

Carleton University
COMP 4905 – Honours Project

Cross-Platform Ordino

Name: Adam Ward
Supervisor: Dr. L.D. Nel

Date: October 24th, 2017

Contents

1. Introduction .. 3

2. Project Motivation .. 4

3. Technologies Taught in COMP 2406 ... 5

4. Making of the Application ... 6

4.1. Creating the backend ... 6

4.2. Building as an Electron application .. 17

5. Comparison of Ember.js and Express.js .. 21

6. Developing a Desktop Application with Ember.js and Electron.js instead of Java 23

7. Further Experimentation to be done with Electron.js .. 26

8. Conclusion ... 27

Appendix A: Setup and Execution Instructions ... A - i

Dependencies.. A - i

Setup ... A - i

Running the Application.. A - i

Running tests .. A - i

Appendix B: The Electron Main.js file ... B - i

List of Figures
Fig. 1: Example Handlebars template ... 5

Fig. 2: Example Ember router definition ... 7

Fig. 3: Example Ember application file tree .. 8

Fig. 4: Successful creation of an account .. 10

Fig. 5: Account creation confirmation e-mail ... 10

Fig. 6: Category data model definition.. 11

Fig. 7: Modal dialog for creating (and editing) course work ... 12

Fig. 8: List of existing course work displayed in the ordered-list component .. 12

Fig. 9: WorkFlow making use of the filtered-list component ... 13

Fig. 10: Course list making use of the filtered-list component ... 13

Fig. 11: TimeTable making use of week-schedule component ... 14

Fig. 12: Rendered course report ... 15

Fig. 13: No Internet connection error message .. 16

Fig. 14: Application loading substate template .. 17

Fig. 15: Loading substate displayed when a route is busy loading data ... 17

Fig. 16: Ordino running as an Electron application on Windows .. 19

Fig. 17: Environmental configuration to run as web application or Electron desktop application 19

Fig. 18: Application successfully installed on Microsoft Windows ... 20

Fig. 19: Modal with links for downloading the Windows installers .. 21

1 - Ward

Abstract

In COMP 3004, some peers and I created a student organization application called Ordino for

Android devices. That application had two shortcomings. First, anyone without an android phone would

not be able to use it. Second, the data was stored locally and could only be accessed on that device. To

solve these problems, I created a cross-platform desktop version of the application that allows users to

access their data on multiple devices. I accomplished this using the Electron.js framework, with Ember.js

as the backend, and the Firebase real-time cloud database service to store data. Using Ember.js instead

of Express.js simplified the development of the web application. Through Electron.js, the application is

operating system agnostic and was easier to develop and deploy than a typical Java application.

2 - Ward

Acknowledgements

I acknowledge that I did not use any copyrighted material to make my application. However, my

application makes use of numerous Ember addons which provide helpers and components. These

addons are released under an MIT license. To help with styling the application I used Bootstrap. Some

addons, such as ember-electron, provide blueprints which I used to set up initial configurations before

tweaking them to meet my needs. All other code, I hereby acknowledge, as being written solely by

myself.

3 - Ward

1. Introduction

Prior to the creation of Node.js, which I will refer to as Node from here on, JavaScript was solely

used as the predominant client-side scripting language [Nel, 2014]. Node has enabled JavaScript to be

used for developing highly scalable, asynchronous web servers [Nel, 2014]. Node has also unified the

use of JavaScript on the client-side and server-side. The popularity of Node has grown since its release,

with many large companies, such as Walmart [O’Dell, 2012] and Netflix [Xiao, 2014], converting their

high traffic websites to Node web applications. Due to its popularity, numerous frameworks have been

developed to ease the creation of Node web applications. Each of these Node frameworks have their

own set of features and design methodologies. The COMP 2406 Fundamentals of Web Applications

course at Carleton University teaches how to create Node web applications, including using one

framework, Express.js.

While on a co-op work term, I was introduced to the Ember.js framework which I will refer to as

Ember from here on. Ember is viewed as being a little snobby or opinionated, since there is usually only

a single way to accomplish some piece of functionality [Erdi, 2017]. This is due to all the common idioms

and best practices that developers are forced to use. However, it is rapidly gaining popularity because of

how much the framework simplifies making a web application [Erdi, 2017]. Since there is usually only a

single way to implement something, following the best practices becomes second nature which

increases developer productivity [Erdi, 2017]. The slogan for Ember is “A framework for creating

ambitious web applications” [Anon., 2017b]. With a lot of design and implementation decisions already

made for the developer, it allows the developer to focus on building up the application functionality and

focus on business logic [Erdi, 2017]. Many popular websites, such as Groupon [Druta, 2017] and

DockYard [Dupuis, 2017], are Ember web applications.

Node was originally created for developing web servers. A few years ago, a framework was

created to allow Node to be used in the development of desktop applications [Anon., 2017a]. This

framework is presently named Electron.js which I will refer to as Electron from here on. Electron is

developed by GitHub as the framework for their hackable text editor, Atom [Anon., 2017a]. Node is used

to make the backend of the application, while Chromium is used to create the frontend application

window [Anon., 2017a]. Since Node servers and Chromium can run on any operating system, Electron

allows for the development of an operating system agnostic application from a single code base [Anon.,

2017a]. In addition to Atom, Electron has been used to develop the Slack [Betts, 2016] and Microsoft

Visual Studio Code [Bright, 2015] applications.

4 - Ward

Since the creation of Node, JSON or NoSQL databases have become increasingly popular as the

values returned by queries are already in JSON form. This unifies the data format used on the client-side,

the server-side, and the web application’s database. Firebase is a mobile application and web

application platform that provides many services, such as a real-time database. The Firebase real-time

database stores and retrieves data records as JSON objects [Anon., 2017d]. Through data

synchronization, any changes to data are updated across all connected clients so that the current data is

always being displayed [Anon., 2017d].

Ember, Electron, and Firebase are intriguing tools on their own, but I was curious on how well

they would work together to create a complex, real-time cloud data, desktop application. In this report, I

start by stating my motivation for undertaking this project. I then give a recap of the technologies we

used in COMP 2406. I then go over the development of my project application, including the challenges I

faced integrating Ember, Electron, and Firebase together. I follow this by comparing developing the

Ember portion of the application to the technologies used in COMP 2406 and comparing developing an

Ember and Electron desktop application to a conventional approach, such as using Java. I finish the

report by suggesting further investigating that should be done with Electron and giving my conclusions.

2. Project Motivation

One of the hardest challenges of succeeding in school is staying organized and efficiently

balancing all of your courses. In COMP 3004, a group of peers and I created a student organization

application called Ordino for Android devices. That application had two shortcomings. First, anyone

without an Android phone would not be able to use it. Second, the data was stored locally and could

only be accessed on that device. Additionally, the data could not be backed-up and then restored on a

new device. For this project, I set out to create a cross-platform desktop version of that application so

that it could be installed on more devices and be connected to a cloud database so that a user could

access their data on multiple devices simply by installing the application and logging in.

To accomplish this cross-platform cloud application, I wanted to use the Electron framework. I

became intrigued by Electron when I learned it was used to develop Atom and Slack, two applications

that I use regularly. As such, I was interested to find out how developing an Electron desktop application

compared to my experiences developing a desktop application using a conventional language, such as

Java. Furthermore, I wanted to use Ember as the backend Node framework of the desktop application

and store data in the cloud using Firebase’s real-time database service. Through preliminary research, I

5 - Ward

found no existing application that integrated Electron, Ember, and Firebase together into the

application. All three technologies are very powerful on their own and if they could be used together, I

believed that they could produce many complex applications. Thus, I decided on this project with the

main goal of determining if Electron, Ember, and Firebase could be seamlessly integrated together to

create a fully functioning and deployable desktop application. To demonstrate this, I decided I would be

creating a cross-platform, desktop application version of Ordino.

3. Technologies Taught in COMP 2406

When I was enrolled in the COMP 2406 Fundamentals of Web Applications course, we were

taught how to create web applications using Node. We learned how to use one Node framework named

Express.js, which I will refer to as Express from here on. The development stack also included the

Handlebars template engine and the MongoDB database. Express is a Node framework for creating

minimalist web servers [Anon., 2017c]. This means that there are few features available in a newly

created Express application, but there are many modules and middleware available as a developer

needs them [Anon., 2017c]. With no unnecessary features within an Express application, they are able

to achieve fast performance. This makes Express a viable replacement for Apache as a static file server.

In COMP 2406 we learned about dynamic page creation. Template engines can be integrated into

Express. When I was enrolled in COMP 2406, we were given the choice of using Handlebars or Jade as

the template engine for assignments. I chose to use Handlebars. Handlebars templates are written in

HTML with embedded Handlebars expressions to display dynamic values. There are special Handlebars

expressions called block expressions to help simplify tasks such as iterating. In addition to expressions,

helpers can be used to perform operations while rendering the template. Figure 1 shows a simple

example of a Handlebars template.

 {{#each users}} <!-- block expression that displays the enclosed content for each item in users -->

<div class='user-info'>

 <div class='name'>{{name}}</div> <!-- expressions are between {{ }} -->

 <div class='age'>{{age}}</div>

 <div class='sum'>{{sum 1 2}}</div> <!-- helper named sum that adds 2 numbers -->

</div>

 {{/each}}

Fig. 1: Example Handlebars template

6 - Ward

MongoDB is the database we learned about in COMP 2406 and is an example of a JSON or NoSQL

database. MongoDB stores data as JSON-like objects so fields can vary between documents [Anon.,

2017e]. This is very different from SQL databases where all objects of the same type (in the same table)

have the exact same columns and each column for a row must have a value. The data is easily mapped

to and from JSON objects, making it easy to use in Node applications as there is a common data format.

With MongoDB, object fields can be indexed to improve the performance of queries [Anon. 2017e].

MongoDB is not a cloud database like the Firebase real-time database service, so the user data is stored

locally on the host computer.

Using Express, Handlebars, and MongoDB allows for the creation of fast, minimal servers, with

dynamic page creation, and data storage on the host machine. There are similarities and differences

between these technologies and the technologies I used the develop my application. Express and Ember

in particular are quite different Node frameworks, but they do have some common elements. These

similarities and differences will become clear in the following sections of the report.

4. Making of the Application

As mentioned in section 2, my goal for this project was to determine if Electron, Ember, and

Firebase could be seamlessly integrated together to create a cross-platform, cloud, desktop application.

This was to be demonstrated by creating a cross-platform, desktop application version of Ordino, a

student organization application I had developed for Android devices during a past school project.

Typically, Electron applications are composed of a Node server as the backend of the application while

Chromium is used to create the frontend application window [Anon., 2017a]. As such, I split this section

into two parts. The first part discusses the making of the backend of the application using Ember and

Firebase. The second part goes over the Electron specific tasks for launching the frontend window of the

application and the tasks involved in deploying the application.

4.1. Creating the backend

The backend of an Electron application is typically a Node server, but it can just be a single HTML

file. For the backend of my application, I decided to use the popular Node framework, Ember. As

mentioned in section 1, Ember is a strongly opinionated, yet very powerful framework for creating

complex web applications. This is achieved by forcing developers to use best practices and common

idioms. The most basic building blocks that are part of a typical Ember application are routes,

controllers, components, templates, and helpers.

7 - Ward

A router defines all valid routes that can be navigated to within the application. Each defined

route is responsible for rendering the appropriate template, loading model data, and setting up the

application state for the current route. There can be nested routes defined in the router where the

parent route is setup before the child route. A route can have a specific path name or use a slug to

define dynamic path segments. In Figure 2, the router defines a nested route where the song route is a

child route of the songs route. The song_id slug is used as the dynamic path segment for the song route.

An example URL path to the song route would be /songs/1.

 Router.map(function () {

 this.route('songs', function () {

 this.route('song', { path: ':song_id' });

 });

 });

Fig. 2: Example Ember router definition

Each route can have an associated controller, but can exist without one. However, a controller

must be associated with only one route. Controllers only receive the data model that the route

generated and can process it to produce properties to be rendered in the route’s template. One of the

main uses of controllers is to provide actions to the route template which can be thought of as user

interface event handlers. If the model data does not need to be processed or no actions are needed,

there is no need for a controller; the model data can be referenced directly in the route’s template.

Ember applications automatically come with the Handlebars template engine integrated. Each

route can have an associated template, but like controllers, can exist without one. However, a template

must be associated with only one route. There is no error if there is no template for a route, either

nothing will be displayed, or the parent route’s template is displayed if a parent route exists. Associated

routes, controllers, and templates must share the exact same filename and be in the appropriate folder.

The files that are associated with a child route must be in a folder with the same name as the parent

route. Ember instantiates routes and controllers automatically at runtime and thus, expects the

corresponding files to be in a specific place. Figure 3 shows an example Ember application file tree

where song is a child route of the songs route.

8 - Ward

 controllers/

 songs/

 song.js

 songs.js

 routes/

 songs/

 song.js

 songs.js

 templates/

 songs/

 song.hbs

 songs.hbs

Fig. 3: Example Ember application file tree

Helpers provide additional functionality to templates. Ember applications come with many special

helpers when the application is initialized. For example, the {{outlet}} helper can be used to leave a place

in a parent template to render the contents of child templates. This allows for the extraction of common

pieces of the user interface into parent templates, while child templates provide the page specific pieces

of the user interface. Helpers can also process data and return a result which is rendered in the

template. These kinds of helpers are useful for tasks such as formatting date strings and rounding to a

specified number of decimal places.

Components can be thought of as little bundles of user interface functionality that are separated

from the application and have their own template and component controller. By convention,

components are not supposed to have any idea about the state of the application. They are plugged into

templates and are given the state information they need but should not communicate with the outside

application. Commonly, event handlers or callback functions are passed to components so that the

application can learn about the changes of state within the component. When components are isolated

from the application, they can be reused in numerous applications.

In making the backend of the Electron application, I wanted to ensure all the building blocks I

explained above were used in some way to show all the main features of Ember. I started by generating

the skeleton Ember application using Ember CLI. Ember CLI is a command line tool for developing Ember

applications. It is made by the makers of Ember and simplifies the development of Ember applications. It

9 - Ward

is the predominant tool for developing Ember applications [Erdi, 2017], even being a prerequisite to the

introduction tutorial on the Ember website. Ember CLI can be used to generate application pieces, such

as routes and controllers, and ensures they are placed in the correct folder. It also aids in dependency

installation by adding new dependencies to the package.json file and automatically integrating Ember

addon dependencies into the application. The tool can be used to launch the web application from the

command line and it automatically hot-swaps code changes into the web application as they happen.

The first piece of functionality I decided to add to my application was integrating Firebase with

the application for account authentication and storing user data. Firebase can be integrated with many

development platforms, including web applications. The Firebase SDK is available as a single,

compressed JavaScript file. Although it is possible to load in a JavaScript module into the global

application namespace, this is not a common practice when developing Ember applications. Addons are

the standard way to plugin functionality into Ember applications. Through research, I came across an

open-source Ember addon named emberfire. Emberfire is an adapter for integrating Firebase with

Ember. The adapter handles the mapping of the application’s data records to and from the Firebase

real-time database service. Emberfire also provides all the Firebase SDK functions, including the ones

needed for authentication management. As hoped, the integration of Firebase with Ember went

seamlessly. In the Ember application’s environment.js configuration file, a Firebase entry had to be

added with the Firebase project URL, ID, and API key included.

Ember Data is the library Ember ships with for managing data persistence. An adapter is needed

to create a proxy for storing and retrieving data. Emberfire provides such an adapter to handle the

storage and retrieval of data for the configured Firebase project. To use this adapter in my Ember

application, I needed to create a data adapter for the application that extended the adapter provided by

emberfire. Emberfire ensures the Ember Data records are kept in sync with the Firebase real-time

database service, ensuring the displayed data is the same across all connected clients. Without

refreshing the current page, the displayed data is automatically updated when a change to the data is

made on another connected client as long as there is an Internet connection.

With the ability to communicate with Firebase, I began to implement the user authentication

functionality. I started to create the sign up, sign in, and password reset pages. To accomplish this, I had

my first exposure to Ember services which allow objects to be easily accessed from various parts of the

application. A service is registered with a given name and then can be injected as a property based on

the name of the service. A service can be injected in any route or controller and even in components,

10 - Ward

although this breaks the standard of components not being able to communicate with the application.

Through reading documentation, I determined the name of the Emberfire service and injected it into the

controllers of the routes and controllers that handled user authentication. The service provided all the

functions in the Firebase SDK JavaScript file without polluting the global namespace. With access to

these functions, I was then able to facilitate the creation of accounts (see Figure 4), verifying an account

e-mail (see Figure 5), signing into a new account session, and resetting account passwords.

Fig. 4: Successful creation of an account

Fig. 5: Account creation confirmation e-mail

With the backend now able to support user accounts, I began to work on the creation and

modification of user data. Ember Data provides a base model object class which is to be extended by

each model type used within the application. Model class definitions can specify the type of each

property. I defined each model needed for the application such as study terms, courses, course work,

and course work categories. This was my first experience designing schemas for a NoSQL database. SQL

databases require a primary key for each table to maintain data integrity, whereas NoSQL schemas do

not need a primary key. When using Firebase, an id property is automatically provided for each model

object instance. This property is a randomly generated hash string that is guaranteed to be unique,

making each record distinguishable without the need for a primary key. Defining relationships with

11 - Ward

Ember Data was also different than defining relationships in SQL. In SQL, composition relationships are

implicit and defined using foreign keys. Ember Data models can explicitly specify relationships within the

model definition. One-to-one relationships are defined using the belongsTo method and one-to-many

relationships are setup using the hasMany method. I had to decide whether I wanted to take a

compositional approach where my relationships were defined by storing all members as an array within

the container type, or storing the ID of the container type as a property of the member type. I decided

on the latter approach because Firebase documentation recommends keeping each model type

separate [Anon., 2017f]. Instead of returning one large chunk of data which may return data that is not

needed, it forces the developer to query for only the relevant data that is used in the given area of the

application. With the ability to communicate with Firebase and my schemas defined, I was then able to

store all the different types of user data objects used in the application. Figure 6 shows an example of a

data model definition for category objects in my application.

 export default DS.Model.extend({

 'uid': DS.attr('string'),

 'label': DS.attr('string'),

 'icon': DS.attr('string'),

 'index': DS.attr('number')

 });

Fig. 6: Category data model definition

I began implementing the pages for creating and listing data model instances. This gave me my

first experience implementing components. For each model type, I implemented a modal dialog

component for the user to enter in data for creating new instances of the model type. Abstracting the

modal dialogs into components had a couple of advantages. First, I was easily able to reuse the modals

for creating new model instances and editing existing instances, across multiple application pages.

Second, it is hard to do acceptance testing of a Firebase application to test the user interface, but it is

easy to write Ember integration tests for a single rendered component. Figure 7 shows a screen capture

of the modal dialog used for creating and editing course work model objects. In addition to modal

dialogs, I created a common ordered-list component to allow users to assign an order to their model

instances, such as terms and course work. To make it work with every single type of model object, the

component sorts the items based on their index property, and the consumer of the component must

supply a renderer to produce the view displayed for each list item. Each renderer is itself also a

12 - Ward

component, being supplied with the item for a given index and producing the view for that item. Figure

8 shows the ordered-list component being used to display all the course work for a given course.

Fig. 7: Modal dialog for creating (and editing) course work

Fig. 8: List of existing course work displayed in the ordered-list component

There are three main application features that process and make use of the user’s data. The first

feature is named WorkFlow. WorkFlow lists all upcoming deadlines for the current study term, sorted by

deadline, and grouped by date. There is also a series of filters to narrow in on which work items are

displayed, such as the course the work item belongs to, the category the work item is in, and the date

range of deadlines to show. To accomplish this, I created a filtered-list component. Like the ordered-list

component, a renderer can be provided to customize how each list item is displayed. The filtered-list

component also takes a list of filter objects. Each filter object includes the filter value to watch, the user

13 - Ward

interface component linked to the filter that the user can enter the filter value into, and a validator

function to test whether an item passes the filter. Only the items that pass all the set filters are

displayed. The filtering is dynamic meaning that whenever a filter value is changed, all items are

automatically tested against the new current filter values. I also used the filtered-list component in the

course list page. Since the component is generic, it was easy to group the courses by term instead of a

date and supply a different list of filters. Figure 9 shows the filtered-list component being used in the

WorkFlow feature and Figure 10 shows the filtered-list component being used in the course list page.

Fig. 9: WorkFlow making use of the filtered-list component

Fig. 10: Course list making use of the filtered-list component

The second main feature is TimeTable. TimeTable displays the user’s weekly class schedule. I again

decided to extract the weekly schedule implementation into a component to ease the testing. I decided

to layout the week-schedule component as a table, each column corresponding to a day and each cell

corresponding to one hour. Creating the table layout was logical to figure out using a flexbox approach.

To have an accurate scale, I allotted two pixels per minute, making each cell 120 pixels in height. The

hard part was determining how to overlay the class time bubbles over the underlying table. The way I

decided to accomplish this was setting an absolute position for each bubble. I calculated the number of

14 - Ward

minutes from midnight and multiplied that by the allotted two pixels per minute to get the top position

of the class time bubble. I then calculated the minutes between the start and end time of the class,

multiplying that by the two pixels per minute to get the total height of the class time bubble. The

template highlights the right and left side of the column corresponding to the current day. When the

TimeTable page is first opened, the route controller scrolls to the top of the current hour. This allows the

user to easily see where they are in the current week and which classes they have soon. Figure 11 shows

the TimeTable feature using the week-schedule component.

Fig. 11: TimeTable making use of week-schedule component

The final main application feature is the course report. As a student, I am always keeping track of

how I am doing in all of my courses. With the click of a button, the course report renders a one-page

summary of how the user is doing in a particular course. The report gives various statistics to inform the

user how they are currently doing and how close they are to obtaining their desired final grade. Some

example statistics are their current average, guaranteed minimum final grade, and maximum possible

final grade. The user can enter a desired grade and see what average they need over the remaining

evaluations to earn that desired grade. Since most reports have visual aids, I decided to place a

doughnut chart in my report. The chart shows the percent of the total marks the user has already

earned, the percent of total marks that have been lost, and the percent of total marks remaining. I used

Chart.js, a popular JavaScript chart library, to create the doughnut chart. Much like emberfire, an open-

source Ember addon had been created that wraps the library. The addon allows for the use of the

various kinds of charts Chart.js supports as components in Ember applications. To compute all the report

statistics, I decided to create a utility function. The function takes an array of course work model objects

15 - Ward

as a parameter. It processes the weight and grade of each course work object and then returns a JSON

object with all the computed statistics that the report uses. Figure 12 shows a rendered course report

with the user’s required grade computed, among other related statistics.

Fig. 12: Rendered course report

Towards the end of developing the application, I noticed a major issue. When the Internet

connection was lost, the application kept functioning normally. The user could still navigate between

pages, and change their model data. This was a problem because without an Internet connection, there

was no synchronization of data with the cloud database. The user could make changes, thinking that it

was being saved, and then realize that it was not saved when they regained their Internet connection

and refreshed the page. I found an NPM module named is-online that tries to connect with a few

websites to determine if the client can access the Internet. With this module, I could easily check the

connection status on the initial application launch, but this still did not solve my problem of handling the

loss of the Internet connection in the middle of using the application. I decided to poll the Internet

connection status every so often. Since I knew that knowing the Internet connection status could be

useful in many areas of the application, I decided to extract this into an Ember service. Up until this

point, I had used Ember services but never created one. Creating a service is not any more difficult than

creating a route or controller. On initialization of the service, a loop is launched that checks the Internet

connection every fifteen seconds. The service has a property named isOnline that indicates whether the

client is connected to the Internet or not. In the root application template, I ensure that if there is no

Internet connection, an error message is displayed instead of application content as shown in Figure 13.

16 - Ward

Fig. 13: No Internet connection error message

While creating the service, I came across many Ember addons that indicate if the client has a local

connection, but none of these indicate if the client has an Internet connection. I decided that the service

I created would be great to extract into an Ember addon to aid other developers with the same problem

I had. There are a few differences between developing Ember applications and Ember addons. First, the

development code for modules, such as services, is written in the addon directory instead of the app

directory. The modules are then exported from the app folder. Second, a dummy application can be

created in the test folder. The dummy application is launched by the ember serve command so that the

addon components can be tested in an application context. With the skeleton addon created, I moved

my service into the addon. The environment.js file of an Ember application can be used to configure

services. I decided to allow users of the addon service to be able to configure the interval between

Internet connection checks using the environment.js file. I also allowed users to configure the is-online

module specific options. I named this addon ember-online-status and published it to NPM1. I was able to

install the addon from the command line into my Ember application and integrate the service.

For the sake of providing easy access to the web application functionality, I used Firebase’s free

hosting service to host the Ember portion of the application. Github easily integrates with an open

source continuous integration tool named Travis CI. Whenever a git push is made to the master branch

of the Github repository, a Travis build is triggered. The Travis configuration I implemented runs all the

tests I wrote for the application. If all those tests pass, the tests coverage results are published and a

production build of the web application is deployed to the Firebase hosting service. Up until this point, I

had only tested the Ember web application locally on my computer. When I initially accessed the web

application from the remote host, there was a delay while loading the application during the initial

connection. During this delay, a blank screen was displayed with no indication of what was going on. To

fix this potentially confusing problem, I learned about substates in Ember. There are two kinds of

substates which are loading and error. The Ember router will transition into the loading substate while

1 https://www.npmjs.com/package/ember-online-status

17 - Ward

the given route is still in the process of loading, possibly from a large data query. When in the loading

substate, the provided template is displayed if one was provided. For example, if the current route was

courses.course, where courses is the parent route of the course route, Ember would first check if a

template existed in the application with the path templates/courses/course/loading.hbs. If a file with

that path did not exist, then Ember would next check if a file with the path

templates/courses/loading.hbs existed. Additionally, a top-level application loading template can be

created with path templates/application-loading.hbs that would be displayed whenever the loading

substate is not handled by any route on the current route’s path. With the above knowledge, I created

an application loading template that is rendered when the application is initially accessed and informs

the user that the application is busy loading (see Figure 14). I also created a loading template that is

rendered when data is being loaded by a route (see Figure 15).

Fig. 14: Application loading substate template

Fig. 15: Loading substate displayed when a route is busy loading data

4.2. Building as an Electron application

With all the pages created for the Ember web application, the backend of the application was

complete. I was now left with the task of building the Electron desktop application using the Ember

backend. Electron builds an executable for the current operating system. The executable launches a

Chromium window that displays the pages rendered by the backend Node server. The pages are

displayed the exact same way as they are in a web browser.

An Electron application can be created using as little as three files. A standard package.json is

needed that includes a main property which specifies the path to the main script for launching the

Electron application. The main script creates the desktop application window and processes window

18 - Ward

related events such as maximizing, minimizing, and closing. This is where a developer can specify their

application window size which I made full screen by default. The location of the content that needs to be

loaded by the Chromium window is specified in the main script. This can be the path to a single HTML

file or a web application URL. In my case, I needed to configure Electron to point to my Ember web

application. There is an addon named ember-electron that aids in the initialization of Electron desktop

applications with an Ember backend. Addons can define blueprints which can be used to insert code and

default configurations into existing files, or generate new files in an Ember application. These blueprints

are simply executed using Ember CLI’s generate command. The ember-electron blueprint creates a

main.js file to be used as the Electron main script, handling the launching of the Electron application

window and the loading of the Ember backend. The blueprint also adds all the necessary dependencies

needed to build the Electron application.

Using the default setup, I was able to build and run the Electron application, but the Ember

backend would not function properly. I determined that the source of the problem was that the Ember

portion of the application could not communicate with Firebase. After scouring through both Firebase

and Electron documentation, I realized why this communication was not working. The main.js file

created by the ember-electron blueprint creates a custom protocol named serve and uses dist as the

hostname for the backend server. Firebase blocks communication with all hosts that are not on an

approved host list. Unfortunately, I could not simply add serve://dist to this list, as Firebase only

recognizes hosts that use either the HTTP or HTTPS protocols. With Electron and Ember being relatively

young technologies, research did not provide any solutions to this problem. I was only able to solve the

problem after learning how Ember CLI builds a web application for deployment. I was under the

impression that Ember web applications were launched the same as Node scripts, listening for requests

on a specified port, just like Express web applications. By looking at the compiled web application, I

realized that Ember compiles all the application code, including templates, into one JavaScript file. There

is then a single index.html file that the compiled script is injected into. As a result, Ember applications

are single-page web applications. While navigating through the various routes of the application, only

the content for the current route is rendered. Opening this one index.html file allowed me to use all of

the application features normally. This gave me the idea of statically serving the compiled Ember web

application. Using the connect and serve-static modules, I launched a static file server on port 4200 and

set the URL to load in the Electron window to http://localhost:4200. See Appendix B for the full Electron

main.js file for the application.

19 - Ward

Fig. 16: Ordino running as an Electron application on Windows

With the static file server running using an HTTP protocol, the Electron application was able to

communicate with Firebase. The Electron application was then able to launch and run as expected (see

Figure 16). The only problem left was that the application could no longer be launched as an Ember web

application, accessible by a web browser. It is much faster to launch the application as an Ember

application, saving a lot of time while testing changes. Additionally, Electron applications, such as Slack,

often host the application on a web server separately so that the application can be used as a web

application or a desktop application. As it turns out, this was only a matter of using a conditional

statement in the environment.js configuration file for the URL type of the application, as exemplified in

Figure 17. Electron requires a hash type URL where the URL is anchored with a #, whereas when run as a

web application the URL does not need to be anchored by a #.

 locationType: process.env.EMBER_CLI_ELECTRON ? 'hash' : 'auto'

Fig. 17: Environmental configuration to run as web application or Electron desktop application

 In addition to providing the initial Electron configuration blueprint, ember-electron adds

commands to Ember CLI for packaging executables. Executing the ember electron:package command

packages an executable for the current platform and architecture. The process of compiling and

packaging an Electron application is unified by electron-forge. The electron-forge-config.js file can be

modified to specify the executable icon, executable name, and executable file description, among other

settings. Running the package command creates the executable, and including all necessary DLLs and

resources to run the application on any system of the same platform without the prerequisites that are

20 - Ward

needed for development, such as Node and Google Chrome. Using Advanced Installer, I was able to

produce 64-bit and 32-bit Windows installers for the packaged application. I was then able to

successfully install the application on my computer (see Figure 18) and run the Electron application

without any problems.

Fig. 18: Application successfully installed on Microsoft Windows

I wanted to make these installers available from only the Ember web application as it would be

redundant to download the installers from the Electron application. I set out to find a way to distinguish

accessing the application from a web browser versus an Electron window. The Electron window adds the

version of Electron being used to the global JavaScript window object. The Electron version then can be

accessed as window.process.versions.electron from any part of the Ember portion of the application. By

checking to see if this version value was set, I was able to provide download links for the packaged

installers only when the application was accessed from a web browser. These installers can be

downloaded from https://ordino-b5acf.firebaseapp.com by clicking on the download icon and selecting

a download link from the modal dialog, as shown in Figure 19.

https://ordino-b5acf.firebaseapp.com/

21 - Ward

Fig. 19: Modal with links for downloading the Windows installers

5. Comparison of Ember.js and Express.js

There are a number of similarities and differences between the Ember and Express Node

frameworks. The similarities are vastly outnumbered by the differences. Changing a web application

from one framework to the other would certainly require a full re-write. The similarities are the more

general attributes of any framework. The differences come from the two frameworks having two

completely different design philosophies.

All Node applications have the ability to import modules to reuse existing functionality. There are

already many open-source modules available in the NPM repository that can be used. There are,

however, framework specific modules that tie in with the respective framework’s design philosophy.

Both Ember and Express have their own special kind of modules. For example, Ember addons are the

common format for distributing Ember specific libraries [Erdi, 2017]. They easily allow helpers, services,

components, and mixins to be shared across many Ember applications. In contrast, Express has its own

special type of modules called middleware [Anon., 2017c]. Middleware are functions that are given

access to the request and response objects [Anon., 2017c]. They can execute some code or alter the

request or response objects in some way [Anon., 2017c]. Both addons and middleware allow for

plugging functionality into an existing application while not violating the philosophy of the respective

framework. Ember addons make it easier to create complex Ember web applications by allowing the

developer to incorporate existing solutions to a problem so that they can focus on the application

functionality and business logic. When creating an Express application, a developer only needs to install

the middleware they require. As such, middleware reinforces the Express philosophy of creating

minimalist, fast web servers that are not bloated by unnecessary code.

22 - Ward

Both the Express and Ember frameworks can integrate a templating engine. While Ember

applications come with a default templating engine, Express applications do not. The developer can add

the templating engine of their choice when using Express, if desired. This again matches the Express

philosophy of creating minimalist web servers, by leaving it to the developer to plugin a template engine

if they need one. When creating an Ember application, Handlebars is included as the default templating

engine. It is possible to swap the templating engine used by Ember to a different one, such as Jade, but a

developer then loses the Ember specific template helpers. This follows the Ember philosophy as

including the Handlebars template engine by default is one design decision a developer does not need

to make. Additionally, the specialized template helpers aid in creating complex applications.

 There are many differences between the process of developing an Express web application and

an Ember web application. Firstly, Express is much more liberal in how a web application can be

developed as routes can all be defined in the main JavaScript file or defined in separate files [Anon.,

2017c]. Additionally, a route method can be defined on a per GET or POST request basis, or can create

chained route handlers that handle all request types for a given path [Anon., 2017c]. Whereas, in Ember,

each route has its own file that must have a specific name, and be in a specific folder, which makes

developing an Ember application much stricter. Express also leaves a lot of decisions for the developer

to handle. For example, query parameters must be parsed from all requests sent to an Express web

application. In contrast, query parameters are handled much differently in Ember as the developer can

specify the names of all expected query parameters in a route’s controller. The framework then handles

the parsing of the query parameters and automatically assigns them to variables of the same name.

These query parameter values can be accessed like any other controller property. Any changes to the

corresponding query parameter property results in the query parameter being automatically updated in

the URL. This is exemplified in the WorkFlow and course list features of my application where the

current values of the set filters are part of the page URL as query parameters.

Overall, I found it much easier to develop a web application with Ember than Express. Express

would be a great alternative to Apache as a static file server or for small text based websites. However,

it falls short when wanting to make a complex web application. A lot of tasks, such as dealing with query

parameters, required more complicated, messy solutions in Express, but were incredibly easy and

concise in Ember. With so many setup and design decisions made for you, Ember makes it a lot easier to

quickly add functionality to your web application. Once I got used to the structure of Ember applications

and all the common idioms, they became second nature and I was able to quickly add functionality to

23 - Ward

the application. My thoughts became strictly about implementing functionality as I did not have to be

concerned about the design of the application. Additionally, there was never a point where I felt

restricted by the decisions Ember has forced upon developers.

Finally, deploying a web application is much easier with Ember. Express servers must be launched

and actively listening to a port for requests to come in. There are cloud platforms for hosting these kinds

of Node applications, but they are more expensive than hosting services that serve static files. When a

production build of an Ember web application is done, there is a single index.html file which injects in

content from the packaged JavaScript files as needed. Thus, the output of an Ember build can be

statically served. There are many attractive features and advantages that are driving Ember’s growing

popularity. Although Express still has its place as a framework for developing fast, little web servers, it

cannot compete with frameworks such as Ember for creating high-end, complex web applications.

6. Developing a Desktop Application with Ember.js and Electron.js

instead of Java

During three of my four co-op work terms, I had a software engineering position, each one using

Java as the main programming language. As such, I noticed many differences between developing a

desktop application using Ember and Electron versus a traditional language, such as Java. Both ways

have their advantages and disadvantages which will be discussed in this section.

One of the first disadvantages I noticed about using Electron is that the documentation is not very

comprehensive. Much of my total time during my honours project went towards trying to determine

what was the purpose of certain configuration properties in the default Electron setup provided by the

ember-electron blueprint and what were acceptable values for those configuration properties. The

available documentation was sparse and explanations were not always clear. Often the answer to a

problem was found by reading through forum posts made by people having similar problems. When I

could not find any such forum post, I either had to settle for an acceptable but lesser solution, or keep

attempting solutions based on educated guesses until one worked. Often the solutions to Electron

related problems were not difficult to implement, but were extremely hard to figure out. Java has

extensive documentation, making it much easier to learn about a new interface and acceptable

configurations. Since more developers are using Java, most general problems have already been

experienced by another developer. Research then quickly yields the solution to a problem or you learn

24 - Ward

something is not possible without spending a lot of time on it. In comparison to the Java documentation,

the Electron documentation does not reveal the desired information as nicely.

Conversely, Ember’s documentation is incredibly well written. Parameter explanations for

functions are well written and the return value of a function is clear. I found the Ember documentation

to be better than the Java documentation since most functions have an example usage code snippet

below the function documentation. The Ember community is also very involved with many bloggers

posting tutorials on how to solve advanced issues that are beyond the scope of the guides and tutorials

published on the Ember website. Since more time was spent developing the Ember backend for this

cross-platform cloud, desktop application rather than configuring the Electron frontend, I prefer learning

about new interfaces and configuration through documentation when developing an Ember and

Electron application over a Java application.

Although, the quality of a developed piece of software is much more important than how quickly

it was developed. Faster development leaves more time to complete more customer features,

thoroughly test the software, and fix outstanding bugs. Development seemed much quicker using Ember

and Electron. Any changes made to an Ember application are automatically deployed, even if new files

are created. This is also the case when Ember is being used as the backend of an Electron application.

Not having to rebuild and restart your application every time you make a change saves a lot of time.

Some Java IDE’s, such as Eclipse, do hot swap changes, but do not do this after a large refactoring, when

a new file is created, or when the change is made to an executing thread. In these cases, the application

must be terminated and restarted again. From experience, I know rebuilding an application can take

many minutes for even the smallest changes. The speed of deployment made testing changes to my

Ember and Electron application much quicker and led to much more efficient development.

User interface development was also much easier with Ember and Electron. The automatic

deployment of changes made it much easier to make little tweaks to the CSS styles of the application

and see the effect immediately on the user interface. Additionally, the Google Chrome browser window

used to access the Ember web application, in addition to the Chromium window launched by Electron,

provide a developer tools panel which aided the development of many aspects of the application. The

Inspector tool allowed me to look at the classes and styles given to HTML elements of the user interface.

This was especially useful when classes were dynamically assigned at runtime and CSS properties were

dynamically calculated. The tool also enabled me to tweak an element’s style without making changes

to my application’s stylesheets. When there is an issue with a Java user interface, there is no way to

25 - Ward

inspect which values, such as weights and height, an element has been given. The problem can only be

found by reading through the code and mentally detecting the problem.

Debugging is essential when developing any piece of software. This is handled very well whether

developing an application using Ember and Electron or Java. Popular Java IDEs, such as Eclipse and

Intellij Idea, allow you to set breakpoints at a particular line of code, pausing the execution of the

program. It is also possible to set breakpoints that pause whenever an exception is thrown or the value

of a particular variable changes. A developer can then find the root cause of the issues by viewing the

call stack, looking at the present values of variables, stepping over statements, and entering functions,

among other things. A developer does not need an IDE to debug an Ember or Electron application since

all popular browsers have developer tools for debugging. Placing a debugger; statement in JavaScript

code acts as a breakpoint, pausing the execution of the application. A developer can then inspect the

call stack, the current values of variables, and walk through the code like they could in a Java IDE. Ember

also has a special {{debugger}} template helper which will pause rendering of the template so that the

values in the template context can be viewed. The Electron application window also has the same

developer tools panel, pausing execution when these breakpoints in the backend server are hit. A slight

advantage of working with the Google Chrome developer tools, is a developer’s project is not

handcuffed to a specific IDE. Ember applications can be developed by a team of developers, each using

the text editor of their choice.

One can see that there are many attractive advantages for developing desktop applications using

Ember and Electron. However, the two technologies by no means are a perfect solution. A major

disadvantage of using Electron is that the framework is not stable yet. I would occasionally get

intermittent crashes that I could not reproduce. Additionally, a new version of ember-electron that was

released in the middle of the development of my application updated the dependency versions of many

of the Electron packages. After this, I was not able to package the application anymore. I had to

determine what versions the Electron dependencies had been when I started the project and force

those exact versions be used in my package.json. One ill timed failure can cause customers to

completely lose confidence in a product which is why this instability may keep many software

development teams from using Electron until it becomes more stable. In contrast to this issue, Java is

incredibly stable at this point and has been thoroughly tested on many platforms.

Ultimately, there are advantages and disadvantages for developing a desktop application using

Ember and Electron or Java. I found that developing an application with Ember and Electron was much

26 - Ward

faster than using Java, especially when implementing the user interface. As revolutionary as Electron is,

it is not as mature as Java. In the software engineering industry, stability is of great importance as users

want software that always works as expected. Electron needs to become more stable and better

documented to become more appealing to a larger number of developers. Additionally, there are

existing issues that need to be fixed so that projects like mine are not forced to use specific versions of

Electron and Electron dependencies. Ember, on the other hand, is well documented and already

incredibly popular in the web development industry. Once Electron is more stable, Ember would be a

great backend Node framework for creating complex desktop applications.

7. Further Experimentation to be done with Electron.js

Although this project dove into many of the working pieces of Electron, there is still much

experimenting that can be done to find more limitations and novelties of the framework. First, it would

be interesting to experiment with the type of content that can be served by Electron in the Chromium

window. Second, it would be interesting to see an Electron desktop application build and run on

multiple different platforms. Finally, it would be interesting to experiment with adding in desktop

application specific functionality, such as menu bars and context menus.

The application I created statically serves the compiled Ember web application production build

files. It would be interesting to have a live Node server in the backend, serving content as requests come

in. It would also be interesting to figure out if displaying static files is limited to HTML files. Since

Electron uses a Chromium window to display the content provided by the backend, anything that can be

displayed in a Google Chrome web browser should, in theory, be possible to display in the Chromium

window provided by Electron. Thus, maybe it would be possible to display other file types, such as PDFs

and image files, without needing them to be embedded in a webpage.

For this project, I developed and tested the application on a computer running the Microsoft

Windows operating system. I was even able to setup a build server that packaged the application as a

Windows executable and created MSI installers. Since Electron is meant to create an operating system

agnostic desktop application, further experimenting should be done to see how well an application can

be built, packaged, deployed, and executed on Linux and Mac platforms. Through research, I found

many Windows specific configurations that were needed for electron-forge to build the executable for

Windows. It would be interesting to see how much more effort is needed to build the executables for

27 - Ward

Linux and Mac, to confirm that the Electron framework can produce a fully deployable operating system

agnostic desktop application.

There are many major differences between web applications and traditional desktop applications.

First, most desktop applications have a menu bar, with various menu options that provide some

functionality. Second, desktop applications that deal with text often have a spell checker. Next, users

often expect a right-click to produce a context menu in any application. Finally, desktop applications can

often make use of platform specific features such as a notification service. All the above differences are

missing from the Electron desktop application I created for this project. Essentially, the Electron

application is just displaying the web application from within a Chromium window instead of a web

browser. I did, however, prove that it is possible to distinguish accessing the backend Node framework

from a web browser versus the Electron window by only providing download links for the MSI installers

when the application is accessed from a web browser. Open source Ember addons already exist to

address all the missing pieces I mentioned above. It would be good to spend more time experimenting

with adding in desktop application specific components, such as menus, spell checkers, and file system

support, to make an Electron desktop application indistinguishable from a traditional desktop

application. These components may, however, prove to eliminate the ability to simultaneously develop

a web application and desktop application as I did for this project.

8. Conclusion

By developing this application, I achieved my goal of showing that it is possible to create an

Electron cross-platform desktop application using Ember as the backend and the Firebase real-time

database service to persist data. I showed that it is possible to deploy an Ember and Electron desktop

application in the same way as a traditional desktop application. The Ember and Electron application is

packaged as 32-bit and 64-bit executables and deployed by Windows installers.

The philosophies that define the Ember framework made developing an Ember web application

completely different from developing an Express web application. The common idioms and best

practices that developers are forced to use enabled quick development. Additionally, with the design of

the application already decided, Ember allows developers to focus solely on solving the complex

problems of their application. The same level of complexity would be hard to achieve using the Express

framework. Ultimately, the process of developing a web application was much easier using Ember and

will likely eliminate the use of Express from any of my future projects.

28 - Ward

As I hoped, Ember, Electron, and Firebase work well together and developing with these

technologies has many noteworthy advantages. Specialized developer tools and immediate feedback of

code changes leads to very efficient development. The use of Electron could also allow more economical

development since the web application and desktop application can be developed simultaneously from

the same code base. This means that a company may only need one development team per product,

saving money on developer salaries and lowering management overhead costs. Code quality could also

be improved with only one code base, since there would be no need for extra code to integrate a

common backend data store with multiple different programming languages, ensuring each

implementation maintains data integrity. Since Electron applications are also operating system agnostic,

there would also be no need for any platform specific code. However, before companies have the same

level of trust in Electron as they already do in mature languages, such as Java, and make the switch, the

framework needs to be further stabilized.

This project shows that the software development industry is still evolving, with new methods for

developing software still being introduced. I obtained promising results by developing a fully functioning

and deployable desktop application using Electron and Ember. Ember is a technology which is

traditionally used for web application development which suggests that one day, there may be less

separation between web application and desktop application development. With a smaller gap between

the two industries, software quality could be improved and produced at a quicker rate. Powerful web

frameworks, such as Ember, could then serve additional purposes such as aiding in the development of

complex desktop applications. As revolutionary as the Ember and Electron frameworks are, they could

still be improved upon and further stabilized. However, since these frameworks are less than a decade

old, what they already are capable of is very impressive and there is still plenty of time for them to get

even better.

References

Anon. (2017a) About Electron, Electron

Anon. (2017b) A framework for creating ambitious web applications, Ember.js

Anon. (2017c) Express/Node introduction, MDN Web Docs

Anon. (2017d) Firebase Realtime Database, Firebase

Anon. (2017e) What is MongoDB?, MongoDB

Anon. (2017f) Structure Your Database, Firebase

Betts, P. (2016) Building Hybrid Applications with Electron, The Slack Engineering Blog

Bright, P. (2015) Microsoft’s new Code editor is built on Google’s Chromium, Ars Technica

Druta, O. (2014) Building With Ember.js at Groupon, Medium

Dupuis, M. (2017) Why DockYard Builds with Ember.js, DockYard

Erdi, B. (2017) Rock and Roll with Ember.js, pp. 1-2, 260

Nel, L.D. (2014) Lecture notes, COMP 2406, Carleton University

O’Dell, J. (2012) Why Walmart is using Node.js, VentureBeat

Xiao, Y. (2014) Node.js in Flames, Medium

List of Abbreviations

CI – Continuous Integration

CLI – Command Line Interface

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

HTTPS – HyperText Transfer Protocol Secure

IDE – Integrated Development Environment

JSON – JavaScript Object Notation

NPM – Node Package Manager

SQL – Structured Query Language

A - i - Ward

Appendix A: Setup and Execution Instructions

Dependencies
The following dependencies are needed to build and run the application:

1. Any version of Git installed

2. The current patch release of Node.js version 6.11 installed

3. Google Chrome installed

Setup
The development and testing of the application was done on Windows 10. However, the

following instructions should be operating system agnostic:

1. Open a command terminal

2. Install Ember CLI:

npm install -g ember-cli

3. Clone the project Git repository:

git clone https://github.com/AdamWard1995/cross-platform-ordino.git

4. Change into the root project folder

5. Install NPM dependencies:

npm install

6. Install Bower dependencies:

bower install

Running the Application
To run the application as a web application:

1. Serve the web application:

ember serve

2. In a web browser go to http://localhost:4200

To run the application as an Electron application:

1. Run the Electron application:

ember electron

2. Wait for the Electron application window to launch

Running tests
Unit and integration tests were written to verify the application. To run all these tests:

1. Run the test script:

npm test

This will run linting to statically analyze the code and run all the unit and integration tests in a

web browser and an Electron application window

http://localhost:4200/

B - i - Ward

Appendix B: The Electron Main.js file

const { app, BrowserWindow } = require('electron');
const { dirname, join, resolve } = require('path');
const connect = require('connect'); // connect server
const serveStatic = require('serve-static'); // serve static files

let mainWindow = null;
let server = null;

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') {
 app.quit();
 }
});

app.on('ready', () => {
 mainWindow = new BrowserWindow({
 show: false,
 icon: '../public/icon.ico'
 });

 mainWindow.maximize();
 mainWindow.show();

 if (!server) {
 server = connect()
 .use(serveStatic(join(__dirname || resolve(dirname('')), '..', 'ember'))).listen(4200);
 }

 const emberAppLocation = 'http://localhost:4200/';

 // Load the statically served ember application
 mainWindow.loadURL(emberAppLocation);

 mainWindow.webContents.on('did-fail-load', () => {
 mainWindow.loadURL(emberAppLocation);
 });

 mainWindow.webContents.on('crashed', () => {
 });

 mainWindow.on('unresponsive', () => {
 });

 mainWindow.on('responsive', () => {
 });

B - ii - Ward

 mainWindow.on('closed', () => {
 mainWindow = null;
 });
});

process.on('uncaughtException', (err) => {
});

