) which 
are part of the environmental border. 
 
 As it turns out, this task is easily accomplished.    Each landmark can be represented as a 
simple polygon.   Due to the winding (spiraling) properties of polygons, a traversal of the interior 
angles of a polygon will yield an angle sum of either 360�  or -360� .   This is proved by [Carmo 
76].   Furthermore, since the outer environmental perimeter contains all other obstacles, it is 
similar to a polygon with holes in which the border has an opposite orientation.   Following the 
boundary of an inner obstacle on the left will always result in a counter clockwise traversal.   The 
outer border however, would result in a clockwise traversal. 
 
 The winding property of polygons ensures that by summing all the values of all the 
corner neurons, their sum should be 24 (i.e. 15�  x 24 = 360� ) or -24 units 39.   Assuming that all 
tracing keeps the border to the left of the robot, then the outer border will yield a -24 unit sum 
where as the interior obstacles will yield a +24 unit sum; with an error associated with each value 
of course.   This angular sum provides a method of distinguishing the outer environmental 
perimeter from the inner obstacles.   Actually, the sign of the angle sum is adequate for making 
the distinction. 
 
 
6.2.3  Identical and Similar Obstacles 

 
 When mapping out an environment, the robot may encounter two identical objects.   If 
this is the case, then there is no way of distinguishing between the two obstacles since the 
landmark-based mapping technique does not record spatial adjacency.   In the environments of 
Figure 6.4 for example, only two obstacles can be distinguished; the outer border and the inner 
obstacle.   Moreover, due to the lack of spatial information and allowable error, both 
environments would appear identical. 

                                                 
39   In practice, the sums are not usually too accurate resulting in  approximately + or - 10� . 
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Figure 6.4   Two environments that appear identical due to the lack of spatial information 
and the allowable error during matching. 

 
 

 This example points out an important shortcoming with the landmark-based approach.   
As mentioned in the last chapter, perhaps a combination of different mapping strategies can 
combine the landmark map with a spatial map obtained from dead reckoning.   This combination 
would enhance the overall map allowing the two environments to be distinguished.   This is a 
topic for future research but for now , an assumption is made that the environment is sufficiently 
complex with obstacles of different shapes. 
 
 
6.2.4  The Matching Process 

 
 The problem of matching features with an internal map is not as trivial as it may seem.   
Due to the discrepancies discussed, the robot may actually map out the same obstacle more than 
once, each time producing a slightly different map.   An efficient pattern matching process 
should be able to somehow recognize that two slightly different mapping sequences actually 
represent the same obstacle.   It is impossible to match sequences with 100% accuracy since the 
amount of discrepancy of any one mapping is unknown.   The best that the robot could do is to 
allow a specific error in the corner and edge sizes during the matching process.   As a result, if 
any two mapping sequences match within the error allowed, then they are considered to be 
mappings of the same obstacle.   For this reason, similar obstacles cannot be distinguished using 
solely their features. 
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 Given two sequences of obstacle mappings,  it must be determined if they represent the 
same obstacle.   If they do, then the two mappings are combined into one map, storing the 
differences.   This process represents a form of generalization in which two or more mappings 
are generalized into one map with multiple paths.   Figure 6.5 gives an example of three similar 
mappings of the same obstacle and the generalized map resulting from the matching process. 
 

(a) (b) (c) (d)  
 

Figure 6.5   Three similar obstacle mappings (a), (b) and (c) and the resulting generalization (d). 
 
 
 Note that the three mappings have small differences in the corner angles.   These 
differences cause the mappings to have a different number of neurons since some corners are 
occasionally not detected (due to their small angle).   The generalized map combines the similar 
paths of all three mappings and adds additional paths that correspond to the differences.   The 
memory neurons in these additional paths are termed bypass neurons since they bypass the 
existing path.   This generalization technique prevents the memory from storing duplicate copies 
of mappings. 
 
 The generalization process is essentially a matching problem in which neurons from two 
layers 40 are matched sequentially until there is a discrepancy or until all neurons have been 
matched.   The pseudo code for the basic matching algorithm is described with three routines 
which are presented in Appendix A.   The algorithm attempts to match each layer in memory 
with the new layer.   It does this by matching the neurons sequentially one by one.   Since the 
layers are circular linked lists of neurons, there may be a problem in determining the starting 
point for matching the two layers.   That is, a complete match can only be determined whenever 
the two starting neurons indeed represent the same landmark.   Figure 6.6 for example, shows 

                                                 
40  A layer here indicates a sequential list of memory neurons representing edges and corners from an obstacle 

mapping. 
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two sequences of neurons that are indeed identical, but they are offset due to the circular nature 
of the lists. 
 

34 3 17 5 8 -4 20 6 4 -6

-4 20 6 4 -6 34 3 17 5 8  
 

Figure 6.6   Two identical matching sequences which 
are offset due to the circular nature of the linked list. 
 
 

 In order to rectify this offset problem, the algorithm chooses the first neuron from each 
layer and attempts a match.   If no match is found, the next neuron in one of the layers is chosen 
as a starting offset and then a match is attempted again.   In worst case, each neuron of a layer is 
used as a starting point requiring the matching process to be attempted once for every neuron in 
the layer.   Since each neuron in each layer may be processed for matching, this method has a 
worse case time complexity of O(nm2) where n is the number of layers and m is the maximum 
number of neurons per layer.  
 
 The generalization algorithm uses the basic matching algorithm discussed with additional 
processing during the matching process.   Since there may be two mappings of an obstacle that 
have a different number of neurons, then there may be a need to match a single neuron from one 
layer with multiple neurons from another layer so that slightly different mappings will match and 
be generalized as seen in Figure 6.5.   To do this, the algorithm adds an additional condition to 
the matching process.   If a neuron does not match another, the algorithm looks ahead to 
determine whether several neurons can be combined to make a match.   Figure 6.7 (a) and (b) 
represent the layered neurons from two obstacle mappings.   The generalized mapping is shown 
in (c).   Note that the two layers match (within a small error) except for the darkened edges.   
When doing a sequential mapping, the generalization algorithm will match darkened edge 14 of 
layer (a) with the 7, 2, 7 piece of layer (b) since the combined edge length of the piece matches 
(within a small allowable error) with the edge length of 14 from layer (a).   Similarly, the 6, 3, 14 
piece of layer (a) matches with edge 21 of (b) for the same reasons.   The algorithm keeps track 
of these "special piece-matches" and uses them to create a combined, generalized map as shown 
in (c). 
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Figure 6.7   Two layers of neurons (a) and (b) that represent the same 
obstacle mapping.   The darkened lines show the areas that differ.   The 
resulting generalized mapping (c). 
 
 

 This process of matching pieces with a single neuron does not add to the overall time 
complexity since each neuron is being examined only once per match attempt.   Once combined, 
the two original layers are discarded and the combined layer is stored.   This generalization 
process is useful since it eliminates duplicate information from similar obstacle mappings, 
storing only the differences.    
 
 
6.3  Improving Identification Through Additional Sensor Information 
 
 By now it is clear that the landmark-based mapping technique is unable to accurately 
represent the environment in some situations.   It is easy to restrict the robot to certain 
environments in which the landmark-based mapping technique flourishes.   If the robot is 
required to operate in a simple environment, then a problem arises with using this technique.   
The problem is mainly due to the lack of sensor information.   The robot is equipped with only 
simple sensors and thus must make many assumptions to fill in the gaps.   By adding additional 
sensors such as a compass, gyroscope, beacon detector etc, the robot may be able to better 
distinguish the environmental obstacles.   This thesis however,  is not aimed at developing a 
complex map building robot, instead the topic of interest is to determine just how well a robot 
can perform with a minimal amount of sensor information.   Nevertheless, this section presents a 
couple of ways in which the landmark identification process can be improved upon by adding 
additional sensors. 
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6.3.1  Global Orientation and Outside Influence 

 
 One method of improving the identification process is to determine spatial adjacency.   
This can be done by using external cues such as natural magnetic fields (north on a compass), 
lights or beacons.   Overhead lights for example, have been known to affect the way in which a 
mouse learns and travels through a maze.   In fact, in some cases, the internal map of a rat was 
found to be highly dependent upon such external cues.   It is possible for a robot to make use of 
an outside influence to give it a sense of global orientation similar to that of a compass.   An 
external light source can act as a direction indicator which would allow the robot to determine 
the orientation of the obstacle edges relative to one another.   This additional orientation 
mechanism could also provide a useful tool for determining spatial adjacency.   The robot could 
determine the corner of an obstacle that is closest to the outside source.   The dotted lines in 
Figure 6.8 represent the path from the closest corner of each obstacle towards the light source. 
 

Outside Light Source

 
 

Figure 6.8   Additional spatial information obtained from an external cue. 
 
 

 In the first environment, the top two obstacles are distinguishable from the lower two 
since their corners are closer to the external source.   Furthermore, the obstacles can be 
distinguished from left to right by the angle that each corner makes with the source.   In the 
second environment, all obstacles are distinguishable in a similar manner.   This method may be 
better than using a simple compass since the additional angular information is not present in a 
compass. 
 



 141 

 It is clear that external cues can play an important role in the gathering of spatial 
information which is useful for map building.   The external cue however, must be fixed and 
easily identified.   Using the sun as a guidance tool may cause problems due to the earth's 
rotation.   In addition, clouds and nightfall can prevent the robot from obtaining the external cue 
information.   Indoor environments also have problems with lighting as there may be many light 
sources within it.   Perhaps a better external cue could take the form of a beacon which emits 
ultrasonic bursts or infrared light, but these require the environment to be altered which may not 
be suitable for many nanobot applications. 
 
 
6.3.2  Single, Dual and Infinite Disks 

 
 It has been shown that a disk can be used as a marker for detecting the end of a complete 
traversal of an obstacle.   With only one disk, the disk must be picked up after each obstacle trace 
for use in the next trace.   This means that a robot has no indication as to whether or not it has 
traced out an obstacle except by comparing it with the obstacles in memory.   It would be useful 
to have the robot leave behind a special marker at each obstacle so that it knows if the obstacle 
has been traced before without having to retrace. 
 
 Consider  a robot equipped with N + 1 disks in an environment with N obstacles 
(including the border).   Now, the robot does not need to pick up a disk that has been laid down 
since the robot has enough to leave one at each obstacle border.   Clearly, the robot now has an 
indication as to whether it has visited an obstacle border before, since a disk will be encountered 
along the edge during a traversal.  If all these disks are indistinguishable however, the robot 
would not be able to use them as a means of detecting a full trace.   As in Figure 6.9, the robot 
would begin a trace of obstacle A by dropping disk d1.   During the traversal of obstacle A, the 
robot would detect disk d2 which had been left behind from a previous traversal and would not 
be able to distinguish it from d1.   Thus, the obstacle will be assumed to have been completely 

traversed resulting in an incomplete traversal. 
 
 This is indeed a problem since the existing tracing algorithm depends on the detection of 
the disk laid down at the start of a trace.   Thus, if multiple disks are to be used, they should be of 
a different type.   That is, a type 1 disk could be used for tracing as done previously and all other 
N disks (of type 2) could be used as markers indicating a previous traversal.   Thus, disk d2 

would not present a problem since the robot wouldn't detect it as a type 1 disk and could continue 
on until d1 is found. 
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Figure 6.9   Tracing problem with similar disk types. 
 

 
 There is one small matter of efficiency that must be dealt with.   Assume that the situation 
in Figure 6.9 has occurred where the robot detects disk d2.  The robot now knows that it has 
traced out this obstacle border before, therefore further tracing is not needed.   But disk d1 must 

be picked up again for use in the next traversal.   Thus, even though the robot does not need to 
trace the obstacle again, it must continue the trace in order to arrive back at d1 so that it can be 

picked up again.   This is rather inefficient.   Perhaps it would be more efficient if the robot could 
detect if an obstacle has been traced previously without having to trace it out until the marker is 
found. 
 
 One possible method of immediate detection is to place disks all along the border of an 
obstacle as it is traced as in Figure 6.10.   When the robot encounters any edge which has been 
traced previously, it will immediately detect a disk and thus will not need to trace out the border 
at all.   This method, however, would require a large supply of disks since they are required 
throughout the environment.   Chemical residue may provide a more efficient marker since the 
robot could easily spray the chemical along its path, similar to ants.   The chemical would have 
to be strong enough with a slow decaying factor so that it is easily detectable over a longer period 
of time.   This spraying would require some form of pumping system and "smell" sensor which 
may increase the size of the robot. 
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Figure 6.10   Using an infinite number of disks for 
tracing out obstacles. 

 
 
 Despite the need for more complicated sensors and actuators, this method of using a large 
disk supply would make the exploratory behavior much more efficient since new obstacles can 
be found without having to trace out any of the obstacles previously traced.   This would allow 
the robot to trace out all obstacles even if their features are identical. 

 
 
6.4  Simplified Spatial Adjacency 

 
 As mentioned in Chapter 5, [Nehmzow and Smithers 91] and [Mataric 91] present 
methods of landmark-based mapping techniques that map out only environmental perimeters.   
Their methods do not handle the mapping of interior obstacles.   Clearly, this limits the scope of 
the usefulness of their techniques.   A more realistic and useful mapping should be able to map 
out the inner obstacles as well.   The mapping out of interior obstacles is a simple task when 
using RABI's technique.   All obstacles are automatically mapped and generalized as 
encountered.   For a robot that must compute efficient point to point paths however, the 
additional mappings of interior obstacles presents a small problem.   The robot may not need to 
know exactly where these inner obstacles are with respect to the other obstacles and 
environmental border, but it may need to know how to get from one to another.   If for instance, 
the only energy sources lie at obstacles which are in the middle of the environment, the robot 
must be able to reach these locations.   It would be useful to know which edges of an obstacle's 
border lie near the energy sources so that the robot could shoot out in the appropriate direction 
towards the energy sources when needed.   Essentially, the robot needs to recognize the spatial 
adjacency among the obstacles. 
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6.4.1  Adjacency Links 
 
 This simple form of spatial adjacency can be stored as special links that connect adjacent 
obstacles as shown with dotted lines in Figure 6.11.   Here the dotted lines represent the paths 
that need to be taken to get from one obstacle to another in the environment.   They are termed 
adjacency links  and are stored in the memory mapping.   The endpoints of these links are termed 
adjacency points. 
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D

 
 

Figure 6.11   Adjacency links (dotted) required to record spatial 
adjacency among obstacle mappings. 

 
 
 The simplest method of determining these links is to traverse outwards from the inner 
obstacles.   Since the environment is closed off, the robot could walk away perpendicular to an 
inner obstacle edge until colliding with another obstacle.   As long as the robot knows which 
edge it walked away from and which edge it just encountered, then a link can be created joining 
these two edges in memory. 
 
 The robot will eventually use this adjacency information for obstacle to obstacle path 
planning.   The question that must now be answered is: How does the robot travel along an 
adjacency link when there is no physical sensor information to guide it ?   As will be seen later, 
the answer to this question involves dead reckoning.   By just creating a link that joins two edges 
in memory, not enough information is stored since one edge may lead to many others as seen in 
the example environment of Figure 6.12. 
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Figure 6.12   The edge displacement problem. One of the edges of E 
can lead to an edge of A, B, C or D. 

 
 

 The example shows that an edge of obstacle E can lead to many other obstacles 
depending on where along the edge the robot turns away.   This presents a problem if the robot 
wanted to go from E to D for instance.   The robot needs to know how far along the edge of E it 
must go before turning away so as to reach obstacle D.   For this reason, the adjacency link 
stored in memory must also record the distance along E that the robot must travel before 
"shooting out" towards the desired obstacle. 
 
 To keep things simple, the robot could always turn perpendicular to the inner obstacle 
edge when creating the adjacency link.   The other end of the link however, generally will not 
have the same 90�  angle.   The link from E to A in Figure 6.12 for example starts with a 90�  
angle and ends with approximately a 115�  angle.   When traveling from A to E along the same 
link, the robot would need to turn 115�  to get to E.   Thus, the adjacency link must also store the 
angles that the adjacency points make with the edges. 
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 This information can be stored in memory by creating adjacency corner and adjacency 

edge  neurons which are similar to the corner end edge neurons in the basic memory system.   
Figure 6.13 shows an example of how the adjacency links are added.   In the example, the 
mappings of two obstacles (an inner obstacle and a border) is shown before and after the addition 
of two adjacency links. 
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Figure 6.13   Environmental mappings before and after two adjacency links are added.   The shaded 
region contains the additional connections required to store the adjacency links. 

 
 

 Each addition of an adjacency link creates two additional edges corresponding to the 
partitioning of the edges on which the endpoints of the link lie.   These two edges are joined by 
an adjacency corner neuron in a similar fashion to the basic memory system.   Two adjacency 
corner neurons of an adjacency link are joined by means of an adjacency edge neuron.   This 
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method of adding adjacency links allows the already existing memory to be unaltered.   Instead, 
the link is added as a set of bypass neurons as done in the generalization process. 
 
 
6.4.2  Creating an Adjacency Link 

 
 In order to create these adjacency links, the robot needs to have a mechanism that allows 
it to turn perpendicular to an inner obstacle edge, walk straight until another edge is detected, 
turn until it is parallel to the detected edge and record the distance and angle information at the 
adjacency points.   This entire process is easily coded with a neural circuit which can be initiated 
by exciting a single neuron.   The circuit is given in Figure 6.14. 
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Figure 6.14   The neural circuit for the adjacency link mechanism. 
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 The MAKE LINK neuron is responsible for instigating the adjacency link creation 
process.   This neuron is excited by the memory system whenever the robot recognizes a 
sequence of features 41 from an inner obstacle.   The signal excites the ADJ. LEFT and ADJ. 
RIGHT neurons which provide the turning mechanism.   Only one of these neurons is excited 
depending on the side of the obstacle that the robot was following.   These neurons connect to the 
TURN LEFT and TURN RIGHT neurons as with the instinctive behaviors with a weight equal to 
the weight of the follow edge behavior neurons.   The ACCUM TURN neuron counts the number 
of turns made and the TURN OFF neuron emits a high signal whenever the robot makes 6 turns 
(i.e. 0.18 x 6 ♠ 1) representing 90� . 
 
 Once the robot has finished turning, the TURN OFF neuron inhibits the follow edge 
neurons as well as the turning neurons and excites the ADJ. AHEAD neuron.   The ADJ. 
AHEAD neuron connects to the turning network similar to the EDGE AHEAD neuron.   Once 
this neuron is excited, the robot continues walking straight.   It is disabled whenever one of the 
robot's side antennae touches an obstacle.   The COLLIDE RIGHT and COLLIDE LEFT neurons 
are from the edge follow network.   They make sure that the robot turns parallel to the detected 
edge before disabling the adjacency behavior 42. 
 
 The DISTANCE and ANGLE neurons are accumulative neurons that are used to measure 
the length of the adjacency link and the angle that the link makes with the ending edge.   They 
are reset when the robot begins forward motion.   The memory system monitors the ADJ. 
AHEAD neuron and stores the distance and angle information whenever it is turned off.   When 
turned off, the DISTANCE neuron is reset again so that it may be used to measure the distance 
along the ending edge for partitioning purposes. 
 
 Once the adjacency behavior is disabled (when the robot reaches the outer obstacle), then 
the edge following behavior "kicks in" allowing the robot to trace a small portion of the obstacle 
so that the edge can be identified.    Once the edge is identified, the link is created using the 
method previously mentioned. 
 
 Figure 6.15 shows an example of the path that the robot needs to follow (darkened) in 
order to make an adjacency link from the top edge of the inner obstacle to the top edge of the 
outer border.   The robot is assumed to have already created a mapping of the obstacle borders.   
In this example, the robot started to follow the edges of the inner obstacle in a clockwise 
                                                 
41  This occurs when the short term memory becomes full. 
42  The robot is assumed to be parallel provided that a side antenna has contact and the frontal antennae do not. 
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direction at S.   Once it had traced out 4 complete edges (i.e. a full STM), the robot recognizes 
the features as being part of an inner obstacle.   Then at point A, the robot begins to create the 
link by turning perpendicular to the current edge and walks straight ahead until colliding.   The 
robot then turns right until it is parallel to the new edge.   At this point, the robot has stored the 
distance of the adjacency link and the corner angles.   The robot then continues to follow the new 
border in a clockwise direction until the features are recognized at point E.   If the features are 
recognized, then a new adjacency link is created as described previously.   If no features are 
recognized then the adjacency link is abandoned. 
 

E

S

A

 
 

Figure 6.15  Path traveled during the creation of an 
adjacency link.   The robot begins tracing the obstacle at 
S, starts the creation of the adjacency link at A, and then 
completes the link at point E. 

 
 
6.5  Point to Point Navigation 

 
 Any animal that builds an internal map of its environment must use it for some purpose.   
The map gives the animal a sense of where it is with respect to other locations in the 
environment.   Internal maps are usually used for point to point navigation.   That is, an animal 
can use the map to navigate from one location to another.   The use of such structured path 
planning can result in a quicker and more efficient animal.   It could allow an animal to 
remember locations of food and navigate back to these locations when it is hungry.   Similarly, a 
robot could remember locations of wall outlets and navigate back to them in order to receive a 
battery recharge. 
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6.5.1  Self Location 
 
 The first step in navigating the environment is to determine the robot's current location.   
To do this, the robot must compare nearby features with an internal map to find a match.   As 
already discussed, this matching task can pose problems due to discrepancies in feature 
characteristics between sensor readings and the internal map. 
 
 Assuming that the robot has a fairly accurate map, the robot could attempt to make a 
match whenever it encounters a corner feature.   Since there may be many similar corners in the 
environment, the matching process may yield a collection of matching corners.   Thus, the robot 
may be unable to determine an exact location by examining just one corner.    A better method of 
matching is to trace out a small portion of the environment, obtaining a group of sequential 
features.   RABI does this by filling up its short term memory as it travels along a border.   Once 
the memory becomes full (i.e. 8 neurons = 4 corners and 4 edges), then this sequence of features 
is compared with the features in the long term memory to determine a match.   Again, the 
sequence may match more that once in the memory, but the chance of duplicate matches is 
reduced.   Assuming that the environment is sufficiently complex with few similarities in the 
sequential features, then an exact match would likely be found.   Once a match has been made, 
the robot knows its present location with respect to the other edges and corners of the 
environment. 
 
 Lets assume that the robot performs the matching operation which results in a list of 
plausible locations.   By continuing onward tracing the border, the robot would receive additional 
sequential feature information in the form of neurons from the short term memory.   This 
additional information can be used to trim the list of plausible locations.   Consider Table 1, 
which shows a set of 5 sequences of neurons in memory.   All of the sequences begin with a 
corner neuron having a value of -4.   Assuming that the robot has matched up to the -4 neuron, 
the robot must be at a location pertaining to one of the 5 sequences in the table.   Now, by 
continuing onward along the border,  assume that the robot encounters features as follows:  20, 6, 
4 -6, 34, 3, 17, 5, 8.   Thus, we can see that the first sequence represents the path traveled.   By 
encountering the features one by one, the list of plausible locations can be reduced as sequences 
stop matching.   Sequence 5 for example, will stop matching as soon as neuron 20 has been 
encountered.   Thus, sequence 5 is eliminated from the list.   Continuing onward, receiving a 6 
and then a 4, sequence 3 will stop matching and thus will be eliminated.   Sequence 2 and 4 are 
eliminated in a similar manner.   Thus, after encountering the initial -4 feature, the robot must 
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trace out 7 more sequential features before it is able to identify its location since after this 
additional tracing, sequence 1 will be the only one remaining. 
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Table 1   Possible matching memory sequences. 

 
 
 Assuming that the environment is sufficiently complex (without symmetries and many 
similar edge lengths), the robot should always be able to identify its location using this method 
of sequential feature extraction.   Once the robot knows its position, it simply needs to compare 
sequential features to ensure that its location is valid.   As it moves along a border, the current 
location will also move adjacently in the memory.   Thus, provided that the robot has an accurate 
mapping, the position can be determined while the robot moves along the borders. 
 
 
6.5.2  Determining a Path 

  
 When traveling from point to point in the environment, the robot should choose the most 
efficient path such that it does not waste time and energy.   The shortest path from one location to 
another depends mostly upon the distance traveled.   Perhaps in some cases, the shortest path 
should take into account the number of turns made, since for walking robots, the turning process 
can extract additional energy that would not have been used up during straight motion.   For 
simplicity sake, RABI examines only the Euclidean distance; the additional turning constraints 
are easily added. 
 
 With neurons, the simplest way of determining a shortest path is to use a form of 
spreading activation 43.   That is, by exciting a neuron in memory, a chain of activation spreads 
outwards from its adjacent neurons.   This activation can be increased or decreased as it passes 

                                                 
43  [Mataric 91] uses spreading activation in his robot to determine the shortest path between landmarks. 
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through a neuron.   An edge neuron for example can add activation corresponding to its stored 
energy (i.e. the edge length). 
 
 In order for this to happen, each memory neuron must have an adjustable output (set by 
the spreading activation) as well as a stored energy value (representing the corner angle or edge 
length).   The stored energy value remains constant while the output changes according to the 
spreading activation. 
 
 Determining a shortest path from one point to another is a trivial problem.   The problem 
becomes more interesting as multiple destinations are possible.   A robot, for example, may 
choose between a dozen wall outlets to receive energy from.   It would be most efficient if the 
robot were able to choose the closest outlet.   This problem of selecting the closest destination 
point is easily handled with the spreading activation concept.   Essentially, the activation spreads 
outwards from each destination. 
 
 The activation algorithm consists of a handful of simple functions which are given in 
Appendix A.   The algorithm works by initially giving the destination neurons an output of 1 and 
all other neurons an output of zero.   Activation then spreads outwards from the destination 
neurons in such a way that any neuron that receives an activation less than its current output uses 
this smaller activation value as its output.   When an edge neuron receives an activation, it adds 
its stored energy and spreads the new activation to adjacent neurons.   Depending on the 
direction that the activation is passed (i.e. forward or backwards in the memory), the sign of the 
activation is altered.   Activation going backwards through the memory has a negative sign, 
while activation going forward has a positive sign. 
 
 Once the activation stops,  each neuron will have an output corresponding to the 
activation that has passed through it.   Since the edge neurons added activation pertaining to an 
edge length, the output of each neuron corresponds to the Euclidean distance required to get from 
one neuron to the other during navigation.   Moreover, the sign of the output indicates the 
direction (left or right) that the robot must travel in order to get to the nearest destination. 
 
 Figure 6.16 depicts an example showing the effects of selecting 1, 2 and 4 possible 
destination points.   The destination neurons are shown with blackened boxes around them.   The 
number above each neuron represents the output of the neuron after the activation process has 
completed.   Note that the top three neurons represent bypass neurons that represent another 
possible path in the memory. 



 153 

 
 

8 4 12 -7 20 10 10 2 4 -5 17 3

4 18 2

8 4 12 -7 20 10 10 2 4 -5 17 3

4 18 2

8 4 12 -7 20 10 10 2 4 -5 17 3

4 18 2

9 1 1 -1 -21

-21 -39 -31

-21 -31 30 30 26 26 9

9 1 1 -1 -21

29 11

11 11 1 1 -1 -18 9

9 1 1 -1

1 1 -1

-1 1 1 -1 -18 9

1 Destination

2 Destinations

4 Destinations

-21

1 11

 
 

Figure 6.16   Results from spreading activation for 1, 2 and 4 destination points. 
 
 
 In the diagram, each of the destination neurons is an edge neuron with an output of 1 
indicating that they are indeed destinations.   For each corner neuron in the diagram,  their output 
indicates the distance (in terms of edge length sums) and direction required to travel from that 
location to the nearest destination edge.   Thus as soon as the current location is identified, the 
robot can use this activation information to choose a direction in which to travel which will result 
in the shortest path to the destination.   This method of point to point navigation is simple to 
implement and provides an efficient path to the desired destination. 
 
 This method is also able to incorporate the adjacency links during the spreading 
activation process since the neurons are part of the same memory.   The activation through an 
adjacency corner or adjacency edge neuron is similar to the regular corner and edge neurons.   
Since this activation process results in an efficient path plan, the robot can easily travel from 
obstacle to obstacle using the adjacency links. 
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6.5.3  Selecting the Destination Points 

 
 More often than not, animals have many choices as to where they can obtain food.   
When this is so, the animal must choose only one location at a time in which to eat.   The 
selection of destination may depend upon other factors such as the amount of food, quantity of 
food, variety of food or other external factors such as danger zones which make the food risky to 
obtain.   A robot may be in a similar predicament.   These complexities require a weight to be 
placed upon each location indicating the strength of the tendency to travel to that location.   This 
weighted selection strategy was not implemented since it is more complicated and the objective 
was to keep the robot as simple as possible. 
 
 When in need of energy , the robot must prepare for navigation by instigating spreading 
activation from all sources of food.   This would allow the robot to determine which direction to 
travel to reach an energy source.   There is a need for some type of mechanism that maps energy 
sources to environmental locations.   This can be done by adding special links that activate 
memory locations that contain the desired source.   The mechanism required to do this consists of 
just two neurons as shown in Figure 6.17.  
 
 The SEEK ENERGY neuron is used to excite the RESET and LOCATE neurons 
whenever the robot is searching for food.   The RESET neuron provides a special signal to the 
memory unit that resets all of the memory neurons to have zero activation whenever the robot 
stops seeking energy.   This gets the memory set up for the next time by resetting any activation 
from a previous navigation.   The LOCATE neuron emits a special signal through its output links 
whenever the robot begins to seek energy.   This special signal initiates spreading activation to 
each memory neuron that is connected to the LOCATE neuron.   Once the activation has been 
spread, the memory is set up for navigation purposes and the memory neurons will retain their 
output until the robot no longer seeks energy. 
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Figure 6.17   Connecting neurons that control the activation process. 
 
 
 Initially, there are none of these special links connected to the memory neurons.   The 
links are added as the robot encounters locations that induce an energy signature.   That is, 
whenever the robot senses an energy source when traveling along an edge, it adds a link from the 
LOCATE neuron to the memory neuron representing the current edge.   This linking strategy 
represents a form of associative learning in which energy sources are paired with environmental 
locations. 
 
 Assuming that each food (or energy) location has equal weight, there may still be other 
problems related to conflicting motivations.   A robot may find energy at one location, work at 
another and other items at yet another.   In this case, the robot must choose which item to seek 
out and spread activation corresponding only to this type of item.   The spreading activation 
algorithm will not work when destinations of different types are allowed to interfere with the 
activation of other types.   Thus, each time the robot decides to seek a specific type of item, the 
memory must be reset so that previous activation data does not interfere with the new activation 
information.   This can be done by adding inhibitory links between the neurons that represent 
different destination types as shown in Figure 6.18. 
 
 In the diagram, the neurons 1, 2 and 3 represent different types of item seeking behaviors 
similar to the SEEK ENERGY neuron.   The R and L neurons correspond to the RESET and 
LOCATE neurons.   Each of the LOCATE neurons connects independently to the memory 
neurons as before.   Sometimes the links may actually share a memory neuron which indicates 
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that there are multiple items at one location.   The circuit works the same with the exception that 
the RESET neurons inhibit the LOCATE neurons of other types.   This ensures that the memory 
is reset before the spreading activation occurs.   RABI is only able to associate energy sources 
with locations and thus does not use these extra inhibitory links. 
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Figure 6.18   Additional neurons needed to handle conflicting destination types. 
 
 
 
6.5.4  Turning Around 

 
 When the robot is navigating in an environment by following edges,  it may need to turn 
around and follow the edge with the other side of its body.   This would occur after the robot has 
determined that it is going the wrong way during point to point navigation.   The task of turning 
around is simple.   It involves turning 180�  and switching from following left to following right 
or vice versa.   The circuit of Figure 6.19 accomplishes this. 
 
 The GO RIGHT and GO LEFT neurons connect to the output of the memory system.   
They are excited when the robot decides to go right or left during navigation.   The AROUND 
RIGHT and AROUND LEFT neurons are excited whenever the robot is going in the wrong 
direction.   They connect directly to the TURN LEFT and TURN RIGHT neurons with a weight 
of 6.4 so that they override all but the edge follow and energy seeking behaviors.   The remaining 
neurons are similar to those of the adjacency mechanism.   They are responsible for counting 12 
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turns (180� ) and then disabling the turning process and disabling the edge following.   The edge 
following will start up in the correct direction at the next time step. 
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Figure 6.19   Neural circuit for turning around. 

 
 
6.5.5  Using an Adjacency Link 

 
 Once an adjacency  link has been created, it is stored permanently in memory.   In order 
to use this link path during navigation, the robot must be able to extract the distance and angle 
information so that it may leave one obstacle and travel directly towards another.   Thanks to the 
spreading activation process, the required information is embedded within the memory neurons. 
 
 Whenever the robot is navigating along an obstacle border it uses the spreading activation 
results to determine which direction to follow along the obstacle.   A memory neuron's output is 
either negative or positive indicating a desired left or right traversal.   Since the output can be 
only positive or negative, there is no way of indicating a third direction (outwards away from the 
obstacle) which is required for adjacency link traversal.   Therefore, the navigation system must 
handle adjacency links separately.   The navigation system must constantly look ahead to 
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determine if it needs to stop following the edges of one obstacle and start following the edges of 
another.  
 
 Figure 6.20 shows an example of a simple environmental mapping and the results of 
spreading activation across an adjacency link.   Note that the sign of the output of the adjacency 
corner neurons does not matter since these corners are handled specially. 
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Figure 6.20  Example showing the output of neurons after activation is spread across an 
adjacency link.   The darkened line in the second diagram represents the point at which the 
activation is initiated (i.e. an energy source lies close to this edge). 

 
 
 By examining the top right and top left corners of the outer border, it is clear that their 
output differs in sign.   If the robot did not have a mechanism that allowed it to travel across an 
adjacency link, then it robot would pace back and forth along the top edge of the environment 
due to the change in sign of the edge corners. 
 
 By adding one more simple neural circuit, the robot could shoot out into the appropriate 
direction along the adjacency link so that it can reach the inner obstacle.   This simple circuit is 
shown in Figure 6.21. 
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Figure 6.21  A neural circuit for using the adjacency links. 
 
 

 The TURN TO LINK neuron is excited by the navigational system whenever the robot 
decides to take the path along an adjacency link.   This would occur whenever the robot has 
reached the adjacency point.   The LINK ANGLE neuron is a standard neuron which is set by the 
navigation system and has a value equal to the number of turns required to align the robot along 
the adjacency link.   This number is derived directly from the stored angles of the adjacency 
corner neurons. 
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 Once these two neurons are excited, one of either the LINK LEFT or LINK RIGHT 
neurons is excited depending on the sign of the output of the LINK ANGLE neuron.   The 
threshold values are 0.96 and 0.04 which represent values of approximately 23/24 and 1/24.   
These values ensure that both neurons need to be excited in order to enable the turning process 
44.   The LINK LEFT, LINK RIGHT and LINK AHEAD  neurons all connect to the TURN 
LEFT and TURN RIGHT neurons in a similar fashion to the network for adjacency link creation.   
The ACCUM TURN and TURN OFF neurons are responsible for counting the appropriate 
number of turns.   Once the appropriate number of turns are made, the turning is disabled and the 
LINK AHEAD neuron is excited, subsuming the follow edge behavior.   The behavior is 
disabled whenever the robot comes in contact with the new obstacle.   Once the robot reaches the 
new obstacle, it continues to navigate from its current location towards the desired location. 
 
 This method of traveling among adjacency links does not necessarily produce shortest 
paths since the adjacency links act as bridges in which the robot may cross at certain locations.   
Over time however, as the robot explores its territory, multiple adjacency links will eventually be 
created and the robot will become more efficient. 
 
 
6.6  SUMMARY 

 
 Internal maps can store a great deal of spatial, topological and associative data which can 
prove to be advantageous to an adaptive robot.   The neuron style memory employed by RABI 
allows efficient navigation through the use of spreading activation.   Moreover, this navigation 
technique is easily interfaced with the neural circuitry of the instinctive behaviors.   Due to the 
non-spatial nature of the landmark-based mapping technique, various problems occur when 
attempting to identify the robot's current location.   Provided that the environment is sufficiently 
complex, the landmark identification process of matching sequences of neurons is a sufficient 
method for determining the robot's location.   With the navigational technique used by RABI, the 
robot is able to identify various edges and corners in the environment.   By using a simple form 
of spatial adjacency, the robot is able to efficiently travel from landmark to landmark. 

                                                 
44  The value of 24 represents 24 turns (24 x 15�  = 360� ).   The LINK ANGLE neuron will never have a value 

above 24 or less than -24. 
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 Many of the instincts presented in chapter 4 can be combined to produce more 

complicated emergent behaviors.   Sometimes however, there are certain behaviors that cannot be 
performed at the same time.   Phototropic and photophobic behaviors for example, are conflicting 
behaviors that cannot be performed simultaneously.   A less obvious example may be the energy 
seeking and map building behaviors.   A robot may search for energy while building a map, but if 
the energy is in the center of the environment, the map building behavior may prevent the robot 
from attaining it. 
 
 It is clear that some kind of behavior switching technique must be incorporated into the 
robot such that conflicting behaviors are not active at any one time.   Furthermore, the behaviors 
must be selected in such a fashion so as to keep the robot functioning ("alive") at all times.   This 
area of selecting behaviors at appropriate times is strongly related to the area of motivational 

systems .   This chapter discusses the notions of motivated behavior and behavior selection, and 
also describes the mechanisms required to implement them in RABI. 
 
 
7.1  Motivated Behavior 
 
 What causes an animal to behave the way it does ?   This question brings up the notion of 
motivated behavior.  [Toates 86] defines motivation as follows: 
 

"Motivation is the strength of the tendency to engage in behavior when taking into 
account not only internal factors but also appropriate external factors." 

 The statement suggests that motivation arises as a function of both internal state (or 
drive) and external incentives.   This would mean that an animal's behavior will change as its 
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internal state changes or if external cues are presented.  This is partially intuitive since many 
animals will only engage in foraging behavior when their internal energy state decreases (when 
they are hungry).   Furthermore, this foraging behavior becomes more apparent when external 
energy sources are present (near food).  
 
 [Toates 86] states that although reflexes constitute a crucial part of behavior, they clearly 
cannot account for all aspects.   The consequences of behavior are such as to change the internal 
state underlying motivation and hence reduce the neural activity of the motivation circuits.   It 
would seem that certain behaviors are selected and performed depending on some motivational 
aspect whether internal or external. 
 
 
7.1.1  Homeostatic and Externally Driven Behaviors 

 
 Homeostasis  is the term used to refer to the ability of the body to maintain its essential 
parameters near constant and to take corrective action to return them to normal following a 
disturbance.   As mentioned in [Toates 86], some feel that homeostasis is a key element of 
motivational systems.   An example of homeostatic behaviors would be the eating and drinking 
behaviors associated with a decrease in an internal state such as energy depletion and 
dehydration.  
 
 Not all behaviors are directed towards maintaining an internal state.   Other behaviors 
such as sex, exploration, aggression, etc., depend largely upon external stimuli such as sexual 
partners , environmental structures or intruders.   In some cases, it is not always obvious as to 
what the external cues are; such as when an animal just gets up and goes.   Exploration is an 
example of a behavior which is not accentuated by internal state or external stimuli.   Rather it is 
an external stimulus in the context of the animal's expectations about the environment that causes 
exploratory behavior.  New environments however, do present a form of external stimuli. 
 
 
7.1.2  The Role of Past Experiences 

 
 Many experiments have been performed to show that animals can be conditioned to 
respond to certain types of stimuli with a certain type of behavior.   This conditioning may take 
the form of reinforcement learning where an animals response to a specific stimuli is 
strengthened.   For example, if a particular response (turning left in a maze) is followed by a 
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particular event (presentation of food), then the frequency with which the animal turns left 
increases.   In this example, the food reinforces the response.   This example shows that past 
experiences play an important role in motivated behavior.    
 
 
7.2  Behavior Selection 

 
 At any one time, an animal is performing a behavior according to some form of 
motivational selection.   There are lower level reflexes and mechanisms that are performed as 
part of a higher level behavior.   A foraging behavior for example, may be composed of a set of 
lower level reflexes or mechanisms such as walking, avoiding collisions, seeking light, etc.   An 
animal must have some method of selecting which mechanisms to enable or disable for any 
given behavior.    In addition, there may be conflicting motivations in which two behaviors 
compete for overall control of the animal's muscles or actuators.   For robots, this problem of 
conflicting behaviors must be handled such that only one overall motivated behavior can be 
active at any one time. 
 
  It is clear from observations that a change in an animal's external environment may cause 
a change in behavior.   But animals also change behavior even in the absence of external cues.   
Hence, it seems that the process of behavior selection should depend upon both the external 
stimuli as well as internal state. 
 
 [Maes 91] presents a bottom-up mechanism for behavior selection in an artificial creature.   
In her simulation, the creature is endowed with various behaviors pertaining to obstacle 
avoidance, exploration, fighting, fleeing, eating, sleeping and drinking.   Each of these behaviors 
has a corresponding motivation associated with it.   This motivation is in the form of a monitor 
which keeps a strength value pertaining to the desire to satisfy the motivation.   In her system, 
the highest strength motivation is selected and the corresponding behavior is performed.   The 
system also contains a set in links that allows the creature to enable and disable certain 
behavioral mechanisms.   If hungry, for example, the creature would explore until it sees food, 
then go towards the food, and finally eat the food.   Some of these links are innate while others 
are learnt.   Her system for behavior selection is robust, efficient, reactive and flexible.   The 
system is also situation oriented and exhibits opportunism. 
 
 [Tyrrell and Mayhew 91] also present a simulation for behavior selection.   They 
concentrated on creating a significantly complex environmental model so as investigate the 
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mechanisms behind behavior selection.   They discuss certain issues of opportunism, conflicting 
behaviors and cooperative behaviors. 
 
 While both of these simulations appear successful in mimicking the behavior of a 
possible biological creature, they deal with issues that will not be necessary for robotic purposes.   
Drinking, fighting, sex and fatigue for instance, are not issues that need to be dealt with in 
robotic systems.   Thus, to some extent, the simulations have a degree of overkill.   Their purpose 
was to investigate behavior switching strategies with multiple conflicting motivated behaviors.   
Their research may prove useful for robots that must be able to efficiently select among several 
behaviors, although simplified robots such as nanobots will more than likely contain hardwired 
instincts.   If this is the case, then it may be simpler and more efficient to hardwire a behavior 
selection strategy within the hardware. 
 
 
7.3  RABI's Motivation and Behavior Selection 

 
 For a robot that is "artificially alive" it must be highly motivated to keep itself 
functioning.   This motivation is responsible for finding energy sources.   Since RABI was 
developed to concentrate on the survival aspects, there are only 3 types of motivation:  obtaining 
energy, exploration and the motivation to work.   As the robot is given additional instinctive 
behaviors (other tasks to perform), then there will be motivation to exhibit other types of 
behavior. 
 
 Since RABI does not get tired, it should always be moving unless it is re-charging.   
Thus, every behavior should keep the robot walking.   To do this, the motivated behaviors excite 
the WALK neuron as in Figure 7.1. 
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Figure 7.1  Excitation of the WALK neuron 
by the motivated behaviors. 
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 The simplest method of handling multiple motivated behaviors is to allow only one to be 
selected at a time.   Therefore, the robot must decide which motivated behavior to pursue at any 
one time.   There is a need to determine when a behavior should be enabled or disabled and 
which behaviors are more important than others. 
 
 
7.3.1 Obtaining Energy 

 
 The energy seeking behavior of RABI is the most important behavior since it allows the 
robot to seek out energy sources which are crucial for survival.   If the robot were to spend all of 
its time seeking out energy however, then the robot would be of no use for any practical 
application.   There should be some type of mechanism that allows this behavior to be selected at 
the appropriate time; when the robot's energy becomes too low.   The motivation for the energy 
seeking behavior should depend on both the internal energy level and the external cues such as 
the presence of energy sources.   In order for this to happen, the robot must have some form of 
energy monitor indicating the current level of energy.   When this energy lowers to some 
threshold value, the robot should then begin to search for energy sources.   This process is easily 
implemented with neural circuitry as shown in Figure 7.2. 
 
 The ENERGY MONITOR is a monitor neuron which emits an output signal (0.0 to 1.0) 
reflecting the current energy level of the robot.   The neuron excites the HIGH neuron with a 
weight of T4.   This value of T4 represents the threshold at which the robot is considered to have 
adequate energy (i.e. a battery low indicator) 45.   The signals from the HIGH, ENABLE and 
DETECT SOCKET neurons are responsible for instigating the ingestive process.   The DETECT 
SOCKET neuron is a sensor neuron that ensures the robot is at an energy source in order for the 
ingestion to take place.   Once the START neuron is excited, the ingestion begins.   During 
ingestion, the WALK, TURN LEFT and TURN RIGHT neurons are disabled (i.e. remain still 
while charging) and the ABSORB motor neuron is excited.    
 
 

                                                 
45  T4 ranges from 1 to •.   If for example, T4 was set at 4, then an energy value of 0.25 or more would be required 

to excite the HIGH neuron.   Thus, the low indicator would be at 25%. 
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Figure 7.2   Neural circuitry representing the ingestion 
mechanism.   The energy seeking behavior is enabled when the 
energy monitor reads a significantly low value. 

 
 

 The ABSORB neuron represents some form of physical mechanism responsible for 
increasing the robot's energy.   This may be a simple plug-in actuator or perhaps something more 
complicated.   As in the case of docking situations discussed in chapter 4, this motor may not be 
needed at all since the energy refill may be performed by some external mechanism. 
 
 Once the energy monitor detects a full energy reading, the STOP neuron is sufficiently 
excited so as to disable the ingestion process.   This neural mechanism is linked to the energy 
seeking behavior by connecting it to the SEEK ENERGY neuron from the energy seeking 
network in a manner such that the behavior is enabled as soon as the energy level becomes too 
low. 
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7.3.2 Seeking Energy Vs. Map Building 
 
 Since the robot can only detect energy sources when they are close by, the robot may 
wander around the environment for a long time without finding an energy source.   It would be 
advantageous for the robot to explore the environment to search for energy sources.   These 
energy sources may lie along walls and thus, it would be useful to build a map of the obstacle 
borders.   This map building should take place before the robot becomes energy deficient so that 
it has time to locate the energy sources.   Thus, when not "hungry", the robot should engage in 
exploratory map-building behavior. 
 
 The robot must not however, spend all of its time seeking energy and building maps since 
it was also given a task to work by cleaning up the environment.   The map building behavior 
should therefore be both enabled and disabled during the robot's life time.   In fact, animals spend 
much of their time exhibiting exploratory behavior [Toates 86].   Moreover, the exploratory 
behavior is highly active when the animal is placed down into a new environment.   It would be 
prudent to devise such a scheme for robots. 
 
 RABI uses a curiosity monitor that essentially indicates the amount of exploration that 
should be performed.   The curiosity is initially very high when the robot starts out and decreases 
very slowly over time.   Whenever the robot traces out a portion of the environment that is not 
recognized, this curiosity is increased.   When the robot recognizes certain environmental 
features, the curiosity is decreased 46.   Figure 7.3 shows the connections required to select one of 
the three motivated behaviors.   Notice that the cleaning behavior has no excitatory signals.   
That's because it is always enabled.   Hence, whenever the robot is not seeking energy or 
building a map, then it is cleaning up the environment. 
 

                                                 
46  The monitor value ranges from 0.0 to 1.0.   The time decrease is approximately 0.001.   The increase when the 

features are not recognized is 0.1 .   When features are recognized, the decrease is 0.1 also. 
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Figure 7.3  Neural circuit for selecting the motivated 
behaviors. 

 
 
 In the network, the map building behavior is enabled whenever there is any amount of 
curiosity.   This behavior is dominated by the energy seeking behavior which is selected 
according to the energy monitor as mentioned previously.   Both of these behaviors override the 
cleaning behavior since they are more important for survival.   There is no need for the map 
building neuron to inhibit the clean ahead neuron since the robot is always following edges when 
building a map and the edge following behavior already overrides the cleaning behavior.   The 
energy seeking behavior is disabled by the CREATE LINK and WAIT neurons.   This ensures 
that the robot has completed an adjacency link or obstacle trace before turning off the map 
building behavior.   This is important so that the robot does not leave behind its disk (along the 
edge of an obstacle being traced) and wander off; otherwise the disk could not be found easily. 
 
 An excitatory link is shown from the SEEK ENERGY neuron to the NAVIGATE neuron.   
This link is initially absent and is permanently added if and when the robot finds an energy 
source near an obstacle edge (as opposed to the center of a vacant region).   The link allows the 
robot to use navigation to find an energy source. 
 
 When initially placed in the environment, the robot spends most of its time tracing out 
obstacles and building a map.   It occasionally finds dirt morsels and brings them to an obstacle 
border.   Eventually the robot begins to recognize the obstacles and the curiosity decreases 
significantly.   Once the curiosity diminishes, the robot begins performing its cleaning task, 
occasionally taking a break to obtain energy.   With so few instinctive behaviors, the robot's 
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overall behavior is somewhat predictable.   As more and more instinctive behaviors are added 
(more tasks) then the global behavior would be more difficult to predict. 
 
 
7.3.3  Enabling and Disabling the Edge Following Behavior 

 
 Since the robot should not always follow edges (i.e. there may be interesting things in the 
middle of the environment), there must be some method of enabling and disabling the edge 
following behavior.   The simplest method of instigating the behavior is to begin edge following 
whenever a side antenna comes in contact with an obstacle.   The robot could then trace out the 
obstacle's edges and turn away once it has completely traced the obstacle or when it has 
motivation to perform some other behavior.   Figure 7.4 shows the connections responsible for 
enabling the edge following process. 
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Figure 7.4   Neural connections responsible for the enabling 
of the edge following process. 

 
 
 The side antennae provide a strong excitatory signal that enables the appropriate edge 
following neuron; provided that the robot is building a map or navigating.   A pulse neuron is 
used to disable edge following whenever the map-building ceases. 
 
 When navigating, the robot uses the spreading activation to determine which edge to head 
towards.   It may be the case that the energy source does not lie along the edge, but instead it lies 
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close by.   If this is so, the robot should stop following edges and head towards the energy source 
using its energy seeking network.   Figure 7.5 shows the additional circuitry for disabling the 
edge following whenever the robot is close to an energy source. 
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Figure 7.5  Neural circuitry to disable edge 
following when near an energy source. 

 
 

 The ENERGY SENSOR and SEEK ENERGY neurons from the energy seeking network 
are used in combination to disable edge following.   The AT ENERGY neuron produces the 
required binary output for the threshold neuron. 
 
 The presence of energy is not the only reason to stop following an edge.   The robot 
should stop following an edge when it finishes tracing an obstacle or when it recognizes a portion 
of an obstacle while exploring.   In addition, when the robot is navigating, it should turn away 
whenever it arrives at a location that has no activation level.   That is, if an edge of an obstacle 
mapping has no activation level, then there is no known path from this current location to an 
energy source.   The robot should therefore turn away from the obstacle. 
 
 Turning away from an obstacle is the action performed by the vacancy behavior.   This 
behavior is always active but the edge following behavior subsumes it.   If the robot wants to turn 
away from an obstacle it should therefore disable the edge following behavior.   Figure 7.6 shows 
a neural circuit that does this disabling.  
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Figure 7.6  A neural circuit to disable the edge following behavior. 
 
 

 The DECIDE AWAY neuron determines when the robot needs to turn away from the 
edge it is following.   The neurons at the top of the network do this as described.   The WAIT 
neuron is also used to inhibit the disabling since the robot should not stop following an edge if it 
has left a disk behind.   With the edge following behavior disabled, the vacancy behavior will 
take over and turn the robot away from the edge.   The side antennae are used to disable this 
network whenever the robot no longer has contact with an edge. 
 
 
7.3.4  Instinctive Behavior Selection 

 
 Nothing has been mentioned about the photokinetic behaviors.   When are these 
behaviors selected?  Ideally, an adaptive robot should be able to learn various associations such 
as:  light leads to energy, dark leads to morsels, loud noises lead to danger, etc.   Since RABI has 
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only antennae, energy, light and dirt sensors, then there is not much interesting to be learnt.   
Essentially the robot could learn only four associations: 
 

LIGHT ---> ENERGY 
DARK ---> ENERGY 
LIGHT ---> DIRT MORSELS 
DARK ---> DIRT MORSELS 

 
 Moreover, the associations may be valid at some point in time and invalid later in the 
robot's life time.   Dirt for instance, may be cleaned up from around a light source when the 
LIGHT ---> DIRT MORSELS association is used.   Once the dirt around the light is cleaned up, 
the association is no longer valid.   Since there are only four associations to learn, the learning 
process was not incorporated into RABI    Instead, they may be selected by hardwiring additional 
links in the neural networks.   Figure 7.7 shows the four links that enable these instinctive 
associations. 
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Figure 7.7  Neural links used to 
associate light with energy and dirt 
morsels. 

 
 

 Note that only one link should be added from each of the SEEK ENERGY and WORK 
neurons since the other link represents a conflicting association.   With the addition of any of 
these links, the robot's wandering behavior is subsumed by the phototaxic behavior allowing the 
robot to go towards or away from light.   Thus, without the mapping and navigational circuitry, 
the robot could still function in the environment by placing energy sources in light or dark areas 
and maneuvering the light sources near or away from dirty locations. 
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7.4  SUMMARY 

 
 Motivation and behavior selection are important issues that must be considered when 
designing autonomous artificial life forms.   Care must be taken to ensure that the robot takes 
precedence in remaining "alive" as opposed to performing some task.   Traditional robots 
concentrate on task performance, allowing the robot to stop functioning at regular intervals.   
This is not acceptable for colonies of robots that must survive on their own. 
  
 RABI has a strong motivation to remain functioning.   When its energy level drops too 
low, it seeks out energy.   When it is not seeking energy, it explores the environment in search 
for energy sources and remembers the locations.   Only when it has sufficiently explored the 
environment, does the robot concentrate on the given task of cleaning.   With colonies of 
nanobots, their given task is spread among hundreds or thousands of others.   It is not wise for an 
individual nanobot to risk its "life" by performing a task when it is low on energy.   It would be 
more efficient if the nanobots could remain functioning for extended periods of time, maybe 
even working in shifts. 
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Chapter 8 
Hardware Construction of RABI 
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 The hardware version of RABI is a 6-legged robot platform allowing various robot 

control and behavioral techniques to be tested in a real environment.   As already mentioned, it 
was important to create a physical device since these robots must operate in the real world once 
completed.   By basing a robot on only simulated research, the robot ends up being brittle, 
inefficient, faulty and often fails due to unpredicted situations. 
 
 Approximately 6 months of work went into building this physical robot and another 3 
months just getting it to simply walk around.   RABI has undergone a tremendous amount of 
redesign and construction, each version improving upon the last.  This chapter explains the 
mechanical changes encountered in each version and points out the problems with each failed 
design.  The electronic control and interface circuitry is also presented along with the 
communication protocol required to control the robot. 
 
 
8.1 Frame Construction and Materials 
 
 Most of the materials used for construction are made of plastic or aluminum of various 
sizes which were all hand drilled and cut.   Very small nuts and bolts are used to hold these 
pieces together.   Two basic types of wire were used to connect the electronics.   The power and 
ground wire is twisted pair wire from a long microphone cable.   Jumpers were made from cut-up 
computer ribbon cables, and used to interconnect the electronic boards.   The robot was built as 
light as possible by using  only plastics and aluminum. 
 Each leg uses two geared down 3v dc motors allowing 2 dimensional movement.   These 
motors come from Tamiya gear box kits which contain a set of gears to provide enough power to 
move the legs.   The housing and all the gears are plastic providing a light weight gear box.   The 
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bulk of the weight is the motor itself and the turning shaft to which the gears are connected, 
which is made of metal.  These motors make up about one third of the robot's total weight. 
 
 The worm gear kit of Figure 8.1 contains a worm gear that allows the turning shaft to 
lock into place when the motor is at rest.   This locking is important so that the weight of the 
robot does not cause the motor shaft to turn.   The gear set provides a 336:1 gear ratio providing 
enough power to lift the robot's legs.   There is however, a considerable amount of slack in the 
gears hindering precise position measurements.   Nevertheless, the gear box provides enough 
strength. 
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Figure 8.1   Worm gearbox set from Tamiya. 
 
 

 The planetary gear box kit of Figure 8.2 contains many small gears.   The gears are 
layered onto each other so as to provide a higher reduction ration while keeping the housing 
small enough.   These gears provide a 400:1 gear ratio satisfactory for horizontal leg movements.   
The shaft for this gear box is short and less rigid than the worm gear box.   Three long bolts hold 
the housing layers together.   These bolts must be tight enough to hold the housing together, but 
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not too tight as to prevent the gears from movement.   In fact, the bolts had to be kept reasonably 
loose, resulting in occasional gear slippage.   Consequently, some of the gear housing had to be 
glued into place. 
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Figure 8.2   Planetary gearbox set from Tamiya. 
 
 

 The frame of the final version of RABI consists of side shafts made of square plastic 
tubes obtained from a hobby store.   Aluminum cross bars are fastened horizontally across the 
shafts to hold the side bars together.   There is an upper and lower level each identical in 
construction.   The upper and lower layers are held together by the 6 planetary gear boxes which 
provide the horizontal movement of the legs.   All electronics and wiring are attached to this two 
layer frame as well as the head motor which is currently not being used.   Figure 8.3 shows the 
two layer frame with the planetary gear boxes holding them in place. 
 
 Each version of RABI has ping-pong ball eyes attached.   Photocells were fastened inside 
them so that they may be used as light sensors.   Although the light sensor circuitry is not used at 
the moment, the eyes provide aesthetics.   These eyes were fastened to the frame of the robot and 
in some versions, fastened to a head motor. 
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Figure 8.3   The two layer mechanical frame construction on which all electronic boards, sensors and wiring are 
attached. 

 

 

8.1.1  Version 1.0 - The Inauguration 

 

 The very first version of RABI used 12 worm gear sets, two for each leg.   One gear box 
was used to pivot the leg horizontally, the other was attached to this pivoting gear box, providing 
vertical pivoting motion.   The initial frame was constructed with thin aluminum in the shape of a 
topless box.   The horizontal motors were fastened to the inside walls of the frame with the shafts 
protruding through the bottom.   The second set of gear boxes were then attached to these shafts.   
The leg itself was a 1 inch rigid aluminum plate with half a ping-pong ball for a foot.   The ping-
pong ball was glued to the end of a push button switch which was fastened to the leg.   This leg 
design is shown in Figure 8.4.   Each leg initially had 3 micro switches with extended levers.   
These switches were to be used to detect collisions in the front back and outwards directions.   
The switches were eventually discarded since the legs were unable to provide precise positioning 
measurements.   These "bump" sensors were later replaced by an antennae system mounted at the 
front of the robot. 
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Figure 8.4   Initial leg design. 

 
 Once the legs were attached, the motors were connected to a power supply to determine if 
they had the ability to lift the robot up.   The legs were able to support the robot's weight but 
were not strong enough to lift the body.   Moreover, the entire robot was very wobbly and 
unstable.   Much of this flimsiness was due to the slack in the gears, the plastic shaft fastening 
end piece and the leg design.   It was clear that some changes had to be made.   Plate 1 shows a 
photograph of the first version of RABI without the feet or microswitches attached. 

 

 
 

Plate 1   Photograph of RABI version 1.0. 
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8.1.2  Version 1.1 - Beetle 

 

 The next version of RABI was an attempt to solve the body lifting problem encountered 
in the version 1.0.   The worm gear motors providing the vertical leg movement were replaced by 
planetary gear box units since the gear boxes provided a larger gear ratio and thus more power.   
These motors were attached to the shaft of the horizontal worm gear motors as before.   The 
frame of the robot remained unchanged.   Once connected, these new planetary gear motors had 
the ability to lift the body but they were not without problems.   This new gear kit does not have 
a worm gear and thus, when the motor was turned off, the weight of the robot caused the motor 
shafts to slowly turn.   As a result, the robot would slowly sink to the ground when the motors 
were turned off.   A photograph of the mechanical design of version 1.1 is shown in Plate 2.   The 
horizontal worm gear motors are hidden inside the casing however, the tops of the shafts can be 
seen. 

 

 
 

Plate 2   Photograph of RABI version 1.1. 
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8.1.3  Version 2.0 - Spider 

 

 After the two failed attempts at leg construction, it was clear that a different leg design 
was required.  The motors were not able to provide adequate torque needed to move the leg 
vertically since the legs were connected directly on the shafts.   Furthermore, pressure on the foot 
of a leg easily turned the motor shaft since the design allowed enough leverage.   This prompted 
a new leg design in which the motors were used in a push/pull fashion.   A diagram of this leg 
design is given in Figure 8.5.   A threaded rod was attached to the shaft of the planetary gearbox.   
The legs were re-constructed from rigid plastic shafts in which part of the shaft was locked in 
place, allowing a vertical pivot.   A nut (in the form of a threaded square aluminum chunk) was 
then attached to the top of the leg and screwed onto the threaded rod.   The nut was attached 
using a holding pin on each side such that it was able to tilt.   The feet were held on with elastics, 
allowing the foot to pivot and providing a more flexible surface contact. 
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Figure 8.5   Leg design of RABI version 2.0.   The motor spins the threaded rod causing the 
threaded nut to move in the horizontal direction, resulting in vertical leg movement. 
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 When the leg contracts and expands, it must have some way of stretching since it is fixed 
at one point.   To allow stretching, a smaller shaft was placed inside the outer leg shaft.   The 
middle of the inner shaft was carved out such that the bolt holding the outer shaft did not prevent 
the leg from stretching.   This leg design resulted in slow vertical leg movements.   Moreover, the 
inner plastic shaft was easily bent and the leg was not very rigid.   After a while, the threaded nut 
became worn out and the leg began to slip and snag.   Once all the electronics and wiring were 
placed on the robot, it weighed too much and the legs were not able to lift the body.   Thus the 
saying: "back to the old drawing board".   Two photographs of RABI version 2.0 are shown in 
Plate 3 and Plate 4.   Notice that this version of RABI used proximity sensors as obstacle 
detectors instead of antennae.  These proximity sensors never quite worked correctly due to their 
sensitivity of ambient light. 
 
 

 
 

Plate 3   Photograph of RABI version 2.0 - side view. 
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Plate 4   Photograph of RABI version 2.0 - top view. 

 

 

8.1.4  Version 3.0 - Quadruped 

 

 Versions 1.0, 1.1 and 2.0 all had one thing in common; a weight problem.   In all 3 trials, 
the legs were not strong enough to lift the body and remain stable.   Thus, an attempt was made 
to reduce the overall weight.   Since most of the weight is attributed to the legs and motors, two 
of the legs were eliminated resulting in a quadruped robot.   Moreover, the legs were redesigned 
as shown in Figure 8.6. 
 
 All previous versions of legs shared the same basic type of movement.   All of the leg 
joints were rotational, requiring the motor to produce a strong torque to achieve lifting.   Version 
2.0 had the additional problem of friction between the foot and the ground since the legs were 
designed to slide outward during the process of standing up.   It was clear that a rotational joint 
would not suffice for vertical leg movement.   As a result, a prismatic joint was constructed 
based on a "rack and pinion".   This design was successful and provided enough power to elevate 
the body. 
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Figure 8.6   The prismatic leg joint for vertical movement.  
 
 
 The leg itself consists of a brass rack that translates up and down by a turning spur gear 
that interlocks with the rack.   An attempt was made to construct a rack made of aluminum by 
cutting evenly spaced groves in a square aluminum bar.   Due to the lack of sophisticated cutting 
equipment, the resulting aluminum rack contained uneven slots of imprecise depths and shape.   
The aluminum racks were initially used on the leg but they did not function smoothly, and the 
gears often jammed in the misguided groves.   Heavier brass racks were eventually used since 
they were available and professionally constructed. 
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 The brass rack slides freely through a plastic shaft which is bolted down with brackets.   
There are two extended bolts that prevent the brass rack from sliding out from the shaft.   These 
two bolts are also used a triggers for the leg limit micro switches.   When the leg is placed down 
(up) far enough, the bolt closes the down (up) limit switch causing the motor to stop.   At the 
bottom of the leg is a rubber footing as found on the bottom of most large electronic devices.   
This rubber footing was only used in the final version of RABI; it is shown here only to avoid 
duplicating the diagram in the sections to follow.   Version 3.0 actually utilized the same footing 
structure of version 2.0 with the exception that the elastics were removed, and the ping-pong ball 
was fastened to the switch using silicon.   Like the elastics, this silicon also allowed a somewhat 
flexible foot to surface contact. 
 
 This leg was fastened to a planetary gear motor shaft which was attached to the plastic 
side shafts as in previous versions.   The completed quadruped version with electronics attached 
is shown in Plate 5 and Plate 6  47. 
 

 

 
 

Plate 5   Photograph of RABI quadruped version 3.0 - top view. 
 
 

                                                 
47  The string in the center of the robot was used to hang the robot up during construction and repair. 
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Plate 6   Photograph of RABI quadruped version 3.0 - front view. 
 
 

 Once constructed, the quadruped had the ability to lift itself up with ease.   However, 
there were problems with stability (see chapter 3).   The robot often tipped in all directions and 
was not able to walk continually without falling.   After rigorous testing and failed attempts at 
maintaining stability, it was decided that 6 legs were necessary. 
 
 
8.1.5  Version 4.0 - Hexapod 

 

 The success of the leg design in version 4.0 simplified the conversion of the quadruped 
into a hexapod.   Two more legs were duplicated and the body was extended.   Plate 7 shows the 
completed mechanics of the revised hexapod without the electronics.   This version of RABI was 
capable of walking and turning without falling over.   Occasionally, a leg twitch would cause 
tipping, but RABI's software usually recovered. 
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Plate 7   Photograph of the revised hexapod; RABI version 4.0. 
 
 
8.1.6  Version 4.1 - Insect With Antennae 

 

 During the programming of the instinctive behaviors, it became clear that the infrared 
proximity sensors were not adequate for detecting obstacles.   They constantly received spurious 
data from stray light sources and did not operate at the desired proximity.   This problem could 
only be detected through experimentation with a physical device.   This situation demonstrates 
the importance of designing physical systems rather than simulated systems.   The infrared 
sensors were replaced by an antennae system as shown in Figure 8.7. 
 
 This antennae system consists of 4 antennae made of piano wire.   The piano wire 
provided a flexible means of detecting data.   The piano wire was fastened at one end with a nut 
and bolt and the other end protrudes outwards.    The antennae passes through a washer which is 
fixed to a plastic shaft.   Wire leads are placed at the fastened point of the antenna and on the 
washer.   When the antennae makes contact with the side of the washer, a current passes through 
one of the wire leads into the other thus acting as a binary switch.   Due to the small opening of 
the washer, the antenna had to be finely adjusted such that it hovered in the center of the washer 
hole when at rest. 
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Figure 8.7   The 4-antennae system for detecting obstacles. 

 
 
8.1.7  Version 4.2 - The Final RABI 

 

 The final (current) version of RABI has a number of improvements from the last version.   
The first improvement was the antennae.   The adjusting of the previous antennae was difficult, 
involving slight bending of the piano wire with a pair of pliers.   The antennae of version 4.1 
were improved upon allowing easier adjustments to be made to the antennae.   The new design is 
shown below in Figure 8.8.   This design left access holes allowing the antennae to be adjusted  
easily.   The design also reduced the size of the fastening system and gave it a more aesthetic 
appearance.  This version of RABI also included side antennae with similar construction.  These 
antennae extend from underneath the robot, fitting between the first two legs on each side.    
 
 Another improvement was in the foot design.   The foot switch on the bottom of the leg 
often provided inaccurate readings.   The switch would not make contact unless a sufficient 
amount of weight was issued on the leg.   Furthermore, the flexibility of the ping pong ball 
caused the switch to snag and miss contact.   These problems were ignored since it was not a 
major problem.  Eventually, one of the foot switches broke off resulting in a decision to redesign 
the feet.   The pin pong ball was discarded and replaced by a rubber footing as mentioned in 
version 3.0.   The foot switch was replaced by a micro switch at the top of the leg such that it 
made contact when the leg was fully extended (down).   The placement of the switch will prevent 



 188 

it from breaking off, but results in a different function.    This final version of RABI is depicted 
in Plate 8. 
 

Antennae (piano wire)

solder joint

wire leads

washer

plastic shaftsaccess hole

 
 

Figure 8.8   The improved antennae system design. 

 
  

 
 

Plate 8   Side view of the final version of RABI. 
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 The new switch does not detect when the foot has contact, instead it detects when the leg 
is down 48.   This new functioning is acceptable since RABI only uses a tripod gait which works 
in level environments.   Therefore, if the environment has no holes, there will not be a problem 
using this new switch in the same manner as the previous foot switch.   
 
 
8.2  The RABI / Computer Interface 

 
 The hardware version of RABI interfaces to a PC compatible computer.   More 
specifically, the robot is actually connected to a 386 computer via a Quatech PXB-241 interface 
card which is a 24 buffered digital input/output adapter.   The robot has a tether of 20 lines 
representing 3 buses which plug directly into the PXB-241.   In addition, there are two power 
lines attached to the tether providing +5v power, +3v power and ground to the robot.   This 
power comes from a Condor 5v power supply and an EDLaboratory regulated DC power supply 
respectively.   Figure 8.9 displays the setup. 
 

PXB-241

Hardware 
Interface

386 Computer

RABI

TETHER: 
20 data lines + 2 power lines + 1 ground

3v Power Supply

ED Laboratory

5v  
Power Supply

Condor

 
 

Figure 8.9   The hardware setup for RABI.   A tether connects the robot to the PXB-241 interface for control, 
and to 2 power supplies for power. 

 
 

                                                 
48  This switch provides the same function as the leg down limit switch.   The leg limit switch could not be used as 

foot down detection since electronically, it is used as a cutoff switch. 
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 By keeping the power supplies off the robot, considerable weight problems are 
eliminated.   Furthermore, by keeping the controlling software separate from the robot, it is easier 
to make modifications to the various networks and algorithms.   As a consequence of keeping the 
computer off-line, the robot must have some method of communicating with it.   The simplest 
method was to connect it, using a tether, to a commercial interface card which provides the 
necessary electronics and buffering. 
 
 The communicating interface consists of 3 buses.  An 8-bit input bus reads sensor 
information from the robot and an 8-bit output bus sends data to the robot for actuator control.   
Finally, data from a 4-bit control  bus sends a command to the robot's control electronics 
telling the robot to either read its output bus or send something onto the input bus. 
 
 All of RABI's software is written in Smalltalk 49.   This language provides a rich object 
oriented environment suitable for robotic software design.   It also allows easy access to the 
PXB-241 interface board by using just two DOS instance methods: outByte:toPort: and 
inByteFromPort.   These two methods allow data to be sent to and read from the interface 
card, thus allowing the sending and receiving of data from the robot.   There is however, a limit 
to the transfer speed of the data through the PXB-241 ports, and thus additional electronic 
circuitry was added to the robot to reduce the transfer rate required for control.   Most existing 
robots require real time control, but RABI is a relatively slow walking machine that does not 
require real time interaction. 
 
 

8.3  Electronics 

 
 Most of the robot's electronics consists of simple IC's, transistors and resistors.   Since all 
of the behaviors are programmed by the interfaced computer, the electronics merely need to read 
in actuator commands and communicate sensor values back to the computer.   There are separate 
electronics boards for leg positioning, leg interfacing and control, sensor interfacing and leg 
selection.   Additional boards were created for head positioning and control, proximity detection 
and light sensing but these are not used on the final version of RABI and will thus not be 
discussed. 
 
 

                                                 
49  Smalltalk V/286 version 1.1  from Digitalk Inc. 
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8.3.1  Leg Positioning 

 
 For all types of actuator control, some form of position feedback is necessary.   For 
RABI, there is a need to know roughly where each leg is at any one time so that coordinated 
walking is possible.   On level surfaces, a precise indication of the vertical position of a leg is not 
required.   The horizontal position of the leg is more important in this type of environment, thus 
there is a need to measure the horizontal position of the leg.   A simple method is to construct an 
analog to digital converter using simple IC's and some resistors as shown in Figure 8.10.   By 
connecting a potentiometer to the shaft of the geared down motor, an analog signal can be 
obtained giving an indication as to the leg's position.   This analog signal can easily be converted 
into digital 3-bit data.    
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Figure 8.10   The schematic diagram for a 3-bit analog to digital converter used to obtain horizontal positioning 
information for each leg. 
 
 

 In the diagram, the left most 100K potentiometer connects directly to the geared motor 
shaft.   The analog voltage from the potentiometer passes through a series of 1K resistors and 
then to another 100K potentiometer used to adjust the sensitivity.   By sampling the voltage at 
different points in this resistor series, different voltages are obtained.  In fact, the voltage is cut in 
a linear fashion such that the voltage drop after each resistor is approximately equal.   By 
connecting a series of voltage comparators (LM339) at these different sampling points and 
comparing the voltage to a common reference voltage, an indication to the amount of resistance 
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in the potentiometer is obtained.   Each of these voltage comparators  emits a high signal when 
the voltage of the potentiometer exceeds their reference voltage.   An 8-to-3 line priority encoder 
(74LS148) then reads in the 8 signals from the voltage comparators and outputs 3-bit data 
indicating the position of the potentiometer, hence the position of the leg.  For leg movement in 
the vertical direction, only 3 states can be identified:  fully extended, fully contracted or 
somewhere in between.   This positioning information can be obtained by reading the leg limit 
switches, hence no positioning circuitry is required. 
 
 
8.3.2  Leg  Control 
 

 Each of RABI's 6 legs has a small circuit board allowing it to interface to the input and 
output buses as well as interpreting commands and moving the leg appropriately.   The schematic 
for this interface is given in Figure 8.11. 
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Figure 8.11   The schematic diagram for the leg control circuitry. 
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 The circuit can be decomposed into pieces making analysis easy.   The two left most 
chunks of circuitry represent the motor control circuitry using an "H" network of  transistors 50.   
This piece of circuitry requires a 2-bit binary signal indicating the direction of the motor.   A 
binary input of 01 or 10 causes the motor to move in clockwise and counter-clockwise directions.   
An input of 00 causes the motor to shut off.   An input of 11 is not allowed since it will attempt 
to turn the motor on in both directions causing overheating of the transistors.   The 74LS85 is a 
4-bit magnitude comparator which handles the horizontal positioning of the leg.   The output bus 
provides a desired 3-bit horizontal position for the leg.   The comparator compares the desired 3-
bit horizontal position with the actual position and produces a less than, greater than or equal to 
resulting signal.   The less than and greater than signals provide the necessary 2-bit information 
required for motor control.   Thus, the leg is always being positioned unless the comparator 
receives a match between the actual and desired position. 
 
 During construction, an overshooting problem arose due to this method of positioning.   
During leg movement, the comparator shuts off the motor once the leg has reached the desired 
position.   When shut off, the motor does not stop immediately, instead it slows down to a stop.   
While slowing down, the leg passes the desired position, causing the comparator to reverse the 
motor in order for the leg to backup to the desired position.   Once reached again, the motor is 
shut off.   Again, the leg overshoots and the process enters into an oscillating pattern around the 
desired leg position, never stopping at the desired position.   This problem causes a kind of 
"twitching" in the legs making walking impossible.   Since the leg motors had much slack in the 
gears, the legs are not accurate enough for 3-bit precision.   Thus, the positioning circuitry was 
reduced to 2 bits to help alleviate the oscillation problem.   Actually, for the tripod walking used, 
only the 2 most extreme leg positions are required. 
 
 A further problem was encountered with the strength of the motors.   The earlier designs 
of RABI all failed due to the accumulated weight of the robot, causing the motors to struggle and 
even fail to support the weight.   A part of the problem was in the leg design itself but another 
part of the problem lied in the electronics.   The controlling circuitry was not powerful enough to 
drive the motors.   As a result, the motors were pulling excessive current from the electronics, 
causing failure.   To fix the problem, an additional circuit was designed for each leg to provide 
enough current to the motors so they would not draw current from the electronics.   The 
schematic for this circuit is shown in Figure 8.12(a) and 8.12(b).    

                                                 
50  This motor control circuit is based upon the circuit given by [McComb 87] page 99. 
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 There are two copies of each of these circuits for a total of 4 additional circuit pieces that 
connect to the motor control "H" network.   Essentially, the inverters (74HC04) provide low 
current buffers for incoming signals from the electronics.   For (a), this incoming signal comes 
from pins 9 and 12 of the 74LS373 which specify the vertical direction to move the leg.   For (b), 
the incoming signal comes from pins 5 and 7 of the comparator which controls the horizontal leg 
direction.   The signal then passes through a 10K biasing resistor which drives a small switching 
MPSA13 NPN transistor.   For the vertical positioning, the signal also passes through the limit 
switch allowing disabling of the motor as shown in (a).   The transistor acts as a switch providing 
direct power to the motor control circuitry, solving the problem of current draw from the 
electronics.   In (b), an additional inverter is added to undo the inversion of the first inverter so 
that the binary signal remains unchanged.   That is, a signal of 00 must not be inverted to 11 
otherwise an illegal state will occur for the motor control circuitry. 
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Figure 8.12   Additional circuitry providing the necessary current to the motors.  (a) circuit 
for vertical motor and (b) circuit for horizontal motor. 

 
 
 The two right most ICs of Figure 8.11 handle the interfacing to the input and output 
buses.   In this circuit a tri-state buffer (74LS244) was used to interface sensor data to the input 
bus.   When the READ ENABLE line is set low, the sensor data is buffered onto the input bus 
and remains on the bus until the READ ENABLE line is set high again.   The output bus uses a 
tri-state octal D-type transparent latch (74LS373).   When the WRITE ENABLE signal is set 
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high, the data on the output bus is latched and stored in the IC.   This data remains stored until 
new data replaces it with a high WRITE ENABLE signal again. 
 
 The 7 bits of data buffered onto the input bus is sensor data corresponding to the leg 
position and switch settings as shown below in Figure 8.13.   The 5 bits of output data are also 
shown in this figure. 
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Figure 8.13   The 8-bit data format for the input and output buses.   Note that bit 7 is null 
on the input data and 5, 6 &7 are ignored from the output data. 

 
 
 Here, the F, C, LU and LD bits are all readings for the foot, collision, leg up limit and leg 

down limit switches respectively.   The F bit is low if the foot is touching the ground and high 
otherwise.   Similarly, the C bit would be low if the leg has collided or bumped into an object 
and high otherwise.   The circuitry was designed such that forward leg movement is halted 
whenever this switch is touched.   Since the robot walks by lifting its leg and swinging it forward 
at the same time, the leg would continue to lift when the switch is closed.   This allowed the 
forward leg movement to wait until the leg fully lifted over the obstacle before it completed its 
swing.   This notion is analogous to a reflexive reaction to an obstacle stimulus.   In essence it is 
an electronic reflex.  The collision switch was eliminated from the final version of RABI since, 
the legs were not accurate enough to warrant this additional sensor.   The LU and LD bits indicate 

whether the leg is fully up or down respectively.   The leg limit switches are in a "closed" state 
normally and become "open" when they are touched.   This allows the switches to cut off power 
to the motor circuitry preventing the leg from extending past its limit. 
 
 The data on the output line represents actuator commands needed to move the leg to the 
appropriate position.   If the U bit is low, the leg will lift up.   Similarly, if the D bit is low, the 
leg will be placed down.   Care must be taken not to send a binary 0 for both these bits at the 
same time, otherwise the leg will not move and the transistors would overheat.   Bits 0, 1 and 2 
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represent 8-bit data for the desired leg position.   Once this data has been latched, the leg will 
begin to move to the desired position and up or down as specified.   The electronic circuitry will 
halt leg motion once the desired position has been reached.   This "self-moving" method of leg 
control frees the programming software from having to continually specify consecutive positions, 
reducing the need for real time control. 
 
 
8.3.3  Robot Interface Circuitry 

 
 Each leg must be able to extract information from the output bus and send sensor 
information onto the input bus.   At any one time the data on the output bus contains a command 
for only one leg, and thus the other legs should ignore the data.   Furthermore, only one leg can 
place data onto the input bus at a time, otherwise the data would clash resulting in garbage 
information and perhaps circuit burnouts.   It should be clear that there must be some circuitry 
directing the data on these two buses.   For this reason, a third bus, called the control bus was 
created.   The control bus is a 4-bit bus that contains controlling information allowing the various 
legs to be selected for input or output data transmissions.   The circuitry required for connecting 
this bus is shown in the schematic diagram of Figure 8.14. 
 
 In this circuit, there are two 3 to 8 line decoders (74LS138) are used to decode the control 
bus signals into 8 control lines each.   One decoder is used to turn on the WRITE ENABLE for 
the appropriate leg 51.   The other decoder is used to turn on the READ ENABLE for the 
appropriate leg or sensor to be read.   The high bit 4 of the control bus is used to select either a 
read or write operation with a 0 and 1 value respectively.   The use of the inverters (74LS04) is 
required since the decoders emit a low signal on the selected line; the OUTPUT ENABLE signal 
must be set high to latch the data in the leg control circuitry.  
  
 
 

                                                 
51  There is room for expansion here if additional actuators are to be added, such as head movements. 
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Figure 8.14   A schematic diagram for the control bus circuitry. 
 
 
 The Antennae signal coming from the bottom decoder of Figure 8.14 is used to enable the 
reading of the robot's body sensors.   This signal is fed into an additional circuit that latches 
various sensor data onto the input bus.   A schematic for the additional circuitry is given in 
Figure 8.15. 
 
 There are actually two copies of this circuit; one for head sensors and one for body 
sensors.   Only one is being used now since RABI only needs 6 lines for its antennae, leaving 10 
data lines for expansion.   The 6 antennae signals come directly from the sensors and are latched 
onto the input bus when the READ ENABLE line is set low.    
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Figure 8.15  A schematic diagram for the sensor latching 
circuitry. 

 
 
 With both these circuits the PXB-241 interface allows RABI's software to send 
commands on the output bus resulting in leg movement, and read in sensor values from the input 
bus.   Table 2 depicts all possible functions (commands) that may be sent to the robot.   The first 
half of the commands represent input commands in which the computer can read sensor and 
switch values from the robot.   The second half of the commands represent actuator or control 
functions allowing the legs to be moved to a specified horizontal position and vertical direction. 
 
 
8.4  Future plans 

 
 If RABI was to be redesigned,  all of the electronic circuitry would be modified and some 
even eliminated.  Some of the electronic circuits could have been simplified greatly since the 
resolution of the horizontal leg position was reduced to 2 bits.   Furthermore, the software only 
makes use of the most extreme leg positions.   Thus, the position sensor circuitry is not needed 
since limit switches would perform the same task. 
 
 All of the basic neural circuits for the instinctive behaviors would be electronically 
constructed.   This would allow the computer interface to be greatly simplified since the interface 
would only need to communicate through a higher level protocol.   For example, the computer 
could send out commands such as "walk forward", "stop", "turn left", "turn right", "follow 
edges", "wander", "stay in vacant areas", "go to light", etc.   The electronic neuron networks 
would actually perform the desired functions and send back only sensor information such as 
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antennae readings and light sensor readings.   In fact, if the robot is to be programmed with only 
instinctive behaviors and no learning or map building is required, then the computer interface is 
not needed and the addition of batteries to the robot would make it completely autonomous and 
self contained. 
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- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

- - - - - - - -
- - - - - - - -

- - - U D P2 P1 P0

- - - U D P2 P1 P0

- - - U D P2 P1 P0

- - - U D P2 P1 P0

- - - U D P2 P1 P0

Function Cntrl. Input Data Output Data

 
 

Table 2   All possible robot commands.   For commands from 0 to 7 the resulting input data is described.   
Also, for each command from 8-15, the required output data format is specified. 

 
 
 As for future mechanical changes, the entire robot would be reduced in size.   Since the 
robot walks using only a tripod gait, then only two motors are actually required to achieve this.   
Consider a small tank-like robot with 3 wheels per side.   The legs could be attached to each of 
these wheels such that they operate in a kind of stirring motion with three legs down at any one 
time.   This reduction in motors would reduce most of the weight problems allowing the use of 
smaller motors, therefore reducing the overall size of the robot.   With nanotechnology and VLSI 
technology, it is possible to create a very small robot with the performance of RABI.   It is 
unclear, however, as to the reducibility of the map building and learning features of the software 
version of RABI.   Thus, more experimentation needs to be done with the reducing of software, 
hardware and power requirements needed for learning. 
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8.5  Summary 

 
 The various versions of RABI provided insight into the mechanical and physical 
problems of legged robot design.   As the robot evolved,  the leg designs became more efficient 
and stable.  The electronic circuitry required to control RABI is simple and inexpensive, and 
provided a suitable interface for robot / computer interaction.   With the use of simple 
mechanical and electronic sensors, the overall robot is reduced in size and weight.   Eventually, 
these sensors may be improved upon so as to reduce their size and increase their efficiency, 
resulting in an even lighter weight design.   RABI's physical design has the potential to be 
drastically reduced in size through the elimination of the computer interface.   Such a reduction is 
a step towards smaller and smaller robots of the future. 
 
 

 



 201 

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼  
 

Appendix A 
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A1  Spreading Activation 
 
 The following is a list of pseudo code routines required for spreading activation between 
the memory neurons  (see section 6.5.2).   The routines are used to spread activation such that a 
shortest path can be determined to multiple destinations. 
 
 
InitiateSpreadingActivation(D1, D2, D3, ..., Dn) 
 { 
 "Initiate the spreading of activation from each of the given neurons" 
 
 Reset all memory neurons to have zero activation. 
 FOR each destination neuron Di DO 
 { 
 Set output of Di to 1. 
 SpreadActivationAdjacent (Di). 
 } 
 } 
 
SpreadActivationAdjacent (N) 
 { 
 "Spread activation adjacent to neuron N" 
 
 FOR all prev neurons Pi of Di DO 
 SpreadActivation (Pi) 
 FOR all next neurons Ni of Di DO 
 SpreadActivation (Ni) 
 } 
 
SpreadingActivationFrom (N) 
 { 
 "Spread the activation from a neuron N" 
 
 IF N is an edge neuron THEN 
 SpreadActivationFromEdge (N) 
 ELSE 
 SpreadActivationFromCorner (N) 
 } 
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SpreadingActivationFromEdge (N) 
 { 
 "Update the activation of an edge neuron N and continue the activation spreading it adjacent" 
 
 LET Pn = previous neuron of N.        
 IF DominatesEdge (Pn, N) THEN { 
 IF output of Pn > 0 THEN 
 set output of N to (output of Pn + storedEnergy of N) * -1. 
 ELSE 
 self output of N to (output of Pn - storedEnergy of N). 
 SpreadActivationAdjacent (N) } 
 
 LET Nn = next neuron of N.          
 IF DominatesEdge (Nn, N) THEN { 
 IF output of Nn > 0 THEN 
 set output of N to (output of Nn + storedEnergy of N). 
 ELSE 
 self output of N to (output of Nn - storedEnergy of N). 
 SpreadActivationAdjacent (N) } 
 } 
 
 
SpreadingActivationFromCorner (N) 
 { 
 "Update the activation of a corner neuron N and continue the activation spreading it adjacent" 
 
 LET Pn = previous neuron of N .        
 IF DominatesCorner (Pn, N) THEN { 
 IF output of Pn > 0 THEN 
 set output of N to output of Pn * -1. 
 ELSE  
 self output of N to output  of Pn. 
 SpreadActivationAdjacent (N) } 
 
 LET Nn = previous neuron of N .     
 IF DominatesCorner (Nn, N) THEN 
 set output of N to output of Nn 
 SpreadActivationAdjacent (N) 
 } 
 
 
DominatesCorner (N1, N2) 
 { 
 "Return whether or not N1 has an activation that dominates N2" 
 

IF output of N1 is 0 THEN  RETURN (false). 
 IF output of N2 is 0 THEN RETURN (true). 
 IF abs(output of N1) < abs(output of N2) THEN  RETURN (true) 

 ELSE RETURN (false) 
 } 
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Dominates Edge(N1, N2) 
 { 
 "Return whether or not N1 has an activation that dominates N2" 
 
 IF output of N1 is 0 THEN RETURN (false). 
 IF output of N2 is 0 THEN RETURN (true). 
 IF (abs(output of N1) + stored energy of N2) < abs(output of N2) THEN RETURN (true) 
 ELSE RETURN (false) 
 } 
 
 
 
A2  Generalization 
 
 The following is a list of pseudo code routines required for the basic matching algorithm 
that determines whether or not two layers of neurons match (see section 6.2.4). 
 
 
Match (L1, L2) 

{ 
"Determine whether the two layers match" 
LET S = the first neuron of layer L1. 
FOR each neuron Ni of layer L2 DO 

MatchFrom(Ni,S) 
} 
 

MatchFrom (N1, N2) 
{ 

"Determine whether the two layers match from these two neurons" 
IF Matches(N1, N2) THEN 

RETURN (MatchFrom (N1 next , N2 next) 
ELSE RETURN (false) 

} 
 

Matches (N1, N2) 
{ 

"Determine whether the two neurons match" 
IF N1 is a different type of neuron than N2  (i.e. corner and edge) THEN 

RETURN (false) 
IF the stored energy of N1 is within an allowable error from the stored energy of N2  THEN 

RETURN (true) 
ELSE  

RETURN (false) 
} 
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