
Rigorous Movement of Convex Polygons  
on a Path Using Multiple Robots 

 

Pierre Chamoun 
School of Computer Science 

Carleton University 
Ottawa, Canada 

pchamoun@connect.carleton.ca 

Dr. Mark Lanthier 
School of Computer Science 

Carleton University 
Ottawa, Canada 

lanthier@scs.carleton.ca
 
 

Abstract—This paper describes an approach for pushing a 
convex polygonal object with rigor using multiple robots, along a 
desired rectilinear path in a two-dimensional polygonal 
environment. The goal is to rigorously push the object along the 
path while preserving its orientation and alignment, as well as 
precisely rotating it about its center when necessary. A path 
planning algorithm is presented which computes a shortest-path 
approximation between two points in the environment. In 
general, the path requires both translations and rotations of the 
object along the way. Robots are arranged into three groups, 
where each group is assigned a task of either pushing the object 
towards its goal or adjusting it as it veers off from the desired 
path. Each robot is computationally simple in that it merely 
moves towards a target point somewhere on the boundary of the 
object. As the robots move towards these target points, they 
cooperatively push the object with no interaction between one 
another. The robots rely on only three parameters to push the 
object: the orientation of the object, the current target point and 
the task they are required to perform. The target points are 
provided by a global control & monitoring system that monitors 
the progress and stability of the robots as they push the object 
along the path, providing direction to the robots in terms of tasks 
such as pushing, rotating, re-alignment, re-orientation or re-
positioning commands. We verified our algorithm with a number 
of experiments that address the usefulness of the solution as well 
as the effects that an increase in the number of robots will have 
on the runtime and the data communication load. 

Index Terms—multi-robots, pushing, piano movers, 
cooperative transportation, swarm intelligence, path planning 
configuration space, central controller. 

I.  INTRODUCTION  
One of the ultimate goals in robotics is to design robots that 

are capable of planning and accomplishing tasks independent 
of human intervention. For example, multiple robots can be 
assigned to push heavy items in a factory, transport dangerous 
goods, or push a boat into a port. The use of multiple robots to 
accomplish such tasks allows the object to be pushed 
rigorously. In addition, the object may be too heavy for just one 
or two robots to push. The problem addressed in this paper is to 
design a strategy to enable multiple robots to rigorously push 
an object along a polygonal path in a two-dimensional 
environment containing polygonal obstacles. To be more 
precise, the problem statement is as follows:  

 

Let W be the workspace (2D Euclidean space) containing a 
set O={O1,O2,…,On} of stationary convex polygonal obstacles. 
Let M be a convex polygon that needs to be transported from a 
start point s to a destination point t in W. Assume that M is to 
be pushed along a piecewise linear path P={p1, p2, …, pk}, 
where p1 = s and pk = t by a set of robots R={R1, R2, …, Rr}. 
Assume that the system is noise-free in that each robot is able 
to perform point-to-point travelling without error. The robots 
attempt to translate M along P such that the center of mass of 
M (i.e., defined as a reference point C) remains on P at all 
times. During translation from s  to  t, rotations of M (about 
point C) are also allowed at any point pi, ∀ 1 ≤ i ≤ k. It is 
possible that M may deviate from P since the robots do not 
move precisely in real life, however our algorithm is designed 
to minimize such path deviations by detecting and correcting 
misalignments along the way. 

Our overall control system is shown in Figure 1. It consists 
of a global controller (GC) that monitors the motion of M and 
provides the robots with the necessary information in order to 
push M with rigor along each segment of P. We assume that all 
robots remain active and do not become incapacitated during 
the course of the operation. Communication between the robots 
and the GC is minimal and limited to providing (a) target 
points in W for the robots to move towards, (b) the orientation 
of M, and (c) the task to be performed. It is assumed that the 
GC has complete global knowledge of W at all times including 
the stationary obstacle set O, the trajectory path P, the position 
and orientation of M and the source/target points s and t.  

 

 
Figure 1: The overall system design. 



The GC initiates a Path Monitor process that acts as a 
sensor system which is capable of accurately measuring the 
location and orientation of the robots and M at all times while 
being pushed along P. The movement along P is broken down 
into individual translations of M along each segment of the path 
pipi+1, ∀ 1 ≤ i < k as well as potential rotations at each point pi, 
∀ 1 ≤ i ≤ k to re-orient M for the next segment.  Part of the GC 
is the Stabilizer Tool which is a data structure that is capable of 
providing the robots with target points around the boundary of 
M to move towards as well as the orientation of M. 

The Path Planner (PP) is used to generate an efficient (e.g., 
shortest) path P. It makes use of a graph that is constructed 
from all of the collision-free configurations of M.   Collision-
free configurations are a subset of what is called configuration 
space (C-Space), that was first proposed by Lozano-Perez et al. 
in 1979 [14][15], where each configuration is a set of all the 
rotational poses of M at a specific reference point C. Note as 
well, in Figure 1, that each robot has its own set of behaviors, 
which includes taxiing, avoiding collisions, pushing, rotating, 
repositioning, reorienting and realigning; each of which is 
activated based on certain conditions. The behavior design of 
the robots is based on the subsumption architecture model 
proposed by Brooks in 1986 [11].  

II. PREVIOUS WORK 
The work presented here combines the area of 

computational geometry motion planning algorithms with 
multi-robots systems.   The subject of path planning has been 
extensively researched, but the work most applicable to ours is 
that of Lozano-Perez et al. in 1979 [14]. They describe a 
collision avoidance algorithm for planning a safe path for a 
polygonal object moving among known polyhedral objects that 
are considered forbidden regions. Later Lozano-Perez [15] 
extended this idea and defined what is known as Configuration 
Space (C-Space). It was shown by Reif [25] that computing   
C-Space is PSPACE-hard, which implies NP-hard. The main 
problem is that the dimension of C-Space is unbounded. An 
excellent chapter by LaValle [13] on C-Space explains this 
notion in more detail. The work by Lozano-Perez et al. 
triggered additional work by Brooks et al. [16][17] to find the 
shortest path from a start position of an object to a goal point 
using C-Space. In 1982, Lozano-Perez and Brooks joined 
efforts to implement an algorithm based on C-Space for 
polygonal obstacles and a moving object with two degrees of 
freedom. Efforts in finding an accurate algorithm for Cfree 
started with Schwartz et al. [18], who proposed to decompose 
Cfree into a collection of non-overlapping cells and to represent 
cell connectivity using a graph. In 1988, Canny [19] proposed 
an algorithm that iteratively seeks a low-dimensional retraction 
of Cfree by employing the techniques from differential topology. 
This algorithm was more efficient and less complex than that of 
Schwartz et al. A more recent paper by De Berg et al. [20] on 
computing push plans for an object by robots, makes use of C-
Space to find the shortest path.  

Several papers have been written, and simulations 
implemented, to study the underlying behavior of social 
insects, multi-robot and single-robot systems [11][12][21]. 
Social insects such as ants can transport a prey to their nest 
with minimal interaction with each other or the environment 
[23]. They self-organize to accomplish such tasks where their 

behavior is not directed by a central controller. A study done by 
Deneubourg et al. [8] investigating the transport of a worm in 
the ant Formica polyctena, shows that the transport became 
suddenly successful after a number of unsuccessful attempts. 
Deneubourg et al. attribute the outcome to the forces applied 
cooperatively by the ants which finally aligned and caused the 
worm to be transported in the right direction [23]. Bonabeau et 
al. [12] presented a decentralized system to solve cooperative 
transportation by a group of robots that act like ants. Chen et al. 
[3] used a swarm intelligence model where self-organized 
systems of homogeneous robots were built around simple 
behaviors, obtaining a decentralized and intelligent global 
behavior. Wang et al. [22] proposed a decentralized system 
where the object is surrounded with series of robots and the 
position of the object is controlled by the position of each robot 
that encloses and pushes the object.  

The time overhead required for repositioning and 
realignment can be reduced by introducing the division of labor 
or what is called task allocation.  Kube et al. [24] have devised 
a mechanism for repositioning and realignment inspired by 
social insects where the robots reposition randomly around a 
box. Our design is also similar to that of Lewis et al.[6] where 
the concept of a virtual structure is introduced. Using the 
virtual structure approach, a general control strategy was 
developed to force an ensemble of robots to behave as if they 
were particles embedded in a rigid structure. One of the most 
studied implementations is that of Liu et al. [7], where pusher 
robots are tightly coupled and a virtual robot is instructed to 
help the robots to keep a static distance and orientation when 
pushing.  

Our work differs in a four main ways from the previous 
work just described.   First, our work allows arbitrary convex 
polygons to be pushed, not just rectangular boxes 
[1][2][3][5][6][7][22][25].   Second, our work allows both 
translations and rotations of M, resulting in a more flexible and 
capable solution.  Third, the objective of our work is to 
maintain accurate motion as M is being pushed.   Hence we 
focus on monitoring the progress of the task to ensure that the 
overall solution provides smooth, rigorous motion of M 
throughout the task at hand by adjusting the robot-pushing 
strategy so that the robots "get back on track" when M  begins 
to deviate from the desired path. Lastly, we provide some 
numerical results representing the deviation of M from the path 
P which can be used to compare the solution to future work. 

III. PLANNING THE OBJECT’S PATH 
The path planning algorithm presented in our approach is 

comprised of two main sub-sections: graph construction and 
path construction. First, multiple two-dimensional grid 
subgraphs are constructed where each graph denotes a layer 
(see Figure 2a). These layered subgraphs are interconnected 
with edges to create a final graph G. Within a layer, the vertices 
represent a translation of M about its center C, where M has a 
fixed orientation (i.e., rotation). Each successive layer 
represents a unique orientation of M.  Once G is constructed 
and its edges are assigned weights, Dijkstra’s algorithm is used 
to generate a shortest path approximation for M’s trajectory.  
Figure 2a shows a graph with only three layers. M starts at the 
bottom layer and then traverses G until it reaches the 
destination point. As M moves along P, it traverses edges in the  



 
(a)    (b) 

Figure 2: (a) Graph with only three layers.(b) A fully generated P. 
 
graph G.  Travel along edges within the same layer of G 
represents a translation of M while travelling along edges of G 
that interconnect two layers represents a rotation of M about its 
reference point C.  Figure 2b shows how M moves and rotates 
along P as the graph G is traversed.  

A. Graph and Path Construction 
Let Li, 1≤i≤ l, be a grid graph with m×n vertices VL and 

edges EL such that {∀ u,v∈VL, e∈EL | u≠v, |e|=d } where               
d is an arbitrary positive non-zero constant length, u=(xu,yu) 
and v=(xv,yv) are adjacent and connected with an edge e iff  
|uv|=d and (xu=xv  and  yu≠ yv) or (xu≠xv  and  yu= yv). Let Ww 
and Wh be respectively the width and height of W where Ww= 
d(m-1) and Wh= d(n-1). 

Figure 3a shows an upright square lattice of m×n vertices 
in W where each point represents the center point C of M and is 
positioned at equal distance d from vertically and horizontally 
adjacent vertices. The top-left vertex is located at the 
coordinate (0,0) relative to W. The initial step in constructing 
graph Li is shown in Figure 3b, where the vertices are 
connected with edges. Note the length d of each edge in Li and 
the width and height of W. Subsequently, consider translating 
M to each vertex in Li. It is possible that some of the translated 
copies of M might overlap obstacles in W, as shown in Figure 
4a.  Such vertices are removed along with their incident edges 
to get the final form of the subgraph L1 which would denote the 
first layer of G (see Figure 4b). The subsequent layers from L2 
to Ll are constructed in a similar manner to L1 but with M 
rotated from layer to layer at a certain angle denoted by α1 
where 1 ≤ l ≤ 360  (see Figure 4b-c). Moving up in the layers, 
the rotation of M increases such that α1=0 at L1, α2=a at L2, 
α3=2a at L3, … , αl=(l-1)a at Ll. 

Now that the layers are constructed, the next step is to 
connect them with edges.  Let Ik be the set of layer-
interconnecting edges between layers L(k-1) and Lk where 1 < k 
≤ 360/a and let vertex vij on Lk correspond to vertex vij on L(k-1) 
(see Figure 2a). Therefore, the vertices that join two adjacent 
layers have the same x and y coordinates in C-Space.  If, 
because of collision with obstacles, vertex vij in layer L(k-1)  or 
Lk is missing, then no interconnecting edge is added.  The 
graph G={L1, L2,…, Ll }∪ {I1, I2,…, Il } is therefore an 
undirected graph with at most lmn vertices and at most l(2mn–
m–n)  + (l-1)mn edges. 

The length of d could affect the possibility of finding a path 
P in G.  Figure 4b shows that L1 is disconnected where s lies in 
one component and t in another. Therefore, it is not possible to 
create a continuous path P from s to t in this single layer. This 
will force the algorithm to seek vertices in the adjacent layers 
of G (i.e., to require a rotation of M).  However, by decreasing  

   
(a)    (b) 

Figure 3: (a) Set of m×n vertices in W. (b) The grid graph. 
 

 
(a)     (b)            (c)  

Figure 4: (a) Overlapped copies of M with the obstacles. (a) Removing the 
vertices along with their incident edges to get 1st layer. (c) Applying a rotation 
to M to construct the 2nd layer. 

 
d, more configurations of M will be valid and a path P from s 
to t is more likely to be found. 

The length of d could affect the possibility of finding a path 
P in G.  Figure 4b shows that L1 is disconnected where s lies in 
one component and t in another. Therefore, it is not possible to 
create a continuous path P from s to t in this single layer. This 
will force the algorithm to seek vertices in the adjacent layers 
of G (i.e., to require a rotation of M).  However, by decreasing 
d, more configurations of M will be valid and a path P from s 
to t is more likely to be found. 

B. Extending The Algorithm to Accommodate Robot Bodies 
We have shown how P is generated by the path planner. 

However, in order to maintain a rigorous balanced push by the 
robots, we need to expand the size of M such that the robots 
have enough space to maneuver around it. We expand M  by an 
amount which is 6 times the diameter of the robots in order to 
leave enough space (i.e., defined as a buffer zone) so that the 
robots will stay away from M as much as possible while 
pushing or repositioning.  The resulting expansion is denoted as 
M’ (see Figure 5). It is this expanded shape M’ which is used 
during the graph construction process to ensure that the 
translations and rotations of M can accommodate space for 
maneuverability.  Once P has been generated, M’ is no longer 
needed. 

 
(a)   (b) 

Figure 5: (a) The buffer zone for M. Z1,Z2,Z3 are areas in the buffer zone.  
(b) Growing M to M’ where a rotation is required. 

 



The buffer zone can be divided in three areas: (1) Area Z1 
is closer to the outer edges of the buffer zone. This area is a 
waiting zone for the robots when they are not needed. (2) Area 
Z2 is a pathway for robots during a repositioning task.  (3) 
Area Z3 is a "stand clear" zone for robots in a repositioning 
task in order to avoid collisions with other robots. 

IV. MULTI-ROBOT OBJECT PUSHING 
As discussed, the GC uses the path planner to find a path 

P from s to t. In addition, the GC assigns multiple robots to 
push M. Each robot is able to push M by seeking a target point 
positioned at the boundary of M. As the robot reaches the target 
point, it collides with M causing it to move.  The force applied 
to M by the robots while pushing could cause it to rotate or 
stray away from the original path. To avoid these issues, our 
algorithm creates and maintains a stabilizer and a repositioning 
path. 

The path provided by the path planner is broken down into 
a set of tasks denoted by a task path list, T, that the robots are 
required to perform in order to push M along the path. A task 
has the following properties: task type, orientation of M and 
path segment. Three groups of tasks are used: “push”, “rotate” 
and “reposition” (see Figure 6). Define a sub-task to be a 
temporary task that has more priority than a task. When 
pushing M, three types of robots (i.e., denoted by robots 
specialties) are assigned to the task: “pushers”, “left adjusters” 
and “right adjusters”. Moreover, while pushing, the orientation 
and alignment of M could deviate from their true value. 
Therefore, two sub-tasks are used: an orientation sub-task and 
an alignment sub-task.  In addition, when rotating M, left and 
right adjusters are used to perform the task where one group of 
robots push from the left side of M and another from the right 
side. The robots from both sides are positioned at the boundary 
of M based on the angle of the edge they need to push against 
to effectively perform an in-place rotation (see Figure 7a) .  

While rotating, the robots unintentionally translate M from 
its center of rotation. Therefore, a push sub-task is used to 
translate M back to its original center of rotation. The 
reposition task is performed when the robots need to change 
positions in order to push in a different direction. The path 
monitor observes the progress of each individual task and upon 
task completion it informs the robots of their next task. 

Consider a robot moving towards a target point provided 
by the stabilizer. A target point could be (1) a point pi, 1≤ i ≤k, 
of path P, (2) a point on the boundary of M denoted as a target-
balance point used for pushing or rotating M or (3) a point 
close to a target-balance point denoted as a target-rest point. A 
target-rest point keeps the robot away from M but at a close 
distance (i.e., 2.5d, where d is the diameter of the robot) as a 
“standby” position (see Figure 7b), as well as away from other 
robots that are performing a repositioning task in order to avoid 
prolonged stagnation situations. The target-rest point falls in 
zone Z3. The computation of these target points depends on the 
type of task to be performed. 

The repositioning path is a path for the robots to follow 
while performing a repositioning task, where q0 is the first 
point on the path such that angle ∠q0 p1 p2=180o.  Let ui u(i+1) 
be a segment in an n-segment repositioning path, 1≤ i <n. Each 
segment uiu(i+1) is then divided into z = |uiu(i+1) | / d' equally-
spaced sub-segments q(i,j)q(i,j+1), 1≤ j <z, where d' is a constant. 

 
Figure 6: The path showing the various push, rotate  
and reposition tasks. 

 
(a)    (b) 

Figure 7: (a)The stabilizer showing the target points and the buffer zone.  
(b) Repositioning path around M. 

 
Figure 7b shows that the repositioning path falls in the Z2 

zone between the outer boundary of the buffer zone and the 
boundary of M to keep the robots away from M while 
repositioning. This allows enough space for a robot to pass 
beside a repositioning robot in between M and the repositioning 
path. If the robots touch M while repositioning they could 
cause it move unintentionally. 

V. EXPERIMENTS 
Our experiments were aimed at measuring the amount of 

deviation from the path  as M was being pushed. We performed 
experiments with various shapes of M as well as with various 
numbers of robots, ranging from 3 to 48 robots divided into 
teams of three.   We also performed experiments to investigate 
how data communication load and runtime change as more 
robots are assigned to the task.   For the sake of brevity, we 
present here results from just one shape of M.   See the work of 
Chamoun [4] for further experimental data. 

The deviation distance is measured in pixels but can be 
converted into any appropriate units (e.g., cm, mm, inches). In 
addition, the units can be chosen with respect to the diameter of 
the robots or the size of M. Although the robots are simulated 
as separate threads, the time measurements for our experiments 
are based on the synchronous time-steps of the GC where each 
time-step represents a unit of time with respect to an iteration 
loop of the GC.  Our experiments were performed in Java using 
Eclipse and has been tested in the following environment: 
Windows 7 Enterprise 64-bit, Intel ® Core ™ i7 CPU, Q820 @ 
1.73GHz, 16GB RAM. 

 



A. Convex Polygon Experiment 
The shape of M for this experiment is shown in Fig. 8a.  

The target-balance points are calculated based on the angle of 
the edges that intersect with the stabilizer axis.  In this 
experiment, the diameter of M was calculated as 120 pixels, 
which is the diameter of the smallest enclosing circle of M. 

The charts in Figure 9 show the deviation distance during 
rotating and pushing tasks for a varying number of robots. 
Notice that when less robots are used, the deviation remains 
quite small (i.e., at most 2% of M 's diameter when pushing and 
around 9% during rotations).   When 48 robots were used, the 
deviation increased to up to 19%.   Such an increase was a 
recurring observation in our experiments since the interference 
between the robots and M becomes higher as more robots are 
used, which actually causes M to stray away from the path 
multiple times.  This can be verified by examining Table 2, 
which shows the repositioning collisions during this particular 
experiment.   This experiment actually produced the most 
deviation, when compared to the others experiments which 
typically ranged from about 9% to 15% deviation, with respect 
to the diameter of M. 

Table 2 shows the average amount of time that each 
behavior was active during the experiment. Notice that as the 
number of robots increase, the amount of time spent pushing 
generally decreases, due to the increase in re-orientation, re-
positioning and waiting behaviors, although the average time 
spent in each behavior is somewhat consistent. 

B. Data Communication Load 
Throughout the task, the robots communicate with the GC 

to obtain updates regarding the position they should head 
towards, repositioning path coordinates and orientation of M.  
In our experiments, we assumed that the communication 
bandwidth between the GC and robots has no limit.   
However, we were interested in determining the data 
communication load between the robots and the GC.  Table 3 
shows the average number of bytes sent and received per robot 
and the number of bytes sent and received per robot per time 
step during the task.  As the number of robots increase, the 
data sent/received per robot decreases (i.e., robots 
communicate less overall) because the task is completed 
sooner.   A better indicating of the data communication load 
must take into account the completion time of the task.  
Hence, the table also shows the average amount of 
communication per robot per time-step (e.g., per millisecond). 

 

 
(a)      (b)        (c) 

Figure 8: (a)The shape used for M, showing target-balance points being non-
perpendicular to edges of M. (b) Translations of M along P.     (c) Trace along 
P while M was being pushed by 24 robots. 

 

 
                     3 robots               12 robots 

 
                     24 robots               48 robots 

Figure 9: Deviation distance per time-step during the experiment. 
 
The average number of bytes per time-step is calculated by 

multiplying the average amount of bytes sent and received 
from all the behaviors by the number of robots and then 
dividing that by the number of time-steps for the simulation. 
Notice that the average number of sent/received bytes per 
robot per time-step decreases as more robots are used.  This 
occurs because during repositioning, some robots might 
exchange more data with the GC than other robots since it 
depends on their distance from the next target point they are 
required to reach.  Also, the number of points to follow on the 
repositioning path could vary from one robot to another, hence 
when averaged, the amount of data being exchanged per robot 
is smaller. 

 
Table 1: Average amount of data sent & received (in bytes) between the 
robots and the GC.  

 
Bytes Sent/Received 

3 
robots 

12 
robots 

24 
robots 

48 
robots 

per robot 659319 244338.05 168266.78 114746.32 
per robot per time-step 41.33 38.74 34.28 30.41 

 
 
Table 2: Number of collisions during the repositioning tasks. 

Number of collisions 3 robots 12 robots 24 robots 48 robots 
Robot-to-Robot 19.00 417.00 860.71 2516.88 
Robot-to-M 11.67 12.83 31.50 191.94 

 
 

Table 3: Average amount of time a behavior was active, for  
various team sizes during the experiment. 

Behaviors 3 robots 12 robots 24 robots 48 robots 
Pushing 25.62% 26.20% 24.64% 22.64% 
Rotating 15.35% 12.61% 15.50% 10.39% 
Realignment 25.62% 26.20% 24.64% 23.61% 
Reorientation 0.00% 0.82% 0.76% 7.51% 
Repositioning 0.06% 0.15% 0.38% 0.97% 
Waiting 33.34% 34.02% 34.07% 34.88% 

 



I. CONCLUSION 
In this work, we presented a strategy for pushing, with 

rigor, a convex polygonal object on a path using multiple 
robots in a 2D environment with polygonal obstacles. Our 
strategy is based on previous research in three areas: path 
planning and configuration space as described by Lozano-
Perez [14][15], the design of behavioral models as described 
by Brooks [10][11], and cooperative transport and swarm 
intelligence as described by Bonabeau et al. [12][23].  

When compared to previous work, our work differs in that 
we allow the pushing of arbitrary convex polygons as opposed 
to just simple  rectangular boxes.   Also, our work makes use 
of computational geometry techniques to compute an efficient 
rectilinear path on which to push the object, which allows both 
translations and rotations of the object.   Our work differs as 
well in that we aim to push the object rigorously, attempting to 
minimized the amount of deviation from the path throughout 
the task.   To our knowledge, previous work has not focused 
on transporting objects using rigorous movement. 

Through experimentation, we were able to verify that our 
algorithm was successful in keeping the deviation from the 
path below 20% of the diameter of the object being pushed.  
We believe that this can be improved further by modifying the 
algorithm so that it defines additional target-balance points 
along the perimeter of the object being pushed instead of 
confining them to three unique groups.   

Regarding future work, we are considering alterations to 
the algorithm that allow robots to switch specialties on-the-fly, 
likely allowing the task to be performed with just one or two 
robots that perform multiple tasks in sequence, such as 
pushing, adjusting, and rotating. This could reduce the 
repositioning requirements of the robots and as a result 
decrease the number of unnecessary collisions with the object 
being pushed. Also, although our algorithm has been 
implemented for convex polygons, we believe that it can be 
easily extended to handle curved-shaped objects because the 
stabilizer design is flexible enough to work with any object 
shape requiring simply the computations of tangents to the 
curved edges.  Lastly, in regards to data load, an improvement 
can be made by implementing a mechanism to enable robots 
within the same team to share the same information so as to 
reduce the data communication between the robots and the 
GC. 

 

REFERENCES 
[1] Trojanek, P., Szynkiewicz, W., and Zieliński, C., “Definition and 

composition of individual robot behaviours in cooperative box pushing,” 
In Proceedings of the 13th IEEE IFAC International Conference on 
Methods and Models in Automation and Robotics. Technical University 
of Szczecin, pp. 29-30, 2007. 

[2] Parra González, E.F., Ramírez-torres, J., and Toscano-Pulid, G., “A New 
Object Path Planner for the Box Pushing Problem,” Electronics, 
Robotics and Automotive Mechanics Conference, pp. 119-124, 2009. 

[3] Chen, X., and Li, Y., “ Modeling and simulation of a swarm of robots 
for box-pushing task,” 12th Mediterranean Conference on Control and 
Automation, Kusadasi, Aydin, Turkey, 2004. 

[4] Chamoun, P., “Rigorous Movement of Convex Polygons on a Path 
Using Multiple Robots,” Master's Thesis, School of Computer Science, 
Carleton University, Ottawa, Canada, 2012. 

[5] Yamada, S., and Saito, J., “Adaptive action selection without explicit 
communication for multi-robot box-pushing,” Systems, Man and 
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 
31(3). pp. 398–404, 2001. 

[6] Lewis, M.A., and Tan, K.H., “High Precision Formation Control of 
Mobile Robots Using Virtual Structures,” Journal Autonomous Robots 
archive, vol 4 Issue 4, 1997. 

[7] Liu, S., Liu, F. and Tang, F., “Cooperative transport strategy for 
formation control of multiple mobile robots,” Journal of Zhejiang 
University, Science C, vol 11, pp. 1-13, 2010. 

[8] Deneubourg, J.L., Dorigo, M., and Labella, T.H., “Self-Organised Task 
Allocation in a Group of Robots,” In Proceedings of the 6th International 
Symposium on Distributed Autonomous Robotic Systems, Tokyo, 
Japan, 2004. 

[9] Karigiannis, J.N., Rekatsinas, T.I., and Tzafestas, C.S., “Fuzzy Rule 
Based Neuro-Dynamic Programming for Mobile Robot Skill Acquisition 
on the basis of a Nested Multi-Agent Architecture,” 2010 IEEE 
International Conference on Robotics and Biomimetics – RoBio, 2010. 

[10] Brooks, R.A., “A robot that walks: Emergent behaviors from a carefully 
evolved network,” In Beer, R., et. al. (eds.), Biological Neural Networks 
in Invertebrate Neuroethology and Robotics, Academic Press, 1993. 

[11] Brooks, R.A., “A Robust Layered Control System for a Mobile Robot,” 
IEEE Journal of Robotics and Automation, vol 1 RA-2, pp. 14-23, 1986. 

[12] Bonabeau, E, and Kube, C., “Cooperative transport by ants and robots,” 
Journal of Robotics and Autonomous System, vol 30, pp. 85–101, 2000. 

[13] LaValle, S.M., “Planning Algorithms,” University of Illinois, “The 
Configuration Space,” Chapter 4, 2006. 

[14] Lozano-Perez, T., and Wesley, M.A., “An algorithm for planning 
collision-free paths among polyhedral obstacles,” Communication of 
ACM, vol 22, pp. 560-570, 1979. 

[15] Lozano-Perez, T., “Spatial Planning: A Configuration Space Approach,” 
IEEE Transactions on Computers, vol C-32-2, pp. 108-120, 1983. 

[16] Brooks, R.A., “Solving the Find-Path problem by representing free 
space as generalized cones,” M.I.T. Artificial Intelligence Lab., Rep. 
AIM-674, 1982. 

[17] Brooks, R.A. and Lozano-Perez, T., “A subdivision algorithm in 
configuration space for Find path with rotation,” M.I.T. Artificial 
Intelligence. Lab., Rep. AIM-684, 1982. 

[18] Schwartz, J.T., and Sharir, M., “On the piano movers II. General 
techniques for computing topological properties on real algebraic 
manifolds,” Adv. in Applied Mathematics, vol 4, pp. 298-351, 1983. 

[19] Canny, J.F., “The complexity of robot motion planning,” Institute of 
Technology Cambridge, Massachusetts, MIT Press, 1988. 

[20] De Berg, M., and Gerrits, D.H.P., “Computing push plans for disk-
shaped robots,” In Proceedings of 2010 IEEE International Conference 
on Robotics and Automation , pp. 4487-4492, 2010. 

[21] Kube, C. R.,  and Zhang, H., “Collective Robotics: From Social Insects 
to Robots,” Adaptive Behavior, vol 2, 189-218, 1993. 

[22] Wang, Z., and Kumar, V., “Object closure and manipulation by multiple 
cooperating mobile robots,” In Proceedings of IEEE International 
Conference on Robotics and Automation, vol 1, pp. 394–399,  2002. 

[23] Bonabeau, E., Dorigo, M., Guy Theraulaz, G., “Swarm Intelligence: 
From Natural to Artificial Systems,” Oxford, 1999. 

[24] Kube, R.C., and Zhang, H., “Stagnation Recovery Behaviors for 
Collective Robotics,” In Proceedings 1994 IEEE/RSJ/GI International 
Conference on Intelligent Robots and Systems, Los Alamitos, pp. 1883-
1890, 1995. 

[25] Reif, J. H., “Complexity of the mover’s problem and generalizations,” 
Annual IEEE Symposium on Foundations of Computer Science, pp. 
421–427, 1979 

 


	Introduction
	Previous Work
	Planning the object’s path
	Graph and Path Construction
	Extending The Algorithm to Accommodate Robot Bodies

	MULTI-ROBOT OBJECT PUSHING
	Experiments
	Convex Polygon Experiment
	Data Communication Load

	Conclusion
	References


