Shortest Path Problems on Polyhedral
Surfaces

By
Mark Anthony Lanthier

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science
School of Computer Science
Carleton University

Ottawa, Ontario

December 10, 1999

© Copyright
1999, Mark Anthony Lanthier

The undersigned hereby recommend to
the Faculty of Graduate Studies and Research

acceptance of the thesis,

Shortest Path Problems on Polyhedral Surfaces
submitted by

Mark Anthony Lanthier

Dr. Evangelos Kranakis
(Director, School of Computer Science)

Dr. Jorg-Riidiger Sack
(Thesis Supervisor)

Dr. Anil Maheshwari
(Thesis Co-Supervisor)

(External Examiner)

Carleton University

December 10, 1999

i

Abstract

Shortest path algorithms have been studied for many years, as they have applications
in many areas of computer science. Recently, much of the research has been geared
towards computing approximations of shortest paths in order to reduce the large time
complexities which are inherent to exact solutions. In some instances, approximation
algorithms may provide the only solution since there may be no existing algorithm
that produces an exact solution.

In this work, we develop several algorithms for computing approximations of
weighted shortest paths on polyhedral surfaces. Our techniques are mainly based
on discretizing the polyhedron in order to reduce the problem to a graph shortest
path problem. We give several schemes which differ in the way in which the polyhe-
dron is discretized. The schemes are based on adding Steiner points to faces of the
polyhedron, creating a graph by interconnecting these points and then searching this
graph for a solution. We show through experimental evaluation that these techniques
are practical.

All of our algorithms allow a tradeoff between accuracy and running time. We
provide e-approximation algorithms that improve upon previous work in terms of
n (the number of faces of the polyhedron). In addition to Euclidean and weighted
metrics, we also give algorithms for computing shortest anisotropic paths. Lastly, we
show how these algorithms can be implemented in parallel. Through implementation,

we show that our parallel algorithm achieves up to 64% efficiency.

il

Acknowledgments

To begin, I would like to thank everyone in my life for the support and confidence
that they have shown throughout my post graduate life.

I would like to give tremendous thanks to Jorg-Riidiger Sack for the support that
he has given me throughout my degree programs here at Carleton. I have tremendous
respect for Jorg and his work and I am happy to have been a part of his research
group. In addition, he has given me great advice with respect to written papers
and presenting my work to the computer science community. Jorg, your help both
academically and financially has been greatly appreciated.

I would also like to give thanks to Anil Maheshwari for the countless hours of
time that he has made available to me throughout this thesis preparation. His many
constructive comments and technical advice have helped me to complete this thesis
in addition to many papers.

Thanks should also be extended to those members on my examining board: Mark
Keil, Paola Flocchini, John Goldak and Frank Dehne. It was a thick thesis to read
and I really do appreciate their willingness to be on the committee.

I also give thanks to Dr. Lyudmil Aleksandrov for his useful ideas which led to the
research on epsilon approximations as well as Dr. Stefan Schirra for his useful com-
ments related to numerical stability as well as his help with LEDA’s REAL numbers.

In addition, I have had many fruitful conversations with Doron Nussbaum who

I would also like to thank. Doron and I have been doing our thesis work alongside

v

each other, providing moral support to each other when times seemed tough. Doron
and I have grown to be good friends and his friendship and support have helped me
in many, many ways.

I would also like to thank Paola Magillo for supplying us with TINs as well as
Gerhard Roth from the NRC for providing us with general 3D polyhedral model data.

I would like to dedicate this thesis to my parents Marcel and Beverly Lanthier
who have always believed in my abilities to succeed in everything that I have done. I
hope this is the first of many Ph.D. degrees in our family. My wife Tricia also deserves
acknowledgment for patiently awaiting my thesis completion. I love my family very
much and I am glad they were there for me.

This research was partially supported by Almerco, Inc. and by the Natural Sci-

ences and Engineering Research Council of Canada.

Contents

Abstract
Acknowledgments

1 Introduction

1.1 Overview o oo o e e
1.2 Preliminarieso
1.2.1 Graphs and Subdivisions
1.2.2 Properties of Polyhedra
1.2.3 Shortest Path Properties
1.2.4 Shortest Path Approximation Factors

1.3 Related Research 0oL
1.3.1 Shortest Paths in Graphs.
1.3.2 Euclidean Shortest Paths in 2D
1.3.2.1 Within a Simple Polygon

1.3.2.2 Among Polygonal Obstacles

1.3.3 Euclidean Shortest Pathsin 3D
1.3.3.1 On a Convex Polyhedron

1.3.3.2 Among Multiple Convex Polyhedra

1.3.3.3 On a Non-Convex Polyhedron

vi

iii

v

[0 I N L VN)

1.3.4 Weighted Shortest Pathsin 2D and 3D 44

1.3.5 Point Location Algorithms 48

1.4 Contributions 48

2 Algorithms Based on Edge Decomposition 52
2.1 Shortest Path Approximation Schemes 54
2.1.1 A Simple Approximation Scheme 54

2.1.2 Edge Decomposition Schemes 60

2.1.2.1 Building the Graph 61

2.1.2.2 Bounding the Approximation 63

2.1.2.3 Fine Tuning the Approximation - An Additional Sleeve

Computation 68

2.2 Experimental Results, 72
2.2.1 Implementation Issues 72
2.2.1.1 A Variation of Dijkstra’s Algorithm 73

2.2.1.2 Numerical Issues 74

2.2.1.3 Implicit Graph Storage 75

2.2.2 Test Data and Testing Procedure 77
2.2.3 Path Accuracy oo 80
2.2.3.1 Sleeve Computation 80

2.2.3.2 Effects of Stretching 80

2.2.3.3 Additional Terrains 84

2.2.34 Spanners 86

2.2.4 Computation Time 86
2.2.4.1 Graph Spanners 89

2.2.5 Weighted Paths o000 92
2.2.5.1 Time Independence from Weight Assignment 93

Vil

2.3 Extensionso
2.3.1 Shortest Path Queries
2.3.1.1 Single Source L.

2.3.2 Two-Point Queries
2.3.3 eApproximations

2.4 Other Approximation Schemes

An ¢ - Approximation Algorithm
3.1 Overview of Our Approach
3.2 An e-Approximation Scheme Between Vertices
3.2.1 Constructing the Graph
3.2.2 Accuracy Bound of the Approximation
3.2.2.1 Constructing an Unweighted Path for Analysis
3.2.2.2 Bounding the Unweighted Path
3.2.2.3 Constructing a Weighted Path for Analysis
3.2.2.4 Bounding the Weighted Path
3.3 Modifying the Bounds For Arbitrary Query Points
3.3.1 Vertex to Arbitrary Point Approximations
3.3.2 Approximations Between Arbitrary Points

Approximating Minimal Energy Paths

4.1 The Physical Modelo Lo
4.1.1 Basic Model (Weight Metric)
4.1.2 Model With Braking
4.1.3 Model With Anisotropic Obstacles

4.2 Path Types and Properties

4.3 A Simple Approach to Approximation
4.3.1 Constructing the Graph

110
111
115
116
119
125
126
128
130
134
135
137

4.3.2 Choosing an Approximated Path for Analysis 162

4.3.3 Computing a Bound on the Approximated Path 166

4.4 An e-Approximationo 173
4.4.1 Constructing the Graph 174
4.4.2 Choosing an Approximated Path For Analysis 184
4.4.3 Computing an e-Approximation Bound on the Path 187

4.5 Experimental Results 194
5 A Parallel Shortest Path Simulation 200
5.1 Preliminaries Lo 202
5.1.1 Performance Factors and Previous Work 206
5.1.1.1 Algorithm Related Factors. 206

5.1.1.2 Data Related Factors. 210

5.1.1.3 Machine Related Factors 211

5.1.1.4 Implementation Related Factors. 213

5.2 The Parallel Algorithm 214
5.2.1 Preprocessing oo 215
5.2.2 Running the Simulation 223

5.3 Experimental Results, 229
5.3.1 Test Data and Procedures 231
5.3.2 Results For Single-Level Partitioning 234
5.3.2.1 Effects of Varying the Cost Function 239

5.3.2.2 Effects of Relative Source/Target Locations 240

5.3.2.3 Effects of Varying the Number of Steiner Points . . . 245

5.3.2.4 Measuring the Amount of Over-Processing and Re-
PrOCesSINg it 248
5.3.3 Results For Multi-level Partitioning 250

1X

5.3.3.1 Few-to-All Tests

6 Conclusions and Open Problems

Bibliography

List of Tables

1.1

1.2
1.3

14
1.5
1.6

2.1
2.2

3.1

3.2

4.1
4.2

5.1

Summary of one-to-all graph shortest path algorithms for a graph

GV,E). 17
Parallel one-to-all shortest path running times on different architectures. 18
Parallel all-pairs-shortest-path algorithm running times on different

architectures. L Lo L 19
Summary of sequential 2D rectilinear shortest path algorithms 25
Summary of sequential 2D rectilinear weighted shortest path algorithms. 47

Summary of shortest path algorithms on arbitrary polyhedral surfaces. 49

The data used for the experiments showing the TINs and their attributes. 77

The different approximation schemes. 79

Comparison of Euclidean and weighted shortest path algorithms in
termsof nande. Lo 111
The resulting bounds obtained by our algorithm when ¢ < 1/6 and

when € — 0 for three different types of queries. 114

Some known coefficients of friction. 144
The maximum cost of the approximated segment s, with respect to the

actual shortest path segment cost ||s;||. Here w; = pjcosep;. 170

Terrains used for testing the performance of the algorithm. 231

pal

List of Figures

1.1
1.2
1.3
14

1.5
1.6
1.7

1.8
1.9
1.10

1.11
1.12

1.13
1.14

Example of a triangular irregular network (TIN).
The region 7, surrounding s. L.
A straight-line edge sequence ey, e9,... €. « L.
Characteristics of a weighted shortest path. a) adjacent face-crossing
segments cause a bend in the path, b) edge-using segments cause a
reflection back into the same face. 00
A weighted shortest path that can cross a face F', (n) times.
The funnel structure.o o Lo
a) Ridge lines of a convex polyhedron with respect to s. b) Shortest

paths from s to all vertices.

The peels resulting from the ridge lines and shortest paths to vertices.

A polyhedron that can have (n*) shortest path edge sequences. . . .
The Q(n?) regions produced on the base of a cone between two points
sand t. ... Lo
The O(n) possible regions allowing a shortest path between s and t. .
a) The shortest paths on a convex polyhedron from a point x to each
vertex. b) The star unfolding with respect tox.
The structure of a shortest path between three polyhedra.
An example in which there may be ©(2*) possible shortest path edge

sequences between two points.

xii

11
12
21

28
28
31

32
33

34
36

1.15

1.16

1.17
1.18

2.1

2.2

2.3
2.4

2.5
2.6
2.7

2.8
2.9

2.10
2.11

2.12
2.13

The projection of a source image s’ onto an edge e; and its shadow
projections. Lo
The first three stages of the algorithm of Chen and Han. Shaded cones

represent possible unfolded shortest path sleeves from s.

The crucial “one-angle-one-split” lemma of the Chen and Han algorithm.

The three types of bending properties of a shortest path intersecting

The approximated path length |IT'(s,¢)| is unbounded with respect to
TI(s,E)]. o o e
The three cases in which an edge of AABC (shown dashed) has length
bounded by a segment XY crossing the triangle.
The four cases in which a weighted path can reflect back into a face. .
Adding Steiner points and edges to a face using the complete intercon-
nection scheme.o oo oL oL
The spanner edges added from a vertex v; with ¢ =30°.
A face-crossing segment s; of a weighted shortest path.
The difference in the layout of Steiner points (m=7) for a) the fixed
placement scheme, b) the interval placement scheme.
Choosing an edge sequence from the path 7'(s,¢).
A weighted shortest path on a terrain in which traveling on water is

EXPENSIVE. . . vt e e e e e e e e e e

Shortest path approximations applied to non-convex polyhedral models.

Pointers required in the partially implicit graph storage scheme. a) for
each edge of P, b) for verticesof P.
Snapshots showing various TINs that were used for testing.

Graphs showing average path length for six selected terrains.

xiii

40

41
41

45

95

57
o8

62
62
64

67
69

73
74

76
78
81

2.14
2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

Histogram of edge lengths for one of our TINs. 82
Graph showing the percentage of exact edge sequence matches for a
1012 face terrain, a 1012 face stretched terrain and a 10082 face terrain. 83
Graphs comparing the worst case (theoretical) accuracy with that of

the produced accuracy for a 10,082 face terrain using the fixed and

interval schemes (left: maximum error; right: average error). 84
Graphs showing average path length for ten real-data terrains. 85
Graphs showing path accuracy obtained for a 10,082 face terrain using
the fixed and interval schemes for a variety of spanner angles. 86
Graphs showing average computation time (in seconds) for six selected
terrains. oL e e e e e e e 88
Graph showing the typical running time characteristics for the tested

terrains using the fixed and interval schemes for normal(N) and stretched(S)
terrains. oL L e e e e e 89
Graphs showing avg. computation time (secs.) for ten real-data terrains. 90
Graphs showing computation time obtained for a 10,082 face terrain
using the fixed and interval schemes for a variety of spanner angles. . 91
Graphs showing path accuracy vs. computation time obtained for a

10,082 face terrain using the fixed and interval schemes for a variety of

spanner angles. Lo L 92
Graphs showing average path cost for six selected weighted terrains. 94
Graphs showing average computation time for six selected weighted
terTains. e 95
Graphs comparing the accuracy of weighted approximations for 2 weight
scenarios: slope weights and random weights. 96
Recursively dividing a face into 4 subfaces by joining the midpoints of

itsedges. L. 103

xiv

2.28 The star and leaf approximation schemes.
2.29 Graphs comparing the accuracy of the star and leaf schemes with that
of the fixed and interval schemes. The two graphs depict the results
with and without the additional sleeve computation.
2.30 Graph comparing the running time of the star and leaf schemes with
that of the fixed and interval schemes.
2.31 a) an ear-clipped star scheme, b) a combined face decomposition and

star scheme, ¢) a 12 neighbourhood scheme and d) a layered scheme.

3.1 A sphere of radius r, is placed around vertex v in order to make |q;q; 1|

3.2 a) Placement of Steiner points on the edges of f; that are incident to
vertex v. b) Results of merging Steiner points along edges.
3.3 Example showing the association between the Steiner points and the
vertex that introduced them.

3.4 Six possible combinations of intervals containing s.

3.5 A segment s; passing through intervals defined by [g;, ¢j1+1] and [v, p1].

3.6 An example showing the between-sphere and inside-sphere subpaths
that connect to form the approximated path m(s,t).
3.7 a) The edge-using segment s; and face crossing segments s; 1, ;11 and
b),c) the two possible choices of approximating it with s,.

3.8 a) The degenerate edge-using segment s; and face crossing segments

109

Si—1, Si+1 and b),c) the two possible choices of connecting s;_; with s}, ,.130

3.9 The shortcut that would be taken by our algorithm to join the “non-
shared” endpoints of s;_; and s;;; in the degenerate case where s; ;
and s;y1 share an endpoint.o Lo oL

3.10 An example in which ||II(p,o1)|| < [[TI'(G0)|]- - - - - - - o oo oo L

XV

138

3.11 The second and second last segments of a path II(s,¢).

4.1 The forces of friction and gravity that act against the propulsion of the
vehicle. L
4.2 The sideslope overturn problem. The vehicle tips as its center of gravity
projection falls outside the support polygon defined by the wheels. . .
4.3 The up to three ranges representing impermissible travel and the brak-
ing range with respect to the center point of a single face..
4.4 An example showing that there may not be a valid path between two
points on P due to isotropic obstacles (shown as steep slopes surround-
ing the plateau containing ¢). L. L.
4.5 The value of a,. with respect to critical angle vectors 4 and %.

4.6 The 4 ways in which a shortest anisotropic path can cross a face. . . .

148

152

4.7 A switchback path to a vertex can have an infinite number of segments. 154

4.8 The triangle formed by extending # and — from points a and b, re-
spectively. oL
4.9 The impossible situation in which an edge ab of Tl(s,t) supposedly
intersects another edge cd of TI(s,t)..
4.10 A subsegment e, which can be crossed by only one segment of 7(s,t).

4.11 When a segment s; of II(s,¢) is approximated near a vertex or briefly

156

158

along an edge of P, there may be no corresponding segment in II'(s, ¢). 163

4.12 Adjusting a 2-link path such that it lies within the face..
4.13 Adding Steiner points to a face corresponding to a braking range.
4.14 Adding Steiner points to a face within a sphere around vertex v. . . .
4.15 The angles defined during the creation of stage 2 Steiner points for a
face f; based on a single permissible range. L.

4.16 Example showing how s/ is of the same direction type as s;.

Xvi

165
176
177

4.17 Examples showing the how segments s; and s;,, of II'(s,?) are con-
nected via s. 187
4.18 An example showing the between-sphere and inside-sphere subpaths
that connect to form the approximated path II'(s,¢). 188

4.19 The switchback paths z,, and z,,,, corresponding to segments s, and

shorespectively. Lo 190
4.20 Graphs showing average path cost for four terrains. 196
4.21 Graphs showing average path computation time for four terrains. . . 198

5.1 Dividing non-clustered and clustered terrains into equal-area 3 x 3 grid. 217
5.2 a) A set of faces to be shared along a cut line. (b) After cutting, faces
are shared between the two partitions. 218
5.3 Expansion of the active border showing that processors may sit idle
during a shortest path computation. 219
5.4 Over-partitioning allows all processors to get involved quickly in the
computations and remain involved longer, thus reducing idle time. . . 220
5.5 A 3-level MFP partition for a 3x3 processor configuration. 221
5.6 Levels 0, 1, 2 and 3 of the MFP mapping scheme for a 3x3 mesh of
PTOCESSOTS. « . v v v v v v e i e e e e e e e e e e 224
5.7 The trivial and MFP mapping schemes at level 2 for a 4x4 mesh of
PTOCESSOTS. & v v v v v v e e e e e e e e e e e e e e e e e e e 225
5.8 The trivial and MFP mapping schemes on a portion of a 3x3 partition-

ing showing that the border processors require more communication

than the center processor. 226
5.9 Pseudo-code for algorithm on each processor. 227
5.10 Top-down view snapshots of the five terrains tested. 232
5.11 Graphs showing speedup obtained for five terrains. 235

xXvil

5.12
5.13

5.14

5.15

5.16
5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

Graphs showing processor usage for five terrains. 237
Graphs showing per processor usage for the Madagascarl5k TIN for
processor configurations of 2x1, 2x2, 3x3 and 4x4. 238
Graphs showing effect on speedup of increasing the cost function for

five terrains. L 241
Histograms showing the number of processor hops between source/target

pairs and corresponding graphs showing the effect it has on speedup. 242

Graphs comparing one-to-one with one-to-all speedup for five terrains. 244
Graphs comparing processor idle time for the two starting source lo-
cations in the one-to-all tests for the Madagascar50k TIN. 245
Graphs showing effect on speedup of increasing the number of Steiner
points for four terrains. Lo 246
Graph showing the total number of messages sent for the 50 sessions
as the number of Steiner points per edge is varied. 248
Graph showing over-processing for various terrains and processor con-
figurations. 251
Graph showing effects of processor configuration on over-processing.
Over-processing percentages are averaged for all terrains. 252
Graph showing effects of terrain size on over-processing. Terrain sizes
increase from left toright.o o000 253
Differences in speedup between the slow and fast communication. . . 255
Graphs showing processor usage as processor configuration and tile

sizes are changed for implementations with either slow or fast commu-

nication speed. L. 256
Graphs showing amount of over-processing as processor configuration

and tile sizes are changed for two terrains. 258
Speedups for few-to-all tests on America4d0k and Madagascar50k TINs. 260

xviil

5.27 Comparison of over-processing between single source and multiple source

6.1

Example showing a switchback path between two points on a face. If
the switchback path produces turns that are too sharp, there may be

novalid path. 269

Xix

Contents

Chapter 1

Introduction

1.1 Overview

One of the fundamental problems studied in computational geometry and other areas
such as graph algorithms, geographical information systems (GIS), circuit design and
robotics is that of finding a shortest path between two points in either the plane or

in three dimensions.

Shortest path problems have many applications such as traffic control, search
and rescue, water flow analysis, road design, facility location, navigation and route
planning, ..., to mention just a few that use GIS. For some applications, it may
be necessary to determine a shortest cost path on a polyhedral surface. Terrains
are a special subclass of polyhedral surfaces and in GIS, many applications (such
as those just mentioned) require the computation of shortest paths on a terrain. In
GIS, actual data is gathered to model terrain structure within a computer. There are
typically thousands of sampled points that make up a terrain and hence a shortest

path algorithm must be very efficient in order to be of practical use.

CHAPTER 1. INTRODUCTION 3

There are several variations of the shortest path problem which depend on different

factors pertaining to:

e the cost metric (Euclidean, weighted, Manhattan distance, link distance, etc.).
e the dimension (2D, 2.5D, 3D, 3D polyhedral surfaces).

e specific geometric characteristics such as the presence/absence of obstacles, the

type of obstacles (e.g., convex), etc.

In addition, there are issues pertaining to the algorithm itself such as:

e the amount of preprocessing allowed (single shot, fixed source, two-point queries),
e the availability of the queries (static or dynamic),
e the desired accuracy (optimal, approximate, e-approximate),

e the number of processors allowed (sequential or parallel).

The general 3-dimensional Euclidean shortest path problem has been shown to be
NP-hard by Canny and Reif [19]. The NP-hardness and the large time complexities of
3-d shortest paths algorithms even for special problem instances have motivated the
search for approximate solutions to the shortest path problem. Since most application
models are approximations of reality and high-quality paths are favored over optimal
paths that are “hard” or expensive to compute, approximation algorithms are suitable

and necessary.

The main results presented in this thesis are the design, analysis and implementa-
tion of algorithms for computing approximations of Euclidean and weighted shortest
paths on polyhedral surfaces. The aim is to design simple and practical algorithms

as well as provide algorithms with theoretical worst-case bounds which are efficient

CHAPTER 1. INTRODUCTION 4

in terms of the number of polyhedral faces. As will be shown, the algorithms can be

applied in both the sequential and parallel settings.

Before presenting the algorithms, it is necessary to discuss definitions, notation
and properties pertaining to shortest path problems. Also, since there are many
variations on the shortest path problem (i.e., in graphs, within polygons, in the plane
among polygons, on polyhedral surfaces, in 3-space among polyhedra, etc.) we give
here a brief survey of the previous research. Our algorithms will make use of some of

the results and techniques presented in this survey.

1.2 Preliminaries

1.2.1 Graphs and Subdivisions

A graph G = (V, E) consists of a set of vertices, V', and a set of edges, E. A graph is
planarif it can be embedded in the plane such that no two edges intersect. A straight
line planar embedding of a planar graph determines a partition of the plane called
a planar subdivision. The bounded regions of the subdivision are called faces and
the remaining portion of the plane is termed the outer face. A planar subdivision is
a triangulation if all of its bounded faces are triangles. The dual graph of a planar
subdivision § is defined as a graph D in which a vertex of D is assigned to each face
of § and two vertices of D are joined by an edge if and only if their corresponding

faces share an edge in S.

CHAPTER 1. INTRODUCTION 5

1.2.2 Properties of Polyhedra

In R a polyhedron is defined by a finite set of planar polygons such that every edge
of a polygon is shared with exactly one other polygon. The polygons are called the
faces of the polyhedron and the vertices and edges of the polygons are the vertices
and edges of the polyhedron. Two faces are said to be adjacent if they share an edge,
otherwise they are non-adjacent. A polyhedron is simple if there is no pair of non-
adjacent faces that share a point in their interior (i.e., excluding vertices). From this
point onwards, the term polyhedron will imply a simple polyhedron. A polyhedron P
is convex if for any two points interior to P, the line segment joining them is entirely
contained in P, otherwise it is non-convex. Let S be a triangulated planar subdivision
lying on the XY plane in R%. A triangular irreqular network (or TIN for short) is
a 2.5 dimensional polyhedral surface formed from S by assigning a Z coordinate to
each vertex of S (see Figure 1.1). Note that no two points on the surface of a TIN

have the same x and y coordinates.

Figure 1.1: Example of a triangular irregular network (TIN).

There are certain geometric properties of P that we require for our analysis in

CHAPTER 1. INTRODUCTION 6

the later chapters. These properties require some additional terminology. Let P have
n faces, each being a triangle. Denote by L, the longest edge of P with Euclidean
length |L|. Consider a vertex v of P. Define 6, to be the minimum angle (measured
in 3D) between any two edges of P that are incident to v. Denote the minimum such
f, as 0. Define h, to be the minimum distance from v to the boundary of the union

of its incident faces.

Property 1.1 The distance between any two vertices v, and v, of P s at least

max(hy,, Ry,).

Define a polygonal cap C,, called a sphere, around v, as follows. Let r, = €h, for
some 0 < € < 1. Let r be the minimum r, over all v. Let Avuw be a face incident to
v. Let u' (respectively on w’) be at distance 7, from v on vu (respectively 7w). This
defines a triangular subface Avu'w' of Avuw. The sphere C, around v consists of all

such subfaces incident at v.

Property 1.2 Let v be a vertex of P and e be an edge of P that is not incident to v.
Let p be any point on e. The distance between C, and p is at least (1 — €)h,,, where

O<ex<l.

Property 1.3 The distance between any two spheres C,, and C,, is greater than
(1 — 2¢) max(hy,, hy,) for any € > 0.

In Chapter 3, we will need to ensure that the destination point on a polyhedron P is
not too close to the source point. That, is we will define a region 7, with respect to

a point s on a polyhedron P as the union of all faces incident to:

i) s if 5 is a vertex,
ii) vertices of f; if s lies interior to a face f;,

iii) vertices of f; and f; if s lies on an edge, say e with incident faces f; and f;.

CHAPTER 1. INTRODUCTION 7

Figure 1.2 shows how 7, is defined when s lies on an edge of P.

Figure 1.2: The region 7, surrounding s.

Consider a triangulated polyhedral surface of P. Let F' = fi, fo,..., fr be a
sequence of faces of P such that f; and f;1; are adjacent, where e; = f; N fi11. An
unfolding of two adjacent faces f; and f;; is the set of points obtained by rotating
fir1 about e; until all vertices of f;;; lie in the same plane as f;. The unfolding is
said to be a planar-unfolding if the unfolded faces do not overlap. (Two faces are
said to overlap if they have a common point in their interior). A sequence of faces F’
is unfolded by planar-unfolding the faces in order from 1 to £ such that f; is in the
same plane as f; 1, fi 2,..., f1, where i > 1. Let F' = f{, fi. ..., fi be the sequence
of faces obtained by applying such an unfolding. F' is called a simple sleeve if it is
a planar unfolding. An unfolding which is not planar is called a non-simple sleeve.
The order in which the faces are unfolded defines a sequence of edges around which
the faces are rotated. This sequence of edges is called an edge sequence. The edge
sequence is considered to be a straight line edge sequence if and only if one can draw
a line segment from a point ¢; on e; to a point ¢ on e such that the segment crosses

each edge of the sequence in order (see Figure 1.3).

CHAPTER 1. INTRODUCTION 8

Figure 1.3: A straight-line edge sequence ey, eq, ..., €.

1.2.3 Shortest Path Properties

A shortest path between two points s and t is defined to be the path of least cost
joining s and ¢, where the cost is determined by a suitable cost metric which may
pertain to distance, time, energy, number of turns, or some other criteria. The most
common cost metric studied is the Euclidean distance (also known as the L, metric).
Here, a path of least cost is called a Fuclidean shortest path and would be a path of
minimal length. Denote a Euclidean shortest path as 7(s,t) and 7 (s,t) is composed
of a sequence of k straight line segments s, s9, S3, ..., Sx. The cost of this path will be

denoted as |7(s,t)| = [s1]| + |s2| + [s3] + ... + |5kl

In certain instances, the cost of travel may vary between regions. This travel
cost may be a function of the region attributes such as slope, friction coefficients
or terrain type (e.g., water, grass, forest, desert, etc.). Let each region be assigned
a positive non-zero real weight. A weighted shortest path is a path in which each
segment has a cost which is the length of the segment times the weight of the region

through which it passes. Weighted shortest paths will be denoted as II(s, t) with cost

CHAPTER 1. INTRODUCTION 9

ITI(s, t)|| = [Isu]| + l|s2ll + s3] + --- + ||sk||, where double vertical bars (]| ||) are used

to represent a weighted cost of a either a path or a single segment.

The last metric that will be considered is that of finding the minimal energy path
(or one with minimal power requirements). Such a path must take into account the
direction of travel through a face and depends on coefficients of friction as well as
face slopes. Denote this path as II(s,t). Note that we use the same notation as the

weighted shortest paths.

Consider the case of computing a Euclidean shortest path that remains on the
surface of a polyhedron P. Denote by dist(s,t) the straight line distance between s
and t. Define dist(z, e) as the minimum distance from a point = on P to a segment e
of P. A point z € P is defined to be a ridge point with respect to some point s € P if
there exist at least two shortest paths from s to z. Sharir and Schorr [111] presented

the following useful properties of 7(s,t) in the case where P is convex:

Property 1.4 w(s,t) cannot pass through a vertex or ridge point with respect to s.

Property 1.5 The planar unfolding of a Euclidean shortest path is a straight line

segment in that plane.

These additional properties of Sharir and Schorr [111] apply to both convex and

non-convex polyhedra:

Property 1.6 w(s,t) cannot cross an edge (or face) of P more than once.

Property 1.7 7(s,t) cannot pass through more than n faces.

Property 1.8 No Euclidean shortest path on P intersects itself.

CHAPTER 1. INTRODUCTION 10

Property 1.9 Two Euclidean shortest paths on P intersect at most once.

Property 1.10 A Fuclidean shortest path does not bend in the interior of a face.

Property 1.11 Given a point p on P, then |m(s,t)| < |n(s,p)| + |[7(p,1)].

Consider a weighted polyhedron P in which a weight w; > 0 is associated with
each face f; € P such that the cost of travel through f; is the distance traveled
through f; times w;. The weight of an edge of P is the minimum of the weights
of its adjacent faces. Typically, ||si]| = w;|s;|, where 1 < ¢ < k. Define W and w
to be the maximum and minimum of all w;,1 < i < n, respectively. Mitchell and

Papadimitriou [90] have shown that the following properties hold:

Property 1.12 An edge of P cannot have a weight greater than its adjacent faces.

Property 1.13 A weighted shortest path obeys Snell’s law of refraction in which the
path bends at the edges of P. The amount at which it bends depends on the relative
weights of the two faces adjacent to this edge (see Figure 1.4a).

Property 1.14 A weighted shortest path may critically use (i.e., edge-using) an edge
which is cheaper and then reflect back into the face (see Figure 1.4b).

Property 1.15 A weighted shortest path I1(s,t) may cross a face O(n) times and so
it may have 6(n*) segments (see Figure 1.5). In Figure 1.5, the lightly shaded faces
have low cost while the darkly shaded faces have very high cost. As can be seen, a
shortest path crossing this area must weave in and out of the low cost regions. This
can cause the long thin horizontal faces in the expensive region to be crossed 6(n)

times each.

CHAPTER 1. INTRODUCTION 11

face crossing edge- usi ng

Figure 1.4: Characteristics of a weighted shortest path. a) adjacent face-crossing
segments cause a bend in the path, b) edge-using segments cause a reflection back
into the same face.

Property 1.16 Given a point p on P, then ||II(s,t)|| < ||L(s,p)|| + [|[(p,?)|].

We distinguish between two types of path segments of a weighted shortest path:
1) face-crossing segments which cross a face and do not critically use an edge, and
2) edge-using segments which lie along an edge (critically using it).

In the unweighted domain, edge-using segments span the entire length of an edge in

P.

1.2.4 Shortest Path Approximation Factors

The quality of an approximate solution is assessed in comparison to the correct solu-
tion. Given a shortest path II(s,t) on a polyhedral surface P, an approximate path
IT'(s,t) typically has a cost satisfying one (or more) of these three classes of approxi-

mations:

CHAPTER 1. INTRODUCTION 12

Figure 1.5: A weighted shortest path that can cross a face F', §(n) times.

Additive Factor: T (s,)| < ||TI(s,t)|| + F(P)
Multiplicative Factor: ||II'(s,t)|| < F(P)||I(s,t)||
Epsilon Factor: I (s, t)|| < (1 4+ F(P,e€))||(s,t)]|

Here, F(P) is typically some function that depends on the size of P and/or some
geometric parameters pertaining to P. For example, in the case of shortest paths
on polyhedral surfaces, F(P) may depend on the longest edge length or minimum
face angle of P. The last of these three classes is known as an e-approzximation. An
e-approximation algorithm produces a result that is at most 1 4 ¢ times the optimal
solution for some € which typically satisfies 0 < € < 1. In e-approximation algorithms,
the arbitrarily high accuracy can be traded off against run-time. Such algorithms are

appealing and are thus well studied, in particular, from a theoretical view-point.

Let S be a set of points in the plane. Consider a complete graph G = (V, E) where
the vertices are the points in S. Clarkson [29] has shown that one can compute a
sparse graph H so that any segment joining two vertices in V' can be approximated by

a path joining the corresponding two vertices in H. A graph H is called a 3-spanner

CHAPTER 1. INTRODUCTION 13

of a point G, if any edge e joining two vertices in V' can be approximated by a path
joining the corresponding vertices in H of length at most fle|, where 3 > 1 is a
constant. The number and the placement of edges in H depends upon the desired

accuracy bounds.

1.3 Related Research

As mentioned, shortest path problems in computational geometry can be categorized
by factors such as the dimensionality of space, the type and number of objects or
obstacles (e.g., polygonal obstacles, convex or non-convex polyhedra, etc.) and the
distance measure used (e.g., Euclidean, Manhattan, number of links, weighted dis-
tances or anisotropism). There has been a large amount of shortest path research
pertaining to these different factors. More recent work has been oriented towards
computing approximations of shortest paths. Approximations have the advantage
that the algorithms are often simpler and more practical and in some instances (such
as the weighted shortest path problem) an exact algorithm may not even be known.
A brief survey of the previous research for computing both exact and approximate
shortest paths is given here. Several research articles, including surveys, have been
written presenting the state-of-the-art in this active field and we refer the interested

reader to those (e.g., [92, 93]).

1.3.1 Shortest Paths in Graphs

Perhaps the most commonly studied shortest path problem is that of computing
shortest paths in a graph. There are five possible variations of this problem depending

on the number of source and destination nodes of G:

CHAPTER 1. INTRODUCTION 14

One-to-one: Corresponds to computing a shortest path in G from a single source

vertex s to a single destination vertex .

e One-to-all: Corresponds to computing a shortest path in G from a single source

vertex s to all other vertices.

o All-to-one: Corresponds to computing a shortest path in G from all vertices to
a single destination vertex ¢. This is analogous to the one-to-all variation in

which the source and destination vertices are reversed.

o All-to-all: Corresponds to computing a shortest path in G' between every pair

of vertices.

o Few-to-all: Corresponds to computing a shortest path in G from a constant

number of source vertices to all other vertices.

In addition to the type of problem, there may be other issues pertaining to the
structure and weights of the edges such as whether or not the edge weights are positive
or negative, whether or not the graph is directed and/or acyclic, and the magnitude
and type of weights (e.g., small integers, floats etc.). Given here is a brief survey of
one-to-all and all-to-all sequential algorithms that have appeared in the literature.

Also, we give a brief survey of parallel algorithms for solving this problem.

Probably the most famous of all graph algorithms is Dijkstra’s algorithm [38].
Given a directed graph G(V, F) with positive non-zero weights on the edges, Dijkstra’s
algorithm computes all shortest paths from a fixed source vertex to all other vertices
of G. This is done by building up a list of processed vertices (those for which a shortest
path has been found). Briefly, the algorithm progressively decreases an estimate on
the weight of a shortest path from the source to each vertex of V' until it achieves

the actual shortest path weight. It repeatedly extracts the next closest vertex to the

CHAPTER 1. INTRODUCTION 15

source that has not been processed yet and then processes it by relazing along all
its incident edges. The technique essentially represents a propagating wavefront of
expansion in the graph from the source vertex. The original implementation requires
O(V?) time. Although it is not stated in the algorithm, the vertices to be processed
can be stored in a priority queue such as a heap. Fredman and Tarjan [45] showed
that if the priority queue of Dijkstra’s algorithm is implemented with a Fibonacci
Heap, the amortized cost of extracting the next minimum is O(logV’). Hence the

running time of their algorithm is O(VlogV + E).

Theorem 1.1 (Digkstra [38]) Given two vertices s and t of G, a shortest path in G

from s to t can be computed in O(V?) time.

Theorem 1.2 (Fredman and Tarjan [45] or Driscoll et al. [39]) Given two vertices
s and t of G, a modification to Digkstra’s algorithm involving Fibonacci heaps [45] or

relazed heaps [39], can be employed to compute a shortest path in G from s to t in
O(VlogV + E) time.

There are many variations of Dijkstra’s algorithm which differ in the way vertices
are removed from the queue. If the vertex removed is always the vertex with minimum
cost, the algorithm is called a label-setting algorithm. As the costs are non-negative,
each vertex will be removed at most once from the queue. Label correcting algorithms
do not necessarily remove the vertex with minimum cost and so a vertex may be
re-processed many times. In this case, the cost labels are all correct only when the
cost of each vertex v is less than the cost of each of its neighbouring vertices u plus
the cost from u to v. We denote the vertices that are currently in the queue as being

the active border.

When the weights of the graph are relatively small integers, more efficient algo-

rithms can be used such as that of Ahuja et al. [7] which runs in O(E + V/log W)

CHAPTER 1. INTRODUCTION 16

time, where W is the largest weight of any edge in the graph. In fact, there has
been quite a bit or research in an attempt to improve on the algorithm of Ahuja et
al. [7]. This research is shown in Table 1.1. Recent results of Thorup [117] shows
that the problem can be solved in O(F) time. The algorithm is based on building a

hierarchical bucketing structure.

In the case in which G has negative weights, there may be negative cycles in the
graph which are reachable from the source, which of course means that there is no
solution. The Bellman-Ford algorithm (based on results of [17] and [42]) handles
this special case of weights. It first checks to see if there are negative weight cycles
reachable from the source. If not, then it applies a similar solution to that of Dijkstra.
It runs in O(VE) time. A more recent algorithm of Gabow and Tarjan [48] runs in
O(VV Elog(VW)) time, where W is the magnitude of the largest-magnitude weight
of any edge in GG. Table 1.1 gives a summary of this research for solving the one-to-all

(i.e., single source) shortest path problem for graphs.

For the special case of planar graphs, once again, more efficient algorithms can be
used. Frederickson [43] was the first to apply the notion of separators to the shortest
path problem. The resulting algorithm runs in O(Vy/log V) time and depends on the
fact that planar graphs have separators of size O(y/n). Henzinger et al. [61] solved
this problem in optimal O(E) time, again using separator decompositions. For planar
graphs with negative weights, Lipton et al. [84] solved the problem using planar
separators in O(Vv/V) time. Goldberg [52] solved the problem in O(V+/V log W)
time. Recently, this problem has been solved in O(V*/31log(VW)) time by Henzinger
et al. [61].

Consider the problem of computing shortest paths between all pairs of vertices of
a graph. Most of the solutions to this problem use an adjacency matrix representa-

tion for storing the graph and then apply matrix multiplication. Floyd [41] presented

CHAPTER 1. INTRODUCTION

17

‘ Run Time Weights ‘ Reference ‘
O(V?) positive [38]
O(FlogV) positive [38] + [119]

O(E+VlegV) positive [45]
O(E+/logV) randomized positive int. [46]
O(E + lgglf Ogg“/,) randomized positive int. [47]
O(FEloglogV) positive int. [116]
O(E + V/Iog V') positive int. [116]
O(E + V4/logVioglogV) positive int. [106]
O(E) positive int. [117]
O(E + Vy/logW) pos. int. (max. W) [7]

O(E + V/logW loglog W) pos. int. (max. W) [23]
O(E + V (logW) /4+€) expected pos. int. (max. W) [107]
O(E + V(loglogV)'/3+¢) expected pos. int. (max. W) [107]
O(VE) positive /negative [17]
O(VVElog(VW)) positive/negative (max. W) [48]
O(VVElogW) positive/negative (max. W) [52]

Table 1.1: Summary of one-to-all graph shortest path algorithms for a graph G(V, E).

an algorithm for solving the all-pairs shortest path problem for graphs with possi-
bly negative weights. It runs in (V?3) time. Johnson [69] solved this problem in
O(V?logV + VE) time which can be more efficient if |[F| = O(V1ogV). The re-
cent work of Copersmith and Winograd[32], Alon et al. [11], [12] and Seidel[113] is
dedicated to devising faster algorithms for solving this problem using matrix multi-
plication with small integer entries. They achieve a time bound of O(V*(polylogV'))
where w represents the exponent in the running time of the matrix multiplication
algorithm used. Currently, the best value of w is 2.376, due to Copersmith and
Winograd|32].

Unfortunately, the algorithms that use matrix multiplication are somewhat im-

practical since they suffer from large hidden (by the big ‘Oh’ notation) constants in

CHAPTER 1. INTRODUCTION 18

the running time bound. Aingworth et al. [8] took a different, combinatorial, ap-
proach and produced an approximation algorithm which computes a path with an
additive factor of 2. The algorithm requires O(V?%,/log V) time and returns actual
paths, not just distances. They claim that their algorithm is easily implemented and
the constants are small. However, their results apply to unweighted and undirected

graphs.

There has also been work pertaining to computing shortest paths in a graph within
the parallel setting. When examining parallel algorithms, it becomes more difficult
to compare and contrast them. This is mainly due to the different architectures that
the algorithms have been designed for as well as the varying number of processors

that are required and/or used by the algorithm.

Kumar et al. [73] showed that the one-to-all graph shortest path problem can
be solved on three different architectures using a varying number of processors as
shown in Table 1.2. As for the all-pairs-shortest-path problem, Kumar et al. [73] also
gave various algorithms. They results are shown in Table 1.3 and clearly indicate the

tradeoff between number of processors and running time.

Architecture | Number of Processors | Running Time
Ring o(VV) o(VVV)
Mesh o(V?3) O(V4/3)
Hypercube | ©(V/logV) O(VliegV)

Table 1.2: Parallel one-to-all shortest path running times on different architectures.

Pantziou et al. [99] presented an algorithm for solving the all-pairs-shortest-paths
problem in planar digraphs by using a parallelization of the hammock decomposition
technique of Frederickson [44]. Cohen [31] presented an algorithm which is based on
using a separator decomposition. The algorithm is designed for the EREW PRAM

CHAPTER 1.

INTRODUCTION

Architecture ‘ Number of Processors ‘ Running Time ‘

Mesh o(V0x) oV
Mesh O(V/logV) (V2 log V)
Mesh (V) o(V?)
Mesh oV oV
Mesh oV oV)
Mesh o(V?) o(V)
Hypercube | ©(V/logV) @(V2 log V)
Hypercube | O(V) 0(V?)
Hypercube @(VQ/log V) O(Vlog® V)
Hypercube | ©(V?/logV) O(ViegV)
Hypercube | ©(V?) o(V)

Table 1.3: Parallel all-pairs-shortest-path algorithm running times on different archi-
tectures.

model of computation and requires O(log? V) time preprocessing using O(V+v/V log V)
work. The algorithm uses O(log? V) time and O(V?) work to compute only distances
but a claim is made that the algorithm can be easily adopted to explicitly find mini-

mum weight paths.

In addition to these algorithms, there has also been a fair amount of research
pertaining to distributed parallel graph shortest path algorithms (see [1], [18], [64],
[65], [67], [66], [105], [118]). A more thorough discussion of this previous work is given
in Chapter 5.

1.3.2 Euclidean Shortest Paths in 2D

In the geometry setting, early shortest path research began with two dimensional
objects (i.e., planar surfaces) such as simple polygons, simple polygons with holes,
rectilinear polygons and planar subdivisions. Selections from this research which are

relevant to our work are discussed here.

CHAPTER 1. INTRODUCTION 20

1.3.2.1 Within a Simple Polygon

One well studied problem is that of determining a Euclidean shortest path between
two points s and ¢ inside a simple polygon with n vertices such that the path remains
entirely inside the polygon. The algorithms to solve this problem usually begin with
a triangulated polygon. A triangulation of the polygon can be obtained in linear time

using the algorithm of Chazelle [20].

Lee and Preparata [81] solved the Euclidean shortest path problem between two
points s and ¢ inside a simple polygon. They showed that 7(s,t) is a polygonal path
whose corners are vertices of P and that the union of all paths 7 (s, v;), where v; is a
vertex of P, is a planar tree rooted at s. This tree is called a shortest path tree of P
with respect to s. Assume that P is triangulated, and that 7w is a diagonal as well as
the lowest common ancestor of v and w in the shortest path tree being u. The paths
7(u,v) and 7(u,w) are outward-convex. In the paper, they defined the union of these
two paths to be a funnel with cusp u. They showed that a funnel data structure can
be used to represent a shortest path from any point in a sleeve to a diagonal of the
sleeve. The funnel consists of four components: a tail path, a cusp point and two
convex chains of vertices forming the funnel borders. The two convex chains meet at
the cusp and are joined at their other end by the funnel diagonal (or lid) (see Figure
1.6).

The algorithm maintains the funnel structure from s while expanding by one sleeve
diagonal at a time until ¢ is reached. The diagonals are processed consecutively (i.e.,
diagonal 7 + 1 shares a face with diagonal 7) as it traverses through the dual graph of
the triangulation. Each time a sleeve diagonal is encountered, the convex chains on
one or both sides of the funnel are updated and the tail may or may not be expanded.
After the last diagonal is processed, the processing stops. The path is computed as

the funnel tail joined with a single straight line segment from the cusp to t. If the

CHAPTER 1. INTRODUCTION 21

funnel diagonal

Figure 1.6: The funnel structure.

funnel is stored in a finger search tree, it allows O(log 6) time for searching along the
two funnel chains and splitting it, where 6 is the distance from the search element
to the nearest finger. The finger tree has the added advantage that all operations
take O(1) amortized time for this application since modifications to the tree are often

done close to the fingers. The entire algorithm therefore requires O(n) time.

Guibas et al.[54] presented an optimal linear time algorithm for computing the
shortest paths from a source point s to all vertices inside a triangulated simple poly-
gon. They also solved a variety of visibility related problems. Their algorithm essen-
tially calculates a shortest path tree from s in linear time and is based on the results

of Lee and Preparata [81].

Guibas and Hershberger [55] presented an optimal algorithm to preprocess the
polygon in linear time such that a shortest path between any two query points can be
found in O(logn) time. An actual shortest path can be found in time proportional
to the number of path segments. They essentially used a divide and conquer strat-

egy to decompose the polygon into smaller polygons (cells) by continually splitting

CHAPTER 1. INTRODUCTION 22

the triangulation along diagonals. A binary decomposition tree is kept to store the
ordering of the polygonal pieces and it has logarithmic height. They kept for each
cell an hourglass representing a shortest path between two bordering diagonals. The
merging of two cells requires merging of two hour glasses which they can do in O(1)
amortized time. They showed that between any two query points, only O(logn) pairs
of hour glasses need to be merged, and hence they can compute the shortest path

length in O(logn) time.

A parallel algorithm for solving this problem was presented by ElGindy and
Goodrich [40]. They solved the point to point problem for an n-vertex polygon in
O(logn) time with O(n) CREW PRAM processors. The algorithm uses a divide and
conquer approach which is essentially the same as that of Guibas and Hershberger
[55]. They first triangulate the polygon and compute its dual in O(logn) time. Next,
they determine the sleeve of triangles representing the path from s to ¢ in the dual.
A shortest path must lie within this sleeve. Let eq,es,..., e, be the edge sequence
of this sleeve. The algorithm uses a divide and conquer approach by finding the
median edge, e, of the edge sequence and recursively solve the problem for edges
€1,6€2,...,€ and exi1, €19, - .., €n. An hourglass is maintained for each sub-polygon
and the merging phase consists of the combining of hour glasses from two adjacent
sleeves. They show that there are only a constant number (five) of cases that could
occur and the actual merged path is easily constructed in constant time. Thus, the

merging can be done in constant time using O(n) processors.

ElGindy and Goodrich [40] also presented an algorithm for computing all shortest
paths from a fixed point s within the simple polygon. They solved this problem in
O(log? n) time with O(n) processors assuming again a shared memory CREW PRAM
model. The algorithm also uses the triangulation and its dual graph. It essentially

finds the centroid of the dual tree and performs a divide and conquer on the individual

CHAPTER 1. INTRODUCTION 23

pieces in parallel.

Goodrich et al. [53] presented an improved parallel algorithm to find a shortest
path between two points in a simple polygon. Their algorithm requires O(logn)
time with only O(n/logn) CREW processors to build a stratified decomposition tree
which implicitly stores shortest path information. They assume that the polygon has
initially been triangulated. Like ElGindy and Goodrich [40], they also use the notion
of recursively finding the centroid in the dual of the polygon and combining hour

glasses during the merge phase.

1.3.2.2 Among Polygonal Obstacles

There has also been research pertaining to the computation of shortest FEuclidean
paths in the plane among polygonal obstacles (or within a simple polygon with holes).
Among the first algorithms to solve this problem was that of Lozano-Perez and Wesley
[85]. They examine the problem of moving a polyhedral object among polyhedral
obstacles while avoiding collisions. They use the notion of a wisibility graph which
encompasses the visibility information among the vertices of the polygon and its holes.
They showed how to reduce the problem of moving a convex “robot” to that of moving
a point among the obstacles by creating a new configuration space representing grown
obstacles. Each edge of the graph is assigned a weight according to its Euclidean
length. The algorithm of Dijkstra [38] can then be used on the visibility graph to
determine a shortest Euclidean path. They do not discuss the time complexity of
their algorithm, but it is easily seen that the time complexity is the sum of the times
for computing the visibility graph and that of running Dijkstra’s algorithm. Ghosh
and Mount [51] have shown that the computation of the visibility graph (and hence
this shortest path problem) can be done in O(nlogn+ k) time where k is the number
of edges in the visibility graph.

CHAPTER 1. INTRODUCTION 24

Kapoor and Maheshwari [70] presented an O(m?logn+mnlogn) time algorithm to
solve the problem of computing shortest Euclidean paths in the plane among polyg-
onal obstacles where m is the number of obstacles and n is the number of vertices of
all obstacles. Their technique also computes the visibility graph through the compu-
tation of funnels and corridors (i.e., the area between two convex chains). Since the
visibility graph can have O(n?) edges in worst case, they compute a reduced version

containing a subset of the O(m?) visibility edges and prove that this is sufficient.

The computation of a visibility graph is a common strategy for computing short-
est paths in 2D among obstacles even though its size may be quadratic in the worst
case. A different approach to solving the problem is that which is termed the contin-
uwous Digkstra method. This approach involves propagating a wavefront from s. The
wavefront represents all points in the plane that have some fixed distance, say d, from
s. The structure of the wavefront changes as it passes certain “event points” such
as vertices or edges. It is easily seen that there are at most O(n) such events that
may occur. An efficient algorithm that uses this method of propagation must have an
efficient technique to predict the occurrences of such events and to be able to process
them as they occur. Hershberger and Suri [62] used this continuous Dijkstra approach
to solve this shortest path problem in near-optimal O(nlogn) time and O(nlogn)

space.

Clarkson [29] took a different approach to this problem and produced an algorithm
that generates an e-approximate path. The algorithm takes O(”l‘;ﬁ) time to build
a data structure so that the path between two query points can be computed in

O(% +nlogn) time.

Very recently, Chiang and Mitchell [25] have presented algorithms for solving this
problem. They present various methods for solving the problem with query times

times such as o(n), O(logn + h), O(hlogn), O(log”> n) and O(logn) using polynomial

CHAPTER 1. INTRODUCTION 25

space data structures.

There has also been a significant amount of research in computing rectilinear
shortest paths within rectilinear polygons in the plane among rectilinear polygonal
obstacles. Several efficient sequential and parallel algorithms exist which solve a va-
riety of these rectilinear shortest path problems. Some of the algorithms build a
data structure during a preprocessing stage from a fixed source point and then report
shortest k-link paths to a query point in O(k + logn) time, while others do not have
a preprocessing stage and hence cannot answer queries efficiently. The algorithms are
designed to produce shortest paths that avoid simple polygonal obstacles, rectangular
obstacles or rectilinear polygonal obstacles. Some of the algorithms produce short-
est paths that combine shortest Euclidean length as well as the shortest number of
links. With these algorithms a constant can usually be varied, producing a shortest
Euclidean length path or shortest link path if desired. Table 1.4 gives a summary of
the time complexities of various sequential rectilinear shortest path algorithms. In
the table, n denotes the number of vertices (or edges) of the obstacles and E denotes

the number of extreme edges of the obstacles.

‘ Metric ‘ Simple Poly. ‘ Rectangles ‘ Rectilinear Poly. ‘
Ly Q(n?) [91] O(En +nlogn) [123] | O(n?) [34]
F. Source | O(nlogn) [37] (En + nlogn) [123]
Ly O(n?) [80] O(En +nlogn) [123] | O(n?) [34]
Q(nlog® n) [91] O(nlogn) [37] O(En +nlogn) [123]
O(nlog®?n) [30] O(nlog®?n) [30]
O(n log n+ E%log E) [120]
L, + Link O(En +nlogn) [123] | O(n?) [34]
F. Source O(En +nlogn) [123]
L; + Link O(En +nlogn) [123] | O(n?) [34]
O(En +nlogn) [123]

Table 1.4: Summary of sequential 2D rectilinear shortest path algorithms

CHAPTER 1. INTRODUCTION 26

As the table shows, a great deal of work has been done in this area and many of
the problems have been efficiently solved. The table only shows sequential algorithms
although there are also parallel algorithms. Atallah and Chen [14] presented a parallel
algorithm that preprocesses a rectilinear convex polygon with rectilinear holes for
rectilinear shortest path queries. They constructed a data structure in O(log?n)
time with O(n?) processors with the CREW PRAM model. They can reduce the
number of processors if the source and destination lie on the boundary to O(n?/log® n)
processors. With the data structure, they can produce the length of a shortest path in
constant time using one processor, or compute an actual shortest path in logarithmic
time using O(k/logn) processors. They later improved this algorithm [15] by reducing

the required number of processors for preprocessing to O(n?/logn).

Lingas et al. [83] also presented a parallel algorithm but for a different problem.
They solved the problem of determining a shortest path from a vertex of a rectilinear
polygon to all other vertices in O(logn) time using O(n/logn) processors for the
EREW PRAM model. They also solved rectilinear link distance problems. They
show that a data structure can be built with a total work of O(n) such that rectilinear

link distance queries can be answered in O(logn) time with a uniprocessor.

1.3.3 Euclidean Shortest Paths in 3D

Due to their relevance in practice, 3-dimensional shortest path problems have received
considerable attention. The 3-dimensional Euclidean shortest path problem is stated
as follows: Given a set of pairwise disjoint polyhedra in ®* and two points s and
t, compute a shortest Euclidean path between s and ¢, that avoids the interiors of
the polyhedra. A brief survey of the research is given here for computing exact and

approximate shortest paths in the case where the polyhedra are convex.

CHAPTER 1. INTRODUCTION 27

A special subclass of this problem class is to find a shortest path that remains
on the surface of a single polyhedron P composed of n triangular faces between two
points s and ¢ which both lie on P. Some of the algorithms crucially exploit the
convexity properties of convex polyhedra and hence may not be extendible to non-
convex polyhedra. Clearly, those applicable to non-convex polyhedra apply to convex

polyhedra as well, but are typically less efficient since they cannot exploit convexity.

A brief survey of previous research on these two problems is given here. For the
second problem (i.e., polyhedral surfaces), we will discuss the research that applies to
only convex polyhedra and then that which applies to arbitrary (possibly non-convex)
polyhedra. For the convex case, we further divide the research into cases where s is

fixed and those which precompute edge sequences.

To our knowledge, our algorithms in Chapter 5 represent the first parallel algo-
rithms for computing weighted shortest paths on convex or non-convex polyhedra.

Thus, all algorithms surveyed here are sequential.

1.3.3.1 On a Convex Polyhedron

Consider the problem of computing shortest paths that remain on the surface of a
single convex polyhedron P. Sharir and Schorr [111] gave an algorithm for solving
this problem that runs in O(n3logn) time where n is the number of vertices of P.
After preprocessing, a k-length shortest path from s to any query point ¢ € P can
be computed in O(logn + k) time using their data structure of size O(n?). Their
strategy is based on peeling the polyhedron with respect to s in a similar fashion to
star unfolding (described later). The algorithm first preprocesses the polyhedron by
computing the ridge points (ridge lines) with respect to s (see Figure 1.7a). The ridge

lines together with the vertices of P define a tree structure of O(n?) edges in which

28

CHAPTER 1. INTRODUCTION

the vertices are at the leaves. Also computed, is the set of shortest paths from s

(shortest path tree) to every vertex of P. Figure 1.7b shows this shortest path tree.

-~=-<p

TN -~

TN -

®
S

(b)

(a)
Figure 1.7: a) Ridge lines of a convex polyhedron with respect to s. b) Shortest paths

from s to all vertices.

The ridge lines together with these precomputed shortest paths define the bound-

aries of n regions that they call peels. Figure 1.8 shows an example of the resulting

peels of the box used in Figure 1.7.

D

Figure 1.8: The peels resulting from the ridge lines and shortest paths to vertices

By definition, no vertex or ridge point lies interior to a peel. A shortest path

between any two points within a peel is entirely contained within a peel. Since there

CHAPTER 1. INTRODUCTION 29

can be O(n) regions (slices) in a peel, each peel gives rise to O(n) shortest-path edge
sequences. Since, there are n peels, there are O(n?) slices and hence O(n?) shortest-
path edge sequences. Their O(n?logn) time complexity arises from the partitioning
of P into peels. The algorithm builds a slice tree of O(n?) slices, each one taking
O(nlogn) insertion time. They essentially propagate outwards from s, building up
slices. The expensive slice-adding operation is due to a priority queue which represents
the boundary of a wavefront propagating from s. Once the peels are computed, a
point location algorithm is used to determine in which slice the destination point lies.
Once the slice is determined, so is the peel, and hence a shortest-path edge sequence
is known. An actual shortest path can then be computed directly from the unfolded
peel in O(k) time, where k is the number of segments in the resulting path. Mount [94]
proposed an improvement on this algorithm, reducing it to O(n?logn) by simplifying
the storage of the tree structure. Later, the space requirement was reduced by Mount
[95] to O(nlogn). O’Rourke et al. [98] then extended the algorithm to work for

non-convex polyhedra as well.

In order to reduce the high time complexity of computing the exact solution
for this problem, Hershberger and Suri [63] provided an algorithm that computes an
approximate shortest path between two query points on a convex polyhedron in linear
time. The algorithm is quite simple and is based on taking the half planes passing
through the faces containing s and ¢, computing a path on the surface of these half-
planes and then projecting the path back onto the polyhedron. The resulting path

has a length of at most two times the length of an actual shortest path.

Har-Peled et al. [57] extended this result and provided an algorithm to compute an
e-approximation of a shortest path; it runs in O(nmin{1/€e*% logn} +1/e*5log(1/¢))
time. They used the algorithm of Hershberger and Suri [63] to obtain an approximate
shortest path. They expanded the polyhedron by a distance r = €'°§, where § is the

CHAPTER 1. INTRODUCTION 30

initial distance estimate. They “rounded-oft” the new polyhedron by intersecting it
with a grid of unit distance proportional to r. The exact path was then computed
between two points that are close to s and ¢ and then projected this path back onto the
original polytope. Agarwal et al. [4] then improved the algorithm to run in O(nlog 1+
%) time. Har-Peled [58] solved the query point version of this problem using the
previous results of Agarwal et al. [4]. He provided an algorithm to preprocess the

polyhedron in linear time such that two-point shortest path queries could be answered

in O(ISF_? }3) time. Once again, the resulting path is an e-approximation.

In the case where the source point is fixed, Har-Peled [59] gave an algorithm that
computed a shortest path map on a convex polytope P with respect to a fixed source
point s on P. The map is actually a subdivision of P with size O(” log %) where n is
the number of edges of P and 0 < ¢ < 1. The map can be used to answer efficiently
approximate shortest path queries and can be computed in O(% log £+ - log L log n)
time. Given a destination query ¢, the Fuclidean length of an e-approximate path on

P from s to t can be computed in O(log) time.
Computing Edge Sequences

A shortest path between s and t on any convex polyhedron has the property
that it will unfold into a straight line. One approach taken by many researchers is to
compute a superset of all possible shortest path edge sequences during a preprocessing
step. Given this set of edge sequences, the problem is then to choose the appropriate

sequence given s and ¢ and hence unfold it to produce a shortest path.

Mount [96] provided an analysis of the number of shortest paths on the surface of
a convex polyhedron, although he does not give an algorithm to compute them. He
gave a O(n*) tight bound on the number of possible shortest-path edge sequences.
His analysis attempts to associate the shortest path properties with paths in the dual

D of the triangulated polyhedral surface. He showed that for any two edges of the

CHAPTER 1. INTRODUCTION 31

polyhedron, there are at most O(n?) distinct edge sequences between them that can
give rise to a shortest path. Thus, for all pairs of possible edges, there are O(n*)
possible shortest-path edge sequences in total. He started by proving that any set
of distinct non-crossing paths in D emanating from a source vertex contains O(n)
elements. By considering two particular edges of D, he showed that the removal of
certain edges in the polyhedron causes some of the edge sequences to become equal.
He showed that for each edge removed, at most O(n) paths can become equal. This
represents a reduction in the number of paths. If this is done for each edge, at
most O(n?) paths are removed, showing that there are O(n?) paths between the two
edges. To prove the lower bound of (n*), Mount provides an example of a family
of polyhedra (see Figure 1.9). At least n* different shortest path edge sequences can
be formed by varying the location of s and ¢. Each of these edge sequences consist of
three portions: a first portion passing through the upper set of horizontal segments, a
second portion passing through the inner set of vertical segments and finally a portion

passing through the lower set of horizontal segments.

Figure 1.9: A polyhedron that can have Q(n?*) shortest path edge sequences.

Sharir [112] gave an algorithm to compute an O(n") superset of the possible edge

CHAPTER 1. INTRODUCTION 32

sequences that runs in O(n®logn) time. He proved the correctness of his algorithm
by first examining the case where the two chosen query points, s and ¢, lie on edges
of the polyhedron. If the shortest paths from s and ¢ are computed to every vertex v
and paths from s to v and from v to ¢ are combined, then these shortest paths divide
the polyhedron into (n?) simply connected regions. Figure 1.10 gives an example of

a polyhedral cone in which two edges on the base face exhibit these (n?) regions.

Figure 1.10: The Q(n?) regions produced on the base of a cone between two points s
and ¢.

He showed that a shortest path from s to ¢t must lie completely within one of these
regions. In fact, he proved that a shortest path between these two points cannot cross
any of the shortest paths from s or ¢ to the vertices. Hence, there are only O(n) of the
O(n?) regions that can contain a shortest path between s and ¢ as shown in Figure

1.11. Furthermore, a path through each of these regions can cross at most O(n) edges.

If s and t are varied slightly along their edges, the edge sequences themselves do

CHAPTER 1. INTRODUCTION 33

Figure 1.11: The O(n) possible regions allowing a shortest path between s and t.

not change. He showed that the edge sequences will only vary when s and ¢ cross
what he calls critical points. The critical points are defined on each edge by the ridge
lines with respect to each vertex. Since each vertex can produce O(n) ridge points on
each edge, there are at most O(n?) critical points on an edge which divide the edge
into closed intervals in which the edge sequence remains the same for any point in
that interval. If an interval is chosen on the edge containing s and one on the edge
containing ¢, there are a total of O(n?*) possible combinations. Since there are O(n)
edge sequences for any two intervals, this produces O(n®) possible edge sequences in
total for a specific pair of source and destination edges. It can be easily seen that for
all of the O(n?) pairs of possible source/destination edges, there is a total of O(n")
edge sequences. An O(n®logn) time algorithm is given to compute these O(n") edge

sequences.

Agarwal et al. [3] improved upon the work of Sharir [112] by providing an al-
gorithm to compute O(n®) edge sequences in O(n®) time using the notion of star
unfolding. A convex polyhedron K can be unfolded with respect to some non-ridge

point x on its surface. Consider the shortest paths from x to all vertices of K. The

CHAPTER 1. INTRODUCTION 34

segments of these shortest paths are called cut lines. These cut lines together with
the edges of K induce a decomposition of K into cells which are convex polygons.
A 2D complex is formed from the cells by isometrically embedding the cells into the
plane. The resulting 2D complex is called a star unfolding (see Figure 1.12). The

star unfolding exhibits the following interesting properties:

a) b)

Figure 1.12: a) The shortest paths on a convex polyhedron from a point z to each
vertex. b) The star unfolding with respect to x.

Property 1.17 The boundary of a star unfolding is comprised solely of cut lines.

Property 1.18 A star unfolding can have ©(n?) convex regions in the worst case.

They used the dual D of the star unfolding with respect to a non-ridge point .
This dual graph represents a tree of at most O(n?) vertices where the leaves (at most
n) of D correspond to regions containing x. From each image of z in the unfolding,

there are O(n?) possible edge sequences; one from z to each other vertex of D. Since

CHAPTER 1. INTRODUCTION 35

there are O(n) images of x, there are a total of O(n?®) edge sequences from x. Consider
the distinct dual trees of unfoldings that arise from non-ridge points on edges of P.
The ridge lines with respect to a particular vertex of P, can intersect an edge of P
in O(n) points. Since there are O(n) vertices and O(n) edges, the edges of P are
partitioned into O(n?) open segments after computing the ridge lines for each vertex.
Each of these segments are free of ridge points. The paper showed that all points
within one of these segments share the same set of edge sequences. By computing the
star unfolding with respect to a selected point in each of these sub-segments, O(n5)
edge sequences are induced since each unfolding produces O(n?) edge sequences. The
algorithm produces an edge sequence tree with O(n) depth and O(n®) nodes. A later
paper by Aronov and O’Rourke [13] proved the non-overlapping property of the star
unfolding and helped provide a little more intuition by showing that the ridge tree of

x is nothing but the Voronoi diagram of the star-unfolded images of x.

Schevon and O’Rourke [110] did provide an algorithm to produce O(n*) edge se-
quences but their algorithm requires O(n®logn) time and O(n?®) space. Furthermore,
after this preprocessing step, their algorithm can report the edge sequences traversed
by all shortest paths connecting a given pair of query points lying on edges of the
polyhedron in logarithmic time. Agarwal et al. [5] then provided a modification to
their algorithm of [3] so as to compute the exact set of at most O(n*) edge sequences in
O(n®B(n)logn) time, where 3(n) is an extremely slow growing function (uses inverse

Ackerman function).

1.3.3.2 Among Multiple Convex Polyhedra

The problem of finding a shortest path from a point on one convex polyhedron to a
point on another disjoint polyhedron has been studied by Baltsan and Sharir [16]. In

their paper they showed that a shortest path in such a scenario consists of 3 portions:

CHAPTER 1. INTRODUCTION 36

a shortest path on the starting polyhedron from the source to a take off point, a
straight line path from the take off point to some landing point on the destination
polyhedron, and finally, a shortest path from the landing point to the destination.
Figure 1.13 shows an example of the structure of a shortest path between three

polyhedra in which there are two takeoff (¢1,%3) and two landing (I, [points).

Figure 1.13: The structure of a shortest path between three polyhedra.

Calculation of the takeoff and landing points essentially solves the problem since
this leaves us with an already solved problem of computing a shortest path between
two points on a convex polyhedron, which has already been discussed. They solve
this problem in O(n? * 2°(™") log n) time where a(n) is the inverse of the Ackerman
function. They begin by partitioning the start and end polyhedra into slices as done
by Mount [94]. The next step is to determine the two sequences of edges that are
passed through on the first and last portions of a shortest path. Since the ridge lines
split the polyhedral edges into at most n intervals each, there are at most O(n?)
intervals per polyhedron. The basic idea of determining takeoff and landing points
is to try all pairs of these ridge-defined edge intervals (one from each polyhedron)
for a total of O(n*) pairs. They showed however, that there are only O(n?) pairs of

edges that are not totally obscured from one another. Their algorithm reduces the

CHAPTER 1. INTRODUCTION 37

number of candidate pairs by examining the portions of edges that are visible from
each other. For each pair, the sequence of edges lying in the same peel as the chosen
intervals are found and the chosen pair can be ruled out if the shortest path does not

remain within the peel.

Sharir [112] also addressed the problem of computing a shortest path amidst a
fixed number £ of convex polyhedra having altogether n vertices. He claimed that
this problem produces O(n™) possible edge sequences and can be solved in O(n°®))
time. He does not address the problem of determining which of the convex polyhe-
dra are intersected by a shortest path from the source to destination, assuming he
is already given these polyhedra. He then showed that a shortest path is nothing
but subpaths that alternate between shortest paths on a polyhedron and straight line
segments that join these shortest paths between two polyhedra. Again, the problem
essentially involves choosing appropriate takeoff and landing points for each polyhe-
dron. These points define edge sequences and therefore, his technique for computing
edge sequences on a single polyhedron is also applicable to this case of multiple poly-

hedra.

Papadimitriou [100] provided an algorithm to compute e-approximations of short-
est paths amidst polyhedral obstacles in 3-space. The algorithm runs in O(n*(L +
log(n/e€))?*/€*) time, where n is the number of elements (vertices, faces and edges) of
all polyhedra and L represents the bit precision. The algorithm divides the edges of
the polyhedra into intervals based on a geometric progression which depends on e.
Choi et al. [26] later presented a refinement to this algorithm. In follow-up work,
Choi et al. [27] took a closer look at the precision issues (bit complexity) of their
earlier work in [26]. They examined the low level operations of their algorithm in

order to determine the complexity with respect to precision.

Clarkson [29] also provided an algorithm to compute an e-approximation for

CHAPTER 1. INTRODUCTION 38

paths amidst polyhedral obstacles in 3-space which runs in O(n?X(n)log(n/e€)/e* +
n?lognplog(nlogp)) time. Here, p is the ratio of the length of the longest obstacle
edge to the distance between s and ¢. The function A(n) = ()™ where a(n)

is a form of inverse of Ackermann’s function.

1.3.3.3 On a Non-Convex Polyhedron

The approach of pre-computing edge sequences becomes impractical when the poly-
hedron is non-convex. Although Mount [96] has shown that there are in the worst
case ©(n?) shortest-path edge sequences for an n-vertex convex polyhedron, this does
not hold for non-convex polyhedra. The main problem is that shortest paths on non-
convex polyhedra may pass through vertices and hence does not necessarily unfold
into straight lines. Figure 1.14 shows an example of a non-convex polyhedron which
can lead to an exponential number of possible shortest path edge sequences. To see
this, think of each peak as being a “pencil tip”. The path may go left or right around
each pencil tip, leading to ©(2%) possible shortest path edge sequences, where k is

the number of peaks.

The computation of Euclidean shortest paths on non-convex polyhedra has been
investigated by [71, 21, 88, 98, 6]. Two of these algorithms ([21],[88]) use the notion
of a projection. Consider an unfolded sleeve of triangles in the plane, representing a
particular shortest-path edge sequence. When the face containing the source point is
unfolded onto the plane, the point representing the position of s is called the mage
of s, and it is denoted here as s’. A projection of s’ through a sleeve onto an edge e;
is essentially, the portion of edge e; that is visible from s’. The projection is denoted
as proj(s',e;). The projection together with the image of the source point essentially
define a cone in which an unfolded shortest path from s’ to e; must lie. A further

projection through e; casts a shadow on one or both of the remaining two edges of an

CHAPTER 1. INTRODUCTION 39

A
\4

Figure 1.14: An example in which there may be ©(2*) possible shortest path edge
sequences between two points.

outside face. This shadow is essentially one or two new projections representing the
updated visibility from s’. Figure 1.15 shows an example of a projection of a source

image s’ onto an edge e; and its shadow projections.

Mitchell et al. [88] provided an O(n?logn) algorithm for computing shortest paths
on a non-convex polyhedron which also used O(n?) space. Their approach uses the
continuous Dijkstra technique. As the wavefront expands from s, it keeps for each
edge a set of projections (intervals of optimality) emanating from s (i.e., the unfolded
image of s) through a sleeve. Once completed, each edge contains up to n intervals
of optimality. The path from the source to each projection represents a straight-line
edge sequence. However, since the projections are propagated in increasing order of
their distance from s, only shortest-path edge sequences are produced. A shortest

path of k£ segments to any query point can then be found in O(k + logn) time.

Chen and Han [21] presented an algorithm to compute a shortest path on a convex

polyhedron from a fixed source point s. Their algorithm preprocesses the polyhedron

CHAPTER 1. INTRODUCTION 40

Figure 1.15: The projection of a source image s’ onto an edge e; and its shadow
projections.

in O(n?) time and O(n) space. The algorithm essentially unfolds faces of the polyhe-
dron with respect to s such that only sleeves representing shortest-path edge sequences
are produced. Each sleeve is equivalent to a path in the dual of the polyhedron ema-
nating from the same source vertex. The algorithm begins by propagating outwards
from s through its adjacent triangles. During propagation, each encountered edge
maintains the image s’ of s and its corresponding projection through the sleeve (see
again Figure 1.15). Each new projection is created from an expansion of an edge se-
quence by one edge. Only sleeves which produce non-empty projections of the image
are candidates for expansion. Figure 1.16 shows the first three stages of the algorithm
which produce edge sequences of sizes 1,2 and 3. The shaded cones represent valid

shortest path regions.

To avoid an exponential number of unfoldings, a crucial lemma is given which
reduces the number of shortest-path unfoldings to be of linear size. Consider the
triangle AABC with two projections on edge BC emanating from two separate source

images I; and I, (see Figure 1.17). Assume that both projections have shadows

CHAPTER 1. INTRODUCTION 41

AN
o

Figure 1.16: The first three stages of the algorithm of Chen and Han. Shaded cones
represent possible unfolded shortest path sleeves from s.

covering A. Let d; be the distance from image I;, where ¢ = 1,2 and without loss of

generality let dy < d;. The lemma shows that although the shadow of both projections

A
m
c

proj(l, ;c)

S,

Figure 1.17: The crucial “one-angle-one-split” lemma of the Chen and Han algorithm.

covers A, only one of the projections will allow further expansion through both edges
BA and AC. Since it has been assumed that dy < d;, then the path from I, to A is
shorter than the path from I; to A. Consider paths from I; and I, to points on AC.

It can be shown that these points are closer to I, than I; and so the projection from

CHAPTER 1. INTRODUCTION 42

I, will not propagate through AC. The projection from I, may however propagate
through BA and AC. In the case where dy = d;, then I; would propagate through
only BA and I, through only AC. An alternate proof of this lemma follows from
Agarwal et al. [3].

Chen and Han’s algorithm builds a sequence tree representing the edge sequences
with the root being the face containing s. A downward path from s in the tree
represents a sleeve of triangles in which there exists a straight line segment which
passes through each face of the sleeve (i.e., a shortest-path edge sequence). To keep
the tree linear in size, only leaves and interior nodes (representing polyhedral faces)
that have more than one child are kept. A shortest path to a query point ¢ is found
by searching the tree for a path containing the shortest of all the edge sequences from
s to t. This can be done in O(k) time for a k-link shortest path. Chen and Han state
that their technique and lemma can be slightly modified to handle shortest paths
on a non-convex polyhedra, although no direct proof is given 2. For non-convex
polyhedra, they take into account paths that go through vertices of the polyhedron.
A path going from s to ¢ through a vertex v is viewed as two separate sub-paths
from s to v and from v to t. They modify their tree to have two kinds of nodes: a
verter node and an edge node. Vertices (hence vertex nodes) essentially act as pseudo
sources for which propagation occurs in a similar manner to s. Projections keep track
of their source image (which may be an intermediate vertex). They show that the

sequence tree still has at most O(n) leaves at any time during the algorithm and that

the time and space complexities do not change.

Very recently, Kapoor [71] provided a more time-efficient algorithm for solving this
problem. His algorithm requires only O(nlog®n) time. The algorithm is based on a

method which is termed the “waveform propagation” method. This method is based

2Some researchers in the field doubt the correctness of Chen and Han’s algorithm for the non-
convex case.

CHAPTER 1. INTRODUCTION 43

on maintaining a sequence of arcs of circles with centers as vertices of the polyhedron.
As with the work of Mitchell et al. [88], the waveform is expanded and changes only
at certain event points. The algorithm uses unfolding techniques which are similar to
that of Chen and Han [21] and also uses a hierarchical convex hull structure which is

crucial to obtain efficient determination of events points.

Varadarajan and Agarwal [6] provided an algorithm that computed a path on
a, possibly non-convex, polyhedron that has at most 7(1 + €) times the shortest
path length; it runs in O(n%31og®®n) time. They also presented a slightly faster
algorithm (i.e., O(n®%10g®® n) time) that returns a path which is at most 15(1 +)
times the shortest path length. They partitioned P into O(n/r) regions, each with
at most r faces. This is done using the notion of planar separators such that there
are at most /7 border vertices per region. The algorithm computes shortest path
approximations among all bordering vertices of region and then merges all of these
such graphs. Dijkstra’s algorithm is then applied to the merged graph to obtain their

approximation.

In the case where the source point is fixed, Har-Peled [59] gave an algorithm that
computed a shortest path map on a polyhedral surface P with respect to a fixed source
point s on P. The map is actually a subdivision of P with size O(2 log ¢) where n is
the number of edges of P and 0 < ¢ < 1. The map can be used to answer efficiently
approximate shortest path queries and can be computed in O(n?log n+ 2 log 1 log 2)
time. Note that this computation of the map has a better time complexity in the
case where P is convex. Given a destination query ¢, the Fuclidean length of an

e-approximate path on P from s to ¢ can be computed in O(log2) time.

CHAPTER 1. INTRODUCTION 44

1.3.4 Weighted Shortest Paths in 2D and 3D

Consider a triangulated planar subdivision &. The problem of determining a Eu-
clidean shortest path between any two points can be solved using similar algorithms
to those for simple polygons. If however, each face of § is assigned a weight denoted
by a real number w; > 0 and the weighted shortest path metric is used, then the

problem becomes quite different.

As Mitchell [89] has shown, a weighted shortest path can bend at each diagonal. In
his paper, he examined the problems that are faced during optimal path computations
when taking into account the weights of the faces. He made use of Snell’s Law which
defines precisely how a shortest path should move from face to face depending on
the uniform weights that are assigned to the faces. He showed that there are three
possible bendings that a shortest path can take when encountering an edge between
two faces. Figure 1.18 shows the three cases. Let o denote the weight of the face
that a shortest path is leaving and let § denote the weight of the face that the
shortest path is entering. Let o < and let ¢ be the angle of incidence and € be the
angle of refraction. In the refraction case, the path is refracted and the path obeys
asin § = @sin ¢. He showed that the angle of incidence of a shortest path cannot be
greater (in absolute value) than the critical angle defined at that edge. The critical
angle from a face f with weight af to a face f’ with weight oy is denoted as fa.(f, f')
and is defined as fa.(f, f') = sin " (o /ay).

If a shortest path from f hits the edge at the critical angle, then it may critically
use the edge and be critically reflected back into f. This can only occur if apr < ay.
If the edge is allowed to have a weight that is different to that of its adjacent faces,
then a shortest path that hits the edge at the incoming critical angle can critically

use the edge and then exit into face f’ at the outgoing critical angle.

CHAPTER 1. INTRODUCTION 45

o
a ! a ! ! a
|

B i

0! 0!

Refraction Critical Reflection Critical Usage

Figure 1.18: The three types of bending properties of a shortest path intersecting an
edge.

Mitchell and Papadimitriou [90] presented an algorithm to solve the shortest path
problem in a weighted planar subdivision S from a fixed source point (known as the
weighted region problem). The algorithm computes a path which has a cost at most
(1+4¢) times the shortest weighted path cost, where 0 < € < 1. The algorithm requires
O(n®L) time in the worst case, where L = log(nNW/we) is a factor representing the
bit complexity of the problem instance. Here N is the largest integer coordinate of
any vertex of the triangulation and W (respectively, w) is the maximum (respectively,
minimum) weight of any face of the triangulation. They claim however, that the
algorithm would perform much better in practice, however, they did not complete
their implementation. The algorithm is based on the continuous Dijkstra technique
of Mitchell et al. [88] and also takes into account the various refraction and reflection
characteristics. The algorithm actually computes intervals of optimality for each
edge with respect to a fixed source point. These intervals define the intersections of
channels which emanate from the source point. The channels represent passage ways
such that all shortest paths from the source point that remain in a particular channel

pass through the same sequence of edges. The algorithm begins by propagating from

CHAPTER 1. INTRODUCTION 46

the source point to the edges of the face in which it is contained. This defines three
channels. For each edge of that face, the point with minimum cost (say i) to
the source is computed. Propagation then proceeds by expanding outwards from the
edge which has the closest x,,;, to the source. Upon expansion, channels are split
into two and its boundaries are recomputed. The shape of the channel boundaries is
determined by Snell’s law of refraction. Expansion continues in this manner until all
vertices of the subdivision are reached. There are special cases involving propagation
from a vertex as well as handling paths that are reflected back into a face. The

algorithmic details are non-trivial and technical and are therefore omitted here.

Gewali et al. [50] presented an algorithm for a specialized case of the weighted
region problem in which the planar subdivision consists of regions with weights either
0, 1 or co. Their algorithm takes O(n?) time and is based on computing a specialized
visibility graph. This specialization ensures that O-weighted regions can be entered
from a vertex or perpendicular to an edge of the region. The graph can also be built in

time O(nlogn + K) time, where K is the number of edges of the 0-weighted regions.

In the rectilinear setting, there has also been some work in computing shortest
weighted rectilinear paths, where rectilinear obstacles have weights associated with
them. In this scenario, the shortest rectilinear paths are allowed to pass through a
weighted obstacle with a cost combining the distance and weight metric. Table 1.5
gives a summary of the time complexities of various sequential rectilinear shortest
weighted path algorithms. In the table, n denotes the number of vertices (or edges)

of the obstacles.

In 3D, there has been substantially less research for developing algorithms to
compute weighted shortest paths. According to Mitchell and Papadimitriou [90],
their work pertaining to the weighted region problem can be modified to work for non-

convex polyhedra since it is based on the continuous Dijkstra approach of Mitchell et

CHAPTER 1. INTRODUCTION 47

‘ Metric ‘Weighted Rect. ‘

L, O(nlog®” n) [22]
F. Source
L, O(n?) [124]
O(nlog®?n) [22]
O(nlog®?n) [82]
O(nlogn) [122]
L; + Link | O(n?) [124]

Table 1.5: Summary of sequential 2D rectilinear weighted shortest path algorithms.

al. [88]. However, the large time complexity of roughly O(n®logn) motivates study

for more efficient solutions.

Mata and Mitchell [86] presented independently and at the same time as our
work (see [76]) an alternate algorithm that constructs a graph which can be searched
to obtain an approximate path; their path accuracy is (1 + %), where 6,,;, is
the minimum angle of any face of P, W/w is the largest to smallest weight ratio
and k is a constant that depends upon e. Their time complexity is O(kn?). Their
approach is based on discretizing the number of possible orientations (i.e., k) that
a shortest path can take from the source point. To determine the boundaries of
each of the cones created during this process, they determine a path to another
vertex (or critical point) by tracing out the path through the cone, obeying Snell’s
law of refraction along the polyhedral edges. The cones are built using an outward
propagation strategy. At certain points during the propagation, cones are split into
two thinner cones. Once propagation is complete, the result is called a pathnet and

it is searched using Dijkstra’s algorithm for a path from s to ¢.

In three dimensions, the problem of determining a shortest rectilinear path among

a set of boxes has also received some attention. Clarkson et al. [30] presented an

CHAPTER 1. INTRODUCTION 48

algorithm to solve this problem in O(n?(logn)?) time. M. deBerg et al. [35] also
solved this problem, but they use a combined L, and link distance metric. In addition,
their algorithm is generalized to work for higher dimensions. Their running time is
O(n®logn) which is based on the building of a data structure. If preprocessing is
allowed, then they can answer shortest path queries in O(log®n + k) time for a k-
link path. Choi and Yap [28] presented an improved algorithm that requires only
O(n*logn) preprocessing and shortest path queries can be answered in O(logn + k)

time.

1.3.5 Point Location Algorithms

Shortest path algorithms that allow source/destination queries either require knowl-
edge of the face(s) containing the query point(s) or point location algorithms to locate

the face containing the query point(s). The following observation follows from [101].

Observation 1.1 Given a polyhedron P with O(n) faces, a data structure can be
built in O(n?) time such that for a given query point ¢ on P, we can determine the
face of P in which q lies in O(logn) time. In the special case in which P is a terrain,

more efficient planar point location algorithms can be used (e.qg., see [74]).

1.4 Contributions

In order to help compare the results of the work presented in this thesis to the previous
work, Table 1.6 shows the work pertaining to computing shortest paths on arbitrary
(i.e., possibly non-convex) polyhedral surfaces. Our work focuses on the weighted
shortest path metric. As can be seen from the table, the work presented in this

thesis, improves upon the running time of existing algorithms in terms of n.

CHAPTER 1. INTRODUCTION 49

‘ Run Time ‘ Metric ‘ Accuracy ‘ Reference ‘ New ‘
O(n*logn) Euclidean Exact 88] -
O(n?) Euclidean Exact 21] -
O(nlog®n) Euclidean Exact [71] -
O(n®/? 10g5/3 n) Euclidean 7(1 4)| 11| 6] -
O(n8/510g®® n) Euclidean 15(1 +) ||IT]| 6] -
O(n®logn) Weighted 1+ e)||H|| [90] -
O(kn?) Weighted (1 + o) I 86] -
O(n?) Weighted ||IIT]| + W|L| [76], [77], [79] | Ch. 2
O(n?logn) Weighted | ||| +AW|L| | [76], [77], [79] | Ch. 2
O(mnlogmn +nm?) | Weighted (14 ¢)||11]| [9], [10] Ch. 3
O(n™) Anisotropic Exact [108] -
O(nklognk + nk?®) | Anisotropic s1rl|(13»2) + SIK(/ (LL/‘Z) 78] Ch. 4
O(nklognk + nk?) | Anisotropic | (1 + wsiyof/z) €)||T1]| (78] Ch. 4

Table 1.6: Summary of shortest path algorithms on arbitrary polyhedral surfaces.

In Chapter 2 we present an algorithm for computing weighted shortest paths on
polyhedral surfaces and provide an experimental analysis to validate its usefulness. To
our knowledge, this work provides the first algorithm for computing approximations
of weighted shortest paths on arbitrary polyhedral surfaces !. This work was initially
developed as a technical report in [75]. It was presented in both paper [76] and video
[77] form and finally submitted to a journal [79]. In the chapter we provide a worst
case theoretical run time analysis and verify its usefulness through experimentation

with geographical terrain data. Variations on the algorithm are also described.

In Chapter 3 we provide a theoretical improvement on the algorithm that is ca-
pable of generating an e-approximate solution to the same problem. The approach is
quite similar to that in Chapter 2, and the majority of the chapter is used to provide
a theoretical analysis of both path accuracy and running time. This work was first

developed as a technical report for the special case in which the source and destination

!The work of Mata and Mitchell [86] was developed at the same time.

CHAPTER 1. INTRODUCTION 50

are vertices of the polyhedron. We presented an extension to the algorithm which
allowed arbitrary queries in [10]. Our vertex-to-vertex work (i.e., the technical report)
was published later in [9]. Although the e-approximation algorithms of Mitchell and
Papadimitriou [90] and Mata and Mitchel [86] had existed at this time, our aim was

to provide an algorithm that reduced the run-time dependency on n.

In order to provide an algorithm that was capable of producing a more realistic
cost measure, we investigated the problem of computing shortest energy paths that
take into account the direction of travel along the polyhedral face inclines. This work
was presented in Chapter 4 which uses a cost metric based on the model of Rowe and
Ross [108]. Although Rowe and Ross had previously investigated this problem, the
exponential time complexity of their algorithm made this problem a good candidate
for further research. It was our intent to reduce dramatically the dependence on n in
the runtime of the algorithm. The approach we take expands on that of Chapters 2
and 3. This work has been presented recently in [78].

Due to the large size of the terrain data sets that we have encountered, a limit
arose pertaining to the maximum terrain size that the implementation could handle.
This was mainly due to the limit of available internal and virtual memory of the
test machine. In addition, the large data sizes can result in large running times.
To help alleviate the storage constraints and runtime delays, a parallel algorithm was
developed. In fact, since our work is based on decomposing the shortest path problem
into a graph problem, there are many possible parallel algorithms that apply to our
techniques. Chapter 5 investigates a parallel simulation algorithm for computing
a weighted shortest path on polyhedral surfaces. The work can be applied to all
of our algorithms in the previous chapters. Experimental results are presented for
various types of terrain data. We show that a key factor in the performance of the

parallel algorithm is in the decomposition of the terrain data (i.e., the partitioning).

CHAPTER 1. INTRODUCTION o1

Although there has been extensive work in computing shortest paths in parallel for
transportation networks, there has been very little in computing shortest paths on
non-grid-like terrains. It was our intent to show that all of the work in the previous

chapters can be parallelized and that efficient speedup can be obtained.

Finally, Chapter 6 attempts to briefly summarize the results of the thesis and

present a few open problems as well as describe work that is currently being done.

Chapter 2

Algorithms Based on Edge

Decomposition

Our approach to solving the weighted shortest path problem is to discretize the input
polyhedron in a natural way, by placing Steiner points along the edges of the poly-
hedron. We construct a graph containing the Steiner points as vertices and edges
as the interconnections between Steiner points that correspond to segments which lie
completely in the triangular faces of the polyhedron. We describe here the design and
analysis of several schemes for placing the Steiner points and edges on each face of
the polyhedron. The key idea is to transform geometric shortest path problems into

graph-theoretic problems so that the following goals are achievable:

1. provable bounds on the approximation factors and the path cost can be estab-

lished,
2. experimentally verifiable high quality paths can be obtained,

3. existing shortest path graph algorithms can be used,

52

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 53

4. the schemes are easily implementable, and appealing to practitioners.

We point out that, in any of our schemes, we can store the graph as it pertains
to Steiner points implicitly. In an iteration of Dijkstra’s algorithm, adjacency infor-
mation can be computed on the fly at a small additional cost. Thus, the graph needs

neither to be precomputed nor to be stored.

In addition to the theoretical contributions, we have implemented all of our
schemes, a point-to-point shortest Euclidean path algorithm for sleeves, graph span-
ners on faces of polyhedra and Chen and Han’s algorithm. We performed extensive
experiments on triangular irregular networks (TINs) and established excellent per-
formance of the schemes in path quality and run time; both being better than the
theoretical worst case bounds. We show experimentally that a constant number of
Steiner points (i.e., six) per edge suffice implying an O(nlogn) run time as was also
observed experimentally. In the unweighted case, a direct comparison to Chen and
Han’s algorithm is given. Here our schemes show a fast convergence to optimal in
accuracy with a much improved running time over Chen and Han. Using an addi-
tional post-processing step the exact shortest paths are frequently obtained. In the
weighted scenario, as far as we are aware of, this work represents the first adequately
documented implementation 3. Here also the path accuracy convergences rapidly at
a fast running time. We conclude that the schemes presented here are of high value
for practitioners from inside and outside the scientific community and for researchers

in the above mentioned fields.

The chapter is organized as follows: Section 2.1 describes our approximation algo-
rithms for shortest paths computations. We begin with a simple approach and then
describe improved schemes. Section 2.2 presents the testing procedures, experimen-

tal setup and results that were obtained. Section 2.3 discusses an extension to our

3At the same time as this work [76], an alternate approach of [86] was proposed.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 54

algorithm to accommodate arbitrary query points as well as an analysis for achieving
e-approximations when constraints are set for s and t. Section 2.4 discusses possible

future work in the form of other approximation schemes.

2.1 Shortest Path Approximation Schemes

In this section, we describe various schemes for approximating Euclidean or weighted
shortest paths between vertices on the surface of a polyhedron P. All schemes are
based on adding Steiner points to the edges of P and then building a graph on P from
which the approximation will be a subgraph. First we describe a simple approach
and show that it may produce poor approximations. Then we describe two edge-

decomposition schemes and provide an analysis of the approximation quality.

2.1.1 A Simple Approximation Scheme

A natural approach to approximating paths on a given polyhedron P is to choose a
path which is restricted to traveling along edges of P. That is, one could compute
a graph G as follows. The vertices in G correspond to the vertices of P and there is
an edge between two vertices in G if the corresponding vertices in P are connected
by a polyhedral edge. The weight of an edge in G is the Euclidean length of the
corresponding edge in P times the minimum weight of its two adjacent faces. For
simplicity, assume that s and t are vertices of P. An approximate shortest path

IT'(s,t), between s and t can then be computed by using Theorem 1.2.

Since this scheme confines the path to traveling on edges of P, the quality of
the approximation depends on the given triangulation, which could be bad in the

worst case (as is illustrated in Figure 2.1). Assume that the faces of the polyhedron

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 55

in Figure 2.1 have equal weight. If P is sufficiently compressed horizontally then
III(s,t)| — 0. Each segment of a shortest path is approximated by an excursion to a
vertex and back to another vertex, resulting in an unnecessary traversal of distance
|L|. The approximate path II'(s,t) with & links has length & - |L| and this could be
much larger than |II(s, t)|.

n (s, n-Cs,t

Figure 2.1: The approximated path length |II'(s,t)| is unbounded with respect to
[TI(s,1)].

Although this method of approximation can be bad in worst case, we can bound
the path cost with respect to parameters of P. We give here a bound on this type
of path which depends on 6,,;, (i.e., the minimum angle between any two adjacent

edges of P).

Property 2.1 Let ABC be a triangle. Let X be a point on AC and Y be a point on
AB such that |AX| = 6|AC| and |AY| = 6|AB| for some 0 < 6§ < 1. Then XY 1is
parallel to BC. Furthermore, | XY | = §|BC].

Claim 2.1 Let ABC be a triangle such that /CAB = 0. Let XY be a line segment
with endpoints X and Y lying on AC and AB, respectively. Given some constant
0 <6 <1, the following s true:

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 56

i) If [AX| > 6[AC| and [AY| < §[AB| then |AC| < 21

ii) If [AX| < 8|AC| and [AY| > 6|AB| then |AB| < XX (symmetrical to i above)

6sin 6

iii) If [AX| > 6|AC| and |AY| > 6|AB| then |BC| < XXl

Proof: Let P be the point on line AB such that | X P| is minimized (i.e., X P is a
perpendicular of line AB which may or may not lie on segment AB). Define Y’ to
be the point on segment AB such that | XY7| is minimized (Y’ = A, P, or B). Since
|XY'| < |XY], it is sufficient to prove the claim for |XY’|. Lastly, let D and E be
the points on AC and AB, respectively, such that [AD| = §|AC| and |AE| = 6|AB)|.
(See Figure 2.2 where § is set to 3).

i) (case ii is symmetrical) By definition |XY| > |XY’| > | XP|. If Y’ = A then we
are done since by assumption [AX| > §|AC|. Hence |[AC| < @ If Y/ = P, then

9 = X2l and from our assumption that |AX| > §[AC| we have [AC| < B2 <

Sin AX| Ssinf —
XY
6sinf "

iii) From Property 2.1 |[DE| = §|CB|. Due to the constraint that [AX| > §|AC| and
|AY'| > 6|AB| then we can infer that | XY | > |EFD| = 6§|CB|. Therefore, |[CB| < |Xéz

O

Lemma 2.1 A FEuclidean shortest path w(s,t) between two vertices s and t of P can
be approximated by a path 7'(s,t) consisting only of edges of P such that |7'(s,t)| <
|7 (s,1)].

Sin b, in

Proof: We will show that for each segment s; of n(s,?) passing through face f;
(1 < j < n), there is a corresponding segment s, of 7'(s,t) which represents an edge

of P and is bounded by ﬁ\si\, where 6, is the minimum angle between any pair
J

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 57

Figure 2.2: The three cases in which an edge of AABC (shown dashed) has length
bounded by a segment XY crossing the triangle.

of edges of f;. Let s; = Ty and s;41 = 7z be two consecutive segments of 7 (s, t).
Let x,y and z lie on edges e,, e, and e, respectively. Also let v,, v, and v, be the

vertices of e,, e, and e, that are closest to z,y and z, respectively. Claim 2.1 ensures

— |lzy| lzy| T ly=| ly=| I
that [7,7,| < Tong; < -~ and that |[7,7;| < T, < - Let s, = 7,0, and

;.1 = U,U, be segments of 7'(s,t) that approximate s; and s;1, respectively. This

bound applies to every segment |s}| of 7'(s,t) such that |s}| < (==2—)|s;|. Since the

sin@,.:n

cost of 7(s,t) is the sum of the cost of its segments, then |7'(s,t)| < (singmin)hr(s, t)].

Connectivity is ensured since every pair of consecutive segments of 7'(s,t) share a

vertex.
O

Lemma 2.2 A shortest cost path I1(s,t) between two vertices s and t of a weighted
polyhedral surface P can be approzimated by a path 11'(s,t) consisting only of edges
of P such that ||IT'(s,t)|| < (=—2—)||TI(s,)]||.

sin 0,,5n

Proof: We have shown through Lemma 2.1 that the length of an approximation

2

sin@,,:n

times the actual shortest

segment s, that passes through a face is at most

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 58

path segment length. In addition, s is an edge of P. From Property 1.12, s; cannot
have a weight greater than the weight of its adjacent faces since it would be cheaper
to travel “just inside” the face than along the edge. Hence, for any segment s; of

II(s,t) that passes through a face, we approximate it with a segment s. of II'(s,)

2

sin 0,55

with cost at most ()||si]|- If there are no reflected segments in II(s,t), then
the bound of Lemma 2.1 also applies in the weighted case since edges of the terrain
cannot have a cost higher than its incident faces. We must now show that if paths

are reflected, then the bound also holds.

(b)

(d)

Figure 2.3: The four cases in which a weighted path can reflect back into a face.

Let AABC be a face of P. Let py, ps, p3 and p, be consecutive points of I1(s, t) joining
consecutive segments of I1(s, t). Without loss of generality, let p; lie on AC, p, p3 lie
on AB and p; lie on either AC or BC. In addition, we will assume that [Ap;| < |Cpy|.
(we can apply a similar proof when [Ap;| > |Cp;|. Also, a similar proof can be

constructed for when p, and pj lie on C'B while p, lies on AB). Let My, M. and My,

be the midpoints of AB, AC and BC, respectively. We will examine four cases which
differ in the way that the subpath II(p;, ps) intersects these line segments forming
AM M, My, as shown in Figure 2.3. We will prove for each of these cases that the

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 59

subpath IT'(p1, ps) produced, by dragging these 4 points to the closest vertex of the
edge on which they lie, will be bounded such that ||II'(p1, p4)|| < (m)nﬂ(pl,m)ﬂ.

Consider the case of Figure 2.3a in which p; lies on AM,,, p4 lies on BM,. and both
py and ps lie on AB. Here II(p1,ps) intersects the two segments of AM,M,. M.
that share M,,. Let II'(p1,ps) = AB. Since AB necessarily has weight cheaper
than the face (Property 1.12), then the result of Claim 2.1 proves that |[AB| <

—2-|pipa| < ——2—|pipa]- By triangle inequality, |pipa] < [Pipa| + [P2ps| + |P3pal

min

and hence |AB| <

II(p1,p4)|.- Since |AB| has weight which is no more than
[I(p1, pa) -

sin emin

any portion of II(py, ps) then ||IT'(p1, ps)|| = [[AB|| <

sin @pmin

Consider the second case (Figure 2.3b) in which both p; and p4 lie on AM,. and
hence II(py,ps) does not intersect AM M, M,.. This represents a degenerate case
in which ||II(p1, ps4)|| has no corresponding approximation segment. We can assume

that this portion of the path never “leaves” A and hence has a cost of zero. Thus,

ITT (p1, pa)|| = O < [|TI(p1, pa)||-

The third case as shown in Figure 2.3c where II(py, ps) intersects two segments of
NAMgpy My My, and one of them is My M. Let I'(p1,ps) = AC. By applying Claim
2.1 one can show that [AC| < 2 |p3ps|, where § = /ABC. Since pspy is internal to

the face and ||p3pa|| < ||[TI(p1, pa)||, then ||AC|| < ﬁ |P371]|-

The last case (see Figure 2.3d) is when II(pq, p4) intersects all three segments of
AM My M,.. Here, let II'(p1,ps) = AB, BC (i.e., the approximated path has two
segments). Claim 2.1 ensures that [BC| <
the face then, ||BC| <

\p3p4\ and since P3p; is internal to

sin 9

|P3pal||. As for \AB\, we make use of the fact that

sin 9min

|P1p3| < |Pipz| + |P2ps|, and bound |AB| with respect to [pips| by again using Claim

2.1. Once again, the cheapest weight is along edge | AB| and so ||AB|| < —2—||pips]|-

sin 0., in
Hence ||IT'(p1, pa)ll = [|[AB|| + [|BCO|| < o 1T (p1, pa) |-

sin 0., 5n

O

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 60

In the following theorem we present an upper bound on the approximation quality

obtained by using the simple approach.

Theorem 2.1 A shortest cost path (s, t) between two vertices s and t of a weighted
polyhedral surface P with n faces can be approximated by a path II'(s,t) such that

I (s,8)|| € (5=2—)||TI(s,1)||, where Opmiy is the minimum interior angle of any face

sin 0,,in

of P. Furthermore, ||II'(s,t)|| can be computed in O(nlogn) time.

Proof: The proof of the accuracy bound follows from Lemma 2.2. The time com-

plexity follows from Theorem 1.2 since P is planar (i.e., |[E| = O(|V])).
O

Although we provided an approximation bound, the worst case can be bad, es-
pecially due to the dependency on 6,,;,. In general, the polyhedron may have thin

triangles resulting in a small value of 6,,;,. Hence this algorithm may produce a

path with unreasonable accuracy. For example, if 6,,;, = 5° then _— gm_" ~ 23. Our
bound is an upper bound and assumes that every edge of |[II'(s,t)|| has this worst
case approximation factor, which is very unlikely in practice. Nevertheless, to avoid
this pessimistic bound, we investigated a different scheme of edge decomposition that

does not depend on the geometric parameter of 6,,;,.

2.1.2 Edge Decomposition Schemes

We describe here two different schemes for placing Steiner points along the edges
of P and describe how they are interconnected on each face to form each G; using
one of two interconnection strategies. We then derive bounds on the portion of a
shortest path going through a face and prove the stated approximation bounds for

paths computed by the respective schemes. We do this by showing the existence of a

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 61

path approximating a shortest path within the stated bounds. The result of applying
Dijkstra’s algorithm may be this path or a path with equal or better cost.

2.1.2.1 Building the Graph

We begin by placing Steiner points evenly along each edge of P using one of two

placement schemes:

e [ized placement - exactly m Steiner points are placed along the edge.

e Interval placement - place only enough (up to m) Steiner points such that the

distance between adjacent Steiner points on an edge is at most n%‘l (Note that
if only m — 1 Steiner points are placed on the edge, then the distance between

adjacent Steiner points would be greater than "‘%l)

For each face f;;1 < i < n of P, compute a face graph G; as follows. The Steiner
points, along with the original vertices of f;, become vertices of G;, denoted as V.
Connect a vertex pair v,, v, of V; to form an edge 7,7, of G; if v, and v, represent points
that are adjacent on the same edge of f;. We then provide further interconnection

among the vertices in V; by using exactly one of two connection schemes:

e Complete interconnection - connect a vertex pair vy, v, € V; to form an edge
.0, of G; if and only if v, and v, represent Steiner points that lie on different

edges of f;.

e Spanner interconnection - Let C be the set of planar (with respect to f;) cones
with apex at all v, € V; and the conical angle § = % for an integer constant
p > 4. For each v, € V; perform a radial sweep of the elements of V;. During

this sweep determine the vertex v, € V; that has minimal distance to v, in each

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 62

of the p cones and add edge 7,7, to GG;. Note that if two consecutive cones share

the same vy, then only one of the 7,7, edges is added to G..

Figure 2.4: Adding Steiner points and edges to a face using the complete intercon-
nection scheme.

Figure 2.5: The spanner edges added from a vertex v; with 6 = 30°.

For an example of creating G; using the fixed placement scheme and complete
interconnection strategy, Figure 2.4 shows how six Steiner points (m = 2) and 27
edges are added to a face to form G;. Note that each G; has exactly 3(m + 1)
graph edges. Figure 2.5 shows how edges are formed from a single vertex v; using the
spanner interconnection scheme. The weight on a graph edge 7,7, is the Euclidean
distance between v, and v, times the weight of f;, and the weighted cost is denoted

as ||vavs||-

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 63

A graph G is computed by forming the union of all face graphs G;,1 < 1 < n,
making sure to eliminate the duplicate edges that are shared along the edges of P
between subgraphs of two adjacent faces of P. An approximate shortest path II'(s,?)
in P is then computed as before by first determining a shortest path in G using
Theorem 1.2. It can be shown that all edges of G lie on the surface of P. Hence, any
path in G (i.e., our approximation) can be transformed to a path on the surface of P.

In the sections to follow, we show that such a path exists in G and analyze its cost.

2.1.2.2 Bounding the Approximation

We begin the analysis by first considering the fixed or interval placement schemes

using the complete interconnection strategy.

Claim 2.2 Given a segment s; crossing face fi, there exists an edge s} in G; such

that ||}l < lls;|l + wy, - 255

Proof: Each edge in P is divided into at most m + 1 intervals which have length
at most W%'l Let s; = ab, where a and b are the end points of s; lying on edges e,
and e, of fi, e, # e, respectively. Let ¢ (respectively, d) be a Steiner point in f;,
where ¢ (respectively, d) is closest to a (respectively, b) among Steiner points on e,
(respectively, e;). Since ¢ and d lie on different edges of f;, we know that there is

an edge s € G; joining them (see Figure 2.6). The triangle inequality ensures that

85| < [eal +|s;|+ |bd|. Since we chose the closer interval endpoints, then |ea| < %
7 L
and |bd| < Q(Jnll). Hence
/ L]
|85 < [s5] + ma 1l (2.1)
Now, multiplying by wy, we have
I < : ﬂ 2.9
wfi'|8j|—wfi'|sj|+wfi' (.)

m+1

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 64

I.
J

Notice that the cost of graph edge s’ equals the length of the segment s’ on P

Figure 2.6: A face-crossing segment s; of a weighted shortest path.

times the weight wy, of the face. Note also that we are using an upper bound that
assigns a weight of wy, to each of 2@ and bd. If the faces adjacent to f; have a cheaper
weight, then the weights on ¢a and bd are reduced and the bound on ||s|| is better
than stated here. Moreover, the above arguments can be used to show that if s; is
edge using, then there exists a sequence of adjacent collinear Steiner edges joining
the corresponding Steiner points, and we can view these collinear edges as a single

segment s’
O

Lemma 2.3 Given two vertices s and t of G, there exists a path IT'(s,t) in G such
that ||TU (s, t)|| < |[TI(s,)|+ n%'l -k-W, where k is the number of segments of T1(s, t).
Proof: Let II(s,t) = {s1, s2,- -, sk }. For each s; € II(s,t), it follows from Claim 2.2
that there exists an edge s € G that approximates s;. Let IT'(s,1) = {s], 85, -+, 5.} €
G. Observe that due to the construction, IT'(s,t) is a connected path. By applying

the results of Claim 2.2 to each segment of IT'(s, ¢) we have:

S < 5 (sl + g, -
s S; wy, +——
i=1 ' it Tx m+1

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 65

where wy, denotes the weight of the face through which s; passes. Now rewrite this

as:

I G, < T)1+ 2 S)

=1

Since wy, < W for all f;, by definition, then |[TI'(s,?)|| < |[TI(s,)| + ”‘%1 k-W.

Note that if we consider the edges e, es, €3, ..., e; through which II(s,¢) crosses
(with respective weights wy, wo, w3, ..., wy), then we can rewrite the bound more pre-

cisely as

1k
T (s,)] < ITL(s,)] + —— > wiles]
m+1:=

Theorem 2.2 Using the complete interconnection strateqy, we can compute an ap-
proximation II'(s,t) of a weighted shortest path 11(s,t) between two vertices s and t
of G such that ||II'(s,t)|| < ||IL(s,t)|| + W|L|, where L is the longest edge of P and
W is the mazimum weight among all face weights of P. Moreover, we can compute

this path in O(n®) time.

Proof: In Lemma 2.3 we have shown that there is a path II'(s,¢) in G that approxi-
mates a shortest path II(s,t) on P. We use Theorem 1.2 to compute a shortest path
between the vertices corresponding to s and ¢ in G. This will result in a path in G
that has either the same cost as IT'(s,t) or even less. Since any path in G can be
mapped to a path on P, we obtain an approximate path on P. From Property 1.15
it follows that II(s,¢) may have ©(n?) segments. In Lemma 2.3, set m = k — 1 to
obtain ||II'(s, t)|| < ||TI(s, t)|| + WL|.

Now we analyze the time complexity of the algorithm. Each edge of P contributes
O(n?) graph vertices and each face contributes O(n*) graph edges, yielding a total of
O(n®) edges for G. Theorem 1.2 is then applied which runs in O(n”) time. (The path

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 66

from G can be mapped to the path on P in the time proportional to the number of

links in the path. Although in our implementation this additional step is avoided.)D

The bound of the above theorem can be alternatively rewritten as ||II'(s,?)|| <

ITI(s, t)|| + WHEE‘T‘, where |Ly| is the sum of all edge lengths of P and |E| denotes the

number of edges of P. This bound uses the average edge length as opposed to the
pessimistic longest edge length. In the worst case, however, this bound is the same

as stated in the theorem. This bound can actually be made tighter and written as

I (s,)| < ||T(s,t)|| + V@ﬁ" where |Ly| is the length of all edges that II(s,t) passes
through and |Ey| is the number of edges that II(s,¢) passes through. These bounds

hold throughout the chapter.

Corollary 2.1 Using the complete interconnection strateqy, we can compute an ap-
prozimation II'(s,t) of a weighted shortest path 11(s,t) between two vertices s and t
on a polyhedral surface P with n faces such that |II'(s,t)|| < ||[I1(s,t)|| + W |L|, where
L s the longest edge of P and W 1is the maximum weight among all face weights of

P. Moreover, we can compute this path in O(n®) time.

In our analysis, we made the assumption that each edge crossed by a shortest
path was of length |L|. In reality there may be many edges of P with small length
compared to |L|. The interval placement scheme allows less Steiner points per edge
while maintaining the same worst-case bounds. Figure 2.7 shows an example of how
Steiner points are added to faces using a) the fixed placement scheme where m =7
and b) the interval placement scheme. As can be seen in the figure, the interval
scheme allows a significant decrease in the number of Steiner points placed while

maintaining nearly the same path accuracy as with the fixed scheme.

We now provide an analysis for the case in which the spanner interconnection

strategy is used instead of the complete interconnection strategy. This spanner scheme

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 67

Figure 2.7: The difference in the layout of Steiner points (m=7) for a) the fixed
placement scheme, b) the interval placement scheme.

improves upon the time complexity of the complete scheme; though the approximation
achieved is not quite as good. The intuition behind this is that the spanner scheme
graph is sparse while the complete scheme graph is much more dense; and so Theorem

1.2 will search the sparse graph in less time.

Smid [114] states that each G; is a [-spanner, where § = cos@im' The graph
consists of O(m) vertices and edges (recall that |V;| = O(m)). Since we compute a
spanner for each face of P individually and then merge each G;,1 < i < n to form

the union G, the resulting graph G has O(mn) vertices and edges.

Theorem 2.3 Using the spanner interconnection strategqy, we can compute an ap-
prozimation I1'(s,t) of a weighted shortest path I1(s,t) between two points s and t on
a polyhedral surface P with n faces such that |[II'(s,t)|| < B(||1I(s,t)|| + W|L|), where
B > 1, L s the longest edge of P and W s the mazximum weight among all face

weights of P. Moreover, we can compute this path in O(n®logn) time.

Proof: In Claim 2.2 we can replace 8;- by an approximated path, say p;, in G,
where |p;| < B - [s}], and use this value in Theorem 2.2, to obtain [[II'(s,?)|| <

B(||IT(s,t)|| + W|L|), where 3 > 1. Now we analyze the time complexity of the

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 68

algorithm. We apply the [-spanner scheme to obtain G; for each face f; of P where
1 < i < n. Using O(n?) Steiner points per edge, each subgraph G; contains O(n?)
graph vertices and each vertex has a constant degree. Hence, G; contains O(n?)
graph edges. The graph G; can be computed as follows. Observe that the vertices
(or points) lie on the boundary of the triangular face, and they are at fixed intervals.
For each vertex v, all the cones (O(1) in all) with apex at v, can be computed in
O(1) time. Moreover the closest vertex to v, in each cone can be computed in O(1)
time, by observing the relative location of vertices (or points) in the cone with respect
to the perpendicular from v, to the edges of f;. This implies that each G; can be
computed in O(n?) time and G can be computed in O(n?) time. A shortest path in

G can be computed by using Theorem 1.2 and it runs in O(n®logn) time.
O

2.1.2.3 Fine Tuning the Approximation - An Additional Sleeve Compu-

tation

Here we describe how an approximated Euclidean (unweighted) path can be fine-
tuned to be of near-optimal length and sometimes be optimal. This technique is
based on choosing an edge sequence in P according to a preliminary approximated
path 7'(s,t) which is computed as mentioned earlier. We then determine a sleeve S
by unfolding the faces along the edge sequence of 7'(s,t) and computing a shortest
path 7s(s,t) that lies within S. This path is then projected back onto P to obtain
a refined approximation 7”(s,t). If the sleeve we choose happens to coincide with a

shortest path edge sequence the final approximation is optimal.

In order to construct the sleeve, we choose a sequence of faces through which
7'(s,t) passes (i.e., for each segment s; of 7'(s,t) we determine the face through

which it passes). If s; is not incident to a vertex of the face we append that face to

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 69

our list of faces for the sleeve. If s; passes through a vertex, say v, we must make a
decision as to whether or not the edge sequence should go around v in the clockwise
(CW) or counter-clockwise (CCW) orientation. The example of Figure 2.8 shows how
this decision can affect the overall accuracy of ws(s,t). If we choose the shaded faces,
7s(s,t) will not be as good as if we choose a CCW path around wvs since 7(s,t) does

not pass through all of the shaded faces.

Figure 2.8: Choosing an edge sequence from the path 7'(s, t).

We attempt to choose the good edge sequence (hence sleeve) by applying a simple
heuristic for the special class of polyhedra: TINs. Let s; and s;;; be consecutive
edges of 7'(s,t) such that their shared endpoint lies at a vertex v of P. Determine
the turn type (i.e., left, right or collinear) between the projections of s; and s;,; onto
the XY plane. If it is a left turn, we chose a CW path around the vertex, otherwise
we chose a CCW path. In Figure 2.8 we can see that all three vertices that were
crossed result in left turns and we have chosen the CW path around each. Obviously,

at v3 the heuristic has chosen badly and we will never obtain an optimal path from

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 70

7'(s,t). However, we have observed that this heuristic performs well in practice on

terrain data (see Section 2.2).

Given the unfolded sleeve, we compute a shortest path 7s(s,t) in the sleeve from
s to t using the algorithm of Lee and Preparata [81]. One potential problem is that
the algorithm applies to simple sleeves (non-intersecting). Since P is non-convex in
general, § may be non-simple. We must show that even though the sleeve may be
self-overlapping, it does not affect the algorithm correctness. We must also show that

the resulting path is non-overlapping when projected back onto the surface of P.

Property 2.2 7'(s,t) does not pass through a face of P more than once.

Proof: The proof is by contradiction. Assume that 7'(s,t) is a shortest path in G
that enters through an edge e of a face f; at some Steiner point a and exits f; at
some Steiner point b. Assume that 7'(s,t) enters f; again, say through Steiner point
c. Since a and c are both Steiner points on edges of the same face f;, there exists a
Steiner edge @¢ € G which is clearly a shortest path from a to c. Hence, the portion

of ©'(s,t) from b to ¢ cannot be a shortest path in G and we have a contradiction.
O

Claim 2.3 No two segments of ns(s,t) lie in the same face of P.

Proof: Denote the consecutively computed funnels by Fi, Fs,..., F, for an n-face
sleeve such that F;,; is formed from F; through the expansion of one face (i.e.,
extending the funnel by one sleeve diagonal). By definition, none of F;,1 <i < n are
self-intersecting. However, it is possible that a funnel may intersect the tail which it
is connected to. Hence, 7s(s,t) may be non-simple due to the constraints that force
it to pass through adjacent faces of S. By construction of any funnel F;, any convex

chain of segments from cusp(F;) to lid(F;) can be formed by line segments which

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 71

pass through unique faces of §S. The left and right convex chains of F; also consists
of segments that lie in different faces of S. Since the tail of any funnel is constructed
by appending the convex chains of previous funnels, it is composed of segments that
lie in different faces of S. Therefore, ms(s,t) contains segments that lie in different
faces of S since it consists of pieces from tail(F,), chain(F,) and a path consisting

of segments passing through the unique funnel faces.
O

Lemma 2.4 The projected path 7" (s,t) is simple.

Proof: The proof follows from Property 2.2, and Claim 2.3.

Section 2.2 shows that these approximated paths are more accurate with this
additional computation at a negligible increase in execution time. In our algorithm,
as m increases the difference |7'(s, t)|—|m(s,t)| decreases (provided that the increase in
m does not alter the previous m Steiner point locations). For some value of m, 7'(s, t)
will pass through the same edge sequence as 7(s,t). Since the sleeve computation
unfolds the sleeve which contains both 7'(s,t) and (s, t), path 7”(s,t) will exactly
match 7(s,t). Hence, in some instances, the edge sequence of the approximated path
is identical to that of 7(s,¢) and the sleeve computation produces an exact shortest

path.

There is no efficient algorithm for computing shortest paths in weighted sleeves.
Hence, we apply a different approach, namely that of continuously refining approx-
imations based on a selected region of the terrain. To do this, we first compute a
preliminary approximation IT'(s,t) as before. We then form P’ as the union of all
faces that IT'(s, t) intersects. If IT'(s, t) passes through a vertex v of P, we include all

faces incident to v. This union of faces forms a non-convex polyhedral surface P’ but

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 72

in general it does not form a closed polyhedron. We call this union a buffer around
IT'(s,t). We then apply the approximation scheme on P’ with an increased number
of Steiner points per edge. As a result, we obtain a refined path. The refinement can

be iterated allowing a trade-off between path accuracy and running time.

2.2 Experimental Results

In this section, we describe implementation issues, our testing procedures and exper-
imental results. Due to their practical relevance, and in the context of our R&D [68],
our experimental results are carried out on the subclass of non-convex polyhedra:
TINs. In Geographic Information Systems, Cartography and related areas, shortest
path problems arise on terrains which are often modeled using TINs as shown in Fig-
ure 2.9. The algorithms presented in the previous section apply to any non-convex
polyhedron. In addition to the tests explained here, we have verified that our imple-
mentation also works on 3D model data (non-convex polyhedra) which we obtained
from Gerhard Roth of the National Research Council of Canada. Figure 2.10 shows

the results of applying the algorithm on two non-convex polyhedral models.

2.2.1 Implementation Issues

The implementation of our various algorithms involved implementing a variant of
Dijkstra’s algorithm, computing the unfolding of edge sequences (only for refinement
stage), computing a shortest path in a planar sleeve (subset of the algorithm to com-
pute shortest paths in a polygon) and finally a modification to store an implicit graph

representation.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 73

Figure 2.9: A weighted shortest path on a terrain in which traveling on water is
expensive.

2.2.1.1 A Variation of Dijkstra’s Algorithm

The variant of Dijkstra’s algorithm used was that of the well-known A* algorithm
(see [56]), which incorporates a “distance-to-goal estimate” during the search. An
additional weight was associated with each vertex, namely its Euclidean straight line
distance to the destination vertex. Then, during each iteration, we chose the vertex
which minimized the sum of its cost from the source vertex plus the Euclidean dis-
tance to the destination vertex, over all candidate vertices. The use of this distance
estimate allows the shortest path propagation to reach the destination point sooner.
During implementation, we noticed a running time performance which was sometimes
half that of the standard Dijkstra algorithm implementation; a substantial improve-

ment.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 74

Figure 2.10: Shortest path approximations applied to non-convex polyhedral models.

2.2.1.2 Numerical Issues

Suri [115] points out that the Chen and Han algorithm [21] (which is based on unfold-
ing) is sensitive to numerical problems, mainly due to the fact that 3D rotations are
performed and errors accumulate along the paths and geometric structures computed.
In our schemes the paths go through vertices or Steiner points (with the exception of
the variation using the sleeve computation as its final step) thus reducing the chances
of accumulating numerical errors. When doing the final step in which a sleeve in 3D is
unfolded onto a plane, we compute an exact shortest path within the resulting sleeve.
Although this is an exact path computation, it too is susceptible to numerical er-

rors since the unfolding process may have generated discrepancies in the sleeve itself.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 75

We have shown however, that this final stage of refinement does provide significant

improvement in the resulting accuracy.

Our implementation of Chen and Han’s algorithm was designed to enable time
and approximation quality comparisons with our algorithms. We took care of numeric
stability issues as required. When using LEDA’s data types [87], the running time of
our implementation of Chen and Han’s algorithm deteriorated drastically. Thus, by
using LEDA (or similar) the comparison to our algorithms would have become worse

for Chen and Han.

2.2.1.3 Implicit Graph Storage

All of our timing results here are based on the computation of a shortest path in
a pre-computed and explicitly stored graph (i.e., the time for computing the graph
was not considered). Since our graphs are created based on a well defined geometric
sequence of points along an edge, it is possible to implicitly store the graph vertices
and edges and only compute them as needed. That is, the graph can be computed

“on the fly” during the execution of Dijkstra’s algorithm.

In addition to the explicit storage scheme, a partially implicit storage scheme was
also implemented. In this partial storage scheme, the Steiner points are computed
and each edge of P is assigned a list of the Steiner points (in order from start to end)
that lie on it. Also, each edge of P keeps pointers to the edges that are clockwise
and counter-clockwise from its endpoints (see Figure 2.11a). Each Steiner point keeps
a pointer to the edge on which it lies as well as its index in the list for that edge.

Vertices of P keep pointers to all edges of the faces incident to it (see Figure 2.11b).

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 76

stei ner points

[o[é]e[é]e]

[¢]

(a) (b)

Figure 2.11: Pointers required in the partially implicit graph storage scheme. a) for
each edge of P, b) for vertices of P.

In order to simplify the code, this improved implementation still added the ver-
tices to the priority queue during the initial stage of Dijkstra’s algorithm. It should
be pointed out that a further improvement can be made by only adding the vertices to
the priority queue as they are encountered during propagation. Essentially, a graph
is still stored containing the same Steiner points as before, however, it contains only
n edges (instead of O(nm?) as in the explicit storage scheme). The O(m?) edges
per face are stored implicitly through the use of the constant number of pointers per
edge. We ran tests which showed that this implicit edge representation improved
the preprocessing time (i.e., the graph construction) by a factor of roughly between
two and three. We also found that this implicit graph storage strategy resulted in
a negligible (barely noticeable) increase in the run time of Dijkstra’s algorithm. In
addition, the implicit scheme allowed more Steiner points to be added before the use
of virtual memory was required. At this point, the implicit graph had better query

runtime performance.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 7

2.2.2 Test Data and Testing Procedure

One of the main difficulties in presenting experimental results is the lack of data, in
general, and here of benchmark TINs. It is conceivable that different TIN character-
istics could affect the performance of an algorithm. We have attempted to accommo-
date different characteristics by performing our tests with TINs that have different
sizes (i.e., number of faces), height characteristics (i.e., smooth or spiky as modeled
by accentuating the heights), and data sources (i.e., random or sampled from Digital
Elevation Models (DEM)) etc.. Table 2.1 shows the attributes of the TINs that we
tested. Figure 2.12 depicts screen snapshots of the last 10 TINS of Table 2.1. TINs

with stretched heights were created by multiplying their heights by five.

[No. of FACES | STRETCHED | DATA SOURCE |

1,012 NO DEM

1,012 YES DEM

5,000 NO RANDOM

5,000 YES RANDOM

10,082 NO DEM

10,082 YES DEM

9,799 NO DEM of partial Africa

9,788 NO DEM of partial North America
9,944 NO DEM of partial Australia
9,778 NO DEM of partial Brazil

9,817 NO DEM of partial Europe

9,690 NO DEM of partial Greenland
10,952 NO DEM of partial Italy

2,854 NO DEM of partial Japan

9,839 NO DEM of partial Madagascar
9,781 NO DEM of partial Northwest Territories

Table 2.1: The data used for the experiments showing the TINs and their attributes.

For the weighted domain, we used the same TINs and set the weight of each face

to be the slope of the face. Thus, steeper faces have higher weight. Each edge of the

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 78

Africa

Austrah

¥ =
" -

Madagascar -
W s

T
o i

Figure 2.12: Snapshots showing various TINs that were used for testing.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 79

TIN is given weight equal to the minimum of its adjacent faces. To determine if the
results were biased due to our choice of weights, we ran additional tests in which the

weights were chosen at random for each face.

For each TIN, we computed a set of 100 random vertex pairs. We then tested
each of the approximation schemes listed in Table 2.2. We give the legend id of each
scheme as they appear in the graphs (Throughout the remainder of this chapter,
we use the terms “interval scheme” and “fixed scheme” to represent the interval
and fixed Steiner point placement schemes, respectively. With the exception of the
section on spanners, these terms refer to the complete interconnection strategy). For
each test, we computed the path cost between each of the 100 vertex pairs and then
obtained an “average path cost” for these pairs. We also computed the average
computation time for the 100 pairs. The timing results presented here include the
time required to compute the path itself, not just to produce the cost. The tests
were performed in iterations based on the number of Steiner points per edge. Each
scheme was tested for both weighted and unweighted scenarios (with the exception of
the sleeve computations which were only computed in the unweighted case; a second

approximation using a buffer was applied in the weighted case).

| LEGEND ID | PLACEMENT | INTERCONNECTION | SLEEVE COMPUTATION |

INT INTERVAL COMPLETE NO
FIX FIXED COMPLETE NO
INTSLV INTERVAL COMPLETE YES
FIXSLV FIXED COMPLETE YES
x degree BOTH SPANNER NO

Table 2.2: The different approximation schemes.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 80

2.2.3 Path Accuracy

We first examine the Fuclidean shortest path problem. Figure 2.13 depicts the results
of these tests for the first six terrains of Table 2.1. The approximated path length
rapidly converges to the actual path length (as computed using Chen and Han’s
algorithm [21]). The graphs show that six Steiner points per edge suffice to obtain
close-to-optimal approximations. The path accuracy observed is far better than the

theoretical bound derived.

To understand this, recall that our theoretical worst-case analysis assumes that
all edges intersected by the approximate path are long. In most applications this
will be unlikely as short edges are common. (Long edges, if they are present, tend
to be near the boundary and will therefore not be crossed by a shortest path.) We
have examined edge-length histograms for all of our TIN data and show a typical
histogram in Figure 2.14. As can be seen in this example, very few edges are near

the longest edge length of 205.3, most are much shorter.

2.2.3.1 Sleeve Computation

The graphs of Figure 2.13 also illustrate that the additional sleeve computation helps
to obtain even better approximations. We concluded that the best of our unweighted

schemes is the interval scheme with the sleeve computation (IntSlv).

2.2.3.2 Effects of Stretching

We now discus the effects on the accuracy due to stretching of the TIN. As mentioned,
for this test, the heights of the vertices were multiplied by a factor of five. Figure

2.13 allows a comparison of accuracy for unstretched versus stretched TINs. In both

Path Length

Path Length

Path Length

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 81

1060

1040

1020 f;

1000

980

960

940

920

1500

1450

1400

1350

1300

1250

1200

1150

1120

1100 p

1080

1060

1040

1020

1000

980

960

1,012 Face Unweighted TIN
T

T
Fix ——

Int -+

FixSlv -e---

IntSlv -

Chen and Han --

i [e g

1 2 3 4 5
Average Number of Steiner Points per Edge

5,000 Face Unweighted TIN (Random Heights)
T T T

Fix ——
Int -
FixSlv -e---

IntSlv -
Chen and Han --

1 2 3 4 5
Average Number of Steiner Points per Edge

10,082 Face Unweighted TIN
T

IntSlv -
Chen and Han --

\
Fix ——
Int -

FixSlv -e---

L
B
I

1 2 3 4 5
Average Number of Steiner Points per Edge

Path Length

Path Length

Path Length

1950
1900
1850
1800
1750
1700
1650
1600
1550
1500

1450

5000

4500

4000

3500

3000

2500

2000

1500

2300

2200 |}

2100

2000

1900

1800

1700

1600

1,012 Face Unweighted TIN (Stretched Heights)

T T T
Fix ——
i Int -+ 1
FixSlv -e--
H IntSlv x4
: Chen and Han ----
r -t
.
0 1 2 3 4 5
Average Number of Steiner Points per Edge
5,000 Face Unweighted TIN (Random Stretched Heights)
T T T T T
Fix ——
Int -+
FixSlv -2-- 7
IntSlv -
| Chen and Han ----
.
0 1 2 3 4 5
Average Number of Steiner Points per Edge
10,082 Face Unweighted TIN (Stretched Heights)
T T T T T
Fix ——
Int -+
\ FixSlv e
4 IntSlv -
Chen and Han
L X, 4
x
S . §
0 1 2 3 4 5 6

Average Number of Steiner Points per Edge

Figure 2.13: Graphs showing average path length for six selected terrains.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 82

2241

of Occurences

16,6 205,3
Edge Lengths

Figure 2.14: Histogram of edge lengths for one of our TINs.

instances, the approximate path length converges after only a few Steiner points per
edge have been added. One may notice however, a slightly slower convergence for
stretched input TINs. This is mainly due to the fact that Steiner points are placed
further apart along the “now longer” edges. Therefore, it requires more Steiner points
to reduce the interval size to that of the flatter TIN. The interval scheme performs
better than the fixed scheme, since the interval scheme favours placement of Steiner
points on longer edges and longer edges are more likely to be crossed by the set of

paths.

Since the additional sleeve computation can produce an exact path in some cases,
it is no surprise that it provides a significant improvement on the average path cost.
Figure 2.15 shows the results of running sleeve match tests on a 1012 face terrain, a
1012 face stretched terrain and a 10082 face terrain. In each case, we determined the
percentage of iterations that converged to the exact same edge sequence as a shortest
path computed using our implementation of Chen and Han’s algorithm. As can be
easily seen, the smaller terrain had more sleeve matches and the stretched 1012 face

terrain had less than the unstretched 1012 face terrain. In any case, we see that with

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 83

Percent of Exact Sleeve Matches for 3 Unweighted TINs
100 ‘ ‘ ‘

1012 IntSlv ——
1012 FixSlv -+
1012e IntSlv -&--)
go | 1012e FixSlv - B
10082 IntSlv -&-- B

10082 FixSlv -*--

(2]
[}
S
= 60 . 5
E X
5
g
g 40 &= g
& T
20¢ e -
,f' e
o 1 1 1 1 1
0 1 2 3 4 5 6

Average Number of Steiner Points per Edge

Figure 2.15: Graph showing the percentage of exact edge sequence matches for a 1012
face terrain, a 1012 face stretched terrain and a 10082 face terrain.

six Steiner points per edge, an exact shortest path is obtained between 40% to 80%

of the time.

We have proven that in the worst case the Euclidean approximation for the fixed
and interval schemes achieves an additive factor of W/|L|. The analysis made the
pessimistic assumption that each edge crossed by a shortest path was of length |L|
and that all faces had maximum weight. We made the claim that terrains typically
have many edges which are shorter than L and hence our worst case analysis is an
over estimate (see also Figure 2.14). Just after the proof of Theorem 2.2, we have
shown that this bound can be written in terms of the average length of edges through

which TI(s, t) passes as follows: ||II'(s,t)|| < ||TI(s,t)|| + Vgﬁ?' The graphs of Figure

2.16 compare this improved worst case theoretical accuracy with that of the produced
accuracy for tests on the 10,082 face terrain using the fixed and interval schemes. The

left graph depicts the maximum (i.e., worst case) error obtained from the 100 paths

Computed Path Length / Shortest Path Length

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 84

tested; whereas the right graph depicts the average error obtained. The worst case
and average case theoretical bounds using the computation of ||II'(s, ¢)|| < |[TI(s, t)||+
W|L| are not shown on the graph, but are 3.220407 and 1.445150, respectively. The
results confirm that the algorithm performs much better in practice than predicted

by the theory.

Comparison of Approximation Accuracy with Theoretical Maximum Bound Comparison of Approximation Accuracy with Theoretical Average Bound
1.45 T T T T T < 1.16 T T T T T
2
145 ! ¢ 114}
Fixed -+ : Fixed -+
1.35 |1\) Interval -+ K N Interval -+
N Fixed + Sleeve -& o 112 p0 Fixed + Sleeve -]
13f 40 8 '
5 11
<
1.25 %)
£ Lo8r
1.2 f e . = \
S 106f
115 - <
e 3 Bl
1.04 -
tr L e g e
o S o e @ = B T
1.05 - A e g 1oz = e e
Tl Sy o - T e
1 A o 1 . . 2 g 5
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

Figure 2.16: Graphs comparing the worst case (theoretical) accuracy with that of the
produced accuracy for a 10,082 face terrain using the fixed and interval schemes (left:
maximum error; right: average error).

2.2.3.3 Additional Terrains

In order to verify that the algorithm would perform well on a variety of terrain data,
we ran additional tests on 10 terrains which were constructed from DEM data from
various parts of the world as shown in Table 2.1. The results are depicted in Figure
2.17 and they verify that all terrains tested had similar accuracy and convergence

behavior. The path converges quickly to near-optimal after only six Steiner points

are added.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION

25200

25000 [

24800

24600

24400

24200

Path Length

24000

23800

23600

23400
]

92000

91500 |t

91000
90500
90000

89500

Path Length

89000
88500
88000

87500

87000
]

14000

13900 {3

13800

13700

13600

Path Length

13500

13400

13300

13200
]

9600

9400

9200

8800

Path Length

8600

8400

8200
]

33000

32800 F

32600

32400

32200

32000

Path Length

31800

31600

31400

31200
]

Figure 2.17: Graphs showing average path length for ten real-data terrains.

9,799 Face Unweighted TIN (Africa)

Fix ——
Int -+
FixSlv -
x

IntSlv

1 2 3 4 5
Average Number of Steiner Points per Edge

9,944 Face Unweighted TIN (Australia)
Fix ——
Int -+
FixSlv -
IntSlv -

1 2 3 4 5
Average Number of Steiner Points per Edge

9,817 Face Unweighted TIN (Europe)

Fix ——

Int -+
FixSlv -
IntSlv -

1 2 3 4 5
Average Number of Steiner Points per Edge

10,952 Face Unweighted TIN (Italy)

9000 |;

Fix ——

Int -+
FixSlv 8- 7
IntSlv -

1 2 3 4 5
Average Number of Steiner Points per Edge

9,839 Face Unweighted TIN (Madagascar)

Fix ——
Int -+
FixSlv
IntSIlv

1 2 3 4 5
Average Number of Steiner Points per Edge

Path Length

Path Length

Path Length

Path Length

Path Length

25400

25200

25000

24800

24600

24400

24200

24000

23800

23600
0

10200

10100

10000

9900

9800

9700

9600

9500

9400
0

16400
16300
16200
16100
16000
15900
15800
15700
15600
15500
15400

15300
0

17700

17600 4
17500

17400
17300
17200
17100
17000
16900
16800
16700

16600
0

9900

9800

9700

9600

9500

9400

9300

9200
0

9,788 Face Unweighted TIN (North America)

Fix ——

Int -
FixSlv
IntSiv

x a4t

1 2 3 4 5
Average Number of Steiner Points per Edge

9,778 Face Unweighted TIN (Brazil)

Fix ——

Int -
FixSlv
IntSiv

x a4t

1 2 3 4 5
Average Number of Steiner Points per Edge

9,690 Face Unweighted TIN (Greenland)

Fix ——

Int -
FixSlv
IntSiv

x a4t

1 2 3 4 5
Average Number of Steiner Points per Edge

2,854 Face Unweighted TIN (Japan)

Int -
FixSlv
IntSiv

x a4t

Fix ——

1 2 3 4 5
Average Number of Steiner Points per Edge

9,781 Face Unweighted TIN (NorthWest Territories)

Fix ——

Int -+
FixSlv -=-
IntSlv -

1 2 3 4 5
Average Number of Steiner Points per Edge

85

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 86

2.2.3.4 Spanners

To determine the effects of using graph spanners on the path accuracy we ran several
experiments whose set-up is described next. In each test, we varied the degree of
the graph spanner cones from 1° to 40° degrees in increments of five. The 1° test
essentially represents the graph without spanners allowing therefore a comparison
of accuracy for schemes with and without spanners. Figure 2.18 depicts the results
of computing shortest Euclidean paths on the 10,082 face terrain using the fixed
and interval schemes !. The graphs show the loss in path accuracy with increasing
cone angle. As in the non-spanner schemes, the interval placement scheme converges

quicker than the fixed placement scheme.

10,082 Face Unweighted TIN using Fixed Scheme with Spanners 10,082 Face Unweighted TIN using Interval Scheme with Spanners
T T T T T T T T T

1120 ¢ T 1120 T T
1 degree —— 1 degree ——
5 degree -+ | 5 degree -+ |
1100 10 degree = 1100 10 degree -=a--
15 degree -x 15 degree -
1080 - 20 degree -=-- A 1080 [i 20 degree -+-- -
25 degree -x-- 25 degree -*--
30 degree ~o-- 30 degree ~o--
g 1060 f 35 degree -+ g 1060 35 degree -+ |
2 40 degree -=-- 2 40 degree o
S 1040 | Chen and Han 8 1040 | Chen and Han
= =
© ©
A 1020 - , & 1020 - ,
1000 , 1000 - e 1
980 980
960 960
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

Figure 2.18: Graphs showing path accuracy obtained for a 10,082 face terrain using
the fixed and interval schemes for a variety of spanner angles.

2.2.4 Computation Time

We attempted to make a fair comparison between our schemes and Chen and Han’s

algorithm (for the unweighted case). For this, we used the same geometric primitives

!The 100 (random) vertex-pairs considered here are different than those in Figure 2.13.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 87

wherever possible.

In general, our algorithms’ running times depend on the number of Steiner edges
in G because we are invoking Theorem 1.2. Since we are adding only a constant
number of Steiner points on average per edge, the total number of edges is linear, and

thus the running time of our algorithms becomes O(nlogn).

Figure 2.19 depicts the actual run-time results of the Euclidean shortest path tests
for variations of our approximation schemes on our original six terrains. As we ran
tests for many pairs of points, we precomputed the graph G instead of building it
every time on the fly. Then we measured the time it took to compute an approximate
path for a query pair (source, destination). We can see that our algorithms are
substantially faster than that of Chen and Han[21|. The main reason is that our
algorithms do not require any complex data structures. Also, with the exception of
our sleeve computation, our algorithms do not perform expensive computations (such
as 3D rotation and unfolding). Due to the scale of the graph (resulting from the large
time difference to Chen and Han), we cannot distinguish between the characteristics
of the fixed and interval schemes. Figure 2.20 depicts a graph showing the typical
experimental run-time results obtained from our tests. Shown here are two sets of
results, one for a 1,012 face TIN and one for the same TIN stretched by a factor
of five. From the graph, we can see that the time required for the additional sleeve
computation is negligible. In addition, there is very little difference between the fixed
and interval schemes. This is mainly due to the fact that we are looking at the average
number of Steiner points per edge. If we had chosen the X-axis of the graph to be the
maximum number of Steiner points per edge then we would see that the fixed scheme
had a much slower running time than the interval scheme. This however, would have
been an unfair comparison. Note as well, that the computation time increases for the

stretched terrain. The timing results for the 10 additional terrains is shown in Figure

Computation Time

Computation Time

Computation Time

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 88

1,012 Face Unweighted TIN
T

6 T T T
Fix ——
Int -+
5 FixSlv -2 4
IntSlv -
Chen and Han ----
4+]
3 L 4
2 . 4
1 L 4
O ¥ 1 L
0 1 2 3 4 5 6
Average Number of Steiner Points per Edge
5,000 Face Unweighted TIN (Random Heights)
40 T T T T T
35 F B
Fix ——
30 Int -+
FixSlv -=-
IntSlv
25 Chen and Han ---7
20 + R
15 | R
10 + R
5 L .
0 — ey
0 1 2 3 4 5 6
Average Number of Steiner Points per Edge
10,082 Face Unweighted TIN
200 T T T
180 | B
Fix ——
160 Int -+
FixSlv -&-
140 INtSIv -
Chen and Han ----
120 | R
100 | R
80 R
60 R
40 R
20 + R
0 - =
0 1 2 3 4 5 6

Figure 2.19: Graphs showing average

terrains.

Average Number of Steiner Points per Edge

Computation Time

Computation Time

Computation Time

70

60

50

40

30

20

10

300

250

200

150

100

50

1,012 Face Unweighted TIN (Stretched Heights)

Fix ——

Int -+
FixSlv -e-
IntSly -

Chen and Han ---1

1 2 3 4 5 6
Average Number of Steiner Points per Edge

5,000 Face Unweighted TIN (Random Stretched Heights)

Fix ——
Int -+
FixSlv -
IntSlv -
Chen and Han ----

k- i I L

1 2 3 4 5 6
Average Number of Steiner Points per Edge

10,082 Face Unweighted TIN (Stretched Heights)

Fix ——

Int -+
FixSlv -e--
IntSlv -

Chen and Han -

& -

1 2 3 4 5 6
Average Number of Steiner Points per Edge

computation time (in seconds) for six selected

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION

1,012 Face Unweighted TIN (Normal(N) and Stretched(S))

0.45 X
/'Q//
0.4 E
0.35 g <A
|_
5 025+ -
s
3 0.2 Fix (N) ——
IS Int (N) -+
Q FixSlv (N) -2
o 015 IntSiv (N) =
Fix (S) -&-f
0.1 Intl (S) -*
FixSlv (S) -~
0.05 ItSlv (S) -+
o s Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8

Average Number of Steiner Points per Edge

89

Figure 2.20: Graph showing the typical running time characteristics for the tested
terrains using the fixed and interval schemes for normal(N) and stretched(S) terrains.

2.21; notice the similarly computed running time.

2.2.4.1 Graph Spanners

Getting back to the spanner schemes, we can now examine their computation time.

Although the path accuracy is reduced when the sparse spanner graphs are used, the

running time also decreases since there are less edges in the graph. Figure 2.22 shows

the running time for the tests corresponding to the graphs of Figure 2.18. We can

see that the spanners using the larger cone angle have better running time that those

with smaller cone angles. In fact, we see that the graph shape goes from “quadratic”

to “linear” since the number of graph edges becomes linear (times a constant) when

spanners are used. We also see that there is little difference again between the fixed

and interval schemes.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 90

9,799 Face Unweighted TIN (Africa) 9,788 Face Unweighted TIN (North America)

25 T 25
2 2
o @
£ E
= 15| (= 15
< c
=] 2
§ IntSlv ‘E
g 1 { B 1l Intslv
o o
o o
0.5 1 0.5 1
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
9,944 Face Unweighted TIN (Australia) 9,778 Face Unweighted TIN (Brazil)
18 T T T T T 1.8 T T T T T
16 16
14 1.4+
o o @ L
£ 12 IntSlv £ 12
= =
< 1 <
2 ' S ! IntSiv
< T
3 o8 1 3 o8 4
£ £
3 0.6 1 8 0.6 1
0.4 R 04]
0.2 1 0.2 1
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
9,817 Face Unweighted TIN (Europe) 9,690 Face Unweighted TIN (Greenland)
25 T T T T T 2 T T T T T
18
2r 16
o Fix =— o Lar
£ Int - £
= 15 FixSlv -a- 12 12 ¢
2 IntSly -~ S .
g ‘E IntSlv
g 1 1 & o8 1
8 38
0.6 4
0.5 1 0.4 1
0.2 4
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
10,952 Face Unweighted TIN (Italy) 2,854 Face Unweighted TIN (Japan)
3 T T T T 0.9 T T T T T
08 -
0.7 +
o @ L
£ g b
= = o
< < L
S S 05 IntSly -
8 £
2 3 04r g]
£ £
8 S o3l y 1
02t 1
0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge
9,839 Face Unweighted TIN (Madagascar) 9,781 Face Unweighted TIN (NorthWest Territories)
25 T T T T T 2 T T T T T
18
2r 16
° ° 14
£ £
= 15| (= 12
5 5 IntSiv
T IntSlv g 1 q
= =1
g 1 1 g o8 1
8 38
0.6 4
0.5 1 0.4 1
0.2 4
0 0
0 6 0 6

1 2 3 4 5 1 2 3 4 5
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

Figure 2.21: Graphs showing avg. computation time (secs.) for ten real-data terrains.

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 91

10,082 Face Unweighted TIN using Fixed Scheme with Spanners 10,082 Face Unweighted TIN using Interval Scheme with Spanners
4 T T T T T T T 4.5 T T T T T T T
35t 4r
al 35
[[}
3 |-
£ £
£ 25| E
S s 257
= 2 1 degree ——+]
=1 5 degree -+ 5 2 b degree ——
g 10 degree = g 5 degree ——
<} 15 15 degree - S 15 10 degree & a
O 20 degree -»-- © : 15 degree —x
1t 25 degree -*--] 20 degree -&--
30 degree ~o-- 1 25 degree -x--7
35 degree -+ 30 degree o
0.5 40 degree - 1 05 35 degree -+~
40 degree -8
0 . . . 0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

Figure 2.22: Graphs showing computation time obtained for a 10,082 face terrain
using the fixed and interval schemes for a variety of spanner angles.

Clearly, the spanners allow a tradeoff between path accuracy and running time.
From looking at these graphs, it is not immediately clear how the tradeoff can help
make a decision as to whether or not to use a spanner and if so, what cone size
to choose. The graphs of Figure 2.23 help determine the feasibility of the spanner
scheme. The graphs show the path accuracy vs. computation time for the same data
as Figure 2.18 and Figure 2.22. Here we can see which cone size provides the best path
accuracy, when given a certain computation time. For instance, if a path is required
in 2 seconds, one can see that the 1 degree spanner provides the best accuracy for

that amount of time and the 40 degree spanner provides the worst accuracy.

Examining the graphs more closely, we notice that the 5 and 10 degree spanners
provide essentially the same accuracy as the 1 degree spanner. The 15 degree spanner
also has similar accuracy. Figure 2.22 illustrates that the 10 and 15 degree spanner
results are approximately 20% to 30% faster than the 1 degree spanner when six
Steiner points are used. One could therefore conclude that it may be worthwhile
to implement the 5, 10 or 15 degree spanner since nearly the same accuracy can be

obtained in less time. The graphs also indicate that if the allowable computation

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 92

time is small, the more sparse spanner schemes do not perform well and should not
be used. If the graphs could be extrapolated for larger run times, it is likely that at
some point, the spanner schemes will provide a better accuracy vs. run time tradeoft.
However, since good path accuracy is obtained in practice after only a few (constant)

Steiner points are added per edge, the more sparse spanners become impractical.

Accuracy/Runtime Tradeoff for Spanner Graphs using Fixed Scheme Accuracy/Runtime Tradeoff for Spanner Graphs using Interval Scheme
20 T T T T T T T 1120 T T T T T T T
1 degree —<— 1 degree —-—
3 5 degree -+ 5 degree -+---
1100 L 10 degree -=--] 1100 - 3 10 degree -=-- 7
15degree i5degre -
4 B egree -&-- . egree -a--
1080 - i 25 degree -x-- 1080 - L 25 degree -x-- 7
\ 30 degree ~o-- G- 30 degree ~o--
£ 35 degree -+ £ 35 degree -+
2 1060 O 40 degree -z 1 2 1060 - 40 degree o
3 3 :
Z 1040 | T 1040 |
[+ 8 o
1020 1020
1000 | 1000
980 980 | f i
0 0.5 1 15 2 25 3 35 4 0 0.5 1 1.5 2 25 3 35 4
Computation Time Computation Time

Figure 2.23: Graphs showing path accuracy vs. computation time obtained for a
10,082 face terrain using the fixed and interval schemes for a variety of spanner
angles.

2.2.5 Weighted Paths

For the weighted scenario, there is no known algorithm that determines a (true)
shortest weighted path. This poses a problem when determining the accuracy of
approximation. Another problem arises when attempting to refine weighted paths by
adding Steiner points. How many Steiner points are to be used during the second

stage of approximation 7

For our initial experiments, we used the fixed scheme with 20 Steiner points per
edge in this second stage. However, with the interval scheme, even though the average

number of Steiner points per edge is small (e.g., six) there may be many more than

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 93

six Steiner points placed on longer edges. Therefore, the approximation accuracy may
get worse during the second stage if we only allow a maximum of 20 Steiner points

per edge.

Figure 2.24 shows the accuracy obtained through experimentation on weighted
terrains with and without the second stage approximation (using 20 Steiner points
per edge as mentioned). Like for the unweighted scenario, the path costs converge
after only a few Steiner points have been added on each edge. Since the convergence
is similar to that of the unweighted case, it is natural to conjecture that the cost of the
paths converges to the actual weighted path cost. The second approximation based
on the buffer technique provides an increase in accuracy, similarly. Since we use the
same algorithm for unweighted and weighted scenarios, we obtained almost identical
running time as shown in Figure 2.25. The second stage of approximation resulted in
a significant increase in computation time. This is mainly due to the construction of

a newly refined graph which is necessary for each query.

2.2.5.1 Time Independence from Weight Assignment

The results just mentioned are based on terrains in which weights were assigned to
each face based on slope. To show that this assignment of weights does not bias the
results, we ran additional tests in which the weights were chosen at random for each
face. 2 The additional tests were performed on the normal and stretched versions of
the 5000 face terrain with random heights and face weights. For these tests, we also
changed the number of Steiner points used in the second stage of approximation. For
the second stage approximation using the interval scheme, we increased the number
of Steiner points per edge to produce intervals of approximately half of the size from

the first stage. The fixed scheme tests were carried out as before with 20 Steiner

2The standard gnu-c function drand48() was used to generate the random weights.

Path Cost

Path Cost

Path Cost

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 94

1600

1580

1560

1540

1520

1500

1480

4650

4600

4550

4500

4450

4400

4350

4300

4250
0

1980

1960

1940

1920

1900

1880

1860

1840

1820
0

1,012 Face Weighted TIN
T

Fix ——
Int -+
FixSlv -e-- J
IntSlv

%

4

1 2 3
Average Number of Steiner Points per Edge

5

5,000 Face Weighted TIN (Random Heights)

Fix ——
Int -]
FixSlv -e---

IntSlv

%

B

x

I

1 2 3 4
A

5

verage Number of Steiner Points per Edge

10,082 Face Weighted TIN

Fix ——
Int -]
FixSlv -e--

IntSlv

%

4

1 2 3
Average Number of Steiner Points per Edge

5

Path Cost

Path Cost

Path Cost

7500

7400

7300
7200
7100
7000
6900
6800
6700
6600
6500

55000

50000

45000

40000

35000

30000
0

14500

14000 h

13500

13000

12500

12000

11500

11000
0

1,012 Face Weighted TIN (Stretched Heights)

Fix ——

Int -+
FixSlv -e---
IntSlv -

1 2 4 5
Average Number of Steiner Points per Edge

5,000 Face Weighted TIN (Random Stretched Heights)

T T T T T
Fix ——
Int -+
FixSlv -e---
IntSlv -

1 2 4 5
Average Number of Steiner Points per Edge

10,082 Face Weighted TIN (Stretched Heights)

T T T T T
Fix ——
Int -+

IntSlv -

FixSlv -e-- 7

1 2 3 4 5
Average Number of Steiner Points per Edge

Figure 2.24: Graphs showing average path cost for six selected weighted terrains.

Computation Time

Computation Time

Computation Time

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 95

1,012 Face Weighted TIN
T

12 T T
Lo
pag
1r L Fix ——
e Int -+
e FixSlv -=--
0.8 % — oo INtSly x|
0.6 1
0.4 - 1
0.2)]
O L L L L L
0 1 2 3 4 5 6
Average Number of Steiner Points per Edge
5,000 Face Weighted TIN (Random Heights)
6 T T T T T
5 L 4
4+ |
T Fix ——
’ Int -+
3r . FixSlv -&-
= IntSlv -
2 4
1 4
O L L L L L
0 1 2 3 4 5 6

Average Number of Steiner Points per Edge

10,082 Face Weighted TIN
T

10 T T
9 I A
8 .
7+
6 |-
51 - Fix ——|
. Int -+
4 FixSlv -&--
IntSlv -

3 4
2 4
1 4
O L L L L L

0 1 2 3 4 5 6

Average Number of Steiner Points per Edge

Computation Time

Computation Time

Computation Time

1,012 Face Weighted TIN (Stretched Heights)

1.2 T T
1F X b
.»'Er
0.8 x5
0.6 [X Fix ——
Int -—--
FixSlv -&--
04l IntSly -~
0.2 R
O L L L L L
0 1 2 3 4 5 6
Average Number of Steiner Points per Edge
5,000 Face Weighted TIN (Random Stretched Heights)
7 T T T T T
6 L
5 L
4+ Fix ——
Int -+
FixSlv -=--
3 INtSlv -~
2 4
1 4
O L L L L L
0 1 2 3 4 5 6
Average Number of Steiner Points per Edge
10,082 Face Weighted TIN (Exagerated Heights)
30 T T T T T
25 + R
20 a x 1
15]
‘D,.» A
10 - x ¥ 7
o e Fix ——
5| o Int -+
x FixSlv -=--
N IntSlv -
O L L L L L
0 1 2 3 4 5 6

Average Number of Steiner Points per Edge

Figure 2.25: Graphs showing average computation time for six selected weighted

terrains.

Path Cost

Path Cost

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 96

points per edge.

5,000 Face Slope Weighted TIN (Random Heights)

4650 T T T T T
Fix ——
Int —+- |
4600 FixSlv -e--
IntSly -
4550 |)
4500
4450
4400
4350
4300 |
4250
0 1 2 3 4 5 6
Average Number of Steiner Points per Edge
5,000 Face Random Weighted TIN (Random Heights)
1950 T T T T T
Fix ——
\ Int -+
1900 | FixSlv -2 4
IntSlv -
1850 |-
1800 t:
1750
1700 |
@
1650 L L
0 1 3 4 5 6
Average Number of Steiner Points per Edge

Path Cost

Path Cost

55000 T T T T T
3 Fix ——
Int -+
FixSlv -e---
50000 | INtSlv -
45000 | R
+
40000 R
S
X
B S
35000 | B G S 1
" g P
x X
30000 L L L L L
0 1 2 4 5 6
Average Number of Steiner Points per Edge
5,000 Face Random Weighted TIN (Random Stretched Heights)
6000 T T T T T
} Fix ——
Int -+
5500 FixSlv -e-- 7
IntSlv -
5000 |-
4500 -
4000 -
3500
3000 -
2500 L L L L L
0 4 5 6

5,000 Face Slope Weighted TIN (Random Stretched Heights)

1 2
Average Number of Steiner Points per Edge

Figure 2.26: Graphs comparing the accuracy of weighted approximations for 2 weight

scenarios: slope weights and random weights.

Figure 2.26 compares the weighted path costs between terrains with slope weights

and random weights. The slope weight tests were re-done here with the new calcu-

lation for the second stage approximation. As can be seen by the graphs, there is

very little difference between the shape and convergence behavior between the two

weighted scenarios. The timing for these additional tests was similar to that of the

original weighted path tests of Figure 2.25, and is therefore not shown here. The

similar characteristic shape and scale of the graphs as compared to the unweighted

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 97

case imply that our algorithm is not sensitive to the weights of the faces.

2.3 Extensions

In this section, we describe two extensions to our algorithms. The first is that of
computing paths between two arbitrary query points on the polyhedral surface. The

second is that of producing e-approximations under certain constraints.

2.3.1 Shortest Path Queries

In this section, we describe algorithms for computing paths between two arbitrary
query points on the polyhedral surface. We consider two variations of the shortest
path query problem: 1) single source, and 2) two-point queries. The preprocessing
time involves running our algorithm from the previous section and building a structure

for point location.

2.3.1.1 Single Source

Let us consider a fixed source (without loss of generality assumed to be a vertex) and
allow arbitrary destination queries. Since the source is fixed, we can run Theorem
1.2 as a preprocessing step. If the destination query point is a vertex or a Steiner
point, the cost from s to ¢ is precomputed and thus can be reported in constant time.
The path can be reported in time proportional to the number of its segments. If
the destination t is not a vertex, the face f; which contains ¢ must first be located.
Then the pre-determined shortest paths to the vertices and/or Steiner points of f; are
used. An approximation for IT'(s,t) can be constructed in one of two ways through

concatenation of:

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 98

1. {II'(s, q:), qit}, where ¢; is a Steiner point of f;, or

2. {Il'(s,vy), vit}, where vy is a vertex of f;.

The choice of going through a vertex or a Steiner point allows for a tradeoff between
path accuracy and query time. The following theorem applies to the two construction

strategies above:

Theorem 2.4 A polyhedron P can be preprocessed, for a given source vertex s such
that a path TI'(s,t) can be computed to a query point t on P in

1) O(m +logn) time such that |[IT'(s, t)|| < |[T(s,t)|| + (1 + 715)WIL]

2) O(logn) time such that ||IU'(s,t)|| < ||TI(s,t)|| + (1 + %)W|L\

Proof: The proof is given separately for the two construction methods:

1) During preprocessing, we can precompute O(m) paths from s to the Steiner points
of f;. The query time follows from Observation 1.1 applied to n faces with an ad-
ditional O(m) time for computing the minimum of the O(m) precomputed paths.
Consider the accuracy of the path so obtained. Let b be the point at which II(s,)
enters f; and let b’ be the Steiner point, closest to b, at which II'(s,t) enters f; (as
per our scheme). Using Theorem 2.2 we can derive the following bound on the cost

of IT'(s,) to be ||[II'(s, t)|| < ||TI(s, t)]| + (1 + =L-)WIL].

m+1

2) For the analysis, we will assume that v; is the vertex of f; that is closest to ¢ and
let L be the longest edge among the edges of f;. It can be shown that |v,¢| < %, since
the distance |v;t| is maximized when f; is an equilateral triangle and ¢ is the point
of intersection of the perpendicular bisectors of each of the sides. From Theorem 2.2
it follows that ||II'(s, v:)|| < ||[HI(s, v)|| + W|L| Applying this to the constructed path
IT'(s, t) we obtain: [|II'(s, £)[| = [[TI'(s, ve)[| +[[o:t]] < [[TI(s, £)[| +[[ost]| + WIL| + [[oid]| <
ITL(s,)] + (1 + J5)WIL|. O

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 99

2.3.2 Two-Point Queries

Consider the case in which both s and ¢ are arbitrary query points. Preprocess the
polyhedron by computing a shortest path from each vertex of P to all Steiner points.
We can then construct a path in one of two ways as for the fixed source query prob-
lem. Let f, and f; be the faces containing s and ¢, respectively. Let ¢, (respectively
¢:) be a Steiner point of f, and let v, (respectively v;) be a vertex of f, (respectively
ft). We can construct II'(s,) in one of the following ways: (A) 3¢, I1'(¢s, i), qit
(B) 505, I(vs,q), @t (C) 55, V(g ve),0f (D) 575, 1 (v, 1), Uk

In order to make the best choice of ¢, ¢;, vs and/or v;, we compute the path for
all possible pairs of Steiner points and/or vertices of f; and f;. In the first case, this
takes O(m?) time as there are O(m) possibilities for both ¢, and ¢;,. For the second
(respectively third) case, we need to check O(m) possibilities for ¢; (respectively g¢5)
and three possibilities for vy (respectively v;). This takes O(m) time. Since there are

at most nine combinations to check, the last case can be carried out in constant time.

Theorem 2.5 A given polyhedron P can be preprocessed such that a path II'(s,t) can
be computed between two query points s and t on P in
1) O(logn + m?) time such that || (s, t)|| < ||T(s,)] + (1 W|L|,

WILJ,

m—}—l)

2) O(logn + m) time such that ||[IU'(s,t)|| < ||I1(s,t)|| + (1 + f +)

3) O(logn) time such that ||IU'(s,t)|| < ||(s,t)]| + (1 + 5=)W|L|

Proof: The proof is similar to Theorem 2.4 where 1) uses construction method (A),

2) uses construction method (B) or (C), and 3) uses construction method (D). O

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 100

2.3.3 e-Approximations

All our algorithms can be expressed as e-approximations algorithm if s and ¢ are
vertices of P. In this case, we can bound the minimum possible length of TI(s, t) since

IITI(s,t)|| > |I|, where [is the shortest edge in P.

Theorem 2.6 Using the complete interconnection strateqy, we can compute an ap-
proximation II'(s,t) of a weighted shortest path I1(s,t) between two vertices s and t of
G such that ||II'(s,t)|| < (1+4¢€)||IL(s,t)||, where 0 < € < 1. Moreover, we can compute
this path in O(n*K lognK +n°K?) time where K = ‘o2l
Proof: Using Lemma 2.3, we can express our approximation accuracy in terms of
the longest and shortest edge lengths of P as follows:

EW|L|

m—+1

EW L\l
(m+1)|l

EW|L|

(m+1)|

kW |L| .
o o G ol

(s,) < |ITI(s,)] +

= [M(s,)l +
< (s,)l + [ITI(s, 1)l
= (1+

From this result we have shown that an e-approximation is achievable where ¢ =

(:;Vﬂﬂl'. In order to obtain this accuracy we must choose m > k‘:ﬁf | _1 Steiner points
per edge. (Note that by setting m > kme‘ — 1, then € < 1). Since k = ©(n?), we

have m = O(”2€V|‘;||L|). The running time using Theorem 1.2 is O(nmlognm + nm?).

If we let K = % then the running time is O(n®*K lognK + n°K?).

O

Corollary 2.2 Using the complete interconnection strateqy, we can compute an ap-

proximation 7'(s,t) of a Euclidean shortest path m(s,t) between two vertices s and t

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 101

of G such that |1'(s,t)| < (14€)|n(s,t)|, where 0 < e < 1. Moreover, we can compute
this path in O(n*K lognK + n*K?) time where K = %
Theorem 2.7 Using the 3-spanner interconnection strateqy, we can compute an ap-
proximation I1'(s,t) of a weighted shortest path T1(s,t) between two vertices s and t of
G such that ||IT'(s, t)|| < (14€)||II(s,t)||, where 0 < € < 1. Moreover, we can compute
: : : WL
this path in O(n3K lognK) time where K = (117—'@””
Proof: Using Lemma 2.3, we can express our approximation accuracy in terms of

the longest and shortest edge lengths of P as follows:

EW|L
(sl < ﬁ<||n(s,t)||+ m+|1|>

KWL
< (1 gy) .ol

From this result we have shown that an e-approximation is achievable where 1+ ¢ =

G+ 0 AWILL Hence, ¢ = -1+ KBWILL * To obtain this accuracy, we need to

(m+1)[1] (m+1)[1
place m = JEEL_LL)}” — 1 Steiner points on each edge. Since k = O(n?), we have
m = O((ﬁ'izvﬁ'ﬂ”) Letting K = (li?/_'g)”” then the running time using Theorem 1.2 is
O(n*KlognK).

O

Corollary 2.3 Using the -spanner interconnection strategy, we can compute an ap-
proximation 7' (s,t) of a Euclidean shortest path m(s,t) between two vertices s and t
of G such that |'(s,t)| < (14¢€)|n(s,t)|, where 0 < ¢ < 1. Moreover, we can compute

this path in O(n?K lognK) time where K = (eﬁﬂ)w

We can also apply different constraints such as making the assumption that

III(s,t)|| > dist(s,t). We can obtain similar bounds which would contain the term

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 102

w - dist(s, t) in place of |I|. The drawback of this approach is that it requires s and ¢
to be known ahead of time. This would prevent efficient queries to be answered since
the building of G would have to be done during pre-processing and at that point, we
do not know dist(s,t) and hence do not know how many Steiner points are required

to achieve the e-approximation.

The number of Steiner points required to obtain this e-approximation bound,
makes the algorithm impractical from a theoretical point of view. However, we have
shown that the algorithm is of high practical value since near-optimal paths are

obtained after only a few Steiner points are added per edge.

2.4 Other Approximation Schemes

All of the schemes presented here are based on the discretization of P by construct-
ing a graph in which Steiner points have been added to the edges of P and then
interconnected. One question that immediately arises is whether or not it would be
advantageous to place Steiner points in the interior of the face as well. A natural
method of placing Steiner points interior to a face is by decomposing the face recur-
sively into subfaces. We call this method the face decomposition scheme and it is
obtained by constructing a graph G; for each face f; as follows. Add Steiner points
to the midpoint of each edge of f;. The vertices of GG; are the vertices of f; along
with the Steiner points just added. An edge is added to GG; connecting each vertex to
the Steiner points lying on their incident edges of f;. Also, add edges connecting all
three Steiner points. The result is a decomposition of f; into four smaller triangles
called subfaces. We repeat this decomposition recursively on the 4 subfaces until
the desired maximal edge length is obtained. Let h denote the number of levels of

recursive decomposition, where A = 0 implies no decomposition. Figure 2.27 depicts

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 103

such a construction where h = 2. This concludes our construction of G;. A graph G

is then computed as before by forming the union of all G;,1 <7 < n.

Figure 2.27: Recursively dividing a face into 4 subfaces by joining the midpoints of
its edges.

At first glance, this approximation scheme appears to improve upon the accuracy
of the approximation since we allow the path to cross faces of P instead of restricting
it to travel only along edges. However, the portions of the approximated path that
pass through faces have an undesirable “zig-zag” characteristic. Since this path does
not satisfy Property 1.10, this characteristic will result in unnecessary errors in the
approximation. In addition, this scheme requires adding Steiner points to each edge

in powers of 2 which reduces its scalability.

It can be shown that this scheme provides no accuracy improvement whatsoever,
regardless in the number of levels of decomposition when s and ¢ are vertices of
P. This was confirmed experimentally. The addition of Steiner points internal to
the faces did not provide an improvement in accuracy and in fact, produced poor
approximations. This however, does not imply that the addition of any Steiner points
to the interior of each face will result in a poor approximation. It would be nice to

determine some “rules of thumb” that would give some indication as to which schemes

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 104

would perform better than others.

An even more interesting problem is to determine the optimal placement of these
Steiner points and edges such that each G; is planar. It is not difficult to see that no
planar scheme can improve upon the accuracy of the complete interconnection scheme
if both schemes have the same number of Steiner points along the edges. Hence given
a fixed number of Steiner points on the edges of each face, adding Steiner points inside
the face can never improve the overall accuracy of the approximation. However, it is
possible that by adding points inside the face, one can produce a graph on the outer
Steiner points with fewer edges and better characteristics (such as planarity). The
accuracy obtained from such a graph may be close to that of the fixed scheme and the
running time would be improved upon. In addition, by using planar graphs on each
face, this may allow the application of more efficient search algorithms. Chew [24]
for example, showed that there are some planar graphs which nearly approximate the
complete graph. The planar graphs with these properties are variations of Delauney
triangulations. For these reasons, we ran some experiments on two planar schemes

as shown in Figure 2.28.

The star approximation scheme was created as an attempt to reduce the number
of edges added to each face from O(m?) to O(m) while ensuring planarity. Here we
merely placed a Steiner point in the center of each triangle and connect it to the outer
edge Steiner points. In essence, the scheme “forces” the approximated path to either
pass through a vertex or center of a face. The [eaf approximation scheme was created
as an attempt to improve the star scheme and still allow only O(m) edges per face.
Once again, the graph produced on each face is planar. From the results of the fixed
scheme (with complete interconnection), we knew that the biggest improvement on
accuracy was the addition of the first Steiner point on each edge of the face. The

leaf scheme attempts to keep the connections of the complete scheme (with exactly

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 105

Star schene Leaf schene

Figure 2.28: The star and leaf approximation schemes.

one Steiner point per edge), while adding internal vertices to make the graph planar.
Then, approximately %' additional Steiner points are added to 3 of the internal edges
and these points are connected to the outer Steiner points so that the resulting graph

is a triangulation (although a triangulation is not required by the algorithm).

The graphs of Figure 2.29 compare the accuracy of the paths obtained by the star
and leaf schemes with the accuracy of the fixed and interval schemes (with complete

interconnection) for our 10,082 face TIN.

The graphs confirm that the star and leaf schemes produce worse accuracy than
the fixed and interval schemes with and without the additional sleeve computation.
The erratic nature of the star scheme indicates that the scheme is susceptible to small
changes in Steiner point placement along the edges of the face. More importantly, the
star scheme does not improve much as more Steiner points are added per edge. The
second graph confirms that the sleeve computation provides a substantial improve-
ment in the accuracy, but still, the resulting path accuracy never reaches that of the

fixed and interval schemes. This implies that the schemes were unable to converge to

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 106

1,012 Face Unweighted TIN 1,012 Face Unweighted TIN

1120

1030

Star —— 1025 Star + Sleeve —-— |
1100 Leaf -+--- 1 [Leaf + Sleeve -+
Fixed -&- 1020 |) Fixed + Sleeve -8 |
Interval -x Interval+ Sleeve -x
1080 Optimal ---- 4 1015 | Optimal ----
IS 1060 = 1010
j=2] j=2}
< < 1005 +
8 1040 F 3
s \ £ 1000 |
< s - - ©
o 1020 - 1 & 905t
1000 T 990
'''' M T 985 B]
x B L R
980 og0 | - . E—
960 975
0 1 2 3 4 5 6 0 1 2 3 4 5
Average Number of Steiner Points per Edge Average Number of Steiner Points per Edge

Figure 2.29: Graphs comparing the accuracy of the star and leaf schemes with that of
the fixed and interval schemes. The two graphs depict the results with and without
the additional sleeve computation.

a proper shortest path edge sequence. However, it is observed that the leaf scheme
is less sensitive to Steiner point placement and does converge slightly better than the

star scheme.

Getting back to the reason for creating these schemes, we see the running time
results for the tests in Figure 2.30. Here we see the linear behaviour of these new
schemes as compared to the quadratic behaviour of the fixed and interval schemes.
Clearly, the star scheme has the best running time. Since we have only added a few
Steiner points per edge, the leaf scheme is shown to have a higher running time than
the fixed and interval schemes. If enough points were added, then one would see that

the fixed /interval scheme running time would surpass that of the leaf scheme.

Although we have only experimented with two additional schemes, further inves-
tigation into other schemes remains as future work. For example, one may like to
try schemes such as those depicted in Figure 2.31. The scheme of Figure 2.31a) is
similar to the star scheme except that the “ears” of the face are sectioned off and

triangulated separately. This may prove more useful than the star scheme since there

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 107

10,082 Face Unweighted TIN

6
5r E:
’#(
) L p
£ 4 o
£ el
5 A
g‘ @ "x“’ Int
nt -+
S 2t A FixSlv =7
IntSlv -
» ’dd{
1r e B
o o Leaf ~o--
'&;;,Er" LeafSlv -+
I
0 1 2 3 4 5 6 7

Average Number of Steiner Points per Edge

Figure 2.30: Graph comparing the running time of the star and leaf schemes with
that of the fixed and interval schemes.

are less long edges close together. Another possibility is that of perhaps merging the
star and face decomposition schemes as shown in Figure 2.31b). This would pro-
vide additional edge orientations for the face decomposition scheme (as opposed to
its original 6) which would decrease the amount of zig-zagging and actually improve
the accuracy of the face decomposition scheme. Figure 2.31c) would provide another
method in increasing the orientations of the face decomposition scheme. It represents
a 12-neighbourhood graph where each Steiner point is connected to its (up to) 12
closest neighbours. The resulting graph allows 12 orientations from each node and
hence should improve upon the face decomposition scheme. However, the graph is
no longer planar. Finally, Figure 2.31d) represents a layered scheme where a layer
of Steiner points is placed inside the face forming a similar but smaller triangle. We
add half the number of border Steiner points inside the face to form an inner triangle
and connect them using the fixed scheme. The outer and inner triangles are then
connected using some kind of triangulation strategy. Although this is described as

a two layer approach, the layering can be iterated to allow many layers with a final

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION 108

small triangle (perhaps even a point) in the center of the layers. This particular
scheme spawned from some ideas we had regarding the placement of Steiner points
based on using the “spring” graph drawing algorithm. The idea was to determine a
“good” placement of Steiner points interior to the face. Intuitively, we felt that by
applying the spring algorithm in which the Steiner points along the outer edges of
the face were fixed and the Steiner points on the inner layer were allowed to move,
then we would get an indication as to where the Steiner points should be placed.
After applying the spring algorithm on several triangles, we found that the Steiner
points near the middle of the inner layer edges seemed to cave inwards slightly. We
felt that the effects of the spring algorithm did not provide a significant change in the

placement of the inner Steiner points to warrant their usefulness.

109

CHAPTER 2. ALGORITHMS BASED ON EDGE DECOMPOSITION

~~
@®©
~—

Mz\ ‘
d

il

»A-nm..ﬁ

A
e
NN

—~~

(d

\

N\

.

A
A
\#ﬂhﬁbsrﬂra&‘
AN LLINALN
k-ﬂhw‘mﬁﬁs’ﬂh‘&i
N LINNLINNLTNA
A@dﬁ‘g—«h&« «%ﬁ
AVLENAL7NAA7NA
eI
NV AVAZNN
Aﬁdﬁzﬁ

=\

\

(c)

Figure 2.31: a) an ear-clipped star scheme, b) a combined face decomposition and

star scheme, c) a 12 neighbourhood scheme and d) a layered scheme.

Chapter 3

An € - Approximation Algorithm

It is often desirable to compute approximations of shortest paths that have a cost
which is arbitrarily close to the exact shortest path cost. Our work described in
Chapter 2 shows that very accurate paths can be obtained in practice, although the
theoretical accuracy bound was not very attractive. That is, to obtain high accuracy
in theory, a high number of Steiner points needs to be placed on each edge of the
polyhedron. We also showed that an e-approximation can be obtained for some special
cases in which constraints are placed on the problem (such as allowing only queries

between vertices or computing paths that have length at least dist(s,t)).

In this chapter, we focus on the problem of computing e-approximations on weighted
polyhedral surfaces. In addition, the algorithm presented in this chapter improves
upon previous research by reducing the dependency on n in the running time, since
in many applications n is quite large (larger than 10°). This smaller dependency on
n improves upon the work of Papadimitriou [100], Choi et al. [26], Clarkson [29],
Mitchell and Papadimitriou [90] as well as Mata and Mitchell [86]. Table 3.1 com-

pares the running times for the e-approximation algorithms developed by [100], [26],

110

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 111

[29], [90], [86] and the one presented here. The comparisons are done as functions
of n (the number of triangular faces of the polyhedron P) and e. From the table
we can clearly see that our algorithm improves substantially the dependence on n.
Although the objective of Chapter 2 was different, the schemes can also be formu-
lated as e-approximations (provided that additional constraints are met) in which the

dependence on n becomes comparable to [86].

‘ Reference ‘ Running Time ‘ Metric ‘
Papadimitriou [100], Choi et al. [26] O("€—4 log” 2 + ’;—i logn) Euclidean
Clarkson [29] O(% log ™ + n?log®n) Euclidean
Mitchell and Papadimitriou [90] O(n®log 1) weighted
Mata and Mitchell [86] O("ﬁ—s) weighted
Results here O(%log? (% log L + log n)) weighted

Table 3.1: Comparison of Euclidean and weighted shortest path algorithms in terms
of n and e.

The chapter is organized as follows: Section 3.1 describes our approach as it differs
from the previous work pertaining to e-approximation algorithms and explains our
results. Section 3.2 then presents the algorithm for the case in which both the source
s and destination ¢ are vertices of P. The algorithm is described and its runtime
bounds are analyzed. Section 3.3 then describes how the bounds change for the case

in which s and t are arbitrary points.

3.1 Overview of Our Approach

Our approach to solving the problem is to again discretize the polyhedron in a natural
way, by placing Steiner points along the edges of the polyhedron as in our edge

subdivision approach of Chapter 2. In this work, a graph G is also constructed

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 112

containing the Steiner points as vertices and edges as those interconnections between
Steiner points that correspond to segments which lie completely in the triangular
faces of the polyhedron. The graph is then searched to obtain a shortest path. In the
case where s and t are vertices of GG, the e-approximation path that we report will be
a path in G. If s and t are not vertices of GG, then the reported path will consist of a
segment from s to some vertex v € GG, then a path in G from v to some other vertex

v' € G, and finally a segment from v’ to t.

One of the differences to the work in Chapter 2 and to other somewhat related
work (e.g., [33, 72]) lies in the placement of Steiner points. Here, we introduce a
logarithmic number of Steiner points along each edge of P, and these points are
placed in a geometric progression along an edge. They are chosen with respect to the
vertex joining two edges of a face such that the distance between any two adjacent
points on an edge is at most € times the shortest possible path segment that can
cross that face between those two points. (This also differs from the approaches of
Papadimitriou [100] as well as Choi et al. [27] which use distances from the starting
point to place vertices thereby preventing their schemes from being extendible to

queries with unknown starting point).

A problem arises when placing these Steiner points near vertices of the face since
the shortest possible segment becomes infinitesimal in length as the segment gets
closer to the vertex. A similar issue was encountered by Kenyon and Kenyon [72] and
Das and Narasimhan [33] during their work on rectifiable curves on the plane and in
3-space, respectively. The problem arises since the distance between adjacent Steiner
points, in the near vicinity of a vertex, would have to be infinitesimal requiring an
infinite number of Steiner points. We address this problem by constructing spheres
around the vertices which have a very small radius (at most e times the shortest

distance from the vertex to an edge that is not incident to the vertex). Figure 3.1

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 113

shows a vertex v of a face f and the constructed sphere (shown as circle) around this
vertex with radius r,. In the diagram, e is an edge of f incident to v and ¢, is the
Steiner point on e that is closest to v. The distance between the next Steiner point
along the edge (¢z) is chosen as €|x|, where x is as shown. We can see that as r,
decreases, x gets infinitely close to v and |x| — 0 which implies that [gigz| — 0 as
well. Hence, as r, decreases to be infinitesimal, an infinite number of Steiner points

need to be placed on e.

Figure 3.1: A sphere of radius r, is placed around vertex v in order to make |g;q;;1|
finite.

The idea behind the spheres is that they provide a way to ensure that only a finite
number of Steiner points are added to each edge of P. The spheres allow us to put
a lower bound on the length of the smallest possible edge that passes between two
adjacent Steiner points. The graph construction procedure never adds Steiner points
within these spheres. Any shortest path segments inside the sphere can be bounded

with respect to the portions of the path that are outside the spheres.

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 114

We can show that for any given shortest path, there exists a path in this graph
with cost that is within (1 + €) times the shortest path cost. For the purpose of
simplifying the proofs, we actually show that the approximation is within the bound
of (1+ f(e)) times the shortest path costs where f(e) varies according to the type of
query and the weight metric being used (i.e., Euclidean or weighted). Our bounds
make an assumption that 0 < e < % and also include a term % which represents the

largest to smallest weight ratio of the faces of P.

For the case in which both s and ¢ are vertices of P we show a bound of (1+(3=2)e)
times the shortest path length in the unweighted scenario and within the bound of
(1+2+ (1))e) times the shortest path cost in the Weighted scenario. The desired

e-approximation is achieved by dividing e by 3=

T (2+ (= 2 —) for the unweighted
and weighted case, respectively. When either or both of s and ¢ is not a vertex of
P, we give slightly worse bounds. As will be seen, the bounds appear somewhat
complicated. We can simplify the bounds of our algorithm when ¢ < 1/6 and also
by taking the limit as e — 0 (see Table 3.2 for the bounds of three different types of
query problems in the unweighted and weighted cases. Note that “V to V" represents

paths between vertices of P, “P to P” represents paths between arbitrary points of

P and “V to P” represents a path between a vertex and an arbitrary point).

Query | Unweighted | Unweighted Weighted Weighted
Type e<1/6 e—=0 e<1/6 e—=0
VitoV 1+ 4e 1+ 3e 14+ (24 3W/w)e | 14 (24 2W/w)e
VitoP 1+ 8¢ 1+ 5¢ 1+ (4+5W/w)e | 14 (34 3W/w)e
P toP 1+ 13e¢ 1+ 9¢ 1+ (6+10W/w)e | 1+ (4+6W/w)e

Table 3.2: The resulting bounds obtained by our algorithm when ¢ < 1/6 and when
€ — 0 for three different types of queries.

The running time of our algorithm is the cost for computing the graph G plus that

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 115

of running a shortest path algorithm in G. The graph consists of |V| = nm vertices
and |E| = nm? edges where m = O(logs(|L|/7)), |L| is the length of the longest edge,
7 is € times the minimum distance from any vertex to the boundary of the union of its
incident faces (denoted as minimum height h of any face), and 6 > 1 + esin §, where

f is the minimum angle between any two adjacent edges of P.

Our analysis reveals the exact relationship between the geometric parameters and
the algorithm’s running time. The dependence on geometric parameters is an in-
teresting feature of several approximation geometric algorithms. Many researchers
have advocated the use of geometric parameters in analyzing the performance of ge-
ometric algorithms, and our result indicates that if the geometric parameters are
“well-behaved” then the asymptotic complexity of our algorithms is several orders of
magnitude better than existing ones. One of the conclusions from our study is that
while studying the performance of geometric algorithms, geometric parameters (e.g.,
fatness, density, aspect ratio, longest, closest) should not be ignored, and in fact it
could potentially be very useful to express the performance that includes the relevant

geometric parameters. !

3.2 An e-Approximation Scheme Between Vertices

In this section we present an approximation scheme for computing a shortest path
in the case in which s and t are vertices of P. We first describe the discretization of
the problem by constructing a graph G which depends on the choice of e. We assume
that 0 < e < % and is chosen before the graph is constructed. The e-approximation
path 7'(s,t) (or II'(s, t)) that we report will be a shortest path in G between s and ¢.

Lastly, we analyze the bounds for the unweighted and weighted cases, respectively.

'De Berg et al. [36] provide a discussion on the relations between the properties of various data
models and their use with different algorithms.

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 116

3.2.1 Constructing the Graph

For each vertex v of face f; we do the following: Let e, and e, be the edges of f; incident
to v. First, place Steiner points on edges e, and e, at distance r, from v; call them
¢; and py, respectively. By definition, [7q;| = |p7| = r,. Define 6 = (1 + €siné,)

it e, <z,

otherwise set 6 = (1 4+ ¢). We now add Steiner points g3, ¢s, .., u,—1
along e, such that |vg;| = r,6° ! where u, = logs(|e,|/7,). Similarly, add Steiner
points py, ps3, ..., Pu,—1 along e,, where 1, = logs(|ey|/r,). This strategy creates sets of
Steiner points along edges e, and e, (see Figure 3.2a). The following claim bounds
the distance between adjacent Steiner points on e,. Note that a similar claim applies

to the Steiner points on e,.
Claim 3.1 [Gigi11| = € - dist(g;, ep) where 0 < i < p,.
Proof: Assume first that 6, < 7. We can manipulate [;¢i11| as follows:

GG+1l = [7Gq1| — 7]
= Tv(si - T,Uéiil
= 7,676 -1)

= g6 -1)

By construction, é = (1 + esinf,), and so

7G| = |vgG|(1+€esind, —1)
= esinb,|vg|

Since sin 6, = % by definition, then |g;giy1| = € - dist(g;, e,).

If 6, > %, then by definition, 6 = (1 + €), and so [GGir1| = [7G|(1 + € — 1) = €|7G|-

Since dist(g;, ep) = |0g;| by definition when 6, > 7, then |GiGii1| = € - dist(g;,).

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 117

Figure 3.2: a) Placement of Steiner points on the edges of f; that are incident to
vertex v. b) Results of merging Steiner points along edges.

Claim 3.2 [Gigir1| < (1 + €)|Gi—1aGi| where 1 <@ < p.

Proof: Similar to Claim 3.1, we can show that [¢;1G;| = |vG|— [7G 1| = [vG 1/(6—1)

and [7;gi1] = 9G] — [vq| = [(6 — 1). Hence,

GG = ([5G + |vG=]) (6 —1)
TG
- (il +) -

= ((6-1+1)|gq|

= 5‘%‘—1(]@'\

< (14 6¢)|g=a|

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 118

O

Since we have added Steiner points based on the minimum angle 6, about v,
we obtain “concentric parallel wavefronts” centered at v consisting of Steiner point
layers along the incident edges of v. Since this construction is made for each vertex
of a face f;, there will be two overlapping sets of Steiner points on each edge of f;.
To eliminate this overlap, we reduce the number of Steiner points on each edge. If
two sets of Steiner points on an edge originate from the endpoints of an edge e, we
determine the point on e where the interval sizes from each set are equal and eliminate
all larger intervals. Intuitively, intervals are eliminated from one set if there are small
intervals in the other set that overlap with it (see Figure 3.2b). The example of
Figure 3.3 shows the effect of applying this to each face of P. Through shading,
the example shows the association between the Steiner points and the vertex that

introduced them. The vertices of G; will be Steiner points as well as the vertices of

Figure 3.3: Example showing the association between the Steiner points and the
vertex that introduced them.

P defining f;. The edges of G; form a complete graph on its vertices. The graph G

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 119

is defined to be the union G; U Gy U ... UG,,. Observe that G is connected.

Claim 3.3 At most m < 2(1 + logs(|L|/r)) Steiner points are added to each edge of

fl,fOT'lSZS?’L

Proof: Examining the case in which m is maximized, it is easily seen that this would
happen when the edge has length |L| and it is joining two vertices which have the
minimum radius r. The bound on m follows from construction of G;, in which we
choose these worst-case parameters. The merging step from the edge vertices results
in an additional factor of 2. Note that most edges of P will not have length L nor,
in general, will its vertices have sphere radii of . Hence in general, edges will have a

smaller value of m that that stated here.
O

Claim 3.4 G has O(nlogg(|L|/r)) vertices and O(n(logs(|L|/7))?) edges.

Proof: Since there are O(n) edges of P, Claim 3.3 implies that G contains O(nm) =
O(nlogs(|L|/r)) vertices. The number of edges in G is n times the number of edges
in each G;. Since each G; is a complete graph on O(m) vertices, it has O(m?) edges

and therefore there are O(n(logs(|L|/r))?) edges in G.
a

3.2.2 Accuracy Bound of the Approximation

This section provides an analysis of the approximated path accuracy for both un-
weighted and weighted paths produced for different placements of query vertices s
and t. We present a construction to show that there exists a path between s and t,

with cost at most f(e) times the length of the actual shortest path cost. We will show

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 120

that f(e) varies depending on the distance between s and ¢ and also on the metric
used (i.e., unweighted vs. weighted). Before beginning the proofs we establish several

properties of this graph and some additional definitions.

Consider a subgraph G;, 1 < j < n, as defined above. Let v be a vertex of a face

f; with edges e, and e, incident to v. We need the following technical lemma.

Lemma 3.1 Let s; be the smallest segment contained within f; such that one endpoint
of s; intersects eq between g; and g1 and the other endpoint intersects e,. It holds
that |GiGir1| < €|si|. Furthermore, if 0, < 7 then s; is a perpendicular to e, and if

0, > % then |s;| > [vq|.

Proof: Consider the case in which f, < 7. Clearly, the smallest segment starting
in the interval [g;, ¢i+1] on e, is a perpendicular to line e, since e, and e, are not
parallel. Furthermore, the smallest such perpendicular must start at ¢;. Therefore
|s;| > dist(g;, e,). Since Claim 3.1 ensures that |;gir1| = €-dist(g;, €p), then |GgT1| <
€lsi|. If 6, > T then smallest segment starting in the interval [g;, ¢;+1] on e, is 7G;.

Therefore |s;| > |vg| = dist(g;,e,). Once again, Claim 3.1 is used to show that

@G| < €lsil.
O

Let s; be a segment of 7(s,t) (or I(s,t)) crossing face f;. Each s;, must be of one of

the following types of segments:

Definition 3.1 Outside-sphere: A segment such that s; N C, = 0.

Definition 3.2 Overlapping-sphere: A segment such that s; N C, = subsegment of s;.

Definition 3.3 Inside-sphere: A segment such that s; N C, = s;.

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 121

Let C,,, Cy,, ..., Cy, be asequence of spheres (listed in order from s to t) intersected
by overlapping-sphere segments of 7(s,t) such that C,, # C,,_ . Define subpaths of
7(s,t) (and Il(s,t)) as being one of two kinds:

Definition 3.4 Between-sphere subpath: A path consisting of an overlapping-sphere

segment followed by zero or more consecutive outside-sphere segments followed by an
overlapping-sphere segment. These subpaths will be denoted as (0, 0j41) (denoted as
II(0j,0441) for weighted case) whose first and last segments intersect C,, and C,,_,,

respectively. We will also consider paths that begin or/and end at a vertex to be a

degenerate case of this type of path containing only outside-sphere segments.

Definition 3.5 Inside-sphere subpath: A path consisting of one or more consecu-

tive inside-sphere segments all lying within the same Cy;; these are denoted as (o)

(denoted as I1(c;) for weighted case).

Note that inside-sphere subpaths of m(s,t) (and II(s,t)) always lie between two

between-sphere subpaths. That is, 7(c;) lies between n(c;_1,0;) and 7 (o, 0j11).

Claim 3.5 Let s; be an outside-sphere segment with one endpoint between Steiner
points q; and qjy+1 on edge eq of a face f; and the other endpoint between Steiner

points p and pry1 on edge e, of f;.

Then max(min(|qpk|, [gPrr1), min([G 1Pk, [GPe1]) < (1 +€)sil.

Proof: Let v be the vertex shared by e, and e, and the angle between e, and e,
be 0,. Define z, (x,) to be the closest point on e, (e;) from ¢; (pr). When 0, < 7,
there are five sub-cases corresponding to where z,, and z, lie with respect to intervals
(45, ¢j+1] and [pg, pry1], respectively as shown in Figure 3.4a) to e). When 6, > 7

there is only one case as shown in Figure 3.4f. It is easily seen that cases d) and e)

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 122

are symmetrical to cases b) and c), respectively, and so the proof for cases d) and e)
has been omitted. In each case the shortest possible s; (called $,:,) is used. In cases

a, b, ¢ and f it is shown that both |[g;pk|, [G71Pk| < (1 + €)|Smin| and in cases d) and

e) it is shown that |GPer1l, [GriPkr1] < (1 + €)[Smin|. Since |s;| > |spin|, the claim

will hold.

Case a: Here, Sy, = @;Pk. By construction, |g;gj11] < €|3;74| < €[G;px|. By triangle

inequality |g51pk| < (1 + €)|GPx| = (1 + €)|Smin-

Cases b: Here, spn = PrZp. By construction, [G;¢;11| < €|q;T,| < €|T,px|- Further-

more, the triangle inequality ensures that [§1pe| < [G51%5| + |TpPr| < (1 + €)|T,Px]-

Similarly, [;7,| < €|T,px|- Therefore |g;pr| < (1 + €)|Pezy| = (1 + €)[Smin-

Cases c: Here, Snin = @j11Pk- Once again, using the triangle inequality we know

that [@px| < [GG+1| + [Gj+1Pk|- As before, |g;gj11| < €|q;T,| < €|gi71Px|- Therefore
@GPk < (14 €)[g71Pk| = (1 + €)[Sminl-

Case f: It is obvious that for any choice of py, Smi = @jPr. By Claim 3.1, [G;q1| <

e|vg;| < e|lgpr| < €|giyipr|- Again from triangle inequality, it can be shown that

G1Pk| < [GTG11| + [TGPe| < (14 €)[sminl.
O

Claim 3.6 Let s; be an overlapping-sphere segment crossing edge e, of f; between
Steiner points q; and qj+1 and crossing e, between v and Steiner point pi, where
Jj > 1 and v is the vertex common to e, and e,. Then [qiq;| and |q1q;+1| are less than

(1 +€)|82|

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 123

Figure 3.4: Six possible combinations of intervals containing s.

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 124

Proof: [0qi| = [op1| and hence ¢ = Zgjqip1 > 5 (see Figure 3.5). Since ¢ > 7,
then |g7q;| < |s;|- The construction of G; ensures that, [q1g 41| < (1+€siné,)|qg;| if

0, < 5. 1f 0, > % then [q1g;11| < (1 + €)[qug;|- Thus, [@ig71] < (1 +€)]si]-
O

Figure 3.5: A segment s; passing through intervals defined by [¢;, ¢;+1] and [v, p1].

Consider a shortest path 7(s,t) in P. It is composed of several segments which
go through faces, and/or along edges, and/or through spheres around vertices. For
segments of 7(s,t) that are not completely contained inside spheres, we show that

there exists an appropriate edge in the graph with cost at most 1 + f(¢€) times this

3—2¢
1—2e¢

segment. In the unweighted scenario, we show that f(e) = (¥==¢)e and in the weighted

scenario, f(e) = (2 + %)e For segments that are lying inside a sphere, we use
a “charging” argument where the cost of the approximated segment is ”charged” to

the cost of the preceding between-sphere subpath in 7/(s, t).

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 125

3.2.2.1 Constructing an Unweighted Path for Analysis

In this section, we describe the construction of an approximate path 7'(s,?) in G,
given a shortest Euclidean path 7 (s,t) in P. The algorithm will either compute this
path or a path with equal or better cost. Clearly, if s and ¢ are endpoints of the same
edge, then 7'(s,t) = st and the approximation is exact. We will therefore assume that
s and t do not satisfy this condition and hence there exists at least one between-sphere

subpath in 7(s,t). More specifically, we will assume that ¢ lies outside of 7.

Consider a between-sphere subpath 7(0;,0,41), which consists only of outside-
sphere and overlapping-sphere segments types. First examine an outside-sphere seg-
ment s; of w(o;,0541) that passes through edges e, and e, of face f;. Assume s,
intersects e, between Steiner points ¢; and ¢;41 and also intersects e, between Steiner
points pr and pgy1, where 5,k > 1. The approximated path is chosen such that it
enters face f; through Steiner point ¢; or ¢;y1. Without loss of generality assume
that the approximated path enters f; at g;. Choose s; to be the shortest of g;pr and
T;Pe+1- 1t is easily seen that 7'(o;,0541) is connected since adjacent segments s, ,

and s, share an endpoint (i.e., a Steiner point).

Now examine an overlapping-sphere segment of 7(o;, 0j11); this can appear as the
first or last segment. Without loss of generality assume that it is the last segment.
Let this segment enter f; between Steiner points ¢; and ¢;4; and exit between vertex
Vo;,, and Steiner point p; on e,. Let s; = @;qr (if s; is the first segment, then we
either choose s; to be p;p1 or p;11p1 depending on at which Steiner point the approxi-
mated path enters f;1). It is easily seen that the combination of these approximated
segments forms a connected chain of edges in G which we will call 7'(c;,0;4+1). One
crucial property of 7'(0;,0511) is that it begins at a point where C,, intersects an

edge of P and ends at a point where C,_,, intersects an edge of P.

+1

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 126

Consider now two consecutive between-sphere subpaths of 7 (s,), say 7'(c;_1, 0})
and 7'(0;,0j11). They are disjoint from one another, however, the first path ends at
sphere C,, and the second path starts at C,,. Join the end of 7'(0;_1,0;) and the
start of 7'(0;,0;41) to vertex v,, by two segments (which are edges of G). These
two segments together form an inside-sphere subpath and will be denoted as 7'(c;).
This step is repeated for each consecutive pair of between-sphere subpaths so that all
subpaths are joined to form 7'(s,t). (The example of Figure 3.6 shows how between-
sphere subpaths are connected to inside-sphere subpaths.) Constructing a path in

this manner results in a continuous path that lies on the surface of P.

Figure 3.6: An example showing the between-sphere and inside-sphere subpaths that
connect to form the approximated path 7(s,).

3.2.2.2 Bounding the Unweighted Path

We now bound the path that was chosen in the previous section. Once again, it
should be pointed out that since we are bounding a particular path which we have
chosen, any path chosen by Dijkstra’s algorithm will have cost at most equal to this

one.

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 127

Claim 3.7 Let n'(0j_1,0;) be a between-sphere subpath of ©'(s,t) corresponding to
an approzimation of w(o;_1,0;). Then |t'(cj_1,0;)] < (1 + €)|n(0j-1,0;)|, where

O0<exl.

Proof: The proof follows from Claim 3.5 and Claim 3.6 since segments of 7’(c;_1, 0;)

are either outside-sphere or overlapping-sphere only. -

Claim 3.8 Let 7'(0j_1,0;) be a between-sphere subpath of ©'(s,t) corresponding to
an approzimation of w(c;_1,0;) where 1 < j < k. Then |n'(0;)| < 25 |7(0;-1,05)],

where 0 < € < %

Proof: From Property 1.3 it follows that the distance between C,,_, and C,, must

-1

be at least (1 — 2¢) max(ho,, he,, ,) which is at least (1 — 2€)h,, . Since (0;-1,0;)

and C,,. Thus |7(0;_1,05) >

is a between-sphere subpath, it intersects both C,,_,

(1 = 2€)hy, . By definition, 7'(c;) consists of exactly two segments which together
have length satisfying |7'(0;)| = 2r,, = 2¢h,, . Thus, [(0;-1,0;)| > (%) |’ (05)]

which can be re-written as |7'(0;)| < 25 |7 (0j-1,0;)]. .
Lemma 3.2 Let s be a vertex of P and p be a Steiner point on P. Let s’ and p'

be the vertices in G corresponding to s and p, respectively. If w(s,p) is a shortest

path in P then there exists an approzimated path '(s',p') € G for which |7'(s',p")| <

(1 + i’igif) 7 (s,p)|, where 0 < € < 3.

Proof: Using the results of Claim 3.7 and Claim 3.8, we can “charge” the cost of each
inside-sphere subpath 7'(c;) to the between-sphere subpath 7'(c;_1, 0;) as follows:
2e

705 1,05) |+ |7 (o) < (A +e)|n(oj1,05)|+ (1_726) m(0j-1,05)|

- (14 (2) oo

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 128

The union of all subpaths 7'(¢;_1,0;) and 7'(co;) form 7'(s’,p") where 2 < j < k.
Hence, we have bounded |7'(s’,p’)| with respect to the between-sphere subpaths of

7(s,p). Therefore

3 — 2e¢

)< (14 (T) o) Sl < (14 (F50)) Ints.m)

Corollary 3.1 Ifw(s,t) is a shortest path in P, where s and t are vertices of P then

there exists an approximated path ©'(s,t) € G for which |7'(s,t)| < (1 + (‘I’:gz) e) |T(s,1)],

where 0 < € < %

Proof: The proof follows from Lemma 3.2 since ¢ is also a vertex of G.

3.2.2.3 Constructing a Weighted Path for Analysis

Some additional shortest path properties arise in the weighted scenario. If s; is an
edge-using segment with s;,_; and s;;; being the preceding and succeeding segments

of s; in TI(s, t), respectively, then the following properties hold:
Property 3.1 Segments s;_1 and s;11 must be face-crossing.

Property 3.2 Ifs; is an outside-sphere segment, then s;_1 and s;11 cannot be inside-

sphere segments.

Given a shortest path I1(s,), we construct a path I1'(s, ¢) in a similar manner as in
the unweighted scenario. However, we must consider the approximation of edge-using

segments since they may no longer span the full length of the edge which they are

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 129

using. Consider an edge-using segment s; of II(s,¢) on edge e, of P with endpoints
lying in Steiner point intervals [py, py+1] and [p,—1, p.| along e,, where y < u. Let s;_;
and s;,1, respectively, be the two crossing segments representing the predecessor and
successor of s; in the sequence of segments in T1(s,) (see Figure 3.7a)). Without loss
of generality, we will assume that two such edges exist although it is possible that

s;—1 and s; meet at a vertex of P; which can easily be handled as well. We choose

an approximation s; of s; to be either pyp,—7 or p,71p.—1 depending on whether s;_;
intersects e, at p, or p,;1, respectively (see Figure 3.7 b) and c)). Note that we make
sure to choose sj so that it is connected to s;_;. Of course, s, ; will also be chosen
to ensure connectivity with si. In the degenerate case where u = y + 1, there is no
approximation for s;. Instead, s;_, is connected directly to s;,, (see Figure 3.8). It
should be noted that Dijkstra’s algorithm will never choose such a subpath since it
does not make use of e,. That is, it would be more cost-effective to take a shortcut

directly between the two “non-shared” endpoints of s; ; and s;41 (see Figure 3.9).

p S - p
a) y ' A ()u
S s_\
-1 i+
b) py S’i ,EJU—].
A\
; s’ s’_\
i-1 i+l

p -
O /\y+l ~
//4;1 St‘\\
-1 1+

Figure 3.7: a) The edge-using segment s; and face crossing segments s;_1, s;11 and
b),c) the two possible choices of approximating it with s.

©)

p
u-1
i)

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 130

P 5. P
2) Oy i Ou
S _ S _
|—1/ \ i+l
p p
b) Y A
s’]/\sy
i- i+l
p p
C) /\y r\u

Figure 3.8: a) The degenerate edge-using segment s; and face crossing segments
si—1,8;+1 and b),c) the two possible choices of connecting s;_; with s;_ ;.

3.2.2.4 Bounding the Weighted Path

As in the unweighted case, we bound the chosen approximation path.

Claim 3.9 FEach face-crossing segment s; of I1(0;, 0j11) is approzimated by a segment

s; of I'(0j,0441) for which ||si|| < (1 4+ €)]|s|.

Proof: First, consider s; to be an outside-sphere edge of II(g;, 0,4+1). Claim 3.5 has
shown that there exists an edge s, of G; that has length at most (1 + €)|s;|. Since
both s; and s} cross the face f;, the same weight is applied to each segment and hence
It = wilsi| < wi(1 4 €)|s;| = (1 + ¢€)||s;||. Assume that s; is an overlapping-sphere
segment of II(c;,0;11). Claim 3.6 guarantees the existence of an edge-using segment
st of G; of length at most (1+¢)|s;|. Although s! is edge-using and s; is face-crossing,
Property 1.12 ensures that the weight of s; will never be greater than the weight of

s;. Hence ||s}|| = wy|s;| < wi(1+€)]si| = (1 + €)]|si]|-
O

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 131

.

Figure 3.9: The shortcut that would be taken by our algorithm to join the “non-
shared” endpoints of s; ; and s;;1 in the degenerate case where s; ; and s;,; share
an endpoint.

Claim 3.10 Let s; be an edge-using segment of a between-sphere subpath I1(c;, 0j11)
and let s;_y be the segment of I1(0;,0;4+1) preceding s;. There exists a segment s, of

(o), 0j41) for which [|sif| < lsill + €l[si1]-

Proof: We will assume that s; is an outside-sphere segment since it is in a between-
sphere subpath and is preceded by a segment s,_; (which itself may be an outside-
sphere or overlapping-sphere segment). The proof can be easily modified for the
degenerate case where s; is an overlapping-sphere segment (i.e., first or/and last
segment of II(0;,0;41)) such that the claim also holds. First consider the case when
s; lies between Steiner points p, and p,, on edge e, of face f;, where y+1 <u—1. We
will approximate s; with s, as depicted in one of the two cases of Figure 3.7. Clearly,
the portion of s; lying between p,,; and p,_; has length at most |s;|. Since s,_; has

an endpoint between p, and p,;1, Lemma 3.1 ensures that [p,p,+1| < €[s,_1|. Since

our construction of II(s,t) allows us to approximate s; by either pyp,_1 Or Pyr1Pu—1
we obtain that |s}| < |pypys1| + [Py+1Pu—1|. Hence, |si| < €|s;_1| + |s;|. In the case
where s; lies between Steiner points p, and py;; then again Lemma 3.1 implies that

st| < €|s;_1| which certainly satisfies |s}| < €|s;_1| + |s;|. Again from Property 1.12
1 2

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 132

it follows that ||si|| < ||s:|| + €||si—1]|-

Lemma 3.3 IfII'(0j_1,0;) is a between-sphere subpath of II'(s,t) corresponding to
an approzimation of Il(o;_1,0;) then |[II'(0j_1,0;)|| < (1 + 2¢)||II(cj_1, ;)]

Proof: If s, is an approximation of a face-crossing segment s;, then by Claim 3.9
Ist]] < (1 + €)]|si]|- If s} is an edge-using segment then from Claim 3.10 follows that
s < |s:]| + €]|si—1||, where s;_; is a face-crossing segment. We “charge” the portion
€||si—1]| of ||s;|| to the cost of s;_; so that ||s;_;|| < (1 + 2¢)]|s;—1||. The remaining
portion indicates that ||s}|| < ||s;||- Hence, each segment s} of II'(¢;_1, 0;) has cost at

most (1 + 2¢)]|s;|| and [[TI'(0-1, 0;)|| < (1 + 2¢)|[TI(0j-1, 05)]]-
0

Claim 3.11 Let IT'(0,_1,0;) be a between-sphere subpath of II'(s,t) corresponding to

2eW

an approzimation of (o;_1,0;) then ||II'(g;)| < =

\I(0;_1,0;)| where 0 < e <

1
5

Proof: Using a similar proof as for Claim 3.7, it can be shown that |[II'(g;)| <

(6j-1,05)|. The two edges of II'(0;) are chosen so as to pass along two par-
ticular edges of P, depending on the face containing the overlapping-sphere edges of
[I(o;_1,0;) and II(0j,0;41). These chosen edges may have a high weight associated
with them, say W (i.e., the maximum face weight). Although the paths II(c;_1, 0;)
and I1(o;, 0;41) will have segments that pass through the same expensive faces, these
segments may be arbitrarily short in length. Therefore |II'(c;)| may be small with
respect to |II(g;_1, 0;)|, but it may have much higher weight and greater cost. Hence,
in worst case ||II'(g;)|| = W/II'(0;)| and ||II(o,-1, 0;)|| = w|II(cj_1,0,)|. Therefore,

it is only safe to say that ||II'(c;)|| < (12522/ II(oj_1,0;)]-

O

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 133

We have made the assumption that IT'(o;) consists of segments passing through
faces that have weight W. Although this may be true in the worst case, we could use
the maximum weight of any face adjacent to v,;, which typically would be smaller
than W. In addition, we have assumed that IT'(c;_1, 0;) traveled through faces with
minimum weight. We could determine the smallest weight of any face through which

II'(0;-1,0;) passes and use that in place of w. This would lead to a better bound.

Lemma 3.4 If I(s,p) is a shortest weighted path in P, where s is a vertex of P
and p is a vertex of G then there exists an approximated path I1'(s,p) € G such that
I (s,p)|| < (14 (24 %)e)”ﬂ(s,p)” where 0 < € < 5.

Proof: Using the results of Claim 3.11 and Lemma 3.3, it can be shown that

Io31,05)| + IT(03)]| < (14 (24 22)6} (o1,)]

(1 — 2¢)

This essentially “charges” the length of an inside-sphere subpath to a between-sphere
subpath. The union of all such subpaths form IT'(s, p). This allows us to approximate
IT'(s, p) within the bound of 1+ (2 + %)e times the total cost of all the between-

sphere subpaths of II(s, p). Since II(s, p) has cost at least that of its between-sphere

subpaths, [|I(s, p)[| < (1+ (2 + 25550 (s, p)]I-
O

Corollary 3.2 IfII(s,t) is a shortest weighted path in P,where s and t are vertices
of P then there exists an approzimated path II'(s,t) € G such that ||IT'(s,t)|| <

1+ 2+ (lfg‘:)w)e)||l_[(s,t)|| where 0 < € < %

Proof: The proof follows from Lemma 3.4 since t is also a vertex of G.

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 134

Theorem 3.1 Let 0 < € < % Let P be a simple polyhedron with n faces and let s

and t be two of its vertices. An approximation 7'(s,t) of a Euclidean shortest path

7(s,t) between s and t can be computed such that |7'(s,t)] < (1 + 3=2¢¢)|n(s,1)].

An approzimation I1'(s,t) of a weighted shortest path 11(s,t) between s and t can be

computed such that |[T'(s,t)]| < (1+(2+ (lfgg)w)e)ﬂﬂ(s, t)||. The approzimations can

be computed in O(mnlogmn + nm?) time where m = log, |T£|, and 6 = (1 + esinf).

Proof: For both cases, we showed that there exists a path in G that satisfies the
claimed bounds using Corollary 3.1 and Corollary 3.2, respectively. Dijkstra’s algo-
rithm will either compute this path or a path with equal or better cost, and therefore
the path computed by Dijkstra’s algorithm as well satisfies the claimed approxima-
tion bounds. The running time of the algorithm follows from the size of the graph
as stated in Claim 3.4. The variant of Dijkstra’s algorithm (i.e., Theorem 1.2) which
employs Fibonacci heaps [45] is employed to compute the path in the stated time

bounds.
O

3.3 Modifying the Bounds For Arbitrary Query

Points

Until now, the analysis of our e-approximation algorithm has only considered the
case in which both s and ¢ are vertices of P (and hence vertices of G). This section
explains how the approximation scheme can be extended to allow s and ¢ to be
arbitrarily chosen points on P. We consider first the case in which s is a vertex of P
and ¢ lies arbitrarily on P (this correlates to the scenario of fixed source with queried
destination) and then consider when s and ¢ both lie arbitrarily on P. We once again

assume that ¢ lies outside 7, and show that both of these query-type scenarios will

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 135

result in different bounds on the approximated path produced. Of course, as stated
earlier, we can always vary the number of vertices of G to obtain paths satisfying:
IITT'(s,)| < (1 + €)||IL(s,t)]|. For both of these query problems, we begin by giving
the bound on the weighted approximation produced by the algorithm and then give

a corollary that bounds the unweighted approximation.

3.3.1 Vertex to Arbitrary Point Approximations

Consider paths in which s is a vertex of P and t is any point on P. Let f; be the face
containing ¢ with weight Wy, and let = be the point in which II(s,t) enters f; (i.e.,
x lies on an edge e of f;). Without loss of generality, assume that x is not a vertex
or Steiner point of P; the bound would be better in that case. If x lies within some
sphere C, around a vertex v of P then let p = v. Otherwise, let p be the Steiner
point on e that is closest to . We construct the approximation II'(s,t¢) to be the
concatenation of {II'(s,p), pt}. It is this path which we give a bound for, keeping in
mind that Dijkstra’s algorithm may produce a better path.

Lemma 3.5 Given a vertex s and an arbitrary point t on P, there exists a path

IT'(s,t) on P and a positive € < 5 such that
IeGs, ol < (1+ (CUREEESE) o) lngs, 0 < (1+ 355 ¢) s,)
) = (1—€)(1—2¢)) = 1—3¢ » UL

Proof: Using Lemma 3.4 and Property 1.16 and letting f(e) = (2 + (13‘;2)11;) € we

have:

I (s,)l = [[TT'(s, p)II + o2l
(1 + F()ITs, p) | + Wy, [pt]
(1 + f() s, 2)|| + [[zPl]) + Wr.([pz| + [])

ITL(s,)| + F(ONITL(s, 2)I| + (1 + f(e))[zpll + Wy, [pz|

IN A

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 136

< @+ f)IGs,)l + 1+ fle)lIpll + Wy, |pz] (3.1)

If p is a Steiner point, then since ¢ lies outside 7, and the second last edge s,_; of
II(s,t) must cross a face adjacent to f;. We can therefore use Lemma 3.1 to show
that || < €|sg_1| < €|lI(s,)| < €|II(s,t)|. Using this result and Property 1.12 we
have ||pz|| < €||sk—1]] < €||lI(s,)||. Also, if we use the weight of Wy, for ||pz|| then we
have Wy, |pz| < eWy,|I1(s,t)| < eX||II(s,t)||. Substitution into equation (3.1) yields:

(s, D)l < (L+e)(1+ f(e) + e%)llﬂ(s,tﬂl- (3.2)

Now consider the case when p is a vertex of P (i.e., x lies inside a sphere C,). Since

x lies within C,, then II(s,z) intersects C, and so |II(s,z)| > |IlI(s,C,)|. We can

make use of Property 1.2 to show that |II(s,C,)| > (1 — €)h, = (126)% > (126) [pz|.
Therefore [pz| < 75[1I(s,2)| < 755/T(s,?)[. Making use of Property 1.12 and

substituting into equation (3.1) as above results in:

ol < (0 040+ TI) el 63

€
1—c¢ (1—¢)
This bound in equation (3.3) is slightly worse than that of equation (3.2). Substituting
f(e) into equation (3.3) yields

Im'(s, 1)) < (1+(3(1(+£)6)_(12(_3;f)6)) (s, o)l

Corollary 3.3 Given a verter s and an arbitrary point t on P, there exists a path

7'(s,t) on P and a positive € < 5 such that |r'(s,t)] < (1 + (%) e) |T(s,1)].

Proof: The proof is similar to that of Lemma 3.5 where Y2 = 1 and f(e) = (i’:gi) €

as obtained from Lemma 3.2.
O

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 137

3.3.2 Approximations Between Arbitrary Points

Consider now paths in which both s and ¢ are arbitrary points on the surface of P.
Let fs; be the face containing s and let x be the point in which II(s,t) exits f; (i.e.,
x lies on an edge e, of f;). Similarly define f;, y and e, for point ¢. Again, without
loss of generality assume that z and y are not vertices of P. If x (respectively y) lies
within some sphere C,, (respectively C,) around a vertex v, (respectively v,) of P
then let p = v, (respectively ¢ = v,). Otherwise, let p (respectively ¢) be the Steiner
point on e, (respectively e,) that is closest to s (respectively ¢). We analyze the path
IT'(s,t) which is constructed as the concatenation of {37, Il'(p, ¢), ¢t}. To begin, we
will analyze the accuracy of II'(p, ¢). This is done similarly to Lemma 3.4, but it must
consider Steiner points that are close together (i.e., ¢ lies inside 7,). As will be seen,

the bound is similar.

Lemma 3.6 Let p and q be two vertices of G that do not lie on edges which are
incident to the same vertex. There exists an approzimated path IU'(p,q) in G and a
positive € < % for which

2(14+2) —6(1+ W)e+4e2
I (p,)l < (14 (XEEZEDD) O gy,).

Proof: If at least one of p and ¢ are vertices of P, then we can use Lemma 3.4
to bound ||IT'(p, ¢)|| with a better bound than given here. Assume therefore that
p and ¢ are both Steiner points. In addition, assume that II(p,q) passes through
at least one sphere, otherwise all segments of II'(p, q) are either outside-sphere or
overlapping-sphere segments and we can use Lemma 3.3 to bound them such that
I (p,q)|| < (1 + 2¢)||II(p,q)||- A problem arises in the proof of Claim 3.11 and
Lemma 3.4 in which we ”charge” the cost of inside-sphere subpaths to their preceding
between-sphere subpaths. More specifically, the ”"charging” problem occurs only for

the first sphere C,, that is intersected by II(p, ¢) since it is possible that ||II(p, o1)|| <

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 138

IIIT'(o1)]|| (see Figure 3.10). Since p and ¢ do not lie on edges incident to the same
vertex, then Property 1.2 ensures that either |II(p, C,,)| > (1 —€)h,, or [II(q,C,,)| >
(1 — €)h,,. Also, since II(p, q) passes through C,, by assumption, then |II(p,q)| >

(p, C,)| and [(p,q)| > |TI(q, Cy)| Thus [H(p,q)| > (1=)y, > ST (01))-

This implies that [II'(o7)| < 2<|[II(p, ¢)|. Using a proof similar to that of Lemma

3.4, we bound all subpaths of II'(p, ¢) except IT'(¢q) within the bound of (1 + (2 +
%)e)”ﬂ(p, q)||- The additional cost of ||II'(¢})|| is at most (12fz[)/w ITI(p, ¢)|| and so

2(142) —6(1+ W)e+4e?
Il < (1+ (AERSEDED)) gy, g

O

Figure 3.10: An example in which ||[II(p, o1)|| < [|II'(c1)]]-

Corollary 3.4 Let p and q be two vertices of G that do not lie on edges which are
incident to the same vertex. There exists an approximated path 7'(p,q) in G and a

positive € < & for which |7'(p,q)| < (1+ (%)e)\w(p, q)|.

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 139

Proof: The proof is similar to that of Lemma 3.6 where % = 1 and a proof similar

to Lemma 3.2 is used in place of Lemma 3.4.
O

Theorem 3.2 Given two points s and t on P such that t lies outside 7s, there exists

a path I1'(s,t) on P and a positive € < % such that

41+ 2y 234+ WYe—4e2 4 max(0,2 —2(14+ W)e—8 W24 g3
(s, < (1 (AR B0 8D BECHD) o i(s, 1)

< (1 ny (41”3%)) TI(s, 1)]].

Proof: Since ¢ lies outside 7,, then p and ¢ cannot lie on edges that are incident to
the same vertex. First consider the case where neither p nor ¢ are vertices of P. We

can make use of Lemma 3.6 to bound ||II'(s, t)|| as follows:

I (s,)l =I5Bl + 1T (p,)| + N2l

= Ispll + (1 + f(DIT(p,)l + g7l

(1—€)(1—2¢)
of this section). Using Property 1.16 we can express ||II'(s,)| as:

Wy 6014+ Wetge .. o
where f(e) = <2(1+2 R G A 2) €. Recall the definitions of and y (see beginning

(s, D)l < Wy, (57| + [7p]) + (1 + f() (1Pl + Tz,)l + [[7gll) + Wr.(I79] + |vt])
= lIszll + (0 + f()Ulpzll + Tz, y)l| + [gyll) + llvtll + Wy,
= T, D)l + f(OlM(z,)l + (1 + f()pzll + [[gul) + Wy, [pz| + W, |77

(1 + fDIT(s, Ol + (1 + f(e) Pl + llggll) + Wy, [pz] + Wylggl (3.4)

pz| + Wy, [qy|

IN

We can now bound ||pZ|| (resp. ||77||) with respect to the length of the second segment
s (resp. second last segment s;_1) of II(s,t) (see Figure 3.11). This is accomplished
by using Lemma 3.1 and Property 1.12 as was done in Lemma 3.5. As a result, we

obtain ||pZ|| < €||II(s,t)|| and ||g7|| < €||II(s,?)||. In addition, W,

pz| < eI s, 1)

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 140

and Wy, |gy| < eX||I(s,t)||. Making these substitutions into equation (3.4) results
in:

2We
w

IT(s, 0l < (14 F)IT(s,) + 21+ F(e)ellTI(s,)] +
= (14 2901+ () + = lIT(s, 1)

(44 5) (4 Wye— (1 W)
“*(5020) (s, 1))3.5)

In the case where at least one of p or ¢ is a vertex of P, we can again make use

[ITL(s, 2)]]

of equation (3.4). However, we can now use the results of Lemma 3.4 and use
fle) = (2 + %)e Using a similar argument as in Lemma 3.5, we can easily

7| < g2 s, 1l

show that [[p7l| < S IITI(s, DI, [77] < 5 I1T(s, t)], Wy lpa] < 2

and Wy, |qy| < &HH(S, t)||. Making the substitution into 3.4 results in:

TG0l < (04 g+ 70)+ o) I

- 1+ (4(”%*2(3*%)6‘462)6) im0l @6

(1— o)1 - 26

By extracting the common terms from equations (3.5) and (3.6), we obtain the bound

stated in the Lemma.

Corollary 3.5 Given two points s andt on P such that t lies outside T, there exists

a path 7'(s,t) on P and a positive € < % such that

—(€— 62 max yo— €— 62 63 €
(s,)] < (1 4 (T2t maxQ2AOH) o In(s,)] < (1+ 125) (s, 1)

Proof: The proof is similar to that of Theorem 3.2 where % = 1. When neither p nor

q are vertices of P, then f(¢) = (%) € is obtained from Corollary 3.4 instead

of from Lemma 3.6 and the bound is ||II'(s,?)|| < (1 + (%) 6) ITI(s,2)]|-

CHAPTER 3. AN € - APPROXIMATION ALGORITHM 141

Figure 3.11: The second and second last segments of a path II(s,).

When one or both of p and ¢ are vertices of P, then f(e) = (i’:gi) € is obtained from

Lemma 3.2 and the bound is ||II'(s, t)|| < (1 + (%) e) |TI(s,t)||. By extracting

the common terms from these two bounds we obtain the stated bound.

Chapter 4

Approximating Minimal Energy
Paths

Euclidean shortest paths on terrain surfaces may not generally provide optimal time
or energy paths since they ignore the terrain attributes. Weighted shortest paths
may produce shortest energy paths since they can incorporate some terrain attributes
such as variable costs for different regions, face slopes and/or frictional coefficients.
However, these different weight costs are constant for each region (face) and therefore
they ignore the issue of travel direction. The direction of travel plays a large role
in determining the physical effects incurred on a vehicle (i.e., car, truck, robot etc.)
traveling along a terrain surface. It is for this reason that we investigate shortest
anisotropic paths (i.e., paths that take into account the direction of travel as well
as length and weight). Through anisotropism, we can also identify certain directions
of travel that represent inclines that are too steep to ascend or unsafe to travel due
to possible dangers such as overturning, sliding or wheel slippage. We address the
problem of determining a path for a vehicle between two points, s and ¢, on a terrain P

such that the path minimizes energy consumption and does not travel on “dangerous”

142

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 143

slopes.

The chapter is organized as follows. In Section 4.1 we introduce the physical
model that is used to determine the cost of an anisotropic path. Section 4.2 then
presents some of the properties of shortest anisotropic paths such as path character-
istics and bounds on the number of segments. In Section 4.3 we then explain how the
anisotropic paths can be approximated in a straight forward and practical manner
and then give bounds on the approximation produced. Section 4.4 then describes an
e-approximation algorithm to solve the same problem but with a better theoretical
worst-case bound. Lastly, in Section 4.5 we present some experimental results from

our tests using an implementation of our more practical algorithm of Section 4.3.

4.1 The Physical Model

We have chosen the model used by Rowe and Ross [108] for solving our minimal
energy path problem. The model allows two main forces to act against the propulsion
of the vehicle, namely friction and gravity. It is assumed that the vehicle has no net
acceleration over the path from s to ¢ and that the cost of turning is insignificant
with respect to energy loss. Also, the model ignores the cost and feasibility of making

turns.

We assume that the terrain surface P is composed of n triangular faces, each face
fj,1 < j < n having a homogeneous weight (cost) u; pertaining to the coefficient of
kinetic friction (between 0 and 1) for that face with respect to the moving vehicle.
Examples of some coefficients are shown in Table 4.1. We will assume in our model
that only one coefficient is assigned to each face. The rubber on concrete, for example,
may be used to represent vehicle movement on roadways. In some scenarios though,

it may be desirable to have more than one coefficient of friction assigned to each face.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 144

For example, modeling a person climbing up a hill (face) may require a coefficient
similar to "rubber shoes on snow” and that person coming down the hill may use a
snowboard which would require a different coefficient such as “waxed wood on dry

snow”.

Scenario 1

rubber on concrete 0.8
wood on wood 0.2
waxed wood on dry snow | 0.04
ice on ice 0.03

Table 4.1: Some known coefficients of friction.

4.1.1 Basic Model (Weight Metric)

Let mg be the weight of the vehicle where m is the mass of the vehicle and g is the
coefficient of gravity. Consider a segment s; of a shortest path which crosses a face
fj of P. Let ¢; be the inclination angle (gradient) of f; and let ¢; be the inclination
angle of s; with respect to the XY plane (see Figure 4.1). Our model assumes that
the terrain has no vertical faces and so it is always the case that —90 < ¢;, ¢; < 90.

Our model assumes that the cost of travel for s; is:

mg(p; cos ¢; +sin ;) - | s (4.1)

We assume that mg is constant for the problem instance and hence we will ignore it
during the computation of the path and multiply the path cost by this factor after it
has been computed. The cost due to the force of friction is represented by 1, cos ¢;-|s;|.
Rowe and Ross [108] reason about paths in their 2-D azimuth projections on the plane
of the terrain. They ignore the cos ¢; factor, stating that it is very close to 1 for most

traversable natural terrain. We keep this value since it is easily computed and can be

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 145

combined with the p; factor to get an overall face weight. Therefore, it is convenient
to define w; = p; cos ¢; to be the weight of face f;. Let W (respectively w) be the

maximum (respectively minimum) of all w;, 1 < j < n.

Friction

inclination angle of the gradient

Q]
O

inclination angle of the vehicle

Figure 4.1: The forces of friction and gravity that act against the propulsion of the
vehicle.

The cost due to gravity is represented by |s;|sin ; which is the change in elevation
of the segment s;. Hence the work expended against gravity during path traversal is
merely the sum of the elevation changes of all the path segments. This sum represents
the difference in height between s and ¢ which is independent of the path taken. As
a result, we can leave this portion out when computing a shortest cost path and add

it after the path has been computed.

Note that this model ignores internal energy losses (such as heat loss in an engine),

friction of wheels on axles and wind resistance, and costs of turning. Rowe and Ross

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 146

[108] claim that internal energy losses are proportional to external work done against
friction and gravity and can be handled by an appropriate multiplication factor.
Also, the wheel friction and wind resistance can be modeled proportional to the path

distance.

Consequently, the “uphill” anisotropic cost of travel (i.e., when the cost formula
of Equation (4.1) is positive) for a segment s; through a face f; is w;|s;|. Notice that
this cost is the same as that of the weighted isotropic shortest path cost that was
used in our previous work described in Chapters 2 and 3. We will now consider the

effects of braking phenomenon and invalid directions (obstacles).

4.1.2 Model With Braking

For inclination angles ¢; < — arcsin(yu; cos ¢;), the cost formula of Equation (4.1) be-
comes negative, representing energy gain while going downhill. This however, violates
our earlier assumption that there is no net acceleration. We denote the inclination
angle ¢; = —arcsin(u; cos ¢;) in which this sign change occurs as a critical braking
angle. To compensate, the cost formula is adjusted so that the energy gained going
downhill is exactly compensated by the energy required to brake. So, the vehicle
neither accelerates nor does it gain or lose energy when traveling in a braking range.
Furthermore, it will be assumed that braking requires negligible energy. The com-
pensation is made possible by replacing the p; cos ¢; friction factor by — sin ¢; which
cancels out the gravity force resulting in zero cost travel. Notice that although the
cost for downhill braking is zero, the negative gravity force has already been extracted
from the metric, leaving a cost of —sin ¢; - |s;| for segment s;. This cost will always
be positive and non-zero for the valid range of downhill angles: —90 < ¢; < 0 de-
grees. Such a segment is called a braking segment and it is always assigned a positive,

non-zero weight.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 147

Property 4.1 For a braking segment s; passing through face f;, —sin@; > wj.

Proof: For braking segments, ¢; < —arcsin(u;cos¢;). This can be rewritten as

@; < —arcsin(w,). Hence —sin ¢; > w;.
O

4.1.3 Model With Anisotropic Obstacles

One last characteristic of the model is that it will prevent travel in “unsafe” direc-
tions. Rula and Nuttall [109] indicate that four conditions can give anisotropic slope

limitations:

1. Limited expendable force to counteract friction and gravity effects. Here the
. 3 Fmam — .
traveling inclination angle ¢; cannot exceed arcsm(mg \/m) arctan(u;) where

F,,.. 1s the maximum force that the vehicle can exert.

2. Speed or power limitations of the vehicle. Here the traveling inclination angle
; cannot exceed arcsin(qwﬁg"%) —arctan(u;) where P, is the maximum
power that the vehicle can exert and v, is the minimum (non-zero) speed of

the vehicle.

3. Loss of traction danger (slippage). This occurs when the traveling inclination
angle ¢; exceeds approximately arctan(u; — pu;), where y is the coefficient of

static friction of face f;.

4. Sideslope overturn danger. Here the projection of the center of gravity falls
outside the polygon formed by its support points (most often perpendicular to

“uphill”). The formula here depends on the vehicle shape (see Figure 4.2).

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 148

Figure 4.2: The sideslope overturn problem. The vehicle tips as its center of gravity
projection falls outside the support polygon defined by the wheels.

The formulae above give rise to possibly three ranges of angles that define direc-
tions on a face that are impermissible for traveling. These are denoted as impermissi-
ble ranges. Together, with the braking range, there are up to four important angular
ranges per face as shown in Figure 4.3. The boundary angles of the impermissible
ranges are called critical impermissibility angles. The boundary angles of the braking
range are called critical braking angles. For the regular angular ranges (i.e., not im-
permissible or braking), the range is bounded by critical impermissibility or braking
angles. These angles will be called the critical reqular angles for that regular range.
Note that in the case of very steep angles, an impermissible range may arise within
the braking range due to dangers of wheel slippage. That is, some ranges of downward
traversal may be too steep for safe travel. We will ignore this impermissible range,
since the face itself should be deemed unsafe of travel anyway. A path is said to be

valid if and only if it does not travel in any impermissible directions.

If any of the impermissible ranges overlap, they are combined to make a single
impermissible range. In some cases, the impermissible ranges may cover all possible
angles. This represents an isotropic obstacle which is essentially a face that cannot be

traveled on safely. If there exists an isotropic obstacle on P then it is possible that a

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 149

| rper m ssi bl e Range

Si desl ope Overturn Ranges

Br aki ng Range

Figure 4.3: The up to three ranges representing impermissible travel and the braking
range with respect to the center point of a single face.

valid path between two arbitrary points on P does not exist. For example, consider
the example of Figure 4.4. It shows that there may be no path from s to ¢ due to the

steep faces (i.e., isotropic obstacles) that surround the plateau containing t.

Property 4.2 Given two points s and t on P, there may not be a valid path I1(s,t)

between them.

The algorithm description and analysis presented here will assume that there exists
at least one valid path, II(s,t) between s and ¢. Although we make this assumption
in the analysis, our algorithm is able to detect the absence of valid paths and report
when such a path does not exist. All that remains to be shown is that if a valid path
does indeed exist, then our algorithm will always produce a valid path as well. This

will be proven in Section 4.3.2.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 150

Figure 4.4: An example showing that there may not be a valid path between two
points on P due to isotropic obstacles (shown as steep slopes surrounding the plateau
containing t).

Let ¢. be a critical impermissibility angle for one of the critical impermissibility
ranges of a face f;,1 < j < mn of P. Let @ and ¥ be the two unit vectors representing
the directions on the boundaries of the range (these are called a matched pair of
critical angles). Thus, the angle that « and ¥ make with the horizontal plane is ..
Let a. be the angle between these two vectors when placed end-to-end as shown in
Figure 4.5. Let a; be the minimum of all o, for the (up to three) impermissible ranges
of f;. Define 3;,1 < j < n to be the angle on f; between the matched pair of braking
angles and \;,1 < 7 < n to be the minimum angle on f; between a matched pair of
regular angles on f;. Furthermore, for 1 < j < n let & = min(«;), f = min(f;), and

A= min(ﬁj’ /\J)

4.2 Path Types and Properties

On flat terrain, our model behaves like a weighted shortest path as in the weighted
region problem of Mitchell and Papadimitriou [90] since there are no braking or

impermissible ranges. That is, the path bends at edges of the terrain, obeying Snell’s

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 151

Figure 4.5: The value of a, with respect to critical angle vectors « and v.

law of refraction. For non-flat terrains with steep slopes, the path characteristics are
different. Rowe and Ross [108] show that a shortest anisotropic path can traverse a
face in three different ways as shown in Figure 4.6. This corresponds to one of three

types of face crossings which we denote as direction types:

1. Regular: Straight across at a permissible, non-braking heading obeying Snell’s

law along the face boundaries (may travel along a critical angle).

2. Switchback: Given a matched pair of critical impermissibility direction vectors
and v, this path consists of consecutive straight line segments that alternate

in directions 4 and ¥. Each change in direction is called a switchback.

3. Braking: Straight across with braking at a non-critical heading.

The algorithm of Rowe and Ross [108] computes a shortest energy path for a

vehicle moving in a terrain. Their algorithm computes all possible combinations of

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 152

i mperm ssi bl e br aki ng
range range

Figure 4.6: The 4 ways in which a shortest anisotropic path can cross a face.

the three traversal types above at each edge encountered during propagation. They
exhaust all possibilities through an A* search (see [56]) resulting in an O(n™) algorithm
in the worst case. They do however, use a set of heuristics and pruning techniques to
help alleviate this large time complexity, stating that it performs much better than

this pessimistic bound. In their implementation, switchback paths were disallowed.

Let us examine a switchback path that passes through a face f;. Rowe and Ross
[108] show that these switchback paths are contained within f;. Furthermore, they
show that a switchback path consists of a chain of consecutive segments directed in
the directions of a matched pair of critical impermissibility angle directions. This
matched pair of angle directions, say @ and ¥, correspond to the boundaries of a

single impermissibility range.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 153

Property 4.3 A switchback path between a point x of P and a verter v of P may

have an infinite number of segments.

To understand this property, consider a switchback path from an edge of a face f;
to the vertex v opposite the edge as shown in Figure 4.7. Due to the constraint that
the switchback path must lie within f;, the number of switchbacks required to reach
v is infinite. However, as we will see in Claim 4.1, the length of this path is bounded.
The problem can only occur when at least one of the switchback path endpoints is a
vertex of P. To see this, consider for example a switchback path to v. The path is
constrained to remain within the face. As the path gets closer to v, the convergence
of the edges incident to v cause the path to get smaller and smaller. Since a direct
path to v is not permissible, this convergence will cause the path segments to become
infinitesimal in length as they approach v. A switchback path to a non-vertex point
x on an edge of f; does not encounter this problem since there always exists a finite
length segment in a critical angle direction that reaches x that is completely contained

within f;.

In our algorithms, we will treat switchback paths as a single segment and assign a
weight to it which incorporates the length of the switchback path itself. This allows
us to compute paths with a finite number of segments. When reporting the path,
in place of this segment we can report the actual switchback path. However, since
there are an infinite number of segments in such a switchback path, we must “stop”
reporting at some time. We can report the path up to the segment that intersects C,
and then finish off the reported path with a final segment from C, to v. This final
segment will be in an impermissible direction, but it can be made arbitrarily small in

length. Note however, that the actual path cost is bounded as we will now show.

Let @ and ¥ be the critical angles that define the directions of the switchback path

through a face f;. The following properties bound the length of this switchback path

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 154

Figure 4.7: A switchback path to a vertex can have an infinite number of segments.

between two given points a and b lying in the plane defined by f;:
Property 4.4 There exist real scalars Cy and Cy such that b = a + Cyi + Cyv.

Property 4.5 There exist real scalars Cy and Cy such that Cy|i| + Cy|7] < sin(‘?|/2)'

Proof: Let ¢ be the point at which (¢ + C1#@) and (b — Cy¥) meet. We are sure that
such a point exists because of Property 4.4. Thus, a,b and ¢ form a triangle Aacb,
as shown in Figure 4.8. Let w = /cba,) = /bac and a; = /ach. The sine law ensures
that sinw = S5m0 414 that siny = Calv sina; Thus,

bl |ab|

(4.2)

qm+@m:<%ii%ﬂym

Sin Oéj

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 155

If w > % then sin3 > sin% and cos % — cos% < 0. Similarly, if w < % then

sin § < sin% and cos 5 — cos% > 0. In either case,

LW w P .Y w P
51115 COS — — COS — < sm§ COS — — COS —

2 2 2 2
and so
sin%cos%-i—sin%cos% < sin%cos%—i—sin%cos%
sinw sin Cfw+
5 + 21” < sin (5 ¢) .

This can be simplified by substituting w + 1 = 7 — a; as follows:

T
sinw+siny < QSin(———J)

2 2
Q@
< 2cos—
2
2sin a; cos &
< —__—— J" 2
Sin ij
sin
< —F5.
sin

2
Hence,
Sin w + sin 1
w <

. = . aj ¢
S1n & Sin —-

Claim 4.1 A switchback path between two points a and b on a face f; which uses
|ab|
sin(a; /2)

directions defined by i and v has length at most

Proof: Given two points ¢ and b on a plane and two non-parallel vectors @ and v,
it is easy to see that all paths that join @ and b and are composed solely of segments
that are directed in directions @ and v have the same length. Since switchback paths
for a given impermissibility range travel in at most two non-parallel directions, all

switchback paths for a given impermissibility range between a and b have equal length.

From Property 4.5, this length is at most sin}((lx_lj 73] lab|.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 156

Figure 4.8: The triangle formed by extending # and —# from points ¢ and b, respec-
tively.

Claim 4.2 A shortest anisotropic path I1(s,t) is a simple path.

Proof: Consider an edge ab of (s, t) that crosses a face f; of P. Assume that some
other edge cd of TI(s,t) crosses (i.e., intersects) ab at some point = on f; (e.g., see
Figure 4.9). Clearly, the subsegment @Z of ab is shorter than ab and so it would be
cheaper to remain at x instead of traveling from x through b along I1(b, ¢) then along
¢Z. Hence, aT and ¢x cannot be on Il(s,) because it would cause a contradiction of

II(s, t) being a shortest path. Note that cd is a valid direction and so zd is as well.
O

Note that Claim 4.2 is true only because there is no turning constraint at x. That
is, our model does not consider the cost or feasibility of making turns. If for example,

/axd represented a turn that was too sharp, it may not be permissible to turn at x

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 157

rn(s,t)

Figure 4.9: The impossible situation in which an edge ab of TI(s, t) supposedly inter-
sects another edge cd of II(s, t).

and perhaps the path through b and ¢ would be a shortest permissible path from a
to d.

We will now investigate the number of segments of II(s,t). We will consider a
switchback path of II(s,¢) to be a single segment. As in the previous chapter, a
segment that intersects an edge of P within some distance r, of any vertex v is called
an inside-sphere segment. From here on, we will assume that k is finite and each
switchback path is considered to be a single segment. Still, the task of bounding £ is
non-trivial. Instead, we will give a bound for £*, which we denote as the number of

non inside-sphere segments of I1(s,t). The following claim bounds k*:

Claim 4.3 IfIl(s,t) does not have any inside-sphere segments then it may cross an

edge of P at most O(logx ‘Tﬂ) times, where F = (1 + min(w, sin §) sin §).

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 158

Proof: Consider a single permissible segment s; = ab of II(s,t) that crosses through
a face f of P where 1 < ¢ < k. If another segment , say s;1; = cd, of I(s,) crosses f,
then /abc and Zabd must either both be left turns or both be right turns since Claim
4.2 does not permit s; and s;4; to cross. Without loss of generality, we will assume
that Zabc and Zabd are left turns. Let x; be the segment of minimum cost crossing f
with one endpoint at a. Without loss of generality assume that x; is a perpendicular
and that it has minimal cost (i.e., smaller of braking or regular cost). Let e be the
edge of f on which a lies. We would like to determine a point ¢’ on e such that
subsegment e, = aa’ of e has cost which is equal to ||z;]|. Clearly s;,; cannot cross
e, (i.e., point ¢ cannot lie on e,) since it would have been cheaper to travel from a

to ¢ along e, than to travel along s; then along II(b,c). We therefore must ensure

Figure 4.10: A subsegment e, which can be crossed by only one segment of 7 (s, t).

that |lad’|| = ||z;||. The determination of a’ gives an indication as to how close to a
another path segment may cross e. We then set a = ¢’ and repeat the procedure to
obtain a new subsegment e, along e with respect to a/. By continuing in this manner
and ensuring that each such subsegment is minimized, we are essentially determining
the maximum number of times that II(s,?) can cross edge e (and hence also face f

with an additional factor of at most three: pairing of edges).

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 159

Due to the different costs that can arise because of the braking and impermis-
sibility ranges we must consider each of the different direction types for x; and ad’.
For each case we consider the minimum allowable cost of aa’ in order to get an upper

bound on the number of subsegments on e.

Let ., and ¢,, be the inclination angles of aa’ and z;, respectively. Iterating
through all nine cases in which aa’ and x; are regular, braking or switchback, it can
easily be shown that the smallest possible value of |ad’| such that |aad’| is maximized
is when |ad’| = F|z;|, where

o

. —sin @z, w —sin g, w . — sin g, sin
F = min(1 fo A o2 gin @ SRR TR),
? wy ? sm§’ —sin e, 7 —sin e, ? —sin pe, sm7’ 27 wy ?

Note that Property 4.1 ensures that for all terms in the above expression cor-

responding to braking angles (i.e., when —sin ., or —sin ¢, are used) then both

1
3 (]
sin &

—sin ¢, and —sin ¢,, are greater than wy. With the additional fact that 1 <

then we can simplify the above expression to F' = min(—L—,sin§). Therefore,

— sin e,

wy

Y

laa’| = min(,sin §)|z;|. We can simplify this further by allowing |ad’| to be
smaller that what is stated here. Note that this change leads to a slightly worse
bound on the number of times the edge may be crossed. The simplification is to

replace — sin ., by its highest value of 1:
— . .«
laa’| = min(wy, sin §)|xl| (4.3)
In order to determine the maximum number of times e may be crossed by II(s, t),
we will consider the shortest such subsegments e, that can be formed along the edge

e based on Equation (4.3). Let v be a vertex of e and let p; be the intersection point

of C, and e. Let py, p3, p4, ---, P« be a set of points along e such that
. Qg
Pipi=i| = (1 + min(wy, sin) sin 6,) [pj=1P;—2|

where 2 < 7 < k. The value of k represents the limit on the number of points that we

can place along e in this fashion. The maximum value of k represents the situation

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 160

in which e is crossed the most by segments of II(s,¢). With a little algebra, it can be
shown that k = O(log, ‘:4'), where F = (1 + min(wy,sin §)sinf,). By substituting

the worst case when w; = w, 6, = 6 and |e| = |L| we obtain the stated bounds.
O

Lemma 4.1 A shortest anisotropic path T1(s,t) that does not have any inside-sphere

segments can have at most O(nlog, ‘Tﬂ) segments, where F = (1+min(w,sin §)sin 9)

and r defines the radius of the smallest sphere around a vertex of P.

Proof: Follows from Claim 4.3 applied to the n faces of P.

4.3 A Simple Approach to Approximation

Our goal is to improve the large running time of Rowe and Ross [108] through ap-
proximation. Our first approach is similar to the Fized Scheme of the Euclidean and
weighted cost shortest path approximation techniques used in Chapter 2. Recall that
this scheme adds m Steiner points along each edge of the terrain and then connects
Steiner points of each face with a complete graph. The global graph is then searched
using Dijkstra’s algorithm to obtain the approximation. This approach cannot be
directly applied to solve the anisotropic shortest path problem since it may produce
edges that are impermissible for travel. The problem does not lie in the placement
of Steiner points, but rather lies in the direction and weights of the edges connecting
them. The simple approach here is to also build a graph; the main difference in this
graph lies in the weights that are placed on the graph edges which are now based on

direction.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 161

4.3.1 Constructing the Graph

For each face f; of P, we build a graph G;. We begin by placing m equally spaced
Steiner points along each edge of f;, for some positive integer m. The vertices of
G; are the vertices of f; as well as these Steiner points. Connect p and ¢ with two
directed edges p¢ and gp, where p and ¢ are Steiner points on different edges of fi-
Connect adjacent Steiner points on the same edge of f; by two oppositely directed
edges as well. Lastly, connect each vertex v of f; to all Steiner points on the edge of

f; opposite to v with two oppositely directed edges.

We now assign weights to the edges of GG;. For each edge e of GG; that is directed in a
heading that is non-braking and non-impermissible, its weight is set to be w,|e|. Edges
whose direction falls within the braking range are given weight equal to — sin ¢;|e|.
This essentially assigns a weight on the edge equal to the change in elevation. Note
again that ¢; is a negative angle in this case and the weight will therefore be positive.
Edges representing impermissible headings are assigned a weight corresponding to

the length of a switchback path between their endpoints. From Claim 4.1 we know

that this length is at most Sl'%_] However, this is an upper bound on the length. In

n-

fact, we can assign the exact length of the path as stated in the proof of Property
4.5. This length is (W) le|, where w and 1 are defined as shown in Figure 4.8.
J
sin w+sin Y
sin a;

Hence the weight of e is set to w; () le|. To simplify the analysis, however,

we will be bounding these switchback paths with the cost of wile. This concludes

in —L

2
our construction of G;. A global graph G is then constructed as the union of all

Claim 4.4 Fach edge e € G represents a path with bounded cost on P.

Proof: Regular and braking edges of GG clearly have bounded cost since their lengths

are finite and they correspond to a single-segment on P. Claim 4.1 ensures that

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 162

switchback edges of G represent paths that have bounded length and therefore,
bounded cost. Note that we are not saying anything about the number of segments

in the switchback paths since Property 4.3 indicates this may be unbounded.
O

4.3.2 Choosing an Approximated Path for Analysis

Given a shortest anisotropic path II(s,¢) on P, we describe here a particular path
I[T'(s,t) in G which has a bounded cost with respect to II(s,¢). Some of the segments
of II'(s,t) may be “flagged” as switchback indicating that when the approximated
path is to be reported, then these segments are to be replaced by a switchback path
between their endpoints. A distinction is therefore required between the path in G
and the path that will be reported. The reported path will be denoted as I1”(s,t).
We denote the number of segments of II(s,t),II'(s,t) and I1"(s,t) as k, k" and k",

respectively.

We consider the case in which IT'(s, t) has segments that pass through the same
faces (in the same order) as those of II(s,¢). We will consider this path in our analysis
of the approximation factor, although it may be the case that the running of Dijkstra’s

algorithm produces a better path.

Consider a segment s; of II(s,t) passing through face f;, where 0 < i < k. Let p
and ¢ be the vertices of G; corresponding to Steiner points (or vertices) on edges of f;
that are closest (Euclidean distance) to the endpoints of s;. If p # ¢ then let s, = pg
be the edge of II'(s,t) that approximates s;. If p = ¢ then let s} = () (Note that this
situation only occurs when s; crosses a face close to a vertex or when s; travels very
briefly along an edge of P (see Figure 4.11)). Once this is done for each segment of
II(s,t), we remove all of the () edges. Note also that if two or more consecutive edges

are collinear, then these edges are merged as one. The resulting sequence of edges is

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 163

IT'(s,t). This construction ensures that &' < k.

J+1

2
j 1
~.

? ,/

j+1

Figure 4.11: When a segment s; of II(s,t) is approximated near a vertex or briefly
along an edge of P, there may be no corresponding segment in IT'(s, t).

Claim 4.5 II'(s,t) is connected.

Proof: In order to show connectivity of IT'(s,) we need to show that adjacent edges
s; and s}, are connected, where 1 < j < £’. Consider two consecutive edges s; and
sit1 of II(s,t), where 1 <4 < k. Since II(s,) is connected, then s; and s;;; share a
point z on an edge (possible vertex) of P. There are three cases to consider. The first
case is when x lies between two Steiner points on an edge of P. In this case, s; and
si11 are approximated by s; and s}, respectively, such that s’ and s’,, share an
endpoint. Therefore, s; and s, are connected. In the second case, z lies between a
vertex v of P and a Steiner point on an edge of P. In this case, s} and s}, are chosen
such that they share the endpoint v, and so they are connected. Recall that the entire
subpath of II(s,t) which intersects a sphere of radius r, around v is approximated
by just two segments of II'(s, t) and these segments are connected (see left of Figure

4.11). The final case is when either s; or s;;;1 is an edge-using segment (without loss

of generality, assume that s;;; is edge-using). If s’ ,, is an edge-using segment then s

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 164

and s}, are connected since they share a Steiner point. If 5%, is not an edge-using
segment then s;;; is not approximated. Instead, s;;9 is approximated by s’,, and

they also share a Steiner point (see right of Figure 4.11).
O

If we are merely interested in reporting the cost of the approximated path, then
we only need to report ||IT'(s,t)||. However, if the path itself is required, it cannot
necessarily be reported in O(k') time since switchback segments of IT'(s,¢) may rep-
resent a large chain of segments whose number of links may be infinite and which
depends on geometric parameters such as o and . We will therefore construct a path
II"(s,t) from IT'(s,¢) in which all of these switchback edges are expanded to a finite

number of actual segments on P. Thus, it is always the case that k" > k.

To begin, each regular and braking edge . of IT'(s, t) has an equivalent (i.e., iden-
tical) segment s in IT'(s, t). For each switchback path s, of II'(s, t), we will construct
a finite-segment switchback path 2!’ in I1”(s,t). To form I1”(s,t) we concatenate all s/
and 2! in the order from ¢ = 1 to k. Recall that ||s}|| encapsulates the length of a two-
link switchback path. We cannot merely assign this two-link path as 2{ = [s}, s/,]
since it may not lie completely within a single face. We can however “adjust” this
two-link path (by creating more links) such that the newly adjusted path lies within
the face (see Figure 4.12). We will set z! to be this adjusted path. Claim 4.1 ensures

that [|2[] = [|si]l-

This creation of 2/, however, will cause a problem in the case where at least one
of the endpoints of s} is a vertex, say v. The problem is as described in Property 4.3,
in which 2! has an infinite number of segments. To handle this problem, we merely
limit 2! to contain only one switchback segment that intersects C, (i.e., the sphere
around v). To do this, we can iteratively append consecutive switchback segments to

z! until we get one that intersects C,. 2! is completed with a segment from the last of

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 165

\
N
N
N
N
AN
\\
2-link s\
pat h
adj ust ed o
pat h ~

Figure 4.12: Adjusting a 2-link path such that it lies within the face.

these switchback segments to v. Although, this last link will be in an impermissible
direction, we can make it arbitrarily small in length and so this should be feasible in

practice.

A further problem is that of traveling on an edge in an impermissible direction.
Let s. be a segment of our approximation that lies along an edge e of P. If ¢ is
directed in an impermissible direction, then it is clearly impossible to zig-zag along
e. In this case, we construct z/ as before, but such that the segments of 2/ all lie in

one of the faces adjacent to e (i.e., the face with minimum path cost).

Claim 4.6 If a valid path II(s,t) exists between two vertices s and t of P then there
exists a path II'(s,t) in G and hence a valid path 11"(s,t) on P.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 166

Proof: Since II(s, t) is valid, then by definition, its segments must all be in permissible
directions. Each segment s’ of IT'(s, ¢) corresponds to a segment s of I1(s, t) that passes
through the same face. By definition, the faces through which II(s, t) passes cannot be
isotropic obstacles and so the faces through which II'(s,) passes cannot be isotropic
obstacles either. Therefore, since s and ¢ are vertices of GG, there exists a path in G.
Since each edge of G represents either a valid edge or a switchback path of II”(s, t),

then I1"(s,t) must also exist.
O

4.3.3 Computing a Bound on the Approximated Path

In order to determine the accuracy of IT'(s, t), we apply a similar segment-by-segment
analysis as with the weighted scheme of Chapter 2. The analysis becomes slightly
more complex due to the special cases of braking and switchbacks. That is, we must
consider the situation in which a shortest path segment is approximated by a segment
that has a different type (e.g., s; is a braking segment and s/ is a switchback path).
Note that during the analysis, we do not need to consider the number of segments
in the switchback paths, only the bound on the length of such paths. The bound of
ITT'(s,t)|| will therefore apply to ||[II”(s,t)||- Throughout the analysis, we will make
use of Lemma 2.2 which states that in the Euclidean scenario,

Lj
< il + I (1.0

where L is the longest edge of P and m is the number of Steiner points placed on

each edge of P.

Given a segment s; (or switchback path z;) passing through face f;, we will bound
the cost of s.. We will consider the nine possible cases which correspond to iterating

through the three direction types for each of s; and s!.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 167

w;|L|

Claim 4.7 If both s; and s are regular, then ||sj|| < [|s:l| + 225

Proof: Multiplying Equation (4.4) by w;, we obtain w;|s}| < wj|s;| + w, ﬂ‘i‘l Sub-

stituting the weighted cost for s; and s;, we realize that this is none other than

w; |L
sill < llsill + 345
O
Claim 4.8 If s; is reqular and s is braking, then ||s}|| < —sin ¢} (”31” + Tﬂl)
Proof: From our weight metric we obtain ||s;|| = wj|s;| and ||s}|| = —sin ¢}|s}].
Substituting Equation (4.4) for |s}| results in:
Isill = —sin;]s;]
L]
<
< —sin (,oz(|sz\ + . 1)
_ L]
= sl + o)
O

Claim 4.9 If s; is reqular and s} is switchback, then ||s! <|| il + Ifnjfl‘)
2

Proof: From our weight metric we have ||s}|| < Si:{;_j |si|. Substituting Equation (4.4)
2

, w; L
Isill < —% (|sil + ——
sm2 m—+1
_w (sl
sin% w; m+1

1 w;| L]
= . o ||S'l|| + °
sin < m—+1

for |s%| results in:

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 168

O
Claim 4.10 If s; is braking and s} is regular, then ||si|| < —S?I]l.(p‘ sil| + fn’—fl'
Proof: From our weight metric we obtain ||s}|| = wj|si| and ||s;|| = —sin¢;]s;].
Substituting the results of Equation (4.4) results in:
Isill = wjlsi]
L]
< wills| + 4=
< wyllsi+)
_ [si] L]
B w](—singpi * m + 1)
w;j i| L
= Y s+ ;L)
— sin @; m+1
O
. : L
Claim 4.11 If both s; and s. are braking, then ||si|| < ||s:|| + nL—le
Proof: From our weight metric we obtain ||s}|| = —sin ¢}|s}| and ||s;|| = — sin ¢;|s;]-

Here ||s;|| represents the change in height between its endpoints; similarly for ||s;|.

The difference in height between ||s}|| and ||s;|| can be at most WLLJF'I (which would

occur if the face was vertical). Therefore, ||si|| < ||sil| + W‘%l o

Claim 4.12 If s; is braking and s, is switchback, then ||si|| < S,w?;- (lsall -y |Z])

in TJ —sin p; m+1

]

Proof: From our weight metric we obtain ||s;|| = —sin ¢;|s;| and ||s}|| < EAR

ro3
3 J
S)

Substituting this into Equation (4.4) results in:

. L
sl < (|sz-| ; L)
51117’ m-+1

w; 1 L]
= L (—— sl + =)
sin 5~ \ —sin ; m+1

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 169

O
Claim 4.13 If s; is switchback and s} is regular, then ||si|| < ||s:|| + ur)rjfll
Proof: From our weight metric we are ensured that ||s}|| = w,|s;|. Since s; is
switchback, then ||s;|| = w;|z;| > wj|s;|. Using Equation (4.4) we obtain:
Isill = wils;
L]
< wi(lsi] + i)
Isill | _[L]
< w +——
w; m+1
_ w;| L]
= sl + 2
O

. IISZII |L]
Claim 4.14 If s; is switchback and s is braking, then ||si|| < — sin ¢! (+ m+1)
Proof: From our weight metric we have ||s}|| = —sin ¢}|si|. Since s; is switchback,

then ||s;|| = wj|z;| > wj|s;|. Using Equation (4.4) we obtain:

Isill = —singilsi|

L
< - |+ ——
< —singl(s]+ -2

S ,(nsin L])
< sin ¢, + .
w; m-+1

Claim 4.15 If both s; and s; are switchback, then ||sj|| < —'=r (”82” + (uqﬂflg).

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS

Proof: From our weight metric we have ||s/

|Isil| = w;|zi| > wj|s;|. Substituting in Equation (4.4) results in:

<

I3l

<

w; L
sin & | |+ m-+1
5
w; (||si] |L|
sin% wj m+1

w;|L|

L (sl +
- S;
3 (m

sin

)

+1)

)

170

t|. Since s; is switchback, then

O

Table 4.2 gathers the results of the claims just presented. It shows the bounds for

each type of segment s, as compared to the type of s;.

si \ s Regular Braking Switchback
Regular [|sill + %ﬁ' —sin %(”jj” + vﬂl) sinl% (”82'” + %ﬁ')
Braking m” sil| + Zgﬂ [lsill + 71|7f/|—‘1 Si:L_TJ (—||sf;|!pi + 'n|f|-|1)

Switchback II's:|| + % — sin ¢ (H;f” + 17|1€L|1) sin 3L (“S’“ + (gﬂ'i'))

Table 4.2: The maximum cost of the approximated segment s, with respect to the
actual shortest path segment cost ||s;||. Here w; = p; cos ¢;.

Lemma 4.2 Given two vertices s and t of G, there exists a path I'(s,t) in G such

that ||TI'(s, t)|| <
(s, t).

ezl I +

s =

W/|L|k
(m+1)sin 57

where k is the number of segments of

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 171

Proof: Claims 4.7 to 4.15 show that s} is bounded such that [|s}|| < —=7||si|| +
SIHT

% To see this, we make use of Property 4.1 which states that — sin ¢; > w,.
m sin T

By applying this worst case approximation to all segments of IT'(s, t) we have:

k k
1 w;|L|

o< ; J i
Sl < 3 e (sl + 225

sin
i—1)

We can now put an upper bound on w; and a lower bound on «;:

G| WIL|
IT'(s,t < —_— i _—
TG0l < 3 (Il + o

=1 2 +1
W|L|k
< s,)l + -
in § (m+1)sin§

Theorem 4.1 Let P be a polyhedral surface where h is the minimum distance from
a vertex of P to the boundary of the union of its incident faces. Let r = eh for
some 0 < € < 1. We can compute an approzimation II'(s,t) of a weighted short-

est anisotropic path I(s,t) between two vertices s and t of G such that ||II'(s,t)|| <

1

T &
s)

(ITI(s,t)|| + W|L|). Moreover, we can compute this path in O(nmlognm+nm?)

time, where m = #I:H) Here, k* = O(nlogx |T£|) and F = (1+min(w, sin §) sin §).
Proof: Consider splitting up Il(s,¢) into subpaths such that each subpath is a
between-sphere subpath or an inside-sphere subpath. Let k* < k be the number
of segments of all between-sphere subpaths. By setting m = k* — 1 for each of these

between-sphere subpaths, a proof similar to Lemma 4.2 can be used to bound the

paths within the stated bounds of the theorem.

Examine now a particular inside-sphere subpath of II(s,t) that lies completely

within some sphere C,. This subpath is approximated by two segments of II'(s,)

each with length at most 7. This two-link path has a cost which is at most 2%Z . This

@ -
Sll’l2

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 172

assumes that the two-link path uses the most expensive cost possible. Since inside-
sphere subpaths must lie between consecutive between-sphere subpaths, the number

of inside-sphere subpaths is at most £* + 1. Therefore, we can deduce that the cost

for the approximations of inside-sphere subpaths is at most % By setting
2
m= % — 1, and summing the approximate costs for all between-sphere and

inside-sphere subpaths, we have:

(s,)| < ——5 <”H(S’t)”+m)+(%a+))
SlIli m+1 Slni
. Wh*|LI(|L| - 2r(k* +1))
: His, 2Wr(k* + 1
- Sin%(” (S’)||+]{7*|L| + T(+)
1
< g (s,)| + WIL| = 2Wr (K + 1) + 207 (K + 1))
2
1
= (JITI(s,)] + WIL])

sin &
As for the time complexity, Dijkstra’s algorithm (Theorem 1.2) is applied which runs
in O(nmlognm + nm?) time where m = O(%) Note that we can increase

m to to simplify the bound as long as |L| > 1. The value of k* follows from

k-
T—2r(k*+1)

Claim 4.3.
O

We have just given a bound on the accuracy of the approximated path produced
using this simple approach. The approximated path accuracy depends upon geometric
parameters of the terrain: L, o, and W. Since the value of o can be arbitrarily small,
the path accuracy can be arbitrarily bad. However, in most traversable terrain, there
is a limit on reasonable values of o which allows the path accuracy to be reasonably

bounded in practice.

During the analysis, we made the assumption that each segment of II(s,?) was
approximated in the worst possible manner. That is, we assumed that all segments

of IT'(s,t) were switchback. Clearly this is very unlikely since the switchback paths

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 173

are more expensive than the regular and braking segments. Therefore, we can easily
conclude that the stated path accuracy is not a “tight” bound for the average case.
It is very likely that the bound will be much better in practice. Due to its simplicity
it is likely that this algorithm is of practical value and is likely to produce accurate
paths with only a few Steiner points added per edge (as in Chapter 2). in Section
4.5 we describe some experiments performed on an implementation of our algorithm
here and show that the accuracy converges after only a few Steiner points are added

per edge.

4.4 An e-Approximation

In this section, we describe how the graph G can be modified so that an e-approximation
is obtained. The algorithm itself is the same, and differs from the previous scheme

mainly in the number and placement of Steiner points on the edges of P.

From the results in Table 4.2, it is easily seen that in order to improve the path
accuracy, we must ensure that segments s; of II(s,¢) are approximated with seg-
ments of II'(s,¢) that have cost at most (1 + €)||s;||]. We also make sure that ap-
proximation segments have the same direction type as the segments which they are
approximating. For example, braking segments of II(s,¢) must be approximated
with braking segments of II'(s,t). These modifications will ensure that each segment
s; of TI(s,t) is approximated with a corresponding segment s, of IT'(s,t) such that
s8]l < (1 + f(€))||si]|, where f(e) is some function which depends on geometric pa-
rameters of P, but is independent of n. By setting ¢; = f(¢), this will ensure that
IT'(s,t) is an e;-approximation of II(s,¢). We will show that the main difference in
the results of this algorithm and that of Chapter 3 is the number of Steiner points

that are used, their interconnection, and in the size of each r,.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 174

4.4.1 Constructing the Graph

We begin by constructing a graph G for each face f; of P by adding Steiner points
along edges of f; in three stages. In the first stage, we add enough Steiner points
to ensure that the distance between adjacent Steiner points on an edge is sufficiently
small. In essence, we will make this distance small enough to ensure that it is at most
€ times the length of a shortest path segment which passes through it. This stage
is analogous to the construction used in Chapter 3. For each vertex v of face f; we
do the following: Let e, and e, be the edges of f; incident to v. First, place Steiner
points on edges e, and e, at distance 7, from v; call them ¢; and p;, respectively.
By definition, [vqi| = [vp1| = 7,. Define 6 = (1 + esinf,) if 6, < 7, otherwise
6 = (14¢). We now add Steiner points gs, g3, ..., ¢,,—1 along e, such that [vg;| = r,67~*
where ¢, = logs(|eq|/r,). Similarly, add Steiner points pa, ps, ..., p,,—1 along e,, where
tp = logs(|e,|/ry). As with the strategy used in Chapter 3, overlapping sets of Steiner

points on an edge are merged.

Now we add a second stage of Steiner points which are required to ensure that
there exists an approximation segment of the same direction type as a shortest path
segment which passes between the same Steiner points. Recall that our model of
computation allows for eight direction ranges (three impermissible, one braking and
four regular) per face as shown in Figure 4.3. We will add a set of Steiner points to f;
corresponding to the braking range and the (up to four) regular ranges. We give here
a description of how to add the Steiner points corresponding to the braking range;

the Steiner point sets for the regular ranges are constructed in the same manner.

The idea is as follows. For each vertex v of the face, we will extend rays in the
directions of the critical angle vectors for the particular range. We will add a Steiner
point at the intersection of this ray with an edge of the face. We then extend a

ray from the newly created Steiner point in the opposite direction to a critical angle

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 175

vector to create another Steiner point. We then repeat the processes to generate sets
of Steiner points on the edges of the face. The process of adding Steiner points stops
when the last Steiner point added is sufficiently close to a vertex (which is not v) of
the face. This stopping criteria provides a method of bounding the number of Steiner
points added. As will be seen later, generating the Steiner point sets from the three

vertices is sufficient.

Let @ and ¢ be the critical braking angle directions for the range on the plane
defined by f;. Consider now each vertex v of f; and apply the following algorithm

twice (once as is stated and then again where @ and ¥ are swapped):

LET ¢ = v.
WHILE (¢ does not lie within C,, of f;, where v; # v) DO {
LET z, be a ray from ¢ in direction .
IF (z, intersects an edge e of f;) THEN {
p = intersection point of z, and e.
Add p as a Steiner point on e.
LET z, be a ray from p in direction —%.
IF (z, does not intersect an edge e of f;) THEN STOP
ELSE {
¢ = intersection point of z, with e.

Add ¢ as a Steiner point on e.

Figure 4.13 shows how these Steiner points are added using this technique for a

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 176

Figure 4.13: Adding Steiner points to a face corresponding to a braking range.

braking range. Note that when applying this stage to the adjacent faces of f;, some
additional Steiner points will be added to the edges of f;. When creating the graph
for an adjacent face f;;1, each edge of f; may also gain a set of Steiner points due to
this second stage construction. Hence, each edge may have two such sets of Steiner
points. The first and second stage of Steiner points along with the vertices of f;

become vertices of G ;.

Connect a pair of vertices in G; by two oppositely directed edges if and only if
1) they represent Steiner points lying on different edges of f; or 2) they represent
adjacent Steiner points lying on the same edge of f;. In addition, for each vertex of
G; which corresponds to a vertex, say v, of f;, connect it with two oppositely directed
edges to 1) all vertices of G that represent Steiner points lying on the edge opposite
to v, and 2) the two vertices of G; corresponding to the two closest Steiner points
that lie on the two incident edges of v. This interconnection strategy is similar to the

complete graph used in the previous schemes.

In the final stage, we expand G; by placing additional Steiner points within at

least one of the spheres around a vertex of f;. Let ¢ be a Steiner point (or vertex

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 177

of f;) on edge e, of f; which was added during the first or second stage of Steiner
placement (including those from adjacent faces as well). Extend rays from ¢ in the
directions of @ and ¥. For each ray, if it intersects an edge e, # e, of f; at some point
x within some C, of vertex v of f; then add a Steiner point at . Add x as a vertex
of G, and add edge g% to G;. Also add edge 70 to G;. Now extend rays from ¢ in
the directions of —# and —%. For each ray, if it intersects an edge e, # e, of f; at
some point y within C, then add a Steiner point at y. Add y as a vertex of G; and
add edge 7§ to G;. Also add edge v7 to G;. Figure 4.14 shows how these new Steiner

points are added near a vertex v.

Figure 4.14: Adding Steiner points to a face within a sphere around vertex v.

Let ¢, and ¢,41 be two adjacent Steiner points added on an edge within a sphere
C, as just mentioned. Let p, and py;1 be the Steiner points that generated ¢, and

Qat1, respectively. If (Guqar1| > 70(6—1) then we add additional evenly spaced Steiner

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 178

points between ¢, and ¢,y;. We add only enough Steiner points to ensure that the
distance between two adjacent points is at most 7,(6 — 1). Once again, connect each
of these new Steiner points, say p to v with two oppositely directed edges. Also,
connect p to py and p,11 With two oppositely directed edges each. Keep in mind that
although we just described the addition of these Steiner points with respect to the
two critical directions # and ¢ for the braking range, we must also add similar sets of

Steiner points for the regular ranges.
We are done adding vertices and edges to ;. We must now assign appropriate
weights to the edges. For each edge @ of G, we set its weight as follows:

1. If ab is regular then its weight is set to w;|ab|.

2. If ab is braking then its weight is set to — sin #;|ab| where 6; is the inclination

angle of ab.

3. If ab is switchback then its weight is set to i |ab).
2

sin

This completes the construction of G;. A graph G is defined to be the union
GiUGyU ... UG,.

Claim 4.16 At most m = O(logs(|L|/r)+logs(r/|L|)+5=) Steiner points are added

to each edge of f;, where F = ﬁ%&:ﬁ:\\; and 6 =1+ esinb,.

Proof: Chapter 3 has shown that the number of Steiner points added in stage 1 of
the algorithm is O(logs(|L|/7)). Consider the Steiner points added in stage 2 of the
algorithm. Let & and ¢ be the two critical angle vectors corresponding to either the
braking range or one of the regular ranges of f;. Let v be the angle between @ and
. We will examine the creation of Steiner points on two particular edges e; and e,

of f;. We will bound the number of Steiner points on e; only, since the number of

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 179

points created on ey is of the same order. There are at most a constant times more
Steiner points added to e; from each of the other ranges. Let v be the vertex at the
intersection of e; and e; such that the angle formed by e; and ey in f; is 0,. Let
41,42, ---,q, be the Steiner points added to e; during stage 2 of the algorithm such
that ¢, lies at distance r from v. Also let ¢,.1 be the vertex of e; that is not v. We
will assume that ¢; = r since we can always add an additional Steiner point to ensure
this. Let p1,ps,...,p.r1 be the Steiner points on e; which were also created during
stage 2 and correspond to the intersection of rays from ¢, ¢, ..., q,1+1, respectively
in direction @ or . Let z; = Gyipiz1,0 < ¢ < . Let 0 = /¢;q;y1piv1- Lastly, let
6o = [vqr| = r and let 6; = |GGir1|, 1 <@ < . Figure 4.15 illustrates these important
definitions. We will assume that #, = #. Furthermore, we will assume the worst case
in which |e;| = |L|. Note that this will result in an upper bound on the number of
Steiner points. We let e = e; below to reduce clutter. We will determine the length

of 4;,0 <7 < ¢ and then determine (. From the sine law:

z, el le]

= = 4.5
sinf sin(r—(0+0)) sin(0+ o) (4:5)
Hence z, = Jﬁ'@iiﬁ)- Again using the sine law:
(SL L L
-7 =~ (4.6)
siny sin(mr —(y+o0)) sin(y+o0)
By combining Equations (4.5) and (4.6) we have
le] sin @ sin y
sin(@ + o) sin(y + o) (47)

Let Ag =7 and A; = 6 + 61 + ... + 6;, where 1 < ¢ < (. By definition, A, = |e|. Let

sin # sin
f(77 07 0) = (m) Then,

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 180

Figure 4.15: The angles defined during the creation of stage 2 Steiner points for a
face f; based on a single permissible range.

AL—2 = Ab—l - (6L—1) = |€|(]— - f(/)/a 970))2

Abfm = AL*(?’)’L*I) - (6L7(WL71)) = |€‘(1 - f(’Ya 0) U))m

In order to bound ¢, we would like to find a value for m such that A, ,, = Ay =7

and so

(1= f(v,0,0))" = é (4.8)

Let F =1— f(v,0,0). By taking the logarithm (base F) of both sides of Equation

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 181

(4.8) we obtain:
m r
g ()" = o (1)
and so
-
m = log, <@> (4.9)

For F to be a valid base, we need to show that 0 < f(v,0,0) < 1. Clearly, 0 <
f(7,0,0) since o + 0 + v < 7. We will show that ——-— > 1:

f(v.0,0)
1 sin(f + o) sin(y + o)
1 < = : :
f(v,0,0) sin € sin 7y
- (sin @ cos o + sin o cos) (sin 7y cos o + sin o cos)
sin 6 sin 7y
< cos? ¢ sin fsin v + sin o cos o sin # cos v + sin® o cos 6 cos y + sin o cos o cos 6 sin v

sin € sin 7y
< cos’ o + sin o cos o cot y + sin® o cot § cot y + sin o cos o cot. 4

< 1 —sin? o + sin® o cot @ cot v + sin o cos o cot v + sin o cos o cot §
This can be rewritten as:
0 < sin®co(cotfcoty — 1)+ sin o cos o cot v + sin o cos o cot §
Since 0 < 0 < 7 then sino > 0 and we can divide both sides by sin o
0 < sino(cotfcoty — 1)+ cosocoty+ cosocotl

With some final manipulation, we obtain:

, (cos&cosw—sin&sin*y) (cosvsin&-ﬁ—cos@sinfy)
sin o ; ; > —COSso - -
sin # sin y sin «y sin ¢
sinocos(f +7) > —cososin(d+7)

0 < sinocos(d +)+ cososin(d +)

0 < sin(c+0+7)

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 182

which is true since 0 < o +60 + v < 7.

For the purpose of simplifying F, we will now place an upper bound on ¢. In the
worst case (i.e., the number of Steiner points is maximized), F is minimized which
implies that f(v, 0, o) is maximized. To maximize f(v,f, o), we must minimize sin(f+
o)sin(y + o). Taking the derivative with respect to o allows the problem to be
transformed so that we need to prove cos(o +6) sin(o +) +cos(og +) sin(c +6) = 0.

We can expand this and group the terms differently as follows:

0 = (cosocosf — sinosinf)(sino cosy + cososiny) +

(cos o cosy — sin o sin y)(sin o cos § + cos o sin)

= 080 sin o cosycosf — sin’ o sin @ cos v + cos® o cos §sin y — sin o cos o sin @ sin y +
cos o sin o cos 7y cos f — sin’ ¢ cos ' sin y + cos® o cos 7y sin § — sin ¢ cos o sin @ sin v

= 2cososin o cosycosf — sin® o(sin @ cos v + cos fsin y) +
cos? o(cos @ sin y + cos v sin) — 2 cos o sin o sin § sin 7

= 2cososinocosycos — 2sin o cososinfsiny + (2cos? o — 1) sin(y +)

= 2cososinocos(y+ o)+ (2cos? o — 1)sin(y + 0)

= sin20cos(y+ o) + (2(1 + cos20)/2 — 1) sin(y + 6)

= sin20 cos(y + 0) + cos 20 sin(y + 0)

= sin(20 + v +0)

Since o, v and 6 are all greater than zero, the only possible solution is when 20+~+6 =
w. This implies that ¢ = 7/2 — (v + 6)/2. If we make this substitution into F we
obtain:

sin # sin 7y

L G2 =102+ OS2 = (11 6)/2+7)
sin @ sin 7y

Lo sin(7/2 — (v —0)/2)sin(w /2 + (v — 0)/2)

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 183

_ g sin @ sin 7y

- cos((y — 0)/2) cos(—(y — 0)/2)
_ sin @ sin 7y

T o2 ((0-7)/2)

_ g sin # sin 7y

- (1+cos2(0—7))

_ 2sin @ sin y

T 14cos(f—7)

_ 14cos(f —v) —2sinfsiny

B 1+ cos(d —7)

1+ cosfcosy +sinfsiny — 2sin fsin vy
B 1+ cos(d —7)

1+ cosfcosy —sinfsiny

B 1+ cos(6 —7)

_ 1+4cos(0+7)

~ 14cos(d—7)

Since v is defined as the angle between the matched pair of critical angles for a
braking or regular range, its minimum value is A. This minimal value generates the
most Steiner points and will be used as an upper bound for counting the maximum
number of Steiner points added during stage 2. In stage 3, we add Steiner points in
two phases. The first phase adds at most the same order of Steiner points as in stages
1 and 2 since the new Steiner points are computed by shooting at most two rays from
the Steiner points created in stages 1 and 2. In the second phase we add enough
Steiner points to the interior of C), along e so that the distance between two adjacent
points is at most r,esinf,. Hence we add O(51;) points. By combining the number

of Steiner points calculated for stages 1,2 and 3, we obtain the stated bounds. .

Claim 4.17 G has O(nlogs(|L|/r)+nlogx(r/|L|)+) vertices and O(n(logs(|L|/r)+

logz(r/|L|) + $%5)%) edges, where F = ii%m and 6 =1+ esinf.

Proof: Follows from applying Claim 4.16 to each edge of P.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 184

Lemma 4.3 Let ab be the smallest segment contained within f; such that one end-
point of ab intersects e, between Steiner points ¢; and ¢;+1 and the other endpoint
intersects e,, where ¢; and g¢iy1 do not lie in any spheres C, of f;. It holds that
|@Gi1| < €|ab|. Furthermore, if 6, < 5 then ab 1s a perpendicular to e, and if 0, > 5

then [ab| > [vq].

Proof: Follows from Lemma 3.1 due to the placement of Steiner points in stage 1 of

creating G.
O

4.4.2 Choosing an Approximated Path For Analysis

We describe here the construction of a path II'(s,¢) in G which will be bounded in
Section 4.4.3. Note again that Dijkstra’s algorithm may produce a better path than
the one constructed here. As with the simple approximation scheme of Section 4.3, we
will construct and bound the cost of IT'(s, t). We do not describe the construction of
I1"(s,t) for reporting the path, although it is constructed similar to that from Section

4.3 and can be shown to have a finite number of segments.

Let 2 and y be the endpoints of some segment s; of II(s,t) and let x (respectively
y) lie on edge e, (respectively e,) of f;. Let ¢, and ¢, (respectively p, and py) be the

Steiner points on e, (respectively e,) between which x (respectively y) lies.
Claim 4.18 At least one of @upy or Gops is of the same direction type as s;.

Proof: Since s; is an edge of II(s,?), it must travel in either a regular or braking
direction (i.e., not impermissible). We will assume for this proof that it is braking
and hence will show that at least one of g.pj and gp, is also braking based on the

Steiner points added in Stage 2. Note that the proof also applies in the case where

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 185

s; is regular since the Stage 2 Steiner points were made for those ranges as well. We
will say that the critical angle directions for this range are @ and 7. Let ¢/, and ¢} be
the closest Steiner points to x that were created in Stage 2 from the same range type
as s;. Let p/ and pj be the Steiner points that were also created in Stage 2 (also same
range type) via the extension of rays from ¢/, in the directions ¢’ and , respectively.
Similarly, let p” and pj be the Steiner points that were created in Stage 2 via the
extension of a ray from ¢; in the directions ¢’ and , respectively (note that py = p).
Figure 4.16 a) and b) show these Steiner points. It may be that ¢, = ¢/, and/or
¢ = q5- We will assume that these are not equal (as shown in the Figure), although
the claim will still hold when either of these are equal. By construction of G' during
Stage 2, p, and p, must lie between either 1) p/ and pj or 2) p/ and p;. Consider the
first case and extend rays from ¢, in the directions of ¥ and . It is easily seen that
Japh lies between these rays and hence is of the same type as s;. Consider now the
second case and extend similar rays from ¢, to show that gp;, lies between these rays

as well. Hence, at least one of ggp} or gype, is of the same direction type as s;.
O

We begin our path construction by choosing a segment s, in G; which approxi-

mates a segment s; crossing face f;. If s; is an outside-sphere or overlapping-sphere

segment, then choose s} to be one of @.ps, Gubh, Gbs and gp; such that s} is of the
same direction type as s; and ||s}|| is minimized. Claim 4.18 ensures that at least one
of these segments is of the same type as s;. For the sake of analysis, we will assume
that s, is chosen so as to have the same direction type as s; and we will bound s/
accordingly. In practice however, we may choose a segment with less cost, since we
are choosing the minimum of these four. Note that this choice also pertains to the
special case in which e, = e,. Note also that if s; is an overlapping-sphere segment,
then one of g4, gs, po Or pp may degenerate to a vertex of f;. In the case where s; is

an inside-sphere segment, there is no corresponding segment s; in IT'(s, t).

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 186

Figure 4.16: Example showing how s} is of the same direction type as s;.

At this point, we have approximations for all outside-sphere and overlapping-
sphere segments but they are disconnected and therefore do not form a path. We will
now add edges joining consecutive non-inside-sphere segments s; and s;;1 of I(s,)
with corresponding approximation segments s; of G and s, of G, respectively.
Let e be the edge of P joining faces f; and fj;1. Let ¢ be the endpoint of s} lying
on e and let p be the endpoint of s}, lying on e. It is easily seen that either ¢ = p
or ¢ and p are adjacent Steiner points on e. If ¢ = p, then s) and s, are already
connected. If ¢ # p then let s be the edge in G from ¢ to p. Figure 4.17 shows two

examples of how s is used to connect s and s} ;.

The addition of these segments (i.e., all s7) ensures that all segments of between-
sphere subpaths are connected to form subpaths. We now need to interconnect the

between-sphere subpaths so that II'(s, t) is connected.

Consider two consecutive between-sphere subpaths of Il'(s, t), say II'(04_1, 0,) and

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 187

Figure 4.17: Examples showing the how segments s; and s;; of Il'(s, ¢) are connected
via s7.

I'(04, 0ay1). They are disjoint from one another, however, the first path ends at a
Steiner point within sphere C,,, and the second path starts at a Steiner point within
Cy,. Join the end of II'(o, 1,0,) and the start of II'(0,, 0,41) to vertex v,, by two
segments (which are edges of G created in Stage 3). These two segments together will
form an inside-sphere subpath and will be denoted as II'(s,). This step is repeated
for each consecutive pair of between-sphere subpaths so that all subpaths are joined
to form IT'(s,t). (The example of Figure 4.18 shows how between-sphere subpaths
are connected to inside-sphere subpaths.) Constructing a path in this manner results

in a connected path that lies on the surface of P.

4.4.3 Computing an e-Approximation Bound on the Path

We give here a bound ||II'(s,t)|| on the cost of II'(s,¢). We will assume that ¢ lies
outside 7,. To begin, a bound is shown for each of the between-sphere path segments.
The claims to follow bound each non-inside-sphere face crossing segment, say s. of

IT'(s,t). The claims give bounds for the three possible direction types of s;. That

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 188

kd 4)\
|_|cr3 |_|0304

Figure 4.18: An example showing the between-sphere and inside-sphere subpaths that
connect to form the approximated path IT'(s,t).

is, we bound the weighted cost of s. for the cases in which s, (and hence s;) are
regular, braking and switchback. Recall that x and y are the endpoints of s; and that
x (respectively y) lies on edge e, (respectively e,) of f;. Also recall that g, and g
(respectively p, and p,) are the Steiner points on e, (respectively e,) between which
x (respectively y) lies. In the proofs of these claims, we will assume that s, = G,Pp;

similar proofs hold when s} = g,p,.
Claim 4.19 If s; and s, are reqular then ||si|| < (1 + 2¢)]|s]

Proof: Through triangle inequality, we can state that: |s}| < [q,T|+ |s:|+ |yps|. Since

Claim 4.18 ensures that s} is indeed regular, then ||s}|| = w;|s;| and ||s;|| = w;|s;| and

SO
s S;
llll < |qa:c|+u+|m|
wj Wy
3 4]
> ‘QGQb‘ + + |papb|'

J
Lemma 4.3 ensures that [7,q| < €|s;| and |[papy| < €|s;|. Therefore,

I .
I o e D
wj wj

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 189

and so ||st]| < (14 2¢)||s:]|-

Claim 4.20 If s; and s, are braking then ||si|| < (1 + —) ||sil|, where w; is weight

2e
wj

of the face through which s; and s. pass.

Proof: First, examine the maximum possible height difference between s; and s!. It

is easily seen that — sin ¢}|s}| < —sin ;|s;| + |7aGs| + [Pabs|-

Since Claim 4.18 ensures that s} is braking, we can replace the terms above with the

weighted costs ||si|| and ||s;||. Also, by using Lemma 4.3 again, we can show that

|7as| and |paps| are at most €|s;| each. Therefore,

Isill < llsill + 2elsi|

2¢||s4]]
= il + =
2
2¢
= (1 5|l
1+ ol

The minimum possible value of —siny; is at the critical braking angles (i.e., see

Property 4.1 in which —sin ¢; = wj). Therefore, ||s}|| < (1 + 1i—j)||s,||
O

Claim 4.21 If s; and s, are switchback then ||s|| < <1 + 2) II's:]|

ey
SlI'l2

Proof: Figure 4.19 shows segments s; and s, along with their corresponding switch-

back paths z; = 2., and z! = z,,,,. It is easily seen that

|anpb| = ‘anm| + ‘Zmy| + ‘Zypb|-

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 190

Figure 4.19: The switchback paths z,, and z,,,, corresponding to segments s; and s,
respectively.

We can put an upper bound on |z, .| and |z, | as follows:

|anpb| < |anqb| + ‘Zmy| + |Zpapb‘

< Z@) P
sin b} sin b}

From Lemma 4.3 we are ensured that |q,q5| < €|Zy| and |p.ps| < €|Ty|. We can

therefore make this substitution:

77| 77|
|ZQapb| < ain %5'1‘ ‘Zmy| + Sin %f
2|77
- sin%€+| =
2|22y
< mi + |22y

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 191

2¢
— 1 -
(+ sin & > [Zay].

Now [[si[| = w;]2guq,| and [|ss]| = w;|2ay| s0

sl (1+ _2ea>||si||'
w; sing) w;j

2
Il < (14 g) s

which leads to

Claim 4.22 ||s/| < : |5l

sin &

Proof: By definition, s/ joins adjacent Steiner points on an edge of P. Hence, from

Lemma 4.3, it follows that |s/| < €|s;|. It may be that s! is impermissible, resulting

in [|s/]] < g2lsf]. Thus,

" w;e
< 1 4.10
I < sl (4.10)
If s; is regular or switchback, then |s;| < ||sw|| . If s, is braking, then |s;| = tﬁl”(p < sl
i wj
Thus, we can say that |s;| < @
J

Making this substitution into Equation 4.10 results in ||s?|| < Sj‘r'l—J;”qf)—” Smg II'sil|-

2 J D

Lemma 4.4 Let II'(0, 1,0,) be a between-sphere subpath of II'(s,t) corresponding

to an approzimation of Il(o, 1,0,) on a polyhedron P with minimum face weight w.

T=)e)|[1(0a-1,04)]].

Then |11 (0,1, 04)|| < (1 + max (== =+

sin & w’ sin 5 2

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 192

Proof: Let s, be a segment of II'(¢6,_1,0,) which approximates a segment s; of

[I(04-1,0,) passing through face f;. By Claims 4.19 4.20 and 4.21 we have

2 2
Is| < max(l+261+ <1+ ——
w] Sin

) lsill

2

1 1
= (1+26max(1,w—, —)Isill

il Sln§

1 1
< (14 2emax(—, =) |lsill

w S1n

3]

We can charge the cost of each s to s,. Therefore, we can say from Claim 4.22 that

1 1 €
O+ 118"l < (1 + 2emax(— i
I+ IE < 1 2emaxt sl +

sl

&
2

1 1 1
(1 ey + 2max(y, sl
1 2 3
= (1 - ;

2 2

Hence, each segment s} of II'(g,—1, 0,) has cost at most (1+max(2x + 2, 25)e)||s:]|

=Y
sin D) sin)

and ||l (0g 1, 00)|| < (1 + max(=2 + 2, =25)6)||Tl(0, 1, 04)]|-

o w’ sin &
SlIl2 w SlIl2

O

Claim 4.23 Let [1'(0,-1,0,) be a between-sphere subpath of I1'(s,t) corresponding to

2¢
1—2¢

an approzimation of l(c,_1,04). Then |II'(c,)| < (0a-1,04)|, where 0 < € < 3.

Proof: Same as Lemma 3.11.

Claim 4.24 Let I1'(06,-1,0,) be a between-sphere subpath of I1'(s,t) corresponding to
an approzimation of I(c,_1,0,) then ||II'(c,)|| < <27W6) ITL(04_1,04)||, where

w(1—2¢)sin §

0<e<s.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 193

Proof: Claim 4.23 ensures that |II'(o,)

(0a_1,04)|- In the worst case,
we can assume that segments of II'(¢,) are impermissible and that II(o,_1,0,) uses

minimum cost of w. Hence,

w
Il'(o,)]| < (o,
Tl < Gl
2We
< 5 1(0a1,04)]
(1 —2¢)sin §
2We
< — z (001, 00)[.
w(1 — 2¢)sin §

We have made the assumption that I1'(o,) consists of segments passing through
faces that have weight W. Although this may be true in the worst case, we could use
the maximum weight of any face adjacent to v,,, which typically would be smaller
than W. In addition, we have assumed that IT'(0,_1, 0,) traveled through faces with
minimum weight. We could determine the smallest weight of any face through which

IT'(0, 1, 0,) passes and use that in place of w. This would lead to a better bound.

Lemma 4.5 IfII(s,p) is a shortest anisotropic path in P, where s is a vertexr of P
and p is a verter of G then there exists an approzimated path II'(s,p) € G such that

1T (s, p)|| < <1 +e <$ + max <Sm + 2))) ITL(s, p)|| where 0 < € <
2
1

5-

Proof: Using the results of Claim 4.24 and Lemma 4.4, it can be shown that

I (o0, I) < (1+ € (s +max (2 + 2,22))) (o0, o)l
This essentially “charges” the length of an inside-sphere subpath to a between-sphere

subpath. The union of all such subpaths form IT'(s,p). This allows us to approxi-

mate II'(s, p) within the bound of 1 + ¢ (ﬁ + max <Sm + E’ e)) times
2

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 194

the total cost of all the between-sphere subpaths of II(s, p). Since II(s,p) has cost at

least that of its between-sphere subpaths, the lemma holds true.
O

Theorem 4.2 [f II(s,t) is a shortest anisotropic path on a polyhedral surface P
,where s and t are vertices of P then there exists an approximated path II'(s,t) for

some 0 < e < % such that
IG5, 0l < (1+ € (s +max (55 + 2,52))) IMGs, 2l
2 2

2

Proof: The proof follows from Lemma 4.5 since ¢ is also a vertex of G. Note that if
there is information about a and w, then these expressions can be simplified with an
upper bound. For example, if sin § < w then the following upper bound can be used:
IITT(s,t)|| < (1 +e (%)) |TI(s,t)||. Similarly, if sin § > w then we can use

this upper bound: [|I'(s, £)]| < (1+ € (Z5 500>) (s, 1)]| _

4.5 Experimental Results

Results of our experiments in Chapter 2 showed that the algorithm is practical, re-
quiring only a few Steiner points to be added per edge in order to obtain good path
accuracy and algorithm running time. In this chapter, we gave a similar algorithm
which differed mainly in the weights assigned to each edge of the graph. In order
to validate its practicality, we implemented the algorithm and performed tests with

various terrains. We give here an explanation of these tests and their results.

The implementation is based on the code of the algorithm in Chapter 2. However,
with this new implementation, the direction of each edge of the graph is important.
Each graph edge is assigned two weights, one for upward traversal and one for down-

ward traversal. Costs are assigned according to the direction range in which the edge

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 195

is directed (i.e., impermissible, braking or regular). Dijkstra’s algorithm is used as
before, but now without the A* improvement. The estimated cost to the destina-
tion as used in the implementation of the algorithm in Chapter 2 was set to the 3D
Euclidean distance between the point at hand and the destination. This was always
an under-estimate, which was necessary to ensure correct results. However, since the
cost of edge with the anisotropic implementation may be less than one (i.e., they are
based on cosine operations), this Euclidean distance estimate may be an over-estimate

and so invalid results may be obtained.

The test procedures were similar to those used in the experiments of Chapter 2.
The purpose of the tests were to determine whether or not similar convergence in
accuracy can be obtained as the number of Steiner points added is increased and
also to investigate the effect on run time as these points are added. The tests were
performed on four of the terrains that were used in Chapter 2: the 10,082 face terrain,
the 5,000 face terrain with random heights, the Madagascar terrain and the North

America terrain.

The tests were run by varying the number of Steiner points per edge from 0 to 16.
The tests were also performed for various impermissibility angles. That is, different
critical impermissibility angles of 5, 10, 15, 30, 45, 60 and 90 degrees were used
throughout the tests. The coefficient of static friction for each face was set to one
and remained a constant throughout the experiments. Also, the sideslope overturn
ranges were not considered throughout the tests. As with our previous work, we ran
tests for 100 pairs of randomly selected source and destination vertices and computed

the average path cost and average computation time for all the tests.

The graphs of Figure 4.20 show the convergence behaviour of the path accuracy
for the different numbers of Steiner points and impermissibility angles. The graphs

show that the path cost decreases with an increase in the number of Steiner points per

Average Path Cost

Average Path Cost

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS

Path Accuracy for Different Impermissibility Angles (10,082 Face TIN)
00 T T T T T T T
5 degree ——
1300 - 10 degree -+ 1
15 degree -2
1200 + 30 degree ~x-
45 degree -4--
1100 60 degree -*--
90 degree o~
1000 ¢ 1
900 [|
800 [1
700 1
600 o]
500 B A=
¥ ¥ ¥ *
400
0 2 6 8 10 12 14 16
Number of Steiner Points per Edge
Path Accuracy for Different Impermissibility Angles (Madagascar TIN)
00 T T T T T T T
5 degree ——
10 degree -+ |
36000 15 degree -2
30 degree -x
35000 | 45 degree -4-- 4
60 degree -x--
34000 L 90 degree ~o-- |
33000 |
32000
31000 1
30000 o ey R 1
B - S - ™ O B e o S

29000 . . . | | | |
0

2 4 6 8 10 12 14
Number of Steiner Points per Edge

Average Path Cost

Average Path Cost

196

Path Accuracy for Different Impermissibility Angles (5000 Face TIN)
00

5 degree ——
10 degree --+---
1600 15 degree 2
30 degree -x
45 degree -4--
1400 + 60 degree -*-- 7
90 degree -o--
1200
1000
800 | T T 1
o S
. Bg T T
600 | el B
';:**""'%—«~N§AM_L R] Eeee B
400
0 2 4 6 8 10 12 14 16
Number of Steiner Points per Edge
Path Accuracy for Different Impermissibility Angles (America TIN)
38000 T T T T T T T
5 degree ——
36000 10 degree —+— 4
15 degree -2
L 30 degree -x
34000 45 degree -4--
60 degree -x--
32000 90 degree o~ |
30000 |
28000 |
26000 [
24000 § ™
22000
B i ehitc ALTEE = SRR = SRRz R
20000 ~ ~ = =
0 2 4 6 8 10 12 14 16

Number of Steiner Points per Edge

Figure 4.20: Graphs showing average path cost for four terrains.

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 197

edge of the terrain. Notice however that in some cases, more than six Steiner points
are necessary before the convergence occurs. Recall that the 90 degree tests have
no impermissibility angles and so the results there are comparable to our weighted
isotropic shortest path results of Chapter 2. As the impermissibility angle decreases,
we notice that the path cost also increases. This is because a decrease in impermissi-
bility angle causes a larger impermissibility range and hence more switchback paths
are required. Also noticeable is the slower convergence with the smaller impermissi-
bility angles. The switchback paths in a face do not make use of the Steiner points.
Therefore, by increasing the number of Steiner points on an edge, this does nothing
to decrease the cost of a particular switchback path within a face. With the larger
impermissibility ranges, the path produced by the algorithm has more switchback
paths within it and so a high percentage of path segments are unable to make use of

the increase in the number of Steiner points.

The graphs of Figure 4.21 show the average computation time for computing the
shortest path costs for the 100 pairs of source/destination vertices. Notice that the
graphs exhibit quadratic growth as the number of Steiner points is increased. Also
notice that there is no noticeable difference in time between the tests with small or

large impermissibility ranges.

The results of our experiments indicate that the algorithm is most practical when
impermissibility angles are large. With the larger ranges, only a few Steiner points
(i.e., six) are necessary to achieve accurate paths. According to the results of Rula and
Nuttall [109], most terrain becomes untraversable when the inclination angle exceeds
30 degrees. On the other hand, 5 degree inclinations are commonly traversable by
even the simplest vehicles (i.e., bicycles) without requiring switchbacks. The more
realistic values of inclinations that could cause switchbacks are likely between 10 and

30 degrees. By looking at the accuracy graphs of Figure 4.20, it can be seen that

Average Computation Time (seconds)

Average Computation Time (seconds)

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS

Path Computation Time for Different Impermissibility Angles (10,082 Face TIN)
16 T T T T T T T
VA
14 |+ #
V4
12 - y]
7
10 - A 1
Y
8 r]
% 5 degree ——
6 F P4 10 degree -+
w 15 degree -&--
30 degree -
4r 45 degree -+--
60 degree -x
90 degree o~
2r]
0
0 2 4 6 8 10 12 14 16

Number of Steiner Points per Edge

Path Computation Time for Different Impermissibility Angles (Madagascar TIN)
14 T T

12 + 1
10 R
8 L 4
5 degree ——
6L 10 degree -+ |
15 degree =
30 degree -
4l e 45 degree -+--|
60 degree -x
90 degree o~
2 L 4
0 \
0 2 4 6 8 10 12 14 16

Number of Steiner Points per Edge

Average Computation Time (seconds)

Average Computation Time (seconds)

198

Path Computation Time for Different Impermissibility Angles (5000 Face TIN)
8 T

7 L
6 |
o
5t S 1
4 | »#~ 5degree ——
P 10 degree -+---
15 degree =
3r s 30 degree 1
45 degree -a--
2t 60 degree -*--]
90 degree o~
1 L 4
0
0 2 4 6 8 10 12 14

Number of Steiner Points per Edge

16

tation Time for Different Impermissibility Angles (America TIN)

Path Compu
14

12 |

10 R

8 L 4
5 degree ——

6L 10 degree -+ |
15 degree =
30 degree

4l 45 degree -2--|
60 degree -x--
90 degree o~

2 L 4

0 L

0 2 4 6 8 10 12 14

Number of Steiner Points per Edge

Figure 4.21: Graphs showing average path computation time for four terrains.

16

CHAPTER 4. APPROXIMATING MINIMAL ENERGY PATHS 199

the convergence is better in this range than the 5 degree angle. With additional
experimental testing, it is likely that the optimal number of Steiner points to be used
may be a function of the impermissibility angles, which in turn depend on vehicle-

specific information.

Chapter 5

A Parallel Shortest Path

Simulation

The main objective of parallelizing a shortest path algorithm is to reduce the algo-
rithm’s runtime significantly. This time saving would allow larger data sets to be
used and more complex calculations can be performed, hence achieving often better
solutions (i.e., higher accuracy) in less time than would be possible sequentially. For
time-critical computations, parallelism may provide the only solution. In addition,
with sequential algorithms, it is often the case that the data is too large to be stored
in internal memory. The use of parallelism can allow the data to be distributed across
multiple processors so that the storage requirements per processor is reduced. Still,
it may be the case that the portion of the data assigned to a processor is too large to
be loaded into memory and we may be forced to use other strategies such as external
memory algorithms. Unfortunately, the use of external memory often requires more

complex data structures and modifications to the algorithm are necessarily required.

200

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 201

In this chapter, we present a parallelization of the algorithms given in the pre-
vious chapters. That is, we give a parallel algorithm that computes shortest paths
(unweighted /weighted /anisotropic) between pairs of query points on a (possibly large)
polyhedral or terrain surface. The algorithm also applies to the single-source problem.
In essence, the algorithm here attempts to maintain the simplicity of our sequential
algorithms while providing a decrease in the running time and allowing larger ter-
rains to be used. The problem is again reduced to solving the shortest path between
vertices of a graph. Although algorithms already exist for computing shortest paths
in graphs in parallel, these algorithms often assume a large number of processors
(e.g., O(n) [105]) and sometimes assume constraints on the data such as being evenly
distributed [1][18][118] and/or being sparse [1]. In addition, some of this research
pertains to the all-pairs shortest path problem which is not studied here. More recent
work has aimed at providing implementations of distributed algorithms that obtain
“reasonable” performance and in analyzing the factors that affect the performance
[1][18][118]. We illustrate how our algorithm’s performance varies with some of these

factors as well.

We use a general spatial indexing storage structure (Multidimensional Fixed Par-
tition (MFP) tree of Nussbaum [97]). The structure implicitly achieves a form of
load balancing as well as allows the processor idle time to be reduced in cases where
the terrain has dense clusters of data. In addition, the structure can also be used
for other types of propagation applications besides shortest path such as visibility,
weighted Voronoi diagrams etc. This flexibility motivates the use of such a general

data structure since it allows our application to be incorporated into our parallel GIS

project ATLANTIS.

This chapter is organized as follows. Section 5.1 presents preliminaries by begin-

ning with a discussion of various factors that can affect the performance of a parallel

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 202

algorithm. This includes a brief discussion of previous work on distributed shortest
paths and how this research investigates different performance factors. Section 5.2
describes our parallel algorithm, beginning with a description of the preprocessing
step and then describing its execution for given queries. Our experimental results
are then given in section 5.3, beginning first with a description of the test data and
testing procedures. We give results for single-level partitioning in subsection 5.3.2. In
that section we also analyze the effects of varying the computational intensity of the
cost function, the relative location of the source/target pairs, the number of Steiner
points and the amount of over-processing is also investigated here. Section 5.3.3 then
describes our tests and results with multiple levels of partitioning for the one-to-all

and few-to-all shortest path problems.

5.1 Preliminaries

Before describing our algorithm, it is important to explain the many factors that can
affect the performance of any parallel algorithm. We discuss these factors here and

how they relate to the previous work.

One of the main characteristics that distinguish different parallel algorithms from
one another is the model of computation. Our algorithm uses the MIMD (Multiple
Instruction Multiple Data) model with distributed memory. That is, each processor
has its own local memory and performs computations on its own independent set of

data. Also, communication between processors is asynchronous.

Distributed algorithms typically partition their data and distribute it among the
processors. Each processor keeps a portion (i.e., a partition) of the data and must
communicate with other processors if it requires computations that use data which

resides on another processor. Two adjacent partitions are said to share a boundary

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 203

if any of the data (i.e., vertices, edges or faces) belongs to both partitions. There
are various methods of data partitioning which provide different characteristics that
pertain to the partition size, the spatial relationship within a partition, the amount
of data duplication and in the simplicity of implementation. The way in which this

partitioning is done can significantly affect the running time of the application.

Load balancing is the term used to indicate how the data is distributed among
processors with respect to how much work is to be done. The size of the individual
partitions is often used as an indication of the amount of work to be done. Intuitively,
load balancing is a desirable characteristic of partitioning schemes and it plays a vital

role in reducing the idle time of individual processors.

The spatial relationship of data is often of interest as well during partitioning.
This relationship often pertains to topological and/or geometric properties of the
data itself. It is often desirable to partition the data into “groups” such that the
data in one group has small diameter and is connected. For example, assume that
n faces of a polyhedron are distributed to p processors such that each processor gets
n/p faces. If the faces are distributed randomly, there may be no spatial relationship
among data within a processor or between data of adjacent processors. That is, a
particular processor may end up with a set of n/p disjoint faces. Implementation
of an algorithm that requires traversal between sleeves of faces (e.g., shortest path
on terrains), would be inefficient with such a distribution since every time a face is
processed, the next face (physically adjacent) to be processed will typically reside on
a different processor. This will incur unnecessary communication overhead at each
processing step. It would be more advantageous to distribute connected groups of
faces to a processor so that a significant amount of processing can be accomplished

before requiring communication with another processor.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 204

Let p; and py be two processors that share a vertical or horizontal partition bound-
ary. Each time a message is sent from p; to p, this is called a processor hop. For
example, in a 4x4 mesh, adjacent partitions are one hop away where as the furthest
partitions are six hops away. It is typically desirable to minimize the number of
processor hops for each message being sent or the total number of such hops. This
will help to reduce message traffic in the system. A bottleneck can form if too many
messages are routed through the same processor. Thus, a single processor might be
overwhelmed with messages so as to slow down the entire intercommunication net-
work of the parallel machine. It is more efficient to spread out the message sending

so that no bottlenecks are formed.

An asynchronous algorithm allows multiple processors to perform multiple inde-
pendent computations simultaneously. Each processor computes at its own rate and
communicates with other processors only when communication is necessary. Proces-
sors communicate with others at different times and rates. A synchronous algorithm
however, requires each processor to perform some computations and then synchronize
with all other processors before continuing. A step is typically the notation used to
represent one phase of computation and communication. Computation by steps can
be advantageous for those shortest path algorithms that require a global minimum
cost to be maintained throughout the execution of the algorithm. It is often the case,
however, that synchronization can cause processors to sit idle while others complete

their step.

The actual runtime of a parallel algorithm is typically broken down into three
types. The computation time is that time (number of seconds or milliseconds) which
the processor spends doing computations. The communication time is the time spent
sending or receiving data from other processors. The idle time is the time that the

processor spends outside of computation and communication (i.e., waiting with no

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 205

work to do).

The runtime performance is typically a good indicator of the usefulness of a parallel
algorithm and it is often measured in terms of speedup. Let the speedup of a parallel
algorithm with p processors be the time it takes to run the best sequential algorithm
divided by the time it takes to run the algorithm with p processors. This is the true
notion of speedup although it is slightly “unfair” from the parallel algorithm’s point
of view. This is because with a parallel algorithm, there is always an overhead due
to communication that cannot be avoided. Even if the parallel algorithm is executed
with p = 1, this overhead is still noticeable although there is no communication
since the code that is often in place must still be evaluated. To help overcome this
overhead factor, speedup is sometimes measured as the time it takes to run the parallel
algorithm using one processor divided by the time it takes to run the algorithm with p
processors. This measure of speedup is used in the literature (see e.g., [1], [18]); we also
use it when evaluating our experiments. A slowdown is the term used when a parallel
algorithm performs slower on multiple processors than on a single processor. Factors
that most often contribute to slowdowns are small data sets, high communication and

too much synchronization between processors.

The efficiency of a parallel algorithm is often measured as sz’e;ﬂ when p processors
are used. A program is said to exhibit linear speedup if the speedup roughly equals
the number of processors. If linear speedup is maintained as the number of processor
increases, the algorithm is said to be scalable. Adamson and Tick [1] state that no
known one-to-all graph shortest path algorithms are scalable. Having said this, the
aim of most implementations is to achieve reasonable efficiency. An efficiency of

between 25% to 60% is common.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 206

5.1.1 Performance Factors and Previous Work

A parallel algorithm’s runtime performance depends on many factors that are due
to the algorithm, data, machine and implementation. Unfortunately, there are so
many factors that it becomes difficult to make a thorough comparison and even
more difficult to form any conclusions on how each factor (in seclusion) affects the
performance. Much of the research has been geared towards analyzing the effects of
one or two of these factors in seclusion. That is, various assumptions are often made on
the other factors so that meaningful conclusions can be drawn pertaining to the factors
under analysis. For example, one study may examine the effects of algorithmic factors
while making assumptions on the data and machine related factors such as assuming
efficient load balancing of data on a specific machine architecture. Another study
may assume a large number of processors (i.e., O(n)) and a very specific architecture
while focusing only on different partitioning strategies. As a result of these variations,
it is difficult to compare results of one study with those from another. We will discuss

some of the important factors in this section as they have appeared in the literature.

5.1.1.1 Algorithm Related Factors

Much of the published results on parallel distributed shortest paths are aimed at the
one-to-all (also few-to-all) shortest path problem (see [1], [18], [67], [66], [105], [118]).
A study by Gallo and Pallottino [49] has shown that the most efficient label-correcting
algorithms are faster than the most efficient label-setting methods in the serial case
for the one-to-all problem when small, sparse graphs are used. Note that graphs with
an average node degree of six or less are typically considered to be sparse. Bertsekas
et al. [18] have suggested that the one-to-all label-correcting algorithms for sparse

graphs also provides an advantage in the parallel shared memory setting. They do

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 207

state however that when ounly a few destinations are used (i.e., one-to-one), then the

label-setting algorithms are better suited (see also [60],[102]).

In contrast, Hribar et al. [64] have shown that the label-correcting algorithms have
inconsistent performance for their networks. They state that there is no one shortest
path algorithm that is best for all shortest path problems, nor for problems with
similar data set sizes. They conclude that generalizations cannot be made about the
best algorithm for all networks. They do however, attempt to give an indicator where
the label-setting algorithms outperform label-correcting algorithms which is based on
the expected number of iterations per node. In a later study by Hribar et al. [66],
they give experiments that demonstrate that label-setting algorithms perform best
for distributed memory parallel machines when large data sets (16k - 66k vertices) are
used. They experimented with five transportation networks corresponding to actual

traffic networks as well as random grid networks.

Besides the categories of label-correcting and label-setting, there are variations
of each that differ in the number and size of queues, and in the order that items
are removed. Bertsekas et al. [18] experimented with single vs. multiple queues for
the label-correcting algorithms in the shared memory setting. Their multiple queue
version assigns a local queue to each processor, however, the data in the queue has
no particular relationship (such as spatial) with that processor. They show that the
multiple queue strategy is better, due to the reduction in queue contention. Their
experiments also investigated synchronous vs. asynchronous algorithms and their re-
sults show that the asynchronous algorithms always outperformed the synchronous
ones. Traff [118] has compared a synchronous strategy with an asynchronous strat-
egy using a label-setting algorithm and he indicates that synchronous strategies will

perform poorly in systems where there the cost of communication is high.

Adamson and Tick [1] compared five algorithms that use a single queue for all

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 208

processors which is either sorted or unsorted. They compare partitioned and non-
partitioned algorithms. The partitioned algorithms assign vertices to each processor
according to some modulus mapping function, whereas the unpartitioned version
assigns vertices to processors arbitrarily. They show that the unsorted queue works
best for the unpartitioned data with a small number of processors and that the sorted
queues are better for the partitioned data when a higher number of processors are
used. They have two varying parameters of granularity and eagerness which specify
the size of the partitions and frequency of queue extraction requests, respectively.

They were able to obtain a best efficiency of 44% with 16 processors.

The number and frequency of communication steps that each processor performs
throughout the algorithm execution is also an important performance issue. Some
algorithms (e.g., [66]) allow each processor to empty out their local queues as a
common step and then all boundary node information is communicated to all adjacent
processors. A different strategy would be to communicate shared information as soon
as it is available (e.g., [118]). The advantage of the first strategy is that only a
few large messages need to be communicated, whereas the second strategy would
have many more smaller messages being communicated which could cause runtime
delays. The use of few large messages is a standard approach when the BSP model of
computation is used. However, when data is unbalanced slightly among processors,
the first approach may have some processors sitting idle while other are still emptying
their queue. In addition, much of the work done by a processor may necessarily be
discarded as a result of new information coming from its adjacent processor after
its queue has been emptied. A further disadvantage of the first approach is that it
requires synchronization which can lead to a performance decrease as shown by Traff

[118].

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 209

One algorithmic factor in parallel shortest path computations that is often over-
looked is that of termination detection frequency. This defines the amount of times
that the algorithms checks for termination. With a high frequency detection, a proces-
sor will spend much of its time checking whether or not the algorithm has terminated,
whereas a low detection frequency may check less but processors may do more com-
putational work than is necessary. Hribar and Taylor [67] provided research that
analyzed the impact of the detection frequency on the performance of a synchronous
label-correcting shortest path algorithm. Their analysis indicates that the optimal
frequency for detecting termination depends on the number of processors and the size
of the problem. They state that high detection frequencies are best when a large num-
ber of processors are used and low frequency otherwise. To validate their claim, they
tested with 4 variations of termination detection which varied with respect to the time

interval between communication steps as well as the frequency of synchronization.

The final algorithm-related factor that we will discuss is that of the cost function.
The cost function used in the shortest path calculation can also affect the performance.
If a simple cost function is used such as the Euclidean metric, then little time is spent
on computation and a higher percentage of time is spent on communication. When
a more computationally-intensive cost function is used, such as anisotropic metrics
used in Chapter 4, then the percentage of compute time increases, which often leads
to more efficient use of the processors. Most of the existing research has focussed
on weighted graphs with no discussion as to how the weights were obtained. To
our knowledge, there has not been any papers that analyzed the effects of the cost

function.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 210

5.1.1.2 Data Related Factors

We now turn our discussion towards data related factors. Perhaps the largest factor in
determining the runtime performance of a parallel shortest path algorithm is based
on characteristics of the data itself. Clearly, the amount of data is of paramount
importance since everything slows down as larger data sets are used. All of the
researchers have realized this and always give a comparison of different data set sizes
so as to get a feel for how the algorithm will scale with large amounts of data compared
to small amounts of data. For graph data (e.g., transportation networks) the size of
the graph (with respect to the number of vertices and edges) can make a significant
impact on the runtime. Adamson and Tick [1] state that the amount of parallelism
is dependent on the average degree (connectivity) of the graph. Most of the research
has concentrated on sparse graphs (i.e., average degree of about six). In practice,
it is important to choose the “right” algorithm that has a good performance for the
type of data being used. Sometimes however, it is not so easy to classify a graph
as being sparse since the definition of sparseness implies some maximum or average
node degree which depends on some fixed constant. For example, in our algorithm,
we compute complete graphs on each face which is classified as a high-density graph,
but the interconnections of these face graphs is sparse (if the original polyhedral data
is sparse). It could be argued that since our algorithm has been shown to be quite
practical with only six Steiner points per edge, then the entire graph is sparse since
only a constant (up to 28) number of edges are connected to any Steiner point node

(assuming that terrain vertices have degree less than 28 as well).

In addition to the amount of data present, the distribution of the data also plays
a key role in the performance. There has been quite a bit of work pertaining to
investigating different approaches to data partitioning. These approaches differ in

the number of partitions made, the sizes of the partitions, the amount of shared data

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 211

between adjacent processors and the topological order of partitions (i.e., if they are
recursively partitioned). Due to the vast nature of the data partitioning problem, we
do not describe the various techniques here. Hribar et al. [65] state that determining
good decompositions is crucial for all parallel applications. For their algorithm, as
applied to transportation networks, they show that the best decomposition minimizes
the number of connected components, diameter and number of partition boundaries,
but maximizes the number of boundary nodes. Hribar et al. [66] have shown for
transportation network graphs that distributing the data among the processors has
roughly half the execution time as replicating the graph on all processors. Even
with distributed data, if the amount of work (i.e., data) given to one processor is
significantly less than that of another processor, then that processor may sit idle
while the other processor is kept busy with computations. Basically, the more time

a processor spends idle, the higher the loss of parallelism.

The relative locations of sources and targets is another factor of significant impor-
tance. If the source and target points both lie on one processor, the algorithm may
not use more than one processor and the parallelism of the problem is lost. If they
are far away on different processors, then more processors get involved in the compu-
tation and some speedup should be noticeable. Of course, when they lie in different
processors, there is some additional communication required. There has not been
much research in determining the effects of source/target locations. Instead, most
of the previous experimental work has concentrated on the one-to-all and all-to-all

problems.

5.1.1.3 Machine Related Factors

One of the reasons why it is often difficult to compare and contrast results from

different researchers is that the machine architecture is never quite the same. The

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 212

machines differ in the number of nodes (e.g., fine or coarse grained), the type and
speed of processors (e.g., Power PC, Sparc, Pentium, Pentium II, Transputer, i860),
the interconnection topology (e.g., ring, mesh, hypercube, network of workstations),
the interconnection strategy (e.g., ethernet, crossbar, dedicated links), the amount
of internal and virtual memory per processor (including levels of caches) and more
importantly, the accessibility of memory to each processor (i.e., shared or distributed
memory). All of these differences can significantly affect the runtime performance of

any parallel algorithm.

Most experimental studies perform tests on a single machine that is either fine or
coarse grained with a single type of processor, interconnection topology and strategy.
This allows a reasonable comparison of algorithms and partitioning techniques. How-
ever, the internal and virtual memory factors make it difficult to determine which
algorithm or partitioning technique is better than others. For instance, one algo-
rithm may outperform another for some fixed size of internal memory, say M. If M
is then increased to 2M, the other algorithm may perform better. To understand
this, consider two algorithms, one being an internal memory based algorithm A; and
another being external-memory based A;. When M is too small, both algorithms
must access the disk. It is likely that A, will outperform A; in this case since A,
probably has special data structures for disk access and care has been taken to limit
the amount of disk reads/writes. If however, M is increased, then the problem may
fit into internal memory and hence neither algorithm may require disk access. In this
case, the additional data structures of A, would likely provide a runtime overhead
and hence A; may be quicker. Of course, there are other factors at play here such as
data partitioning and storage space requirements for each algorithm. Nevertheless, it
can make a dramatic difference in the performance if virtual memory is never used

vs. always used.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 213

One of the significant differences between machines is that of the accessibility of
the memory to each processor. For example, some algorithms are meant to be run
on a shared memory machine (see [1], [2], [18]) in which all processors have access to
some common memory. This is useful if all processors need to access some common
data structure such as a priority queue which is necessary for label setting algorithms.
The other choice is to have a distributed memory machine (see [118], [65], [67]) in
which each processor has its own local memory. Any processor requiring access of

memory or data from another processor must do so through message-passing.

5.1.1.4 Implementation Related Factors

The last set of factors to be examined are implementation-specific factors. For ex-
ample, two programs implemented by different people are likely to have variations
in styles and efficiency, even at the geometric primitive level such as calculating the
slope of a line or intersecting two line segments. It would therefore be advantageous
to promote sharing between programmers with libraries such as LEDA, or CGAL.
There are other issues such as numerical stability and correctness that can be related

to performance as well.

In addition to the programmers’ implementation discrepancies, there are efficient
and inefficient implementations of libraries from vendors. For message passing strate-
gies alone, there are choices as to which libraries to use such as Trollius, MPI, MPICH
and PVM. In addition, there are different vendors that produce versions with their
own characteristics which can lead to versions which are slower than others. Hence,
the use of software from one vendor to another can lead to significant fluctuations
in runtime performance. Moreover, the cost of communication versus cost of com-
putation can be affected by the choice of libraries. We have chosen MPI for our im-

plementation and have not used any specific computational libraries such as LEDA

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 214

or CGAL, so as to keep the ATLANTIS system code simpler and less dependent on

external libraries.

5.2 The Parallel Algorithm

Our sequential algorithms (Chapters 2, 3 and 4) allow a preprocessing step which
is to build a graph. Queries are then answered by running Dijkstra’s shortest path
algorithm. The parallel algorithm here follows the same strategy. Essentially, each
processor executes its own instance of Dijkstra’s algorithm on its own graph data
(i.e., each keeps its own priority queue). Since Hribar et al. [66] state that label-
setting algorithms perform best for distributed memory parallel machines, we have
chosen this variation as well. Like Hribar et al. [66], our algorithm is somewhat a
mixture of both label-setting and label-correcting in that each processor implements
a label-setting strategy, however the removal of a node from the queue is based solely
on local information. Hence, when a processor’s queue becomes empty, it does not
mean that the global solution is available. The global information is implicitly stored
across the processors and interprocessor communication is required to update the local
information at each processor. Unlike Hribar et al. [66] however, we have decided
to use asynchronous communication (as done by Traff [118]) which will avoid the

performance decrease inherent with the synchronization steps.

During propagation, the active border for a given processor will often reach its
partition boundary. At this time, the cost of some node v; that is shared with its
neighbour partition is updated. This adjacent processor obtains the updated cost for
v; and continues processing within its partition. Eventually, each processor will have
exhausted their priority queues and the algorithm halts. At this point a target query

can be presented and the resulting path can be computed. In fact, the implementation

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 215

provides a mechanism for detecting when the target(s) has been reached and allows
the simulation to halt then. The simulation itself can be broken down into three
steps: preprocessing, running of Dijkstra’s algorithm, tracing back the path. Each of

these is explained in more detail in the subsections to follow.

The algorithm is described for the special case in which there is a single source
and a single target. The following variations are also possible with the algorithm as

well:

e Single Source / Multiple Targets: (ONE-TO-ALL or ONE-TO-ANY)
e Multiple Sources / Single Target: (ALL-TO-ONE or ANY-TO-ONE)

e Multiple Sources / Multiple Targets: (ANY-TO-ANY or ANY-TO-ALL)

These variations require only a simple modification of the algorithm to store arrays
of sources or targets to be used. Some variations, however, would require much more
effort. For example, ALL-TO-ANY or ALL-TO-ALL operations would require one
priority queue for each source. This may not be possible to store in memory if too
many sources are used. Instead, the application provides the capability of running
multiple sessions in which each session represents a variation mentioned in the list
above. Note that the ALL-TO-ANY and ALL-TO-ALL can be solved using multiple
ONE-TO-ALL and ONE-TO-ANY sessions, although this is a brute force solution

and more efficient solutions are possible.

5.2.1 Preprocessing

We describe here our partitioning phase of the algorithm which uses the Multidi-
mensional Fized Partition (MFP) tree scheme of Nussbaum [97]. The MFP scheme

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 216

divides the data spatially, takes care of clustering problems and provides a natural
mapping to processors. This tree is similar to the well known quadtree and octree
data structures in that it divides the data recursively according to spatial charac-
teristics. It differs, however in the shape of the partitioning grid (i.e., it generates
decompositions according to the number of available processors as opposed to a fixed
dimensional grid). The tree represents a decomposition of the data into levels, where
lower levels represent a recursive (refined) partitioning of the level above it. We first
describe the single-level partitioning for the MFP and then discuss the multi-level
partitioning. The entire preprocessing step is done separately from the simulation. It
is assumed that some other application has partitioned the data and this data resides

on the local disk of the proper processor.

During preprocessing, the terrain P with n triangular faces is partitioned among
p = R x C processors. We say that processor p,. is in row r, column c of the mesh
(where pgo is the bottom left). Each level of decomposition in the MFP tree consists
of p sub-partitions. The top level represents all of P and is denoted as level 0. Each
further level of partitioning is created by dividing a partition from the previous level
into an R x C grid of cells whose boundaries are defined by horizontal and vertical
cut lines. More formally, let the smallest enclosing bounding box of P be defined by
(Tmin, Ymin) a0d (Tmazs Ymaz)- Divide P into an R x C grid such that each grid cell
defines an equal area of the terrain defined by ((Zmaz — Tmin)/C) X ((Ymaz — Ymin)/ R)-
For example, Figure 5.1 shows how two terrains are divided into 3 x 3 grids when 9
processors are used. Each face of P is assigned to each processor whose corresponding
grid cell it is contained in or intersects with. Using this technique, faces of P that
intersect the boundary of two adjacent grid cells are shared between the two partitions

as shown in Figure 5.2. We call the shared faces border faces or border triangles.

Two other approaches could have been taken here. The faces that intersect the

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 217

Figure 5.1: Dividing non-clustered and clustered terrains into equal-area 3 x 3 grid.

boundaries could have been split into two pieces. This however, could generate addi-
tional faces and require re-triangulation of existing faces since the cut line may have
generated quadrilaterals. In addition, the newly produced faces and edges can cause
problems with some algorithms that rely on geometric properties of P. For instance,
our shortest path algorithm must add Steiner points along the cut line so as to provide
a connection between the two partitions. This increases the size of the graph, but
more importantly, it can change the “bending” characteristics of the path. The other
approach that could have been taken is that of separating the faces along edges of P
instead of along the cut lines. This is done by finding a polygonal chain of edges in P
that would partition P into two. All faces to one side of this chain are separated from
those on the other side. As a result, the partitions share edges in common along the
chain. The advantage of this technique is that no faces are duplicated and there is a
clean separation in that no geometric properties are lost. The disadvantage of course
is that it is not trivial to find a good separator (i.e., polygonal chain) and once found,
the computations required to determine which side of the chain a face lies is more
complex since the grid cells are no longer defined by rectangles. (In a separate study

carried out by the Paradigm group [121], separator schemes are being investigated.)

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 218

IV B LI N e O

: AN S
(a) (b)

Figure 5.2: a) A set of faces to be shared along a cut line. (b) After cutting, faces
are shared between the two partitions.

This single-level partitioning of the MFP scheme (as well as most other partition-
ing techniques) are susceptible to large processor idle times when used with a parallel
shortest path algorithm. Consider the example of Figure 5.3 in which a wavefront
propagates across nine processors beginning at processor 6. A processor does work
only when a portion of the active border lies within its region of P. While the active
border expands within processor 6, all other processors sit idle. Eventually, the active
border will reach processors 3, 4 and 7. Still, many processors sit idle. It is easily
seen that processor 2 remains idle until the propagation is near completion; thus it
is barely used and is therefore wasted. Moreover, once the active border has left the
region assigned to processor 6, it also becomes idle while the other processors take

over.

One way of avoiding this idling problem is to assign to each processor, more than
one connected portion of the terrain. That is, we can over-partition P which involves
a recursive decomposition of the partitions. The result is that each processor will
have scattered portions of P. It is therefore more likely that the active border will

be processed by many processors throughout its growth. Figure 5.4 shows how the

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 219

@] |

(a) (b) (c)

0

3
/\

6

Figure 5.3: Expansion of the active border showing that processors may sit idle during
a shortest path computation.

MFP tree re-partitions each partition one level further. We can see now that in the
example, the active border expands quickly to allow four processors to participate
in the calculations. Soon afterwards, all processors get involved and are continually

used throughout the propagation.

Consider dividing P repeatedly to obtain finer and finer grid sizes. To produce
multiple levels of partitioning, it is necessary to choose a threshold which pertains
to the maximum number of vertices that a single partition can have before being
re-partitioned. If the number of vertices in a partition (called the tile size exceeds the
threshold, it is re-partitioned further. Deciding on the “best” threshold depends on
factors such as terrain size, number of processors and the degree of clusterization. For
example, Figures 5.3 and 5.4 depict 1-level and 2-levels of decomposition, respectively.
If we make the grid too fine, then the regions assigned to each processor are too
small to work with and most of the processor time is spent doing interprocessor
communication. On the other extreme, if we make the grid too coarse, a processor may

have too much work to do and very little communication with others. This reduces

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 220

O |WwW|ojoOo|w|OoOJo |w|O

O |w|lojo|w|OojJo |w|Oo

OO |NjJO | |Njoo O N
O |W|OoOjO|WwW|OJOo |WwW|O

IV NN SN PR N P R N
CEISERN EREEEN EREGEEN)
CRISENN E AR EREGEEN
o|lw|o]lo|lw|lo]lo|w]|o
[T [SN S (NG NSNS IR IO SN
oo |v]o|a|v]o o]
BN N N PN h\l—\ BT ¥ g YN
CHESEENY) cn/m CRESEEN)
oo |v]o|a|v]o ol
o|lw|o]lo|w|olo|w|o
IV NN SN R NG P R I N
CRISERN AR EREGEEN)

CD(AJOO’}AOO?OJO

\-bl—‘;/-bl—\\lhl—‘

mooomb{omwo

ofw |ope | o] |w|o
/\1 NG YN \l\b [EN RN ¥ N YN
\oo [SEEN) CO/U'I Nl o~

b2 BRI R

o[~ |a|rl~v|a|rl~v|a]~
B BRI =Y BV N TSN P I Ny

—
=
—~
Nl
—
O
~

Figure 5.4: Over-partitioning allows all processors to get involved quickly in the
computations and remain involved longer, thus reducing idle time.

the parallelism and ultimately results in a running time equivalent to a sequential
algorithm. There is a specific number of decomposition levels that permits a nice
tradeoff between processor work and communication. For typical terrain data, we
expect that no more than three or four levels of recursion will be required and that

two to three levels are typical for achieving good results for many applications.

Assuming that we determine this number, we still have a problem with data
clustering. That is, if we partition the entire terrain equally, some groups of data may
be sparse, while others are quite dense. This can result in a deficiency in parallelism
throughout shortest path propagation since the algorithm would slow down at the
dense clusters. The MFP scheme helps avoid the clustering problem by re-partitioning
only those larger partitions that are dense. This will result in partitions of different
sizes that cover different amounts of spatial area. In order to determine when to
re-partition, a threshold is chosen as the maximum number of vertices allowed per
partition. If a partition exceeds this threshold, it is re-partitioned and a new level

is formed in the tree. Figure 5.5 shows a 3-level partitioning using MFP for nine

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 221

processors. Notice the refined partitioning in the dense areas. When partitioning with

Figure 5.5: A 3-level MFP partition for a 3x3 processor configuration.

multiple levels, each processor must know which other processors it shares a partition
boundary with in order to allow propagation over the boundary. The method of which
a processor determines which other processors it needs to communicate with is known
as a mapping scheme. Two important issues that must be considered in any mapping
scheme are those of minimizing processor hops and avoiding bottlenecks. The first of
these issues is important in a parallel machine in which processors are connected to
each other by localized communication links, such as a mesh or torus (i.e., a mesh
interconnection scheme with wraparound) topology. Thus the mapping scheme should
allow messages to be sent to processors that are nearby (perhaps in the next row or
column of the grid, as opposed to two or three rows/columns away). This will also
help in reducing the congestion in the intercommunication network as there will be
less messages “in transit” at any time. For machines in which a single shared “bus”
is used between all processors, this is not an issue since there are no intermediate

processors. The second issue is somewhat more important. If the mapping scheme

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 222

is poor, then it may be the case that certain processors are “favored” over others
as being a receptacle for messages which can lead to bottlenecks. A good mapping
scheme should treat all processors equally in terms of how much communication and

work they are to perform.

The multilevel mapping scheme of the MFP handles both of these issues. It
is best applied to a torus type of parallel computer since it handles wraparound.
The mapping is done with respect to the levels of the tree (i.e., levels of recursive
partitioning). We say that unpartitioned data is at level 0, while a single partitioning

is at level 1, and so on.

Consider re-partitioning the data in processor p,. to create one more level. The
data must be re-partitioned again by splitting it up into R rows and C' columns which
are smaller partitions (called cells). The data for each of these newly created cells
must now be re-assigned to the p = R x C processors. Let cell;; be the cell at row
1, column 7 of the grid of cells where cellyy is at the bottom left. We denote the
trivial mapping scheme as that which maps cell;; to processor p;;. The MFP mapping
scheme is as follows. If a re-partition of the cells will represent an even level number
in the MFP tree, a backward mapping is used, otherwise a forward mapping is used.

A forward mapping assigns cell;; 10 Processor p((r+iymodR)((c+j)modc) and a backward

mapping assigns cell;; t0 Processor P((r-r—iymodR)((C+c—j)modC)-

Figure 5.6 shows an example of how the MFP partitioning scheme maps a par-
tition recursively for a 3x3 mesh of processors. The example shows three levels of
recursive partitioning, assuming a uniform distribution of data. The actual algorithm
would only re-partition those partitions which are dense. To compare with the trivial
mapping scheme, Figure 5.7 shows two examples of a level two partitioning for a 4x4
set of processors. Both the trivial and MFP mappings are shown. Notice that the

MFP scheme tends to promote larger groupings of similar processor assignments. For

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 223

this particular example, when using the trivial mapping scheme each internal parti-
tion (i.e., non-corner and non-edge) is always adjacent to exactly four other partitions
belonging to different processors. With the MFP scheme however, there are many
partitions that are adjacent to only two or three other partitions belonging to other
processors. This reduces the amount of overall communication during shortest path

computation.

A further benefit of the MFP mapping scheme is that it does not “favour” any
particular processor with respect to communication time. Consider a small portion
of an MFP partitioning for a 3x3 configuration of processors as shown in Figure 5.8.
The figure shows a small portion of partitioning and indicates both the trivial and
MFP mappings. With the trivial mapping scheme, the bordering processors must
communicate more than the internal (i.e., pi1) processor. With the MFP mapping
scheme however, the border processors do not necessarily require more communication
than the internal processor. The difference in communication requirements between
internal and border processors becomes more apparent as the number of levels in
the MFP tree increases. As R and C' increase, a larger percentage of processors are

internal which can also make the differences more noticeable.

5.2.2 Running the Simulation

We now describe the execution of the algorithm which assumes that the data has
already been partitioned. Each processor begins with an initialization step in which
upon startup, the processor loads its partition data from disk into memory. This is
done only once and the data remains in memory until a new terrain is loaded. In a
separate initialization step, it then initializes the cost to each vertex and initializes
its own priority queue. The source vertex is of course given a cost of zero, while all

other vertices begin with infinite cost. This step is kept separate since if many sets of

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 224

Level 1

Level 0

00

Level 2
00 [0 0 00 [o 0 0 00
10|12 |11 |11 (10 (12 (12 |11 (|10
00 Mo 0 0 00 [e 0 0 00
10|12 |11)11 |10 (12 12 (1110

Level 3

Figure 5.6: Levels 0, 1, 2 and 3 of the MFP mapping scheme for a 3x3 mesh of
Processors.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 225

Trivial MFP

Figure 5.7: The trivial and MFP mapping schemes at level 2 for a 4x4 mesh of
Processors.

shortest path queries are to be performed (denoted as sessions), only this second ini-
tialization step needs to be done for each session. Two additional LOCAL_COST and
MAX_COST variables are maintained locally for each processor. The LOCAL_COST
variable maintains the cost of the last node which has been removed from the queue.
The MAX_COST variable represents the maximum cost that the program will simu-
late up to. That is, once all nodes have a LOCAL_COST exceeding the MAX_COST,
the processor will stop processing data. The MAX_COST has an initial value of

infinity.

After initialization, the processor enters into a loop which does the actual short-
est path propagation. The algorithm differs from Dijkstra’s algorithm in that it must
inform adjacent processors of vertex costs whenever the active border crosses a parti-

tion boundary. In addition, the condition for deciding when to stop the processing is

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 226

Trivial MFP

Figure 5.8: The trivial and MFP mapping schemes on a portion of a 3x3 partition-
ing showing that the border processors require more communication than the center
Processor.

slightly more complicated and involves passing around tokens to all processors. The
pseudo-code for the algorithm is shown in Figure 5.9. Note that Q is the priority
queue and TARGET is the target vertex.

It is easily seen that the bottom portion (i.e., last 14 lines) is quite similar to that
of Dijkstra’s algorithm. There is added code for sending updated costs to adjacent
processors when a vertex is processed on a partition boundary (i.e., shared between
two processors). If a processor receives a cost for a vertex from an adjacent processor,
it must check to see if this cost is better than its own locally stored cost for that vertex.
If so, this vertex is updated to have this new smaller cost and this change may cause
a re-ordering of the queue. Processing then continues as before ... by removing the

vertex with minimum cost (which may now be this newly updated vertex).

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 227

MAX_COST = infinity; LOCAL_COST = O;
WHILE(TRUE) DO {
IF (there is an incoming message) THEN {
IF (message is a cost token with cost C) THEN {
MAX_COST = C;
IF (this vertex was not the originator of the token) THEN
Send cost token to an adjacent vertex; }
IF (message is a done token) THEN {
IF (this processor was the originator of the token and
the token has gone around twice) THEN {
Send a TERMINATE message to an adjacent processor;
Quit: ‘‘no more work to do’’; }
ELSE Store the done token; }
IF (message is an updated cost C for a vertex V and C < cost(V)) THEN

cost (V) = C;
IF (message is TERMINATE) THEN
Quit: ‘‘all processors have finished’’; }

IF ((Q is empty) or (LOCAL_COST > MAX_COST)) THEN {
IF (this processor has the done token) THEN
Send done token to an adjacent processor;
Wait for an incoming message; }
ELSE {
Vmin = vertex with minimum cost;
Remove Vmin from Q;
LOCAL_COST = cost(Vmin);
IF (LOCAL_COST < MAX_COST) THEN {
IF (Vmin == TARGET) THEN {
Set MAX_COST to be cost(Vmin);
Send cost token to adjacent processor with cost(Vmin); }
ELSE {
FOR (each edge E incident to Vmin) DO {
V = vertex at other end of E than Vmin;
IF (cost(V) > (cost(Vmin) + cost(E))) THEN {
cost(V) = cost(Vmin) + cost(E);
IF (V is a shared vertex with processor p) THEN
Send cost(V) to p; }}}}}}

Figure 5.9: Pseudo-code for algorithm on each processor.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 228

In order to reduce the graph storage overhead, the edges which are internal to the
terrain faces are not explicitly stored. However, the terrain edges themselves (called
arcs) are stored. The coordinates of the Steiner points along each arc are not stored,
but their costs are kept in an array associated with the arc. For each arc that crosses
a partition boundary, it is stored in both partitions. Whenever the cost changes for
any of the endpoints or Steiner points along this arc, the whole arc (along with the
Steiner point costs) is sent to the adjacent processor. The adjacent processor then

decides which costs need to be updated.

The algorithm uses tokens which are sent to adjacent processors when the target is
processed. A cost token is used to keep track of the maximum cost that the processor
is allowed to process to. Once a processor extracts the target from its queue, it
updates its local MAX_COST to be this cost and sends a cost token indicating this
target cost to an adjacent processor. This cost token is passed from processor to
processor in round-robin fashion. When a processor receives this token message from
another processor, it stores the token’s cost as its MAX_COST. If there are no more
nodes in the queue with cost less than this new MAX_COST (i.e., LOCAL_COST
exceeds MAX_COST), processing pauses for this processor.

In addition to the cost token, an additional done token is passed around to deter-
mine which processors have completed their computations. The done token originates
from the processor that first reaches the target node. Upon receiving this token, if
the processor has more work to do, it keeps the token. Once this processor then has
no more work to do, it passes the token to the next processor in the ring. A counter
is maintained within the token indicating the number of processors that had no work
to do when the token arrived. Once this token has gone around twice with a count
equal to that of the number of processors, a TERMINATE message is then sent to all

processors to halt the processing and begin a traceback (construction) of the path.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 229

Note that unlike Dijkstra’s algorithm, if the queue becomes empty at any time,
the algorithm does not stop. Also note that some minor details have been left out
from the pseudo-code. For example, when a vertex is updated, the vertex must also
store which vertex led to that one. That is, each vertex must keep a pointer to the
vertex above it in a shortest path tree. In a sense, the union of all these pointers

implicitly represents a shortest path tree.

Once processing has completed, the cost to the target is known and all that
remains is to trace the path back from the target to the source. All processors receive
a traceback message. The processor on which the target lies begins the traceback by
piecing together the graph edges backwards from the target. The path is repeatedly
traced back within the processor that contains the target by accessing the vertex
before it in an implicit shortest path tree. The traceback continues until either the
source is reached, or until a partition border is reached. In the later case, the processor
must package up all path information obtained so far and pass it to the adjacent
processor which must “take over” the traceback. Eventually, the path will be traced

back to the source and this path is reported.

5.3 Experimental Results

In this section, we describe the experiments that we performed in order to verify
the usefulness of our algorithm. The experiments were performed on our distributed
memory ASP machine which is made up of sixteen 166Mhz Pentium computers con-
nected via a dedicated crossbar switch. Each processor has 96MB of internal memory
except processor 0 which has 128MB. MPI was used as our means of message passing

between processors.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 230

The objectives of the experiments were to investigate the performance characteris-
tics of the algorithm by observing the effects when certain parameters are varied. The
tests were run on actual terrain data as done in Chapter 2. We focus on timing results
and ignore here path accuracy (since this has already been shown in Chapter 2 to be
efficient). There are many factors that can affect the performance of our algorithm
such as terrain size, partition strategy, partition sizes, number of Steiner points, cost
function and location of source/target pairs. In order to provide a complete report
on the effects of all of these parameters it would require testing all combinations
of parameters for many iterations. However, if not enough variations of data and
parameters are used, it is not possible to make an adequate assessment of their ef-
fects on the algorithm’s performance. We have chosen a compromise in that we use
an accumulative experimentation approach. That is, we test one set of data for a
specified parameter set, then modify the parameters in stages to show the effects at
each stage. Our experiments focused on the effects of partition, terrain and graph
sizes as well as cost function variance and relative location of source/target pairs. We
examine the effects on the overall runtime as well as the individual compute, idle and

communication times of the processors.

The remainder of this section is organized as follows. To begin, the experimental
test data procedures are described. We then describe our performance results for the
single-level MFP partitioning scheme. There, we show the effects of varying the cost
function, varying the relative locations of the sources/targets, varying the number of
Steiner points and finally measure the amount of over-processing and re-processing.

The results are then given in the case where multi-level partitioning is used.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 231

5.3.1 Test Data and Procedures

As in Chapter 2, we attempted to run our tests on various terrains that differed
in size and height variations. Since many partitioning schemes are susceptible to
performance differences when clusterization occurs in the data, we also attempted to
test terrains with different clustering situations. Table 5.1 shows the specifications of

the terrains that were tested. The terrains were all constructed from cropped portions

‘ NAME ‘ #VERTICES ‘ #FACES ‘
Africa 5,000 9,799
Sanbern 8,000 15,710
Madagascarlbk 15,000 29,582
America40k 40,000 79,658
Madagascar50k 50,000 99,268

Table 5.1: Terrains used for testing the performance of the algorithm.

of actual Digital Elevation Model data. Once cropped, the obtained grided terrain was
then simplified through the removal of vertices, thereby obtaining a non-grid terrain.
The vertices chosen to be eliminated were those such that when removed, the volume
difference of the terrain was minimal. Figure 5.10 shows top-down view snapshots of

the five terrains tested. Notice the left-sided clusterization of the America40k TIN.

In order to obtain proper speedup comparisons, the tests were run many times for
a variety of processor configurations. The configurations were obtained by varying
the number of rows and columns of processors. The configurations used were 1x1,
2x1, 2x2, 3x2, 3x3, 4x3, 4x4. For later tests with multiple levels of partitioning, only

the 2x2, 3x3 and 4x4 configurations were used.

All tests performed used the “Fixed” scheme of Chapter 2. It has been shown

previously that the interval scheme and additional sleeve-based schemes had near

232

A PARALLEL SHORTEST PATH SIMULATION

CHAPTER 5.

o]
S

ica 40k

Amer

e

e v
RN

i
v A B o Y

AL

b e
g
o/

X

! Nmnrv

Madagascar 15k

T

R e =

Madagascar 50k
iew snapshots of the five terrains tested.

Top-down v

10

)

igure

F

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 233

identical timing in the sequential setting. We did not feel that it was necessary to
run tests for all scheme variations since they differed mainly in path accuracy, not
runtime. All our tests were run in the Euclidean setting although we also ran tests

with a weighted (i.e., cost-intensive) cost function which are described later.

Our tests included both one-to-one and one-to-all variations. For the one-to-one
tests, we computed a set of 50 random vertex pairs, each pair is called a session. For
each session, we generated overall statistics that included path cost and overall run
time. Most of our graphs show averaged information which is obtained by summing
all the results per session and dividing by the number of sessions. In some cases,

minimum and maximum results are also shown.

The overall run time is the time (in seconds) elapsed from when the session first
starts until the final path is returned. The timing results presented here include the
time required to compute the path itself, not just to produce the cost !. In addition
to these, we also generated timing information per processor that included total run

time, compute time, idle time and communication time.

Here, the compute time represents the amount of time that the processor spends
doing computations with respect to its own queue. In addition, the time for generating
the final path is also encapsulated within here. The idle time is the total amount of
time that the processor remains idle with no computation or communication being
performed. The communication time is the amount of time that the processor spends
on communicating with adjacent processors. The total run time for a processor is the
sum of these three times. The communication time in our experiments was determined

by subtracting the compute and idle times from the total run time 2. Lastly, we

!The overall run time was computed using the time() function in C which rounds off to the
nearest number of seconds.

2These time were computed using the clock() function in C which rounds off to the nearest
number of milliseconds.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 234

generated (per processor) information pertaining to causality errors. This included
the number of messages “sent to” and “received from” adjacent processors as well as
the number of processed vertices, vertices inserted into the queue, vertices re-inserted

into the queue and updated vertices.

5.3.2 Results For Single-Level Partitioning

Our initial tests used the one-level MFP partitioning scheme in which each proces-
sor is assigned a single equal-area portion of the terrain. Figure 5.11 shows the
speedups obtained for our five terrains with various processor configurations. The
graphs show the maximum, minimum and average case speedup based on the suite
of 50 source/target pairs. From these graphs we can see that with 16 processors we
reach an average speedup of around 2.4. In fact, in many cases, we have a slowdown.
With at least one of the terrains (Madagascar50k) we were able to reach a maximum
speedup of almost 4 when 12 and 16 processors were used. The performance is typi-
cally better for the larger terrains than for the smaller terrains. To see this, consider
a small partition which has about z? internal nodes and hence roughly 4z boundary
nodes. If the partition is increased by a factor of 4, the internal nodes increase to 16z>
whereas the the border nodes increase to only 16z. It is easily seen that the amount
of computation required before reaching a partition boundary also grows with the
partition size and hence more work can be done before communication is required.
This leads to a better speedup. However, we do notice that the performance of the
smaller Madagascarl5k terrain is better than the larger America40k terrain. This
is easily explained since the one-level partitioning of the America40k terrain is un-
balanced (the terrain is dense on one side and sparse on the other). Therefore, two
processors are overloaded with computation while the other two finish quickly and

then sit idle.

Speedup

Speedup

1.8
1.6
1.4
12

0.8
0.6
0.4
0.2

25

15

0.5

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 235
Speedup for Africa TIN Speedup for Sanbern TIN
T T T 2.2 T T T T
4 2 L /,Q~ |
il 18 | 1
, R s
A - 16+ e sequential Time —
J e Max. Speedup -
g 14/ Avg. Speedup -+ |
3 Min. Speedup -=
ceel (9] /
S e T e 1 & 1.2 H |
1 ”’ + e e s e
Sequential Time —— -
Max. Speedup -
Avg. Speedup -+ 08 o]
Min. Speedup -= -
| 0.6 | R
&
o
. ; . o . 0.4 | | | P b |
6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Processors Number of Processors
Speedup for Madagascar15k TIN Speedup for America40k TIN
T T T T 2.4 T T T T
,,,,,,, 4 2.2 | B R
AT |
2+ 4
_»~"" Sequential Time — " Sequential Time —
Max. Speedup -<--- 1.8 + e Max. Speedup -<--- -
Avg. Speedup -+] U Avg. Speedup -+
T Min. Speedup -& a 1.6 F / Min. Speedup -& B
3
N 1 3 | |
.] 1.4
-) / e
+ 12 - il
P . o
1 +
=t a ! 08 [1
a B a
06 ° 4
a
L L L L L 04 L L L L L L L
6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of Processors

Speedup for Madagascar50k TIN

Number of Processors

4
e
35+ < |
. e
i o
| |
g. 25 1
: ‘ R
2)
g ol ’ e Sequential Time —— A
N e Max. Speedup -<---
/ E Avg. Speedup
15|/ Min. Speedup -2 1
14
e o
o B
os ‘ ‘ ‘
2 4 6 8 10 12 14 10

Number of Processors

Figure 5.11: Graphs showing speedup obtained for five terrains.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 236

In order to gain more insight as to the behaviour of the algorithm, it is necessary
to analyze the distribution of the computation times, idle times and communication
times. Figure 5.12 shows the processor usage for the same tests. Each bar depicts
the amount of time that the processor spends on computation, communication and
sitting idle. These values reflect an average over all processors and all sessions. All
of the graphs show that as more processors are used, the idle time increases. With
16 processors we see that the processors sit idle more than half of the time. It is also
noticeable from the graphs that the average communication time remains relatively
constant regardless of the number of processors used (except of course for the 1
processor situation). This would seem to imply that the number of partitions does
not affect the amount of communication between processors. This however, cannot
be the situation in general since if we have a very large number of partitions (i.e.,
O(n)), then there MUST be a lot more communication across boundaries. We will
investigate further the effect that multi-level partitioning has on communication time

in a later section.

The graphs of Figure 5.12 do not give any indication as to how a single processor
is affected with respect to the number of processors used. To help gain insight as to
some characteristics of the partitioning scheme, Figure 5.13 shows a decomposition of
the processor usage for each processor when the number of processors used is varied.
The graphs depict the results from testing one particular terrain (Madagascarl5k)
for processor arrangement of 2x1, 2x2, 3x3 and 4x4. As is readily seen, there is quite
a bit of variation in the idle times and compute times for the 3x3 and 4x4 tests.
Consider the partition layout of these two tests. For the 3x3 test, processor 4 is at
the center (hence, not a bordering processor). For the 4x4 test, processors 5, 6, 9
and 10 are at the center as well. Notice that the idle times for these non-bordering
processors is smaller than others. Also, notice that the communication times are

slightly larger. Intuitively, these center partitions are more likely to be crossed by a

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION

237

Processor Usage - Africa

O Compute @ !dle [JCommunication

1x1

2x1 2x2 3x2 3x3 4x3 4x4

Processor Usage - Sanbern

‘.Compute W !dle] Communication ‘

Processor Usage - Madagascar15k

[0 Compute [Idle [JCommunication

60 -
50 |
40
30 |

Time

(sec.)
20

Time
(sec.)

Processor Usage - America40k

mCompute @ Idle [JCommunication

120
100
80 -
60 -
40 -

10 20 4
0 04
1Ix1 2x1 2x2 3x2 3x3 4x3 4x4 Ix1 2x1 2x2 3x2 3x3 4x3 4x4
Processor Usage - Madagascar50k
@ Compute @ ldle [JCommunication
200 +
150
Time
(sec.)
50
Ix1 2x1 2x2 3x2 3x3 4x3 4x4

Figure 5.12: Graphs showing processor usage for five terrains.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 238

Per Processor Usage (2x1, 2x2, 3x3) - Madagascar15k

Compute Idle Communication
O -] O

50 -

40

Time 80 4

(sec.)

Per Processor Usage (4x4) - Madagascar15K

[Compute .Idle DCommunication

50 -

40 4

Time

(sec.)

Figure 5.13: Graphs showing per processor usage for the Madagascarl5k TIN for
processor configurations of 2x1, 2x2, 3x3 and 4x4.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 239

shortest path than a bordering partition. Hence, they are busier on average and also
must communicate with more processors than the bordering processors communicate
with. The differences between the corner partitions are also distinguishable from the

side partitions as well, with respect to communication and idle times.

5.3.2.1 Effects of Varying the Cost Function

One method of increasing parallel algorithm performance is to increase the amount
of computation done per processor relative to the amount of communication and idle
times. It is by using computationally-expensive models that the true benefits of par-
allel computing become apparent. That is, with a higher amount of computation,
the percent of communication time decreases with respect to overall runtime. To
investigate the effect that the computation time has on overall runtime, we ran tests
that incorporated a delay in the cost function. The delay actually performs roughly
the same kinds of computations that would be required for the anisotropic path cal-
culations of our algorithm in Chapter 4. This delay involves line segment intersection
tests as well as computing numerous trigonometric functions. It was our intent to
show that this delay would provide a noticeable change in speedup for larger data
sets. Although this new cost function performs calculations for use with weighted
(and/or anisotropic) paths, the computations are not used in determining the final
path. Hence, the new cost function is only used as a delay and the path produced

throughout our tests always corresponds to the Euclidean shortest path.

The running time for the cost-intensive tests were approximately twice that of
the normal cost function tests. The percentage of time spent on computation in-
creased with the cost-intensive function while the percentage of communication time
decreased. This accounts for the increase in speedup that we observed in our tests as

shown in the graphs of Figure 5.14. The graphs show the average case speedup for the

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 240

50 one-to-one sessions. It is clear from the graphs that with the more computationally-
intensive cost function (and hence higher percentage of computation), the speedup is

noticeably better.

5.3.2.2 Effects of Relative Source/Target Locations

As mentioned earlier, one important factor that affects the performance of a parallel
shortest path algorithm is the relative location of the source and target with respect
to one another. For example, if both the source and target lie within the same parti-
tion which is assigned to a single processor, most of the computations that will take
place will be within that processor and all other processors sit idle. In some situations
there will be excursions of the wavefront over the borders of adjacent partitions but
these are on average minor with respect to the amount of computation done by the
processor containing the source. Intuitively, the source target pairs that are in differ-
ent partitions should produce better performance speedups. Also, the results should
be better if the resulting path passes through many partition boundaries belonging to
different processors. This was verified through our tests and is shown through graphs

of Figure 5.15.

On the left are histograms showing the number of processor hops required for the
different source/target pairs. The graphs depict results from the Sanbern, Madagas-
carlbk and Madagascar50k TINs using the weighted cost function with a 4x4 mesh
configuration. The histogram shows that of the 50 source/target pairs tested, most
(76% - 86%) used less than four processor hops while very little (14% - 24%) used
more than three hops. The graphs on the right indicate that as the source/target
pairs get further away from one another (in terms of processor hops), the speedup
improves on average. Since there are very few pairs in the 4 to 6 hop range, it is

difficult to calculate a meaningful average and this accounts for the strange dips for

Speedup

Speedup

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION

Speedup for Normal Co!
1.15 T T

st and Cost-Intensive Functions for Africa TIN

Speedup for Normal Cost and Cost-Intensive Functions for Sanbern TIN
15 T T

241

Cost-Intensive —-— -
Normal Cost --+---

|
6 8 10

Number of Processors
and Cost-Intensive Functions for America40k TIN

Speedup for Normal Cost
T T

o

Cost-Intensive
Normal Cost -—+---

T T T T T
1.45
11
14
1.05 135 |
13
'y 5
\ Cost-Intensive —— o 125
0.95 |* Normal Cost -—+--- o
. \ n 12 |
\ Py
09 \+\\ i 1.15
N - i 11 -
0.85 | N B
" 1.05
0.8 | | | | | | | 1 4
2 4 6 8 10 12 14 16
Number of Processors
Speedup for Normal Cost and Cost-Intensive Functions for Madagascar15k TIN
2.2 T T T T T T T 1.6
oL | 15
14
18 | 1
§ 13 |
16 o -] &
- Q.
%) 1.2 +
14 | e 1
B 1.1
12 poreerm Cost-Intensive —— - 1
Normal Cost -+---
e
1 " | | | | | 0.9

Figure 5.14:
terrains.

.
6 8 10 12 14 16

Number of Processors

.
6 8 10 12 14 16

Number of Processors

Speedup for Normal Cost and Cost-Intensive Functions for Madagascar50k TIN
2.8

26

24 -

2+

18

Speedup
+

16

14

12

22+ +

Cost-Intensive ——
Normal Cost -+---

1 a L L L L L
2 4 6 8 10
Number of Processors

12

14

16

Graphs showing effect on speedup of increasing the cost function for five

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION

242

Hi stogram of Source/ Target Avg. Speedup vs. # of Processor
Locations (Sanbern) Hops (Sanbern)
16 2
14 18
16
m12
4 1.4
§1o o 12
38 s 1
o (]
6 3 08
=] 2
g 4 0.6
E 0.4
z 2 0.2
0 0
1 2 3 4 5 0 1 2 3 4 5 6
Processor Hops # Processor Hops
Hi stogram of Source/ Target Avg. Speedup vs. # of Processor
Locations (Madl5k) Hops (Mad1l5k)
18 3
16
25
14
(7
§12 2
310 5
5
3 4 g 15
o
o o
5 6 (2]
S a
g 0.5
22
0 0
1 2 3 4 5 0 1 2 3 4 5 6
Processor Hops # Processor Hops
Hi stogram of Source/ Target Avg. Speedup vs. # of Processor
Locations (Mad50k) Hops (Mad50k)
18 4
16 35
14 3
312
élo - 25
3 s 2
o 8 g’:
S 2 15
S 6 o L
S 4 1
5
22 05
0 0
1 2 3 4 5 0 1 2 3 4 5 6
Processor Hops # Processor Hops

Figure 5.15: Histograms showing the number of processor hops between source/target
pairs and corresponding graphs showing the effect it has on speedup.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 243

the larger number of hops. It is therefore our conjecture that if the tests were run
with source/target pairs further away, then better speedups would be obtained on

average.

The best speedups (on average) should be obtained with one-to-all computations
since we are ensured that all processors participate in the computation, which should
eliminate the worst cases in which processors sit idle. To verify this, we ran one-to-all
tests. In order to avoid biasing towards the selection of the source point, we chose
two sources. The first test used a source which was centered in the terrain (middle)
and the second used a source that was placed at the bottom leftmost vertex (corner)
of the terrain. The results of these tests are shown in Figure 5.16 where they are also

compared with the one-to-one tests.

The graphs show that better speedups are obtained for the one-to-all tests than
with the average of the 50 one-to-one sessions (improvement of up to a factor of 2.7).
Moreover, there is a significant difference in the results depending on the location of
the source point. The results using the middle source are better than those using the
corner source. The reason for this large difference can be explained by examining the
idle times. Figure 5.17 shows the percent of idle time for both tests using the corner
and middle source points for the Madagascar50k TIN. Notice that the processors are
idle more when the corner source is used since the wavefront reaches all processors
later than with the middle source point. Also, note in Figure 5.16 that the 3x3 pro-
cessor configuration results in a noticeable speedup decrease for the smaller terrains.
The reason for this is also related to the idle time since the outer processors remain

idle until the middle processor has propagated to its boundary.

It is clear that the one-to-all shortest path problem obtains better parallelism than
that of the one-to-one problem. This may explain why most research has been geared

towards the one-to-all shortest path problem.

Speedup

Speedup

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 244

Speedup for Africa TIN

Speedup for Sanbern TIN

24 T T 3 T T T T
29l One-to-all (middle) —— 2.8 | One-_to-_all (middle) % l
One-to-all (corner) —— 05 One-to-all (corne(;) -
2 50 Sessions (averaged) e | 26 50 Sessions (averaged) -=-- 1
24 R
1.8 b
a 22t g
>
16 1 B 2| 1
&
14 , 18 1
B 16 | 1
2/ T q S
,,,,,,,,,,, 14 . 3
R 1 e
- o 1.2 +]
Tl g B e e - B
0.8 | | | | | ;i | 1 4 By g | |
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Processors Number of Processors
Speedup for Madagascar15k TIN Speedup for America40k TIN
4 T 2.6 T
24 One-to-all (middle) ——
35 One-to-all (middle) —— 4 One-to-all (corner) -+
One-to-all (corner) —+--- 22 | 50 Sessions (averaged) -=-]
50 Sessions (averaged) -
3 | 4 4
o
E |
25 f 1 g |
%] ;
,”V
2t S g g
15l * [E— 1
- |
LB —Ee
1 L L L L L L 08 L L L L L L L
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Figure 5.16

Number of Processors

Number of Processors

4.5

Speedup

One-to-all (middle) ——
One-to-all (corner) --+---
50 Sessions (averaged) -=---

: Graphs comparing

4 6 8 10 12 14 16
Number of Processors

one-to-one with one-to-all speedup for five terrains.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 245

Processor Idle Time for One-to-All Computations

@ Corner Source [Middle Source

50% -
45% -
40% -
35% -
30% -
25% -
20% -
15%
10%

5 %

0 %

Idle Time

1x1 2x1 2x2 3x2 3x3 4x3 4x4

Processor Configuration

Figure 5.17: Graphs comparing processor idle time for the two starting source loca-
tions in the one-to-all tests for the Madagascar50k TIN.

5.3.2.3 Effects of Varying the Number of Steiner Points

Since the graph size and density depends heavily on the number of Steiner points, it
is natural to assume that by varying the number of Steiner points added per edge, the
performance of the algorithm would be affected. To verify this, we conducted tests
that compared the usage of 3, 6 and 12 Steiner points per edge. All tests were ran
using the weighted cost function. The running time increased on average by about
a factor of between 2.0 and 2.7 as the number of Steiner points per edge doubled.
An examination of running times showed that the percentage of compute, idle and
communication times stayed the same (relative to one another) and was independent

of the number of Steiner points. Since these three time components were unchanged

Speedup

Speedup

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 246

with respect to each other, the speedups also did not vary much. The graphs of Figure
5.18 show the speedups obtained for the 3, 6 and 12 Steiner point tests. The graphs
do indicate a variance in the speedups. They show that better speedups are obtained

using 6 Steiner points per edge as opposed to 3 or 12. However, the differences are

small.
Speedup for Different # of Steiner Points - Africa TIN Speedup for Different # of Steiner Points - Sanbern TIN
1.16 T T T T T T T 1.5 T T T T T T T
1.14 |+ 1.45 | ///,«“”i
tazy 14 g
1.1} 135 1 //, ,D”"
1.08 |
o =% 13 - il
1.06 2 3 AT
"y 3 Steiner pts —— 2 1.25 1
1.04 6 Steiner pts -+ o o
12 Steiner pts = o 12+ p——— |
1.02 g T T
1 | 115 3 Steiner pts —— -
! / / 6 Steiner pts -—+---
0.98 v | 1.1 12 Steiner pts =
0.96 i j 1.05 [} i
- J
0.94 . ! 1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Processors Number of Processors
Speedup for Different # of Steiner Points - Madagascar15k TIN Speedup for Different # of Steiner Points - Madagascar50k TIN
22 , ‘ ‘ . ; ; ; 2.8 ; ; ; ; ; ;
26 T
> 24 - q
A -
18 | P 1 22| 1
P g’ 2 F 3 Steiner pts =—
1.6 F 4 @ 6 Steiner pts -—+---
P 13 18| 12 Steiner pts - |
L 3 Steiner pts —<— 0 ’
7 6 Steiner pts -—+---
14 r s 12 Steiner pts -2 7 16 r 1
14 b
120 & |
/
L L L L L 1 //' L L L L L L
6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Processors Number of Processors

Figure 5.18: Graphs showing effect on speedup of increasing the number of Steiner
points for four terrains.

Despite the number of Steiner points used, a processor always sends across an

entire arc once it reaches a partition boundary. This includes all cost information

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 247

for every Steiner point along that edge. Therefore, for every crossing of a partition
boundary (i.e., every communication step), the same number of messages are sent
(i.e., only one) regardless of the number of Steiner points. The size of this message
does vary slightly of course since more cost information is needed when more Steiner
points are used. Also, even though the number of messages sent per boundary cross-
ing is constant, the number of messages sent per arc is not. For example, consider
propagation across an edge that crosses a partition boundary. Every time a Steiner
point on that edge gets an updated cost, the arc is sent to the neighbouring processor.
Thus, the arc is sent at least once per Steiner point (assuming that processing does
not terminate part way through). This results in an increase in communication time
as the number of Steiner points is increased. Figure 5.19 compares the total number
of messages sent across partition boundaries for 3, 6 and 12 Steiner point tests. It
clearly shows that the number of sent messages roughly doubles as the number of
Steiner points doubles as well. However, the compute and idle times also increase

since there are more Steiner points to process.

It is safe to say that the number of Steiner points used per edge does not play a
significant role in the performance of our algorithm when the fixed placement scheme
is used on small terrains. With every linear increase (i.e., m) in the number of Steiner
points per edge, there is a quadratic increase (i.e., m?) in the number of arcs of its
incident faces. With the smaller terrains, the difference between m and m? has a
more significant effect on the overall size of the graph. Hence, with larger terrains,
the use of more Steiner points should result in a higher percent of computation time,

thereby attaining better speedup.

Since we have shown in Chapter 2 that 6 Steiner points was enough to achieve
good accuracy, we continued the remainder of our tests with this same number of

Steiner points.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 248

Total Number of Messages Sent
(Madagascar50Kk)

@3 Steiner pts @6 Steiner pts []12 Steiner pts

4500000

, 4000000 1
S 3500000 — .
g 3000000 -
= 2500000 — =
% 2000000] -
S 1500000 -
3 1000000 u
5 500000 | | ﬂ —‘—I - =
: 2l

0 : : : :

1x1 2x1 2x2 3x2 3x3 4x3 4x4

Processor Configuration

Figure 5.19: Graph showing the total number of messages sent for the 50 sessions as
the number of Steiner points per edge is varied.

5.3.2.4 Measuring the Amount of Over-Processing and Re-processing

One measure of the efficiency of a parallel shortest path algorithm is the number
of vertices that are processed. Hribar et al. [66] use a similar strategy in that
they measure the total number of updates. Since faces (and hence graph vertices)
are shared between adjacent partitions, the cost to these vertices may change many
times if a shortest path crosses the boundary many times. More importantly, the cost
updates along border vertices may cause a rippling of cost updates throughout the
partition, thereby causing a re-computation of previously computed costs to many

non-border vertices of the partition as well. As a result, the cost to any particular

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 249

vertex may be re-computed many times. In a sequential label-setting algorithm, once
a vertex is removed from the priority queue, it never gets updated again. The parallel
distributed algorithm is less efficient in terms of the number of vertices processed. We
call this amount of additional computation over-processing. We also define the re-
processing count of a vertex to be the number of times that vertex had been processed

(i.e., removed from the priority queue).

When propagating over a boundary, another processor “takes over” a portion of
the active border and processes in parallel to other portions of the active border
on other processors. Therefore, the global active border will typically grow larger
than with a sequential algorithm for any particular source/target pair. This causes
vertices to be processed by the parallel shortest path algorithm that otherwise would
not have been processed by a sequential shortest path algorithm. Therefore, in order
to obtain a “good” estimate as to the amount of re-processing done by our algorithm,
we ran tests that processed the entire terrain. By doing this, we eliminate the need to
consider processed vertices that would not have even been processed by the sequential

algorithm.

We analyzed the results of our one-to-all tests with the six Steiner points per edge

using the weighted cost function. We computed the amount of over-processing as

V| — Vi)
2T %100 | %
(V| ’

where |V, | is the number of processed vertices when p processors are used and |V;] is

follows:

the number of processed vertices when one processor is used.

The graph of Figure 5.20 shows that the amount of over-processing generally
increases with the number of processors but also that the partition itself plays a role
as well. For example, notice that the 4x4 partition has less over-processing than

the 3x3 partitioning for the two small terrains. Notice also that the America40k

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 250

and Africa terrains have the largest amount of over-processing. This is due to the
unbalanced load across the processors due to clustering. Figure 5.21 shows how an
increase in the number of processors causes an increase in over-processing on average.
The graph shows the results for the corner source, middle source and an average of
both. These three curves present an average over all five terrains. The graph of figure
5.22 indicates the effects of terrain size on over-processing (averaged over all processor
configurations). It shows that the size of the terrain has neither an increasing nor

decreasing “trend” on the percent of over-processing.

5.3.3 Results For Multi-level Partitioning

We have shown through our graphs that without multi-level partitioning, processor
idle time is a significant factor that hinders the parallelization efforts of the algorithm,
resulting in poor performance. In some cases, many processors sit idle for up to 50% of
the time. This phenomenon has also been observed by Hribar et al. [66]. We have also
shown that the communication time does not play a large role in the poor performance
with the single-level partitioning since little time is spent on communication between
adjacent processors. It is clear that a better partitioning scheme that will reduce the

processor idle time is necessary.

We now discuss our test results for the multilevel MFP partitioning scheme. Our
tests were run on two of the same terrains as before (Madagascar 50k and America
40k) so as to allow a comparison with our previous tests. We ran two one-to-all
sessions as before (i.e., with the sources being at the corner and middle of the terrain).
Our test objectives for this scheme were to show that the processor idle time would

be reduced, thus resulting in better speedup for all terrains.

In our tests, we have chosen 3 different tile sizes for each terrain and for processor

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 251

Amount of Over Processing for Various Terrains
and Processor Configurations

W4x4 @4x3 O3x3 @3x2 @2x2 m2x1

% of Over-Processing

Africa Sanbern Mad15k America Mad50k

Figure 5.20: Graph showing over-processing for various terrains and processor con-
figurations.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 252

Effects of Number of Processors on
Over-Processing

& Corner —m— Middle Average ‘

40 al

N AN f
. AN |
5 [e

20

15 o %
10 0

2x1 2x2 3x2 3x3 4x3 4x4

tof Over-Processing
<
[~
Lod

!

Processor Configuration

Figure 5.21: Graph showing effects of processor configuration on over-processing.
Over-processing percentages are averaged for all terrains.

configurations of 2x2, 3x3 and 4x4. The tests were not aimed at determining the
“best” tile size for each terrain but rather to observe the effects on speedup and
idle time as the tile size is varied. Note also that we produced decompositions that
used at most 3 levels of partitioning. We then computed the speedup and compared
it to the single level of partitioning. With our initial implementation, the cost of
communication was high and hence the benefits of the multi-level scheme were not as
apparent in the results of our tests. At this point, we investigated our implementation
further and made some improvements in order to reduce the communication speed.
Our main changes were to decrease the size of each message being sent and to change

to a more efficient version of LAM MPI.

Our initial change reduced the size of all messages sent during propagation across

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 253

Effects of Terrain Size

on Over-Processing
40
35

30 /’\

=3
{7 N
4 25 \
]
P 20
s ————~ \
o 15 »
B>
? 10
o
X 5

0 . . . T

Africa Sanbern Mad15k America Mad50k
Increasing Terrain Size =======>

Figure 5.22: Graph showing effects of terrain size on over-processing. Terrain sizes
increase from left to right.

the partition boundaries. Our original implementation used a fixed size array to store
all incident arcs from a vertex. Whenever propagation reached the boundary from
some Steiner point which was shared between two partitions, this entire array was sent
in the message. This is not always necessary however, since propagation from Steiner
points on an arc requires at most four arcs to be sent in the message. Our initial
implementation sent the entire array in each message. Our improved implementation
sent only those arcs that were necessary. The second change was to switch from
version 6.1 of the LAM MPI libraries to the more efficient version 6.3b libraries. In
version 6.1, the MPI_Iprobe function was implemented rather inefficiently and a call
to this function would cause a significant delay. The newer 6.3b version has improved
significantly and this function is much more efficient and returns much quicker than
with version 6.1. As will be seen, the difference in this function’s efficiency accounts

for the difference in computation time between the slow and fast communication tests.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 254

The graphs of Figure 5.23 show the differences in speedup between our original
implementation (i.e., the slow communication) and our improved implementation (i.e.,
the fast communication). The difference in speedup between the implementations
is significant for the smaller tile sizes and less significant for the larger tile sizes.
The effect of increasing the communication time with the smaller tile sizes is not
as noticeable when the faster communication is used. That is, the communication
overhead of having many small tile sizes becomes insignificant as communication speed
increases and this leads to better overall speedup. With the slower communication,
the larger tile sizes (and hence the single-level partitioning) outperform the smaller
tile sizes. Notice that the America40k terrain (which was the most clustered terrain)
showed a more significant speedup than the Madagascar50k terrain when using the
multi-level partitioning. This indicates that the multi-level partitioning scheme has
an advantage over the single-level partitioning scheme for terrains that are more
clustered. Also shown on the graphs is the maximum efficiency that was obtained
from our tests. Notice that efficiencies of around 25% were obtained with the 4x4
processor configuration and this efficiency increases to up to 42% and 59% for the

3x3 and 2x2 processor configurations, respectively.

Figure 5.24 shows the processor usage for different processor configurations and tile
sizes for the Madagascar50k and America40k terrains. The leftmost set of 12 bars
in each graph represent the processor usage when the slow communication speeds
were used and the rightmost for the fast communication speeds. Notice that the
overall communication time is negligible with the fast communication. The single-
level partitioning is the rightmost bar in each group four bars. As expected, the
graphs show that as the tile size decreases (i.e., more re-partitioning is used) the
idle time is traded off with communication time. Since our objective was to reduce
the idle time of processors, the multi-level partitioning scheme has accomplished this.

This reduction is more pronounced with the America40k terrain since it is much more

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 255

Speedups Using Slow Vs. Fast Communication (Madagascar50k TIN)

@ Fast Comm.] Slow Comm. ‘

Speedup

2x2 (1000)
2x2 (2500)
2x2 (5000)
2x2 (49K)
3 (2500)
3x3 (49K)
4x4 (750)
4x4 (1000)
4x4 (2000)
4x4 (49K)

Processor Configuration (Tile Size)

Speedups Using Slow Vs. Fast Communication (America40k TIN)
@ Fast Comm. [JSlow Comm.

4.5 - 25%

Speedup

2x2 (39K)
3x3 (1000)
3x3 (2000)
3x3 (3000)
3x3 (39K)
4x4 (500)
4x4 (1000)
4x4 (2000)
4x4 (39K)

—~ —~
o o
o o
o Tel
— N
~ ~
o o
x x
[3V) [3V)

2x2 (5000)

Processor Configuration (Tile Size)

Figure 5.23: Differences in speedup between the slow and fast communication.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 256

Processor Usage for Different Tile Sizes and Communication Speeds
(Madagascar 50k)
700
O Compute M Idle OO Communication
600
500
—
& 400 A
c
o
& 300 -
£
@
€ 200 1
E
100 1
0 T y y y T T T y y
S © © g S @ © g 3 © g & S © © g S © © g 3 © g &
8 B 8 8 8 8 B 8 2 8 8 8 S B 8 8 8 8 B 8 2 8 8 8
4 N 0 & = N o Y 4 8 o 4 N n o =4 N o Y 4 8 o
Y T T < O) T T T < Y T T = O} T T T <
¥R 2L & F 3 X 3 RII 2R & F 3 X 3
I & J ¢ & & & I & 3 I & J ¢ & & & < < X
N 3] < N ™ <
e sl ow communi cation | fast communication ---------- >
Processor Configuration (Tile Size)
Processor Usage for Different Tile Sizes and Communication Speeds
(America 40k)
500
450 4 ||:|Compute M Idle O Communication
L
400
350
% 300
°
S 250
3
@ 200
£ 150
T 100
50
0 T
S o o &g S § © & g © © © S © © © g @ 8 & g © o ©
o o
o 0 o o o o ™ o 0 o o o o n o o o o) o %) o o o
4 N 0 o = Y o Y 4 & o 4 N 0 o 4 Y o Y 4 & o
e) Y T 0 oM™ A e N 17 e) Y Y 9 o S T T 0
¥R I 22 & & § Y ¥ 3 2RI 2 2 & & § Y ¥ 3
N N N < ™ ™ x < < X N N N < ™ ™ X < < x
N 3] < ~N (3] <
S sl ow communi cation | fast conmmunication ---------- >
Processor Configuration (Tile Size)

Figure 5.24: Graphs showing processor usage as processor configuration and tile sizes
are changed for implementations with either slow or fast communication speed.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 257

clustered than the Madagascar 50k terrain. With slow communication, this tradeoff
is not as helpful with respect to reducing the overall runtime. However, with the
faster communication speed, the tradeoff of idle time for communication proves to be
advantageous and provides a significant improvement in speedup for the smaller tile

sizes (when compared to the slow communication results).

The graphs of Figure 5.24 also show that the computation time significantly de-
creases with the faster communication (up to a factor of roughly two with the smallest
tile sizes). This discrepancy is caused by the change in MPI versions between the two
implementations. The algorithm checks occasionally to see if there are any incoming
messages from other processors by using the MPI_Iprobe function. Since it is not used
to send or receive messages, we decided not to count this as communication overhead,
but rather as a computation overhead. The more efficient version of MPI as used in
our improved implementation allows the computation time to be significantly reduced

since the calls to the MPI_Iprobe function return quickly.

The graphs of Figure 5.24 also show that the percentage of computation time
increases (in general) with the number of partition levels (i.e., the smaller tile sizes).
Much of this is due to the increase in over-processing that is inherent to the multi-
level partitioning. Figure 5.25 shows the amount of over-processing for each of the tile
sizes for the original implementation (graphs for the improved implementation were
similar). The graphs show that the single-level partitioning has the least amount of
over-processing. Also, as more processors are used, the amount of over-processing

increases dramatically with the smaller tile sizes.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 258

Over-Processing for Different Tile Sizes (Madagascar 50k)
120%
100%
80%
j=2
f=
B
4 60%
o
<
4
5] 40%
>
o
©
N 20%
0%
s © © £ s © © g 3 & & g
3 B 8 =& 8 8 B) =z 8 8 =
o o © o) S o ® < p=3 8 <
g8 g < 2 g2 g o 03 3 <
N ~N N 132 o™ o < <
Processor Configuration (and Tile Size)
Over-Processing for Different Tile Sizes (America 40k)
120%
100%
80%
j=2)
f=
a
@ 60 %
o
<
o
) 40%
>
[e)
k]
< 20%
0%
s © © = s © © 2 g T © £
s B 8 = 8 8 8 = & 8 8 ¢
(=3 o v ¥ (=2 X3 e Q < o) S s
g o2 g d 2 g2 g @ 03 3 <
N ~N ~N 32 o™ 3l < <
Processor Configuration (and Tile Size)

Figure 5.25: Graphs showing amount of over-processing as processor configuration
and tile sizes are changed for two terrains.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 259

5.3.3.1 Few-to-All Tests

One of the main advantages of the multilevel partitioning scheme is that it helps to
reduce causality errors. To fully see the effects of causality errors, it is necessary
to compute few-to-all shortest paths using multiple sources, each with a different
starting weight. This kind of computation can be useful for facility location problems
in which each facility has a different “attraction” factor and we would like to compute

a weighted Voronoi diagram on the polyhedral surface.

We ran few-to-all tests on our Americad0k and Madagascar50k terrains. The tests
used five source vertices on the terrain: four placed near the four corners of the terrain
boundary and one near the center. The sources were assigned weights of 1, 50, 100,
150 and 200. We used four different partitionings which were formed using different
tile sizes as our one-to-all tests as well as various processor configurations of 2x2, 3x3

and 4x4. The speedups obtained are shown in Figure 5.26.

The speedups are better than those of the one-to-all tests. Through these tests,
the maximum efficiency has almost doubled for our tests with the 4x4 processor
configuration. Increases in efficiency are also noticeable in the 3x3 and 2x2 processor
configuration tests. The maximum overall efficiency obtained was observed from the

2x2 tests which reached a value of 64%.

Examine the results from the 4x4 tests on the America 40k terrain. Notice that
the efficiency increases as the tile size decreases. If however, the tile size is made too
small, then the efficiency will begin to decrease due to the overhead of communication.
Hence, the peak in efficiency occurs with the optimal tile size which is likely less than
or around 500. It should be noted that even better speedups overall can be obtained

once the optimal tile size has been determined experimentally.

Figure 5.27 shows the difference in the amount of over-processing between the

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 260

Speedups for Various Tile Sizes With Multiple Sources (Madagascar50k)
48%
8
7
6 |
49%
a 5]
=)
° 4
b 64%
o
%) 31
2
14
0
N N ~ — N N ~ . s N ~ .
g § § s g 8 § g 8 8 8§ s
S re} =} 1< S =] el 1< = S S 1<)
p=3 d [=] pa o) =] < p= S =3
g 2 g 3 g 2 ¢ 3 S S S <
Q Q S] @ @ @ %2 < < 3
~N @ <
Processor Configuration (Tile Size)
Speedups for Various Tile Sizes With Multiple Sources (America40k)
8
42%
7
6
v
a 5 45%
=1
° 4 |
(o]
(%) 62%
o
%) 31
2
1
0
~ ~ ~ - S ~ s — s ~ ~ -
g 8 8 8§ 8 8 g 8 s 8 8 §
S el =] 1] S S o 1S3 <L S o 1<)
s) 22 3 e o »] < pa) S o3
; 2 ;) 8 M T I3
g 2 8 g 2 % 8 3 S % 3 3
Q Q Q ¥ ® [Q < < P
N 3l <
Processor Configuration (Tile Size)

Figure 5.26: Speedups for few-to-all tests on America40k and Madagascar50k TINs.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 261

single source tests and these new multiple weighted source tests. Notice that the
amount of over-processing is significantly reduced in many cases when the multiple
weighted sources are used. This improvement is most noticeable with the smaller
tile sizes and larger number of processors. This indicates that the MFP partitioning

scheme is better suited for weighted shortest paths with multiple sources.

CHAPTER 5. A PARALLEL SHORTEST PATH SIMULATION 262

Over-Processing Differences Between Single Source and Multiple
Weighted Sources (Madagascar 50k)
O Single O Multiple
120%
100%
'E’ 80%
2]
3
o 60%
o
o
5 40%
>
(e}
© 20%
R
0%
S S S = 5 = 5 = R 5 5 =
g g 8 & g g g 8 g § § =&
= & 8 g 2 & d g 3 2 8 3
X X X N Q Q ? & < X X <
N N N 3l 3l) < <
Processor Configuration (and Tile Size)
Over-Processing Differences Between Single Source and Multiple
Weighted Sources (America 40k)
(] Single O Multiple
100%
90%
80%
70%
2 60%
7
3 50%
3
& 40%
g 30%
[¢)
5 20%
8 10%
0%
g & &8 =& g8 & § = g § § @8
S 3 3 S 38 8 @ 8) 8 IS} S
) N 0 >) [T > T) g 3
bt bt ¥ » 5 g L] 1<) * g = ®
X X X & 2 2 & & < X X e
N N N N & & 2 < < B
N 3l <
Processor Configuration (and Tile Size)

Figure 5.27: Comparison of over-processing between single source and multiple source
tests.

Chapter 6

Conclusions and Open Problems

Shortest path problems belong to a class of geometric problems that are fundamental
and of significant practical relevance. More specifically, the problem of computing
shortest paths on polyhedral surfaces is of high interest in the area of GIS since
it is a required computation for applications such as hydrology, search and rescue,
road design, hazardous waste removal, visibility etc.. While realistic shortest path
problems frequently arise in applications where the cost of travel is not uniform over
the domain, the time, space and implementation complexities of existing algorithms
even for the planar case are extremely high. These high complexities have motivated

our study of approximation algorithms.

In Chapter 2, we began by describing a simple approximation algorithm in which a
shortest path between vertices could be formed by traveling only along the edges of the
polyhedral surface P. As a result, we were able to transform the problem to a graph
problem, thereby allowing efficient (and well-studied) graph shortest path algorithms
to be applied. Our empirical results have shown that even this simple approximation

strategy provided decent results which were less than twice that of the shortest path

263

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 264

cost. To increase the accuracy, we then developed a scheme that placed Steiner points
along the terrain edges and interconnected them with a complete graph per face. As
the number of Steiner points per edge is increased, the graph becomes more dense
per face and the resulting path is more accurate. Experimental results have shown
that only a few (constant) Steiner points needed to be added per edge in order to
achieve high accuracy. This reduces the running time to O(nlogn) in practice which
has a lower dependency on n than previous approximation algorithms for the same

problem.

We also theoretically establish bounds on the approximation quality and give
worst-case bounds on the run-time of our algorithms. For the unweighted scenario,
we compared our accuracy to that of Chen and Han [21] and gave results indicating
that our algorithm performs up to 50 times faster with a minimum observed speedup
of 14 times and produces nearly identical path results. We claim that our algorithm
is efficient with respect to accuracy versus running time and is simple to implement.
In order to validate our claim of practicality, we ran tests on many terrains which
varied with respect to size, density, and height variation. We also ran tests on general

polyhedral models (based on 3D data) in order to further verify the schemes.

In addition to the schemes presented in Chapter 2, we have designed other Steiner
placement and interconnection schemes. Tests have shown that these other schemes

did not perform well. This brings to mind a couple of interesting questions:

e Is there any advantage to placing Steiner points within the interior of the faces
of P 7 All the schemes that we have tested with Steiner points in the interior of
faces have shown worse accuracy than our schemes that do not contain points
in the interiors. The intuition of why this may be the case is that shortest paths
do not bend in the interior of faces, so it allowing our approximated path to

bend within a face would be counter-productive when computing path costs.

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 265

e How can m Steiner points be placed on each face such that the best accuracy
is obtained 7 Once again, intuition tells us that points should probably not be
placed within a face but perhaps there are better ways to place the points along
the edges of P. For example, consider the subclass of TINs. Shortest paths
are probably less likely to travel up mountains and then back down again, so
it may be better to place less Steiner points around the peaks and more along

the lower elevation edges.

Besides the variation in the Steiner point placement schemes, there are additional
open problems. For the Euclidean shortest path problem, our implementation of
Chen and Han’s algorithm allowed us to compare the path accuracies obtained by
applying our schemes to the true value. For the weighted shortest path problem, no
algorithm exists to produce an exact solution. It is not even clear as to whether or not
the weighted shortest path on polyhedral surfaces can even be computed to arbitrary
accuracy. It remains thus open to establish whether our conjecture that the accuracy
of our weighted shortest paths converges to the true value is correct. (The curves for

weighted and unweighted look very similar suggesting correctness).

Our algorithm is also of particular interest for the case of queries with unknown
source and destination. The preprocessing time taken to answer queries efficiently,
increases the internal storage space requirements and, as also observed by Mata and
Mitchell [86], it remains an open question as to how our shortest path algorithms fare

experimentally in external memory settings.

A different class of approximation is an e-approximation where we would like to
find a path such that |[II'(s,?)|| < (1 + ¢€)||II(s,?)|| for some ¢ > 0. We can prove
that our vertex-to-vertex schemes of Chapter 2 are e-approximations. However, the
number of Steiner points required and preprocessing cost could be high, making this

scheme of little practical value. The worst case bounds, when compared in the integer

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 266

coordinate model, match that of Mata and Mitchell [86]. In Chapter 3, we have
presented algorithms to compute e-approximate paths between two points on P. The
purpose of the algorithm was to improve upon the theoretical accuracy of our work in
Chapter 2 as well as to improve upon previous research by reducing the dependency

on 7 in the running time.

The complexity of our e-approximation algorithm depends upon polyhedral pa-
rameters, including the number of faces, minimum vertex angle, maximum edge length
and the ratio of weights. The actual path accuracy varies slightly depending on
whether s and t are vertices of P or arbitrary points on P. In any case, the path
accuracy can be adjusted to be e-approximate by replacing € by some €; which is
¢/C, for some constant C' which varies according to the cost metric (i.e., Euclidean

or weighted) as well as the location of s and ¢.

It was shown that if s and/or ¢ is chosen to lie arbitrarily on P that this path
was also bounded but the first and last segments of these paths were not in G. When
constructing G for the case in which s and ¢ are given ahead of time, we merely extend
G to contain additional graph edges from s and ¢ to vertices of G corresponding to

Steiner points on their face boundaries.

Our scheme can also be applied to the situation in which either or both of s and ¢
are queried provided that we allow a preprocessing stage. In the case of a fixed source
we can compute a shortest path map M, from s to all vertices of G. If t is a vertex of
P, we can merely locate ¢ in G and report the shortest path cost from M, in constant
time or the path itself in time O(k), for a k-link path. An efficient implementation
will allow vertex t to be located in constant time. If ¢ is not a vertex of P then
we could check all the Steiner points along the borders of the face containing ¢ and
then report the minimum path to ¢ through one of these Steiner points in O(m + k)

time. For the case when both s and ¢ are queries, a similar approach can be taken by

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 267

constructing a forest of shortest path trees using an all-vertex-pairs approach. Once
again, a brute force approach can be taken by examining all O(m?) pairs of shortest

paths between Steiner points of the faces containing s and t.

A different approach can also be used to solve this two-point query problem with a
more efficient query time. An approach which followed from our work was presented
by Aleksandrov et al. [9] which is based on using separators to divide the polyhedron
into mn/r parts, where r is an adjustable constant. The polyhedron is preprocessed
in O(nmrlogr + nm?r + @logm—’: + %) time where 0 < r < n. Queries can

then be answered in O(m + r) time.

We are currently generalizing the techniques used here in two ways. First, we are
considering the problem of computing e-approximate weighted shortest paths between
two points among multiple polyhedra. The problem is as follows. We are given k&
disjoint polyhedral surfaces Py, Ps,...Pr and two points s and ¢ lying on P, and P,
respectively. Each polyhedron is triangulated and each face is given a fixed positive
and non-zero real weight representing the cost of travel on that face. In addition, the
free space between all polyhedra is given a fixed positive and non-zero real weight.
We wish to compute a path IT'(s,t) from s to ¢ that consists of segments lying on
the surfaces of one or more polyhedra as well as straight line segments in 3-Space
that join two points of different polyhedra. Moreover, the path is an e-approximation
of an actual weighted shortest path Il(s,t). The problem is essentially the weighted
version of the problem previously studied by Papadimitriou [100], Choi et al. [26]
and Clarkson [29] (see Chapter 1). The basic idea of this algorithm is the same as
that which is presented in Chapter 3, except that additional Steiner points are placed

interior to the faces of each polyhedron.

Our second generalization is to compute weighted shortest paths in 3D as follows.

Consider a tetrahedralized polyhedral universe U4 where each tetrahedron is given

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 268

a fixed positive weight that represents the cost of travel through that tetrahedron.
Given two points s and t that lie within two different tetrahedra, we would like
to determine an e-approximation to a weighted shortest path between them. To
our knowledge, this would be the first algorithm to computed e-approximations of
weighted shortest paths in 3-space. Once again, the ideas are similar in that we now

place Steiner points within the tetrahedra as well as on their faces and edges.

To investigate a more realistic model of computation, we investigated the problem
of computing shortest anisotropic paths on the terrain. Due to the success of our
initial schemes in Chapter 2, we decided to apply the same approach to solving this
minimal energy problem. We supply two schemes for creating a graph, the first
being more practical, while the second is more theoretical. We provide a theoretical
analysis of these two schemes and show that e-approximations are possible. Through
experimental analysis, we have show that the first of these algorithms has similar

convergence behaviour (with respect to path accuracy) as our results in Chapter 2.

One obvious extension to the metric which was used in our shortest energy path
algorithm is that of restricting either the maximum allowable degree of each turn or
the number of turns allowed in our approximation. The current approximations allow
zig-zag paths which typically require sharp turns (possibly close to 180 degrees). For
most vehicles, this is not possible. It would be more practical to produce paths that
do not require these “sharp” turns. This would provide a more realistic solution that

can be applied to real-world vehicles.

Some problems do arise, however, with this new constraint. With the previous
model (which ignored turns), there was a possibility that for a given pair of points on
P, a valid path between them may not exist. With the added constraint on the turn
angles, the probability of there being no valid path increases. The example of Figure

6.1 shows a valid switchback path between two points on a single face. The example

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 269

shows the face with very steep slopes on the adjacent faces which may not allow
traversal. Hence, if sharp turn angles are disallowed, no valid path exists between the

two points shown.

Figure 6.1: Example showing a switchback path between two points on a face. If the
switchback path produces turns that are too sharp, there may be no valid path.

Assume now that given two points s and ¢ on P that a valid path exists between
them such that the turning constraint is also satisfied. In a sense, we are disallowing
switchback paths within steep faces. This constraint produces a problem with our
first algorithm since our approximated path segments are not of the same type as
their corresponding shortest path segments. Hence, the existence of II(s,¢) does not
ensure the existence of a valid II'(s,¢). In our second algorithm, we ensure that
our approximated path segments are of the same type as the actual path segment
which they approximate. However, our additional s” segments that are used to join
segments from consecutive faces may cause sharp turns. Therefore, the algorithm as

stated, may not produce valid paths either.

Intuitively, if we add more and more Steiner points to the edges of P, then the

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 270

chance of there being a valid turn path between s and ¢ increases. However, it is non-
trivial to determine the number of additional Steiner points that are required to ensure
a path. It remains an open problem as to whether or not an efficient approximation
can be produced for all valid II(s, t) paths when this additional turning constraint is

added.

In Chapter 5 we present a parallel algorithm to compute approximations of short-
est paths (Euclidean or weighted) between a source and target vertex on the surface
of a polyhedron P 3. The algorithm also applies to the one-to-all and few-to-all
weighted shortest path problems as well. The algorithm is based on our previous
sequential algorithms in that it constructs a graph on the surface of P. The par-
allelization involves partitioning the terrain among processors and running Dijktra’s
algorithm on each processor, where each processor maintains only a local queue.

Communication across partition boundaries occurs through message passing.

The data partitioning used in our experiments was that of the Multilevel Fixed
Partition trees (see Nussbaum [97]). The MFP trees are a general form of data
partitioning that recursively splits dense regions into levels according to a fixed (user-
defined) threshold size. The partitioning incorporates an implicit mapping scheme

which helps to minimize processor idle time and also reduce causality errors.

Through experimental analysis, we examined algorithmic-related performance fac-
tors such as varying the number of Steiner points which were placed on the edges of
P as well as the computational intensity of the cost function (Euclidean or weighted).
The tests have shown that the performance was not significantly affected by the vari-
ance in the number of Steiner points but that the more computationally-intensive cost
functions do provide better speedup. It would be interesting to further investigate

the effects that other cost functions have on the performance of the algorithm.

3The implementation was for the special case in which P is a terrain.

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 271

We have also determined that data-related factors such as relative source/target
locations and data partitioning have a significant affect on the performance. The
one-to-all variation of the algorithm has been shown to provide better performance
than the one-to-one sessions. We obtained efficiencies of up to 27% on a 4x4 set of
processors with the one-to-all tests whereas the one-to-one tests provided an average
efficiency of about 15%. These speedups are consistent with results obtained from
Traff [118]. In the case of few-to-all computations with weighted sources, we were
able to improve upon the speedup to reach efficiencies of 64%. Through our tests,
we were able to make the conclusion that the parallel algorithm is more worthwhile
for large terrains since cost of communication is lower compared to the amount of

computation to be done.

Our tests here have shown that the tile size (i.e., number of partition levels) plays
an important role in determining the best partitioning strategy. For data that is
uniformly distributed (non-clustered), the single level of partitioning has shown to
provide performance comparable to the multi-level partitioning. An improvement in
speedup with the multi-level partitioning was most noticeable on the terrain that was
most clustered. The tile size that achieves “best” performance depends on the size
and clusterization of the terrain. We have not determined the optimal tile size for
our test terrains. As stated earlier, this value will most likely need to be determined
through exhaustive experimentation since it depends highly on the data. However,
from our experimental results we were able to conclude that the true benefits of the
multi-level partitioning become apparent with a larger number of processors and for

larger terrains with clustered areas.

One interesting topic for further study would be to try and formulate some kind
of measure as to the density and/or sparseness of the data and propose a formula

for determining an optimal (or near-optimal) tile size for that data. Also, as of yet,

CHAPTER 6. CONCLUSIONS AND OPEN PROBLEMS 272

the application has not been tested using other partitioning techniques. It would be

interesting to contrast and compare other partitioning schemes with the MFP scheme

used here.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

P. Adamson and E. Tick, “Greedy Partitioned Algorithms for the Shortest-Path Prob-
lem”, International Journal of Parallel Programming, Vol. 20, No. 4, 1991, pp. 271-298.

P. Adamson and E. Tick, “Parallel Algorithms for the Single-Source Shortest-Path

Problem”, International Conference on Parallel Processing, 1992, pp. I111-346-350.

P.K. Agarwal, B. Aronov, J. O’'Rourke and C.A. Schevon, “Star Unfolding of a Poly-
tope with Applications”, Proceedings of the 2nd Scandinavian Workshop on Algorithm
Theory, Lecture Notes in Computer Science, Vol. 447, Berlin, 1990, pp. 251-263.

P.K. Agarwal, S. Har-Peled, M. Sharir, and K.R. Varadarajan, “Approximating Short-
est Paths on a Convex Polytope in Three Dimensions”, Journal of the ACM, Vol. 44,
1997, pp. 567-584.

P.K. Agarwal, B. Aronov, J. O’Rourke, and C. Schevon, “Star Unfolding of a Polytope
with Applications”, SIAM Journal of Computing, 26, 1997, pp. 1689-1713.

P.K. Agarwal and K.R. Varadarajan, “Approximating Shortest Paths on a Noncon-
vex Polyhedron”, Proceedings of the 38th IEEE Symp. on Foundations of Computer
Science, 1997.

Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tarjan, “Faster
Algorithms for the Shortest Path Problem”, Technical Report 193, MIT Operations
Research Center, MIT, 1988.

273

BIBLIOGRAPHY 274

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Aingworth, C. Chekur, P. Indyk, and R. Motwani, “Fast Estimation of Diameter and
Shortest Paths (Without Matrix Multiplication)”, Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 547-553.

L. Aleksandrov, M. Lanthier, A. Maheshwari and J.-R. Sack, “An e-Approximation
Algorithm for Weighted Shortest Path Queries on Polyhedral Surfaces”, 14th European

Workshop on Computational Geometry, Barcelona, Spain, 1998, pp. 19-21.

L. Aleksandrov, M. Lanthier, A. Maheshwari and J.-R. Sack, “An e-Approximation
Algorithm for Weighted Shortest Paths on Polyhedral Surfaces”, 6th Scandinavian
Workshop on Algorithm Theory, LNCS 1432, Stockholm, Sweden, 1998, pp. 11-22.

N. Alon, Z. Galil, and O. Margalit, “On the Exponent of the All Pairs Shortest Path
Problem”, Proceedings of the 32nd Annual IEEE Symposium on Foundations of Com-
puter Science, 1991, pp. 569-575.

N. Alon, Z. Galil, O. Margalit, and M. Naor, “Witnesses for Boolean Matrix Multipli-
cation and for Shortest Paths”, Proceedings of the 33rd Annual IEEE Symposium on
Foundations of Computer Science, 1992, pp. 417-426.

B. Aronov and J. O’Rourke, “Nonoverlap of the Star Unfolding”, Discrete and Com-
putational Geometry, 8, New York, 1992, pp. 219-250.

M.J. Atallah and D.Z. Chen, “Parallel Rectilinear Shortest Paths With Rectangular

Obstacles”, Computational Geometry: Theory and Applications, 1, 1991, pp. 79-113.

M.J. Atallah and D.Z. Chen, “On Parallel Rectilinear Obstacle-Avoiding Paths”, Com-

putational Geometry: Theory and Applications, 3, 1993, pp. 307-313.

A. Baltsan and M. Sharir, “On the Shortest Paths Between Two Convex Polyhedra”,
Journal of the ACM, 35, January 1988, pp. 267-287.

Richard Bellman, “On a Routing Problem”, Quarterly of Applied Mathematics, Vol
16, No. 1, 1958, pp. 87-90.

BIBLIOGRAPHY 275

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D.P. Bertsekas, F. Guerriero, and R. Musmanno, “Parallel Asynchronous Label-
Correcting Methods for Shortest Paths”, Journal of Optimization Theory and Ap-
plications, Vol. 88, No. 2, 1996, pp. 297-320.

J. Canny and J. H. Reif, “New Lower Bound Techniques for Robot Motion Planning
Problems”, Proceedings of the 28th IEEE Symp. on Foundations of Computer Science,
1987, pp. 49-60.

B. Chagzelle, “Triangulating a Simple Polygon in Linear Time”, Discrete Computational

Geometry, Vol. 6, 1991, pp. 485-524.

J. Chen and Y. Han, “Shortest Paths on a Polyhedron”, International Journal of
Computational Geometry and Applications, Vol. 6, 1996, pp. 127-144.

D.Z. Chen, K.S. Klenk and H.T. Tu, “Shortest Path Queries Among Weighted Obsta-
cles in the Rectilinear Plane”, Eleventh Annual ACM Symposium on Computational

Geometry, Vancouver, Canada, 1995, pp. 370-379.

B.V.Cherkassky, A.V. Goldberg, and C. Silverstein, “Buckets, Heaps, Lists, and Mono-
tome Priority Queues”, Proceedings of the 8th ACM-SIAM Symposium on Discrete
Algorithms, 1997, pp. 83-92.

L. Paul Chew, “There Are Planar Graphs Almost as Good as the Complete Graph”,
Journal of Computer and System Sciences, 39, 1989, pp. 205-219.

Y.J. Chiang and J.S.B. Mitchell, “T'wo-Point Euclidean Shortest Path Queries in the
Plane”, Proceedings of the 10th Annual ACM Symposium on Discrete Algorithms, 1999,
pPp- 215-224.

J. Choi, J. Sellen and C.K. Yap, “Approximate Euclidean Shortest Path in 3-Space”,
International Journal of Computational Geometry and Applications, Vol. 7, No. 4,
1997, pp. 271-295.

BIBLIOGRAPHY 276

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Choi, J. Sellen and C.K. Yap, “Precision-Sensitive Euclidean Shortest Path in 3-
Space”, Proc. 11th Annual Symp. on Computational Geometry, Vancouver, BC, 1995,
pp- 350-359.

J. Choi and C.K. Yap, “Rectilinear Geodesics in 3-Space”, FEleventh Annual ACM

Symposium on Computational Geometry, Vancouver, Canada, 1995, pp. 380-389.

K.L. Clarkson, “Approximation algorithms for shortest path motion planning”, Proc.

19th Annual ACM Symp. Theory of Computing, 1987, pp. 56-65.

K.L. Clarkson, S. Kapoor and P.M. Vaidya, “Rectilinear Shortest Paths Through
Polygonal Obstacles in O(n log3/ 2) time”, Proceedings of the 8rd Annual Symposium
on Computational Geometry, Waterloo, Canada, June 1987, pp. 251-257.

E. Cohen, “Efficient Parallel Shortest-Paths in Digraphs with a Separator Decompo-
sition”, Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and
Architectures, 1993, pp. 57-67.

D. Coppersmith and S. Winograd, “Matrix Multiplication Via Arithmetic Progres-
sions”, Journal of Symbolic Computation, Vol. 9, 1990, pp. 251-280.

G. Das and G. Narasimhan, “Short Cuts in Higher Dimensional Space”, Proceedings
of the 7th Annual Canadian Conference on Computational Geometry, Québec City,
Québec, 1995, pp. 103-108.

M. de Berg, M. van Kreveld, B.J. Nilsson and M.H. Overmars, “Finding Shortest Paths
in the Presence of Orthogonal Obstacles using a Combined L; and Link Metric”, Proc.
of the 2nd Scandinavian Workshop on Algorithm Theory, 1990, pp. 213-224.

M. de Berg, M. van Kreveld and B.J. Nilsson, “Shortest Path Queries in Rectilinear
Worlds”, International Journal of Computational Geometry and Applications, Vol. 2,
No. 3, 1992, pp. 287-309.

BIBLIOGRAPHY 277

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. de Berg, M. Katz, A. Frank van der Stappen and J. Vleugels, “Realistic Input
Models for Geometric Algorithms”, Proceedings of the 13th Annual Symposium on
Computational Geometry, Nice, 1997, pp. 294-303.

P.J.de Rezende, D.T. Lee and Y.F. Wu, “Rectilinear Shortest Paths With Rectilinear
Barriers”, Proc. of the 1st Annual ACM Symposium on Computational Geometry, 1985,
pp- 204-213.

E.W. Dijkstra, “A Note on Two Problems in Connection with Graphs”, Numerical
Mathematics 1, 1959, pp. 269-271.

J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan, “Relaxed Heaps: An
Alternative to Fibonacci Heaps with Applications to Parallel Computation”, Commu-

nications of the ACM, 31(11), 1988, pp. 1343-1354.

H. ElGindy and M. Goodrich, “Parallel Algorithms for Shortest Path Problems in
Polygons”, The Visual Computer, No. 3, 1988, pp. 371-378.

R.W. Floyd, “Algorithm 97 (SHORTEST PATH)”, Communications of the ACM, 5(6),
1962, pp. 345.

Lestor R. Ford, Jr., and D.R. Fulkerson, “Flows in Networks”, Princeton University
Press, 1962.

G.N. Frederickson, “Fast Algorithms for Shortest Paths in Planar Graphs, with Ap-
plications”, STAM Journal of Computing, 16, 1987, pp. 1004-1022.

G.N. Frederickson, “Planar Graph Decomposition and All-Pairs-Shortest-Paths”,
Journal of the ACM, 38, 1991, pp. 162-204.

M.L. Fredman and R.E. Tarjan, “Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms”, Journal of the ACM, 34(3), 1987, pp. 596-615.

BIBLIOGRAPHY 278

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

M.L. Fredman and D.E. Willard, “Surpassing the Information Theoretic Bound with
Fusion Trees”, Journal of Computer and Systems Sciences, 47, 1993, pp. 424-436.

M.L. Fredman and D.E. Willard, “Trans-dichotomous Algorithms for Minimum Span-
ning Trees and Shortest Paths”, Journal of Computer and System Sciences, 48, 1994,
pp- 553-551.

Harold N. Gabow and Robert E. Tarjan, “Faster Scaling Algorithms for Network
Problems”, STAM Journal of Computing, 18(5), 1989, pp. 1013-1036.

G. Gallo and S.Pallottino, “Shortest Path Methods: A Unified Approach”, Mathemat-
ical Programming Study, Vol. 26, 1986, pp. 38-64.

L. Gewali, A. Meng, J. Mitchell and S. Ntafos, “Path Planning in 0/1/0cc Weighted
Regions With Applications”, Proc. of the 4th Annual Symposium on Computational
Geometry, 1988, pp. 266-278.

S.K. Ghosh and D.M. Mount, “An Output-Sensitive Algorithm for Computing Visi-
bility Graphs”, SIAM Journal of Computing, 20, 1991, pp. 888-910.

A.V. Goldberg, “Scaling Algorithms for the Shortest Path Problem”, SIAM Journal
of Computing, 24, 1995, pp. 494-504.

M. Goodrich, S. Shauck and S. Guha, “Parallel Methods for Visibility and Shortest-
Path Problems in Simple Polygons”, Algorithmica, 8, 1992, pp. 461-486.

L. Guibas, J. Hershberger, D. Leven, M. Sharir and R.E. Tarjan, “Linear Time Al-
gorithms for Visibility and Shortest Path Problems Inside Triangulated Simple Poly-
gons”, Algorithmica, 2, 1987, pp. 209-233.

L. Guibas and J. Hershberger, “Optimal Shortest Path Queries in a Simple Polygons”,
Proc. of the 8rd ACM Symposium on Computational Geometry, 1987, pp. 50-63.

BIBLIOGRAPHY 279

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

P.E. Hart, N.J. Nilsson, B. Raphael, “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths”, IEEE Transactions on System Science and Cybernetics,

SSC-4(2), 1968, pp. 100-107.

S. Har-Peled, M. Sharir, and K.R. Varadarajan, “Approximating Shortest Paths on a
Convex Polytope in Three Dimensions”, Proc. 12th Annual Symp. on Computational

Geometry, Philadelphia, PA, 1996, pp. 329-338.

S. Har-Peled, “Approximate Shortest Paths and Geodesic Diameters on Convex Poly-
topes in Three Dimensions”, in Discrete & Computational Geometry, Vol. 21, 1999,

pp. 217-231.

S. Har-Peled, “ Constructing Approximate Shortest Path Maps in Three Dimensions”,
SIAM Journal of Computing, Vol. 28 (4), 999, pp. 1182-1197.

R.V. Helgason, and D. Stewart, “One-to-One Shortest Path Problem: An Emperical
Analysis with the Two-Tree Dijkstra Algorithm”, Computational Optimization and
Applications, Vol. 2, 1993, pp. 47-75.

M.R. Henzinger, P. Klein, S. Rao, and S. Subramanian, “Faster Shortest-Path Algo-
rithms for Planar Graphs”, Journal of Computer and System Sciences, 55(1), 1997,
pp- 3-23.

J. Hershberger and S. Suri, “Efficient Computation of Euclidean Shortest Paths in
the Plane”, Proc. of the 84th Annual IEEE Symposium on Foundations of Computer
Science, 1993, pp. 508-517.

J. Hershberger and S. Suri, “Practical Methods for Approximating Shortest Paths on a
Convex Polytope in %37, Proc. of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1995, pp. 447-456.

M. Hribar, V. Taylor and D. Boyce, “Choosing a Shortest Path Algorithm”, Technical
Report CSE-95-004, Northwestern University, 1995.

BIBLIOGRAPHY 280

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

M. Hribar, V. Taylor and D. Boyce, “Performance Study of Parallel Shortest Path
Algorithms: Characteristics of Good Decompositions”, 13th Annual Conference on

Intel Supercomputers User Group, Albuquerque, NM, 1997.

M. Hribar, V. Taylor and D. Boyce, “Parallel Shortest Path Algorithms: Identifying
the Factors that Affect Performance”, Technical Report CPD(C-TR-9803-015, North-

western University, 1998.

M. Hribar, V. Taylor and D. Boyce, “Reducing the Idle Time of Parallel Shortest
Path Algorithms”, Technical Report CPDC-TR-9803-016, Center for Parallel and Dis-

tributed Computing, Northwestern University, 1998.

D. Hutchinson, M. Lanthier, A. Maheshwari, D. Nussbaum, D. Roytenberg, J.-R. Sack,
“Parallel Neighbourhood Modeling”, Proc. of the 4th ACM Workshop on Advances in

Geographic Information Systems, Minnesota, 1996, pp. 25-34.

D.B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks”, Journal
of the ACM, 24(1), 1997, pp. 1-13.

S. Kapoor and S.N. Maheshwari, “Efficient Algorithms for Euclidean Shortest Path
and Visibility Problems With Polygonal Obstacles”, Proc. of the Jth Annual ACM

Symposium on Computational Geometry, 1988, pp. 172-182.

S. Kapoor, “Efficient Computation of Geodesic Shortest Paths”, STOC ’99, 1999, pp.
770-779.

C. Kenyon and R. Kenyon, “How To Take Short Cuts”, Discrete and Computational
Geometry, Vol. 8, No. 3, 1992, pp. 251-264.

V. Kumar, A. Grama, A. Gupta, and George Karypis, “Introduction to Parallel Com-
puting: Design and Analysis of Algorithms”, Ch. 7, Benjamin Cummings, 1993.

D.G. Kirkpatrick, “Optimal Search in Planar Subdivisions”, SIAM Journal of Com-
puting, Vol. 12, No. 1, 1983, pp. 28-35.

BIBLIOGRAPHY 281

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

M. Lanthier, A. Maheshwari, J.-R. Sack, “Approximating Weighted Shortest Paths
on Polyhedral Surfaces”, Technical Report TR-96-32, School of Computer Science,

Carleton University, Ottawa, December 1996.

M. Lanthier, A. Maheshwari and J.-R. Sack, “Approximating Weighted Shortest Paths
on Polyhedral Surfaces”, Proceedings of the 13th Annual ACM Symposium on Com-
putational Geometry, Nice, France, 1997, pp. 274-283.

M. Lanthier, A. Maheshwari and J.-R. Sack, “Approximating Weighted Shortest Paths
on Polyhedral Surfaces”, 6th Annual Video Review of Computational Geometry, Nice,
France, June 1997.

M. Lanthier, A. Maheshwari and J.-R. Sack, “Shortest Anisotropic Paths on Terrains”,
ICALP 99, LNCS 1644, Prague, 1999, pp. 524-533.

M. Lanthier, A. Maheshwari and J.-R. Sack, “Approximating Weighted Shortest Paths
on Polyhedral Surfaces”, to appear Algorithmica, 1999.

R.C. Larson and V.O. Li, “Finding Minimum Rectilinear Distance Paths in the Pres-
ence of Barriers”, Networks, 11, 1981, pp- 285-304.

D.T. Lee, and F.P. Preparata, “Euclidean Shortest Paths in the Presence of Rectilinear
Barriers”, Networks, 14, 1984, pp. 393-410.

D.T. Lee, C.D. Yang and T.H. Chen, “Shortest Rectilinear Paths Among Weighted
Obstacles”, International Journal of Computational Geometry and Applications, Vol.

1, No. 2, 1991, pp. 109-224.

A. Lingas, A. Maheshwari and J.R. Sack, “Optimal Parallel Algorithms for Rectilinear
Link Distance Problems”, Algorithmica, 14, 1995, pp. 261-289.

R. Lipton, D. Rose, and R.E. Tarjan, “Generalized Nested Dissection”, SIAM Journal
on Numerical Analysis, 16, 1979, pp. 346-358.

BIBLIOGRAPHY 282

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

T. Lozano-Perez and M.A. Wesley, “An Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles”, Communications of the ACM, Vol. 22, No. 10, 1979,
pp- 560-570

C. Mata and J. Mitchell, “A New Algorithm for Computing Shortest Paths in Weighted
Planar Subdivisions”, Proceedings of the 13th Annual ACM Symposium on Computa-
tional Geometry, 1997, pp. 264-273.

K. Mehlhorn and S. Naher, “ LEDA: a platform for combinatorial and geometric
computing”, Communications of the ACM, 38, 1995, pp. 96-102.

J.S.B. Mitchell, D.M. Mount and C.H. Papadimitriou, “The Discrete Geodesic Prob-
lem”, SIAM Journal of Computing, 16, August 1987, pp. 647-668.

J.S.B. Mitchell, “An Algorithmic Approach to Some Problems in Terrain Navigation”,
Journal of Artificial Intelligence, 37, 1988, pp. 171-201.

J.S.B. Mitchell and C.H. Papadimitriou, “The Weighted Region Problem: Finding
Shortest Paths Through a Weighted Planar Subdivision”, Journal of the ACM, 38,
January 1991, pp. 18-73.

J.S.B. Mitchell, “L; Shortest Paths Among Polygonal Obstacles in the Plane”, Algo-
rithmica, 8, 1992, pp. 55-88.

J.S.B. Mitchell, “Shortest Paths and Networks”, Handbook of Discrete and Computa-
tional Geometry, J. Goodman and J. O’Rourke Eds., CRC Press LLC, Chapter 24,
1997, pp. 445-466.

J.S.B. Mitchell, “Geometric Shortest Paths and Network Optimization”, Handbook on
Computational Geometry in print, J.-R. Sack and J. Urrutia Eds., Elsevier Science

B.V., 1999.

D.M. Mount, “On Finding Shortest Paths on Convex Polyhedra”, Technical Report

1495, Department of Computer Science, University of Maryland, Baltimore, 1985.

BIBLIOGRAPHY 283

[95] D.M. Mount, “Storing the Subdivision of a Polyhedral Surface”, Proc. of the 2nd
Annual ACM Symposium on Computational Geometry, New York, 1986, pp. 150-158.

[96] D.M. Mount, “The Number of Shortest Paths on the Surface of a Polyhedron”, STAM
Journal of Computing, 19, 1990, pp. 593-611.

[97] D. Nussbaum, “Spatial Modeling in Parallel Environments”, Phd. Thesis in progress,

School of Computer Science, Carleton University, Ottawa, Canada, 1999.

[98] J. O’Rourke, S. Suri and H. Booth, “Shortest Paths on Polyhedral Surfaces”, extended
abstract, Dept. Electrical Engineering and Computer Science, Johns Hopkins Univer-

sity, Baltimore, Maryland, September 1984.

[99] G. Pantziou, P. Spirakis, and C. Zaroliagis, “Efficient Parallel Algorithms for Shortest
Paths in Planar Digraphs”, Proceedings of the 2nd Scandinavian Workshop on Algo-
rithm Theory, 1990, pp. 288-300.

[100] C.H. Papadimitriou, “An Algorithm for Shortest Path Motion in Three Dimensions”,
Information Processing Letters, 20, 1985, pp. 259-263.

[101] M. Pellegrini, “On Point Location and Motion Planning among Simplices”, STAM
Journal of Computing, Vol. 25, No. 5, 1996, pp. 1061-1081.

[102] L. Polymenakos, and D.P. Bertsekas, “Parallel Shortest Path Auction Algorithms”,
Parallel Computing, Vol. 20, 1994, pp. 1221-1247.

[103] F.P. Preparata, “A New Approach to Planar Point Location”, SIAM Journal of Com-
puting, Vol. 10, No. 3, 1981, pp. 473-482.

[104] F.P. Preparata and M.I. Shamos, “Computational Geometry: An Introduction”,
Springer-Verlag, New York, 1985.

[105] K.V.S. Ramarao, and S. Venkatesan, “On Finding and Updating Shortest Paths Dis-
tributively”, Journal of Algorithms, Vol. 13, 1992, pp. 235-257.

BIBLIOGRAPHY 284

[106] R. Raman, “Priority Queues: Small Monotone, and Trans-dichotomous”, Lecture

Notes in Computer Science, Vol. 1136, 1996, pp. 121-137.

[107] R. Raman, “Recent Results on the Single-Source Shortest Paths Problem”, SICACT
News, Vol. 28, No. 2, 1997, pp. 81-87.

[108] N.C. Rowe, and R.S. Ross, “Optimal Grid-Free Path Planning Across Arbitrarily
Contoured Terrain with Anisotropic Friction and Gravity Effects”, IEEE Transactions

on Robotics and Automation, Vol. 6, No. 5, 1990, pp. 540-553.

[109] A.A. Rula and C.J. Nuttall, “An Analysis of Ground Mobility Models(ANAMOB)”,
Technical Report M-71-4, U.S. Army Engineer Waterways Experiment Station, Vicks-
burg, MS, July 1971.

[110] C. Schevon and J. O’'Rourke, “An Algorithm to Compute Edge Sequences on a Con-
vex Polytope”, Technical Report JHU-89-3, Department of Computer Science, Johns
Hopkins University, Baltimore, Maryland, 1989.

[111] M. Sharir and A. Schorr, “On Shortest Paths in Polyhedral Spaces”, SIAM Journal
of Computing, 15, 1986, pp. 193-215.

[112] M. Sharir, “On Shortest Paths Amidst Convex Polyhedra”, SIAM Journal of Com-
puting, 16, 1987, pp. 561-572.

[113] R.G. Seidel, “On the All-Pairs-Shortest-Paths Problem”, Proceedings of the 24th An-
nual ACM Symposium on Theory of Computing, 1992, pp. 745-749.

[114] M. Smid, “Geometric Spanners: Approximating the Complete Euclidean Graph”,
book in preparation, Univeristy of Magdeburg, Germany, 1999.

[115] S. Suri, personal communication, 1996.

[116] M. Thorup, “On RAM Priority Queues”, Proceedings of the 7th ACM-SIAM Sympo-

sium on Discrete Algorithms, 1996, pp. 59-67.

BIBLIOGRAPHY 285

[117) M. Thorup, “Undirected Single Source Shortest Paths in Linear Time”, Proceedings
of the 38th IEEE Symposium on Foundations of Computer Science, 1997.

[118] J.L. Traff, “An Experimental Comparison of two Distributed Single-Source Shortest
Path Algorithms”, Parallel Computing, Vol. 21, 1995, pp. 1505-1532.

[119] J.W.J. Williams, “Heapsort”, Communications of the ACM, Vol. 7, No. 5, 1964, pp.
347-348.

[120] Y.F. Wu, P. Widmayer, M.D.F. Schlag and C.W. Wong, “Rectilinear Shortest Paths
and Minimum Spanning Trees in the Presence of Rectilinear Obstacles”, IEEE Trans-

actions on Computing, C-36, 1987, pp. 321-331.

[121] Paradigm Group Webpage, School of Computer Science, Carleton University,

http://www.scs.carleton.ca/” gis.

[122] C.D. Yang, T.H. Chen and D.T. Lee, “Shortest Rectilinear Paths Among
Weighted Rectangles”, Journal of Information Processing, Vol. 13, No. 4, 1990,
pp. 456-462.

[123] C.D. Yang, D.T. Lee and C.K. Wong, “On Bends and Lengths of Rectilinear
Paths: A Graph-Theoretic Approach”, International Journal of Computational
Geometry and Applications, Vol. 12, No. 1, 1992, pp. 61-74.

[124] S. Yasutome, T. Masuzawa, Y. Tsujino and N. Tokura , “Shortest Paths Among
Weighted Obstacles in a Plane”, Systems and Computers in Japan, Vol. 24, No.
14, 1993, pp. 12-19.

