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Abstract 

Entity Relationship Mapper (ER Mapper) is an android app that takes an Entity-Relationship 

diagram (ER Diagram) and maps it to its Relations, finds its Functional Dependencies, perform 

normalization and creates a relational database.  Users can draw an ER Diagram on a canvas, such 

that they can create, remove and edit Entity, Attribute and Relationship objects from the canvas.  

When the user is satisfied with their diagram, they can select to save or normalize the diagram into 

a relational schema in third normal form maintaining lossless join and dependency preservation 

properties to create a database. 
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1. Introduction 

Computers have countless applications in the world ranging from text editors to games to 

security and much more. An important part of each of these application is storing information.  In 

some scenarios, the best way to do so is by using a relational database.  Relational databases 

organize a collection of data as schemas in tables. When designing a database, it is important to 

organize the data so that it is modeled in a realistic way to support the real world that it is modelling 

as well as reduced redundancy and errors.   An Entity Relationship (ER) Diagram is a widely used 

method for conceptualizing and visualizing the logical structure of a Relational database. There is 

also an Extended ER Diagram that hands specializations and generalizations, which will not be 

used in the completion of this project. By creating an ER Diagram and normalizing it to its 

functional dependencies database designers can easily and realistically model the real world as a 

database.  The purpose of this project is there for to create an android app (ER Mapper) that allows 

users to draw an ER diagram and it automatically normalized in order to generate a database. The 

ER Mapper app has a practical use as in a lecture, or meeting environment this app can help teach 

students or clients about ER Diagrams and the normalization process.  ER Mapper provides an 

interface that allows for users to interact with the diagram and get an idea of the ER Diagrams 

design process along with how the normalization process occurs. As an android app ER Mapper 

can be used on any android device, though a tablet or device with a better bigger screen is best.    

This allows for users to get an idea quickly and efficiently of what their database design. This 

report Demonstrates how to setup and run the ER mapper program and explains how the program 

talks an ER Diagram, maps it to its Relations and Functional Dependencies to create a database.   

2. Setup  

Clone the Git repository from https://github.com/CD11/ERmapper or unzip the project from 

its Compressed Zip file, into the repository of your choice. 

2.1 Downloading Android studio    

1. Install Android studio 3.0 with 

➢ JRE: 1.8.0_152-release-9159b01 

➢ JVMOpenJDK 64-bit Server VM by JetBrains s.r.o 
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2. In Android studio go to File -> open an existing android studio project 

➢ A dialog will pop up, select the directory where you saved ERMapper, and select 

ERMapper->ERMapper->APP. 

2.2 Using emulator in android studio 

1. In Android studio go to Tools > Android > SDK Manager 

2. When the pop up screen opens select Nougat 7.0.0 or Nougat 7.1.1  

➢ (The program requires a min API Level of 24) 

3. In Android studio go to Tools > Android > AVD Manager 

4. When the pop up screen opens select create virtual device 

➢     Go to Tablets > Nexus 10 then press Next 

5. On the Next screen make sure the SDK that you choose from step 2 is selected, and then 

click next and finish 

2.3 Using an android device. 

1. Install OEM USB drivers corresponding to the device you are using, go to 

https://developer.android.com/studio/run/oem-usb.html for more information. 

2. Enable USB Debugging on your android device 

➢ Open the Settings app. 

➢ (Only on Android 8.0 or higher) Select System. 

➢ Scroll to the bottom and select About phone. 

➢ Scroll to the bottom and tap Model number 7 times. 

➢ Return to the previous screen to find Developer options near the bottom.  

3. Running the software 

  Once the code has been imported and all the necessary software is set up you can run the 

program. To run the program, press the green arrow. This will launch a prompt that asks the user 

to select a device, emulated or physical, and press OK.   This will install the software onto the 

android device or launch the emulator. It may take a minute or two to download and start up the 

system, but when it is ready the ER Mapper will launch.    

3.1 Create a New Drawing 

From the initial screen select new ER Diagram, this will launch a new activity with a blank 

canvas, and some button along the bottom. 
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3.2 Creating Objects 

Press either the Entity or Attribute button to create either object. They will appear in the Top 

left side of the canvas; an Entity will be square, and an Attribute will be oval. Both can be moved 

around by clicking and dragging them around the screen. 

Press the Relationship object to create a relationship. Once the button is selected, click on 

either an entity or attribute object, a line will appear that connects the object to the user’s mouse 

or finger. Click the second object to create the connection.    If for some reason the relationship is 

not created on the first try or the line is no longer available, click on the relationship button again.  

When a relationship between two Entitles is created, a “1” will appear above the line next to the 

object, this is denoting relationship cardinality, and can be set to 1, N or M.  

Note:  

1. Double clicking an Entity can set it to weak,  

2. Every Foreign key must have an identifying primary key with the same name 

3. Double clicking and Attribute can set it to primary 

4. All objects have a name that can be edited by clicking it, however it uses an 

onFocusChange listener, so after you edit the name you must click something else on the 

screen, or press tab or enter. 

3.3 Saving the Diagram 

By pressing save the diagram you will save from the drawing screen, the diagram in XML 

format to the android device. 

3.4 Normalize the Diagram 

Pressing Normalize from the drawing screen will launch a new Activity that automatically 

converts all entity objects to relations, creating a relational Schema, finding all functional 

dependencies and normalizing the schema into third normal form. From here one will be able to 

see all attributes, functional dependencies, min cover, candidate keys, and lossless join 

/dependency preserving tables. 
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3.5 Create a Database 

By pressing the create database button the system will open a connection to a SQLite database 

and create a new database inserting each relation from the schema as a table in the database. 

3.6 Accessing Files 

Once an ER Diagram has been saved, or a diagram has been created they are saved to the 

internal storage of the android device. Within android studio you can access the files from your 

emulated or physical device by 

1.  view->tool window ->device file explorer, this will cause a file explorer to appear on the 

right-hand side of android studio 

2. In the prompt go to data->data->cd.com.ermapper 

3. Database files are stored in the database folder, and xml files are stored in the files folder.  

4. Research  

Within this section key ideas and concepts regarding ER Diagrams, FDNormalization and 

Databases are identified and discussed.  All research comes from the Book Fundamentals of 

Database Systems by Ramex Elmasri & Shamkant B. Navathe, as well as from COMP3005 Winter 

2015 course notes provided by Professor Louis Nel.    

4.1 ER Diagram Components  

To draw an ER Diagram, it is important to understand what they are, along with its 

components.  Components include symbols that are used to represent a different concept in the 

diagram including Entities, Attributes and Relationships.  It should be noted now that the ER 

Mapper app will only work with relational databases which is a database that uses tables and 

specific constraints to model data.  

4.1.1 Entity Relationship Diagrams 

 ER Diagrams are a visualization that represents relationships between Entities.  Entities, 

modeled as squares, represent a real-world concept, and create the tables in your Relational 

database. Attributes, modelled as ovals, represent properties of their corresponding Entity or 

Relationship and are stored as columns of the Relational table in a database.    Every Entity can 

have multiple Attributes; however, it requires at least one Attribute to be a primary key (which 

uniquely identifies each row in the table).  In an ER Diagram the primary key attribute(s) are 
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identified with an underline underneath their name.   A Relationship is a line that connects 

Attributes and Entities, they may also indicate the cardinality of the Relationship.  

Figure 1. ER Diagram Symbol, from the book Fundamentals of Database Systems below 

shows the Symbols that may appear in an ER Diagram.  

 

Figure 1. ER Diagram Symbol 

 

4.1.2 Entity objects 

An Entity object is a distinguishable object that is part of the mini-world modeled by the 

database. In a Relational database, an Entity will be a Relation/Table.  Entities can have different 

types.  Regular Entities have a primary key Attribute, and are Strong Entities. Weak Entities cannot 

be distinguished by themselves as they do not have a unique key Attribute. For a weak Entity to 

be identified a primary key is defined using a foreign key to its strong Entity and always has a total 

participation constraint. Figure 2. Weak Entity Example shows a weak Relationship where Grade 

is the weak Entity, and class is the Strong Entity.  The primary key of grade is “C#”, “S#”, where 

code references the primary key of “S#” of Student and “C#” of Course.  
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Figure 2. Weak Entity Example 

4.1.3 Attribute 

An Attribute is a property describes an Entity object, and stored as a column in a relational 

table. An Attribute property may also describe a property of a Relationship.  A candidate key is 

the set or primary keys that uniquely identify the table. A super key is a set of Attributes in a 

relation schema, where no two tuples in the Attribute set will have t1[S] = t2[S]. The removal of 

any Attribute from the super key will prevent it from being a super key. A Foreign Key Attribute 

is an Attribute that references a primary key Attribute of another table. Finally, a Composite 

Attribute is an Attribute that is composed of several components 

4.1.4 Relationship  

A Relationship relates two or more Entities with a specific meaning. The degree of 

Relationship is the number of Entities that participate in a Relationship.  A binary relationship has 

a degree of 2, a ternary relationship has a degree of 3 and a n-ary relationship has a degree of N. 

Each participating Entity in a Relationship has a cardinality which can be 1:1, 1: N or M: N.   

Figure 3. Relationship Types, is an example that depicts different types of participation and 

cardinality of Relations.    An Identifying Relationship type relates a weak Entity type to its owner.  
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In Figure 2. Weak Entity Example, the Relationship Depends on represents an identifying 

Relationship.  

 

Figure 3. Relationship Types 

4.2 Relation Schema Mapping and Normalization  

The outcome of this project is a relational schema in third normal form that is mapped from 

the ER Diagram drawn by a user that can be mapped to a database.  To properly create a relational 

schema an algorithm must be used to: convert n-ary Relationships to binary Relationships, find 

Functional Dependencies and perform normalization. 

4.2.1 Decomposing Relationships 

Before normalizing the diagram, The ER Diagram gets mapped to a RelationSchema, by 

looking at each Relationship and its Entities and deriving Relations.  As discussed in the research 

section, a binary Relationship is a Relationship between two Entity objects, a ternary has three 

Entity objects and n-ary has n Entity objects. Relationships with a higher degree make it harder to 

specify the constraints of a Relation.  Therefore; we can decompose the higher degree 

Relationships to binary to simplify the process. Decomposition to binary Relationships can be 

done following steps from Fundamentals of Database Systems: 
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1. For each ternary/ n-ary Relationship type R, where n>2, create a new Relationship S to 

represent R 

2. Include as foreign key Attributes in S the primary keys of the Relations that represent the 

participating Entity types 

3. Also include any simple Attributes of the n-ary Relationship type (or simple components of 

composite Attributes) as Attributes of S 

4.2.2 Finding Functional Dependencies 

Once the ER Diagram has been mapped to a relational schema, it is possible to identify the 

constraints for each Entity in the system. As defined in section 14.2.1 in Fundamentals of Database 

systems:  

“A Functional Dependency, denoted X -> Y, between two sets of Attributes X and Y that are 

subsets of [Relation] R specifies a constraint on the possible tuples that can form a Relation 

state r of R.  The constraint is that, for any two tuples t1 and t2 in r have t1[x] = t2[x], they 

must also have t1[Y] = t2[y].” 

This definition means that for any value Y in a tuple is defined by X and it can be said that Y 

is functionally dependent on X.   A Functional Dependency can have multiple different values, 

every Attribute of X is called the left had side, and every Attribute of Y is called the right-hand 

side.  A set of Functional Dependencies exists for each Relation, where each Relation also must 

have a primary key.  By identifying the Functional Dependencies, it is possible to find redundant 

and trivial information.  

4.2.3 Performing Normalization  

To ensure the relational schema has a good design without redundant or trivial information 

the normalization process is used. Normalization is the process of decomposing the relational 

schema into smaller relations using their candidate keys and functional dependencies (Nel, 2015c).  

Boyce Codd proposed the normalization process using First Normal Form, Second Normal Form 

and Third Normal Form.  Boyce Codd later suggests Boyce-Codd Normal Form and Fourth 

Normal Form, but for this project, third normal form is sufficient. In order to be in Third Normal 

form, each Relation must also meet the requirements for First and Second normal forms which are 

as follows: 
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1.  First Normal Form: has no composite/multivalued Attributes along with nested Relations 

2. Second Normal Form: every non-prime Attribute in a Relation is fully functionally dependent 

on the primary key  

3. Third Normal Form: requires that no nonprime Attribute has transitive dependency, meaning 

each FD X->Z and Z-> Y.   It also must maintain the lossless join property and dependency 

preservation property  

➢ The lossless join property ensures that any instance of the original Relation can be 

decomposed into smaller Relations with no loss of information 

➢ The dependency preservation property ensures that after the Relation is decomposed each 

Functional Dependency still holds   

To convert Relations into their normal form one can follow the steps provided in Table 1. 

Summary of Normal Forms Based on Primary Keys and Corresponding Normalization.  The code 

provided by Professor Louis Nel, handles the normalization contains the code to maintain lossless 

join property and dependency preservation property. 

Table 1. Summary of Normal Forms Based on Primary Keys and Corresponding Normalization 

Normal Form Test Remedy 

First (1NF) Relation should have no multivalued 

Attributes or nested Relations 

Form a new Relation for each multivalued 

Attribute or nested Relation 

Second (2NF) For Relations where primary key 

contains multiple Attributes, no 

nonkey Attribute should be 

functionally dependent of the primary 

key 

Decompose and set up a new Relation for 

each partial key with its dependent 

Attribute(s). Make sure to keep a Relation 

with the original primary key and any 

Attributes that are fully functionally 

dependent on it  

Third (3NF) Relation should not have a nonkey 

Attribute functionally determined by 

another nonkey Attribute (or by set of 

nonkey Attributes). That is, there 

should be no transitive dependency of 

a nonkey Attribute on the primary 

key. 

Decompose and set up a Relation that 

includes the nonkey Attribute(s) that 

functionally determine(s) other nonkey 

Attribute(s).  

 

5. ER Mapper App 

ER Mapper is an android app that allows the user to create an ER Diagram and generate a 

relational schema in third normal form in order to create a database.  Below are descriptions of the 

work required to complete the project including: work schedule, function requirements, use cases, 

and system models that explain how the system is constructed and function. 
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5.1 Work Schedule 

Table 2. Expected and Final Work Schedule below displays the work schedule to complete this 

project, with expected and final dates. 

Table 2. Expected and Final Work Schedule 

Objective Estimated 

Time 

Due 

Date 

final 

date 

Research  

 

1 week 

 

Sept 3 Sept 2 

Identify all functional Requirements 

 

2 days Sept 3 Sept 2 

Create Structure for ER Diagram including a user 

interface 

 

3 weeks Sept 30 

 

Sept 20 

Create structure + objects for Functional Dependencies  

 

1 week Oct 10 Oct 5 

Write + Submit Mid-term Report 

 

1 weeks Oct 30  Oct 30  

Add complex Relationships 

  

1 week  Nov 10  Nov 8 

Apply rules to convert ER to FD for complex 

Relationships  

 

3 weeks  Nov 10 

 

Nov 14 

Implement provided program for FD to DB  

 

1 week Dec 1 Nov 20 

Write + Submit First Draft report 

 

2 weeks Dec 1 Dec 1 

Testing and review 

 

On going Dec 14 Dec 15 

Submit Final Report  2 weeks Dec 15  Dec 15 

 

5.2 Functional Requirements 

The following are the functional requirements of the ER Mapper system.  Each functional 

requirement describes in Table 3. Functional Requirements a set of behaviors that can be 

performed by the user and the system to create and map and normalize an ER Diagram.   
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Table 3. Functional Requirements 

F-01. User must be able to create/delete Entities  

a. Entities require a primary key, which is a unique name 

b. In the ER Diagram the Entity will be represented by a square 

F-02. Users must be able to create/remove Attributes 

a. Attributes must belong to an Entity 

b. Attributes can be composite or multivalued 

c. In the ER Diagram the Attribute will be represented by an oval 

d. The Primary Attribute will be the Primary key of the Entity, depicted with an 

underline   

F-03. Users must be able to create/ remove Relationships  

a. Connections can be between 2 Entities  

b. Connections can be between an Entity and an Attribute 

c. Connections between 2 Attributes show composite or multivalued Attributes  

d. Connects will be depicted with a Line  

e. Relationships will be depicted with a diamond  

F-04. Users must be able to select a Attribute, Entity or Relationship and move it 

around the screen  

F-05. The system must create an ER Diagram that contains a set of Entities with its 

Attributes and connections 

F-06. The system must convert the ER Diagram into a relation schema 

a. The system must convert all Relationships to binary Relationships, and then 

convert each Entity to a Relation 

F-07. The system must identify all Functional Dependencies  

F-08. The system must normalize the Relations into Third Normal Form and maintain   

lossless join property and dependency preservation property. 

F-09. The system must create a Relational database based on the normalized Relations. 

F-10. The user must be able to save their diagram in XML format 

F-11. The user must be able to save the created SQLite database 

F-12. The system must be able to handle and inform users of errors without crashing 

 

5.3 Use Case Models 

The following section describes the ER Mapper Program use cases.  Each use case describes 

the behavior and functionality as modeled by Figure 4. High Level ER Mapper Use Case. The 

system has only one actor who has an option to create a diagram or normalize a diagram.   
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Figure 4. High Level ER Mapper Use Case 

 The create diagram use case describes the functionality of the system regarding creating and 

drawing a diagram, as shown in Figure 5. Create Diagram Use Case.  
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Figure 5. Create Diagram Use Case 

The program also allows for a diagram to be normalize as shown in Figure 6.  Normalize Use 

Case. In this process it takes the diagram and maps it to Relations to create a RelationSchema, then 

takes the schema and places it into third normal form.  Placing the schema into third normal form 

ensures that the database will have a good design by removing any redundant or trivial information 

and meets all Functional Dependencies.  
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Figure 6.  Normalize Use Case  

 

The use case diagrams provide a list of use cases which can be used to describe the behavior 

and control flow of the system.  

Table 4.  High Level Use Case Descriptions walk through each use case identifying the main 

actors, the system responses/states, flow of events and traceability back to the systems functional 

requirements.   

Table 4.  High Level Use Case Descriptions 

Use Case Identifier  UC-1  

Name ERMapper 

Participating actors User 
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Flow of events 1. the user selects to create a diagram  

a. the system will draw a blank canvas and allow the use to create the 

diagram 

2. the user selects to create the diagram Include Create Diagram 

3. the user selects to normalize the diagram Include Normalize 

Diagram 

Entry conditions User selects Create new diagram 

Exit conditions User creates a diagram or exits the system 

Traceability F-01, F-09 

Use Case Identifier  UC-2  

Name Create Diagram 

Participating actors User 

Flow of events 1. if the user selects to create an object 

a. The system creates a new object of the format selected. Include 

addEntity, AddAttribute, AddRelationship.  Or the user 

selects to remove an object 

2. the user clicks an object 

a. the system removes the object corresponding to theobject 

clicked. Include removeEnitty, removeAttribute, 

removeRelationship.  

3. the user selects to save the diagram 

a. The system saves the diagram. Include save Diagram 

Entry conditions User selects create Diagram  

Exit conditions User selects to normalize the diagram, or exits the system. 

Traceability F-01, F-05, F-06 

Error! Not a valid bookmark self-reference. depicts the control flow and traceability of how a 

diagram gets created using the buttons to create objects.  

Table 5. Create Diagram Use Case Descriptions 

Use Case Identifier  UC-3  

Name Normalize Diagram 

Participating actors User 

Flow of events 

 

 

1. if the user selects to normalize the diagram 

a. The system creates a RelationSchema. Include Create 

Relational mapping. 

b. The system gets a normalize error. 

Entry conditions User selects create Diagram  

Exit conditions User selects to normalize the diagram, or exits the system. 

Traceability  F-09 

Use Case Identifier  UC-4  

Name addEntity 

Participating actors User 
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Flow of events 1. the user clicks the Entity button 

a. the system creates a new Entity object and draws it to the 

screen, and adds it to the ShapeObjects list. 

Entry conditions User selects create an Entity  

Exit conditions Entity object is drawn to the screen. 

Traceability  F-02 

Use Case Identifier  UC-5  

Name removeEntity 

Participating actors User 

Flow of events 1. the user selects delete and clicks on an Entity object 

a. The system searches the list of drawn objects for the selected 

Entity 

If the Entity is not part of a Relationship 

a. The sub objects are added to the ShapeObject list 

b. The Entity is removed from the shape object list 

If the Entity is part of a binary Relationship 

a. The system adds the sub objects of the selected Entity to the 

drawnshapes list.  The system adds the other Entity to the 

ShapeObjects list. The Relationship is removed from the 

ShapeObject list 

If the Entity part of a ternary or n-ary Relationship  

a. The Entity sub objects are added to the ShapeObject list  

b. The Entity is removed from the Relationship 

c. The system redraws the diagram 

Entry conditions User selects delete an Entity  

Exit conditions Object deleted and diagram is redrawn.   

Traceability  F-02  

Use Case Identifier  UC-6  

Name addAttribute 

Participating actors User 

Flow of events 1. the user selects Attribute button 

a. the system creates a new Attribute object and draws it to the 

screen and adds it to the shape objects list 

Entry conditions User selects create an Entity  

Exit conditions The Attributed is added and diagram is redrawn 

Traceability  F-03 

Use Case Identifier  UC-7  

Name removeAttribute 

Participating actors User 

Flow of events 1. The user selects delete and clicks on an Attribute object 

a. The system searches the list of drawn objects for the selected 

Attribute 

b. The system takes any sub objects of the Attribute and adds it 

to the shape objects list, and removes the Attribute object 
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from the drawn list 

        c. The system redraws the diagram. 

Entry conditions User selects to remove an Attribute 

Exit conditions The Attribute is removed, and diagram is redrawn 

Traceability  F-03  

Use Case Identifier  UC-8  

Name addRelationship 

Participating actors User 

Flow of events 1. User selects Relationship button 

a. The system creates a new Relationship object 

2. The user clicks one object   

a. The system sets the center of the object to the initial position, 

and draws a line from there that follows the mouse. 

3. The user clicks a second object  

a. The system sets the center of object as the second coordinates 

of the line. 

If the Relationship is between an Entity and an Attribute 

a. the system adds the Attribute to the Entity Attribute list, and 

removes the Attribute from the ShapeObjects list. 

If the Relationship is between two Attributes  

a. The system adds the second Attribute to the Attribute list of 

the first Attribute.  

If the Relationship is between two Entities 

b. The system adds both Entities to the Relationship object. 

c. The system creates cardinalities for each Entity 

d. The Relationship is added to the general ShapeObjects list 

e. Each Entity is removed from the general ShapeObjects list 

If the Relationship is between an Entity and an existing Relationship 

a. The Entity is added to the Relationship object list 

b. The Entity is removed from the ShapeObjects list 

c. The Entity gets a cardinality object 

If the Relationship is between an Attribute and a Relationship 

a. The system adds the Attribute to the Relationship 

b. The system redraws the diagram.  

 

Entry conditions User selects create a Relationship  

Exit conditions The diagram is redrawn 

Traceability  F-04 

Use Case Identifier  UC-9  

Name removeRelationship 

Participating actors User 

Flow of events 1. User delete and clicks a Relationship object  

a. The system adds all sub objects of the Relationship to the 

ShapeObjects list. 

b. The system removes the Relationship from the ShapeObject 
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list if it was binary.  

Entry conditions Relationship is removed, and diagram is redrawn 

Exit conditions The diagram is redrawn. 

Traceability  F-04 

 

Table 6. Normalize Diagram Use Case Descriptions depicts the control and traceability of the 

normalization process once the user has selected to normalize the diagram. 

Table 6. Normalize Diagram Use Case Descriptions 

Use Case Identifier  UC-10  

Name Save Diagram 

Participating actors User 

Flow of events 1. User selects save 

a. The system saves the diagram in xml format 

b. The system displays a pop up with a success or error notification 

Entry conditions The user selects save 

Exit conditions The user presses ok on the notification. 

Traceability  F-11 

Use Case Identifier  UC-11  

Name Create Relational Mapping 

Participating actors User 

Flow of events a. The system takes Relationships in the diagram and applies the 

ER-> Relational mapping rules to create all Entities 

b. The system creates a Relation for each Entity 

If the Entity is not weak 

a. adds the primary Attributes of the Entity to the primary key, 

and all Attributes to the candidate keys. 

If the Entity is weak 

a. Adds the primary key of the strong Entity to the weak Entity 

primary key.  Adds all Attributes to the candidate keys.  

If the Entity has a multivalued Attribute 

a. The system creates a new Relation with the Attribute 

containing the values list as the primary key 

b. All Attributes in the values list are added to the candidate keys 

list 

c. The system removes any temporary Attributes 

d. The system normalizes the schema. Include create 

Functional Dependencies 

 

 

Entry conditions The system creates a new RelationSchema 

Exit conditions The RelationSchema is created 
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Traceability  F-07 

Use Case Identifier  UC-12  

Name Create Functional Dependencies 

Participating actors User 

Flow of events a. The system creates a new dependency set 

b. for each Relation in the schema the system adds the primary 

key to the left hand side, and the Attributes to the right hand 

side 

c. The system checks if the Functional Dependency is trivial 

if it is not trivial, the Functional Dependency is added to the 

dependency set 

d.  the system performs normalization on the dependency set 

include Normalize dependencies 

Entry conditions The system created the RelationSchema 

Exit conditions All Functional Dependencies are created 

Traceability  F-08  

Use Case Identifier  UC-13  

Name Normalize dependencies 

Participating actors User 

Flow of events a. The system finds the minimal cover of the dependency set 

b. The system finds all candidate keys of the table 

c. The system places any Attributes not in the set in a table of 

their own.  

d. If none of the tables created contain a candidate key, then a 

new table is created with the candidate key  

e. The system removes any redundant tables 

Entry conditions The system creates a dependency set 

Exit conditions The dependency set is normalized 

Traceability  F-09 

Use Case Identifier  UC-14  

Name Save Database 

Participating actors User 

Flow of events 1. The user clicks create database 

a. the system opens connection to sql 

b. the system creates a new database 

c. the system adds each Relation to the database 

d. the system displays a success/error prompt  

Entry conditions The user selects create database 

Exit conditions The user accepts prompt notification 

Traceability  F-10, F-11 

Use Case Identifier  UC-15  

Name Save Error 

Participating actors User 

Flow of events a. the system gets a file not found or database error 
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b. the file is not created or saved 

c. the system displays an error prompt, extends Save Diagram, 

Save Database 

Entry conditions A save error occurs 

Exit conditions The user accepts prompt notification 

Traceability  F-12 

Use Case Identifier  UC-16  

Name Normalize Error 

Participating actors User 

Flow of events a. the system gets an exception when trying to parse the ER 

Diagram, extends normalize diagram 

b. the system displays an error prompt 

Entry conditions A normalization error occurs 

Exit conditions The user accepts prompt notification 

Traceability  F-12 

 

6. Object Models 

The following diagrams are object models that represent the systems object models.  They are 

packaged into two packages: Components and Logic, shown in Figure 7.  High Level UML Models. 

The components package contains all the classes that are objects of the system, these classes 

include anything required to build an ER Diagram or a relational schema.  The logic package 

pertains to all classes that control the behavior of the components, including the activity classes. 
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Figure 7.  High Level UML Models 
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Figure 8.  Components UML Model 
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6.1 Component Classes 

The component classes are modeled in Figure 8.  Components UML Model and make up all 

nonlogic classes that represent an idea that needs to be modeled by the ER Diagram.  For better 

readability the Components UML diagram includes all class objects but excludes simple functions 

such as setters and getters.  The ShapeObjects class, which is abstract represents shows all 

functions that are inherited by the subclasses.  

6.1.2 ShapeObjects 

An ER Diagram is modeled using symbols, called ShapeObjects in the ER Mapper system. A 

ShapeObject is an abstract class that allows for the diagram to store each ShapeObject and offers 

for a single interface to be used for each ShapeObjects. Within this class there are several abstract 

functions that get overwritten by the sub classes defining specific behavior, such as drawLines(), 

drawShapess(), removeObj(), getallObjects(), that cover the functionality of each ShapeObject 

type. Each of these objects contains a name, edit text and coordinates which allow form them all 

to be drawn to the canvas. Each edit text has an event listener attached to it, making it possible for 

the user to change any object name. ShapeObject extend Parceable class so that objects can be 

passed between android activities.   Parceable works, by decomposing an object into a parceable 

object using the wrtiteToParcel() function, and it then uses the readsFromParcel()function to calls 

a creator class to reconstruct the object from the parcel.   

6.1.3 Entity/Entity sets/Weak Enitites 

As explained in the research section, an Entity represented a Relational table, which models 

some aspect of the real world. An Entity is a subclass of a ShapeObject. An Entity is represented 

as a square, and contains a solid line to connect its Attributes.  An Entity contains a list of Attribute, 

and a Boolean which is true if weak, false otherwise. A weak Entity is drawn as a square outlining 

the original square, and two solid lines connecting the Relationship to represent total participation 

in the Relationship. An Entity set, contains a list of unique Entities.   

6.1.4 Attribute/Attribute sets/SetOfAttributeSets 

An Attribute is also a subclass of ShapeObject and its symbol is an oval.  Primary Attributes 

are used to uniquely identify an Entity. An attribute object represents a property of either an Entity 

or Relationship.  In a Relational database where every Entity is a table, each Attribute identifies a 
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column.  A primary key is an Attribute that must be unique for ever row in the table. Within the 

ER Mapper system to create a primary Attribute, a user can double tap the attribute they want to 

set it to primary or remove the primary.  A primary key attribute is identified by underlining its 

name in the ER Diagram.  A foreign key is a primary key of a weak Entity that references the 

primary key of another table.  The foreign key will be identified with a dashed underline of the 

name.  Along with being primary and foreign, an Attribute can be multivalued. A multivalued 

attribute can be broken down into separate components, such as a date of birth, which can be 

decomposed into year, month, day.  If the Attribute is multivalued, the sub Attributes are stored in 

a list.   

An Attribute set, contains a list of unique Attributes. When a parceable creates an AttributeSet 

it calls the creator for an Attribute, which causes the creator to get stuck in a loop, therefore all 

multivalued Attributes are stored in an array list instead of an Attribute.  Another issue that occurs 

do to the parceable implementation, is that each time it calls a creator a new instance is created.  

Therefore; if the same Attribute has two references, the parceable creates two new references for 

it. Then when checking if an Attribute already contains that Attribute, it does not recognize the 

objects as the same. As a work around, the Attribute set checks if the names are equal.   It is 

important to note that two Attributes with the same name cannot be added to any Attribute set. 

When any Attribute is created it is called “object” + count, where the count is incremented for 

every Attribute created making the name unique for every Attribute, so that it can be added to an 

Attribute set before given a unique.   The SetOfAttributeSets class holds a unique set of Attribute 

sets.  

6.1.5 Relationship/Cardinality  

A Relationship is another subclass of the ShapeObject which is modeled a line connection 

between two or more Entity objects. If the Relationship is an identifying Relationship, it gets a 

diamond with a diamond outline, and has two solid lines to show total participation. A Relationship 

object may also contain an Attribute set, representing any properties of the Relationship. An Entity 

set is used to stores all Entities participating in the Relationship.  Each Entity in the Relationship 

can contain a different cardinality in the Relationship.  Therefore, for each solid line a cardinality 

object is drawn.  A cardinality object contains an edit text, initially set to 1, and can be modified 

by the user to model 1:1, 1: N and M : N Relationships.   
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6.1.6 Relations/Relation Schema 

The Relation class represents an Relational table, derived from an Entity object and its 

Attributes and Relationships. A Relation contains an AttributeSet of nonprimary keys, an 

AttributeSet of primary keys and a name.  A Relation is created by iterating through all Entity 

Attributes, adding each to the Attribute set, checking if the Attribute is primary or foreign, and 

adding it to the primary set if true.  The primary key should be a subset of the Attribute set.   A 

relational schema, represents a unique set of Relations.  When creating a RelationSchema, the 

program looks at every object in the general ShapeObject list representation of the ER Diagram, 

and maps it to Relations.  The rules for ER to Relational mapping rules from Fundamentals of 

Database Systems is used as follows:  

1. For all 1:1 Relationships do 

➢ Choose one of the Relations-say S-and include a foreign key in S the primary key of T 

➢  It is better to choose an Entity type with total participation in R in the role of S 

2. for All 1:N Relationships do 

➢ create a Relation S that represent the participating Entity type at the N-side of the 

Relationship type 

➢  Include as foreign key in S the primary key of the Relation T that represents the 1 side 

of the Relationship type 

➢ Include any simple Attributes of the 1:N Relation type as Attributes of S 

3. For all M:N Relationships do  

➢ For each regular M:N Relationship type R, create a new Relation S to represent R 

➢ Include as foreign key Attributes in S the primary keys of the Relations that represent 

the participating Entity types; their combination will form the primary key of S 

➢ Also include any simple Attributes of the M:N Relationship type (or simple 

components of composite Attributes) as Attributes of S 

4. For multivariable Attributes 

➢ For each multivalued Attribute A, create a new Relation R 

➢  This Relation R will include an Attribute corresponding to A, plus the primary key 

Attribute K-as a foreign key in R-of the Relation that represents the Entity type of 

Relationship type that has A as an Attribute 

➢  The primary key of R is the combination of A and K. If the multivalued Attribute is 

composite, we include its simple components 

Once the ER Diagram has been mapped to its relational schema, the program can check for 

constraints and remove any trivial or redundant information.  
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6.1.7 Functional Dependencies / Dependency Set 

A Functional Dependency represents the constraints on a Relation.  A Functional Dependency, 

contains a left had side with all primary and foreign Attributes of a Relation, as well as a right-

hand side with all nonprimary Attributes of a Relation.  A Dependency set contains a list of unique 

Functional Dependencies. 

6.2 Logic Classes 

All logic classes are shown in Figure 9.  Logic UML Model the following sections again 

explains and describes what each class is and how they work. 

 

Figure 9.  Logic UML Model 
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6.2.1 Activity Classes 

MainActivity, ERDraw and FDNormalizations are each activity classes.   According to 

Android studio API an activity class represents a single screen with a user interface. The 

MainActivity class is the first screen that appears when the user launches the app, it launches to a 

screen where the user can select to create a new ERDiagram.  From there, the main activity 

launches the ERDraw activity and passes it a new ER Diagram object.  The ERDraw activity 

creates the interface for the blank canvas.  It contains several buttons at the bottom of the screen 

which allows the user to draw object, adding/removing/editing the ER Diagram object. The 

ERDraw activity also contains a Realative Layout where all objects are added to, and a Relative 

Layout where all edit text objects are stored.  This allows for all edit text objects to be placed on 

top of the linear layout so that they are always visible.  The user may also select the normalize 

button which launches the FDNormalization activity, which creates a new interface that displays 

the RelationSchema details. The FDNormalization activity has several text view objects within a 

scroll box that display all information in the system, along with a create diagram button, which 

will create SQLite database and save it locally to the android device.  

6.2.2 ER Diagram 

The ER Diagram class is used to represent an ER Diagram that will be drawn to a blank 

canvas.  When an object is drawn it is added to an arraylist of ShapeObjects. As each object forms 

Relationship Attributes and Entities are added to their corresponding owner, then removed from 

the general ShapeObject list.  In doing this it ensures if there exist any objects that are not in a 

Relationship, they can still get drawn, but removes storing duplicate information.   Since the object 

is removed from the general list, the Draw class searches each object for any of its members to 

draw instead of just looking at the list.  For example, suppose there exist an Entity and Attribute 

object with no Relationship. Then each object will be stored in the general ShapeObject list.  

 Suppose a Relationship is created between he Entity and Attribute.  The Attribute gets added 

to the Entity Attribute list, along with this a new Relationship is created, storing the Attribute and 

Entity as objects 1 and 2.  Then the Attribute and Entity are removed from the ShapeObject list 

and the Relationship is added.  To draw this Relationship, the Relationship drawLines() function 

is called to draw the lines between the Entity and Relationship,  then the draw shapes function is 

call to draw the actual Entity and Attribute shapes.   
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The function relationshipDecomposition() is used to look at the diagram and organize it in 

terms of its Entities.  It starts by looping through every Relationship checking if it is not binary 

and decomposing it to a binary Relationship, using the steps mentioned earlier.  In the conversion, 

several Entity objects will be created.  When these Entities are created they are given the Attributes 

of their connecting Entities, in some scenarios this may create an Entity that is trivial, i.e. contains 

a Functional Dependency X-> Y where Y is a subset of X.  To bypass this, it creates a temporary 

Attribute with a name of “-1”, which allows for the Entity to be considered valid while it gets 

mapped to a Relation. Once the relationshipDecomposition()  function is finished the system will 

have properly identified all Entity objects and Attributes, and the Entities can be mapped to their 

Relations using the steps described before in the section on Relation/ RelationSchema.  Once the 

RelationSchema is created, there is a function removeTemps() that removes the temporary 

Attributes from the Schema.    

6.2.3 Draw Objects 

The ERMapper starts by creating a blank canvas that allows users to draw an ER Diagram.   

The general drawnObjects() function from the ER Diagram class is used to identify which can be 

Entities, Attributes or Relationships, with their coordinates to be drawn to the screen.  The main 

page of the application seen in Figure 10. ER Mapper Drawing shows the canvas of the page, and 

in the red box identifies the buttons that user can use in order to create new objects.  

 

 

Figure 10. ER Mapper Drawing 

 

Once the user has selected a button, the corresponding object is created. If the user selected to 

create a Relationship the system creates a line that follows the mouse to connect to objects.  If the 

Relationship is valid then it gets added to the object list. The program searches the ERDiagram list 

of objects and draws the correct shape, based on the object type onto the screen at the correct 
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coordinates. The canvas also has a motion event listener which activates when the user clicks the 

screen.  It checks if the user has clicked a coordinate that is inside a shape and then allows the user 

to move that object around the screen, if the object has any Relationships it will also update those 

coordinates.    To create key Attributes a user can double click on the Attribute they want to make 

key, and an underline will appear.  To make a weak Entity the user can double click an Entity.   

Once the user has completed has completed their drawing they can click normalize to normalize 

the objects and create a Relation diagram. Figure 11. Completed ER Diagram below is an image 

of a complete ER Diagram. 

 

Figure 11. Completed ER Diagram 

6.2.4 FD Normalization 

To normalize the diagram, one must press the Normalize button from the diagram.  The 

ERDraw class will cause the FDNormazliation activity.  This class will parse through all of its 

Relationships and convert them to binary Relationships, and then create an arraylist of Entities 

which entirely covers the scope of the diagram in terms of Entities, removing redundancy’s and 

any information that is not relevant to creating a database such as coordinates.  It will display any 

relevant information in system to the screen and offer an object for the user to create a database.  
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Figure 12. Normalized ER Diagram is an example of the FDNormalization activity.  In the results 

section is a scroll box where the following information is displayed: 

1. All Attributes 

2. All Functional Dependencies 

3. Minimal cover 

4. Checks that the minimal cover is equivalent to all original Functional Dependencies 

5. All Candidate keys of a table 

6. Lossless-join and Dependency Preserving, 3NF tables 

➢ This are the tables that will be used to create the database 

 

In order to get all the Attributes, Functional Dependencies and results, the class takes the 

created RelationSchema, normalizes it and performs Attribute closures.  The FDNormalization 

class calls the relationshipDecomposition() function which as mentioned before, decomposes all 

Relationships to binary Relationships and returns a list of all the new and old Entities.  The system 

can then map those Entities to Relations and create a new RelationSchema by using the following 

steps from the book Fundamentals of Database Systems:  

1. for all Regular Entity types, assign a Relation, pick a primary key 

a. if the primary key is a complex Attribute: all Attributes will be included 

b. if an Attribute is complex, create a new Relation 

2. for all Weak Entities, create a foreign key that references all Primary keys of its Strong 

Relation 

Once the RelationSchema is mapped each Functional Dependency is identified such that any 

primary key in a Relation must functionally determine all other Attributes in the Relation.  To do 

this the program sets the primary key to the left-hand side of the Functional Dependency and all 

other Attributes to the right-hand side.  From the Functional Dependencies and primary keys of 

each Relation, the system can use the performNormalization() function which applies the steps 

that were mentioned earlier, to normalize the RelationSchema into Third Normal Form.  The code 

that handles checking lossless-join and dependency preservation properties was provided by 

Professor Louis Nel.  The algorithm itself was based on the four-step algorithm 16.6 presented 

Fundamentals of Database systems, which decomposes a set of Attributes with respect to 

Functional Dependencies F:  

 



36 

 

1. find a minimal cover Fm of F 

2. for each left hand side X of FD in Fm create with columns X U A1 U A2 U ...An where 

X->A1, X->A2,... X->An are all the dependencies in Fm with left hand side X 

3.  if none of the tables created in Step 2 contains a candidate key for the universal Relation 

consisting of all the Attributes, then create a table consisting of a candidate key remove 

redundant tables. If any table is a projection of another (has all its columns appearing in 

another table), it is removed table 

 

Figure 12. Normalized ER Diagram, shows the screen that gets displayed after the 

normalization process which displays the System Results.  The results screen prints out 

information relevant to the process including, finding the minimal cover of the Relations, and 

finding all candidate keys which prove that the lossless join property and dependency preservation 

property hold still.  

 
Figure 12. Normalized ER Diagram 

 

 

From the FDNormalization activity page users my select to create a database.  Once the button 

is selected a SQLite Database is opened, and a table is created for each relation with the required 

columns from the relation attributes.  If the attribute is a primary key, it is designated a primary 
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key in the relation table in the database.  If the attribute is a foreign key, the program searches all 

relations for a primary key with the same name.  As the program finds the identifying relation by 

matching the name of the primary key to the foreign key, this creates a constraint on the system 

that the primary key of the identifying relation has the same name as the foreign key of the weak 

entity key attribute. From here the program has everything it requires to create the database, upon 

which a user gets a notification that the database was successfully/ or unsuccessfully created. 

7. Results 

To ensure that the system works correctly, and its actual outputs match its expected outputs, 

there were a series of unit tests done using unit Tests. All tests in the system display their output 

to the console at the bottom of screen. The logic unit test cases (src->test) test, that functions have 

the desired response of the system to ensure that the ERDiagram created and normalized.  Along 

with the logic test cases are the diagram and database test cases which are emulated test(src-

>androidTest) that check the system User Interaction.  Table 7. Test Case Matrix shows all tests 

that ran in what test suite they will run in and how they traceback to the Functional Dependencies. 

The tests run by right clicking the desired test and selecting run. The tests below do not cover the 

entire functionality of the system and more tests should occur to ensure that the relationship 

decomposition and normalization procedures are correct and receive the desired responses.  This 

can occur by create several different diagrams of different varieties to test as well as by including 

scenario tests that consider different sequences of execution. However even without testing the 

entire functionality the completed tests give a good indication that the system is doing as expected. 

note: that when running emulated test suites sometimes the tests will cause an error due to 

conflict from the previously run test suite.  However, they do all run successfully independently. 

Table 7. Test Case Matrix 

Test Cases Location Traceability 

addEntity () Logic F-01 

canRemoveWeakEntity() Logic F-01 

CreateEntity() Diagram F-01 

CreateWeakEntity () Logic F-01 

removeEntity() Logic F-01 

removeEntityWithAttriubte() Logic F-01 

AddAttributeToEntity()  Logic F-01, F02 

DeleteObject() Diagram F-01, F-02, F-03 
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removeEntityFromBinaryRelationship() Logic F-01, F-03 

removeEntityFromTernaryRelationship() Logic F-01, F-03 

addAttribute()  Logic F-02 

CreateRelationship() Diagram F-02 

removeAttribute()  Logic F-02 

removeAttriubteFromEntity()  Logic F-02 

setPrimaryAttribute()  Logic F-02 

addRelationship()  Logic F-03 

CreateAttribute() Diagram F-03 

SelectObject() Diagram F-04 

BinaryDecomposition() Logic F-06 

NormalizationTest.RelationSchema()  Logic F-06, F-08 

NormalizationTest.FunctionalDependencies () Logic F-07, F-08 

CandidateKey() Logic F-08 

dp_lj() Logic F-08 

MinCover() Logic F-08 

NormalizationTest.GetAllEntityObjects () Logic F-08 

thirdNF() Logic F-08 

CreateDB() Database F-09, F-11 

Save() Diagram F-10 

8. Conclusion 

The purpose of this project was to create an android app that will allows uses to drawn ER 

Diagram and automatically generate the corresponding RelationSchema. The ERMapper program 

successfully meets all of its functional requirements and successfully creates a Relational database.  

The ER Mapper offers a simple and effortless way for database designer to quickly create a 

database and have an idea of how the mini-world they are modelling is related.  

Some issues with the system include double clicking to create a primary Attribute or a weak 

Entity, as Entity and Attribute objects contain an edit text in the middle of their object, sometimes 

when double tapping you tap the edit text to change the name instead of creating a primary attribute 

or weak entity.  This issue is especially prevalent if using a small android device or if you have 

big fingers. A way to get around this would be to use a tablet pen or making the objects larger. 

This shows that the small screens of android devices create a constraint on the usability of the 

system.  Another issue with the system occurs when mapping complex relationships including 

only supporting 1, N or M being entered as relationship cardinality. Along with limitations to 

cardinality as part of the relationship decomposition new entities and relationships are created with 

a placeholder name, that of the relationship name, that cannot be edited, this adds some ambiguity 



39 

 

as the user may not be aware of what the entity or relationship is trying to model.   The ambiguity 

also creates issues with foreign keys, as they must be named the same as their identifying key in 

order for the program to ensure correctness.  If the primary key and foreign key do not have the 

same name, the system will reference the foreign key and primary key separately instead of using 

the foreign key to reference the primary key. Currently the system is set up that every primary key 

of a weak entity becomes foreign, this means that the system does not support a weak entity that 

has a combination of primary and foreign keys.   It should also be noted that ER Diagrams 

themselves are ambiguous as the system does not have an understand of what everything is so 

while it ensures that the user meets the minimal constraints of an ER Diagram, such as an entity 

requires a primary attribute and weak entities require strong entities, if the user creates a diagram 

that incorrect the database will reflect that.  

Future work for the system include performing some usability testing to find the best size and 

constraints for the user interface as well as testing for more complex relationships.  The system 

could also include creating a file opener so that users can load already existing diagrams from their 

XML format into the system.  Another downside of the system is that is works only on android 

devices.  Android devices tend to be smaller making it difficult to draw more complex ER 

Diagrams, as you cannot see the whole diagram at once.  Being an android app also makes it 

difficult to access any files that are saved. By creating the same system as web application so that 

it is accessible on non-android devices.  As a work around for this though, the app can always be 

run in android studio as an emulator which allows for a bigger screen size if you do not have a 

large android device, and files can be transferred from the android device to your computer, so that 

once your database is created you can move it to a better location.  

The ER Mapper app would be a great tool database designers and Professors to use explain 

how the database design and its normalization to process to clients and students. By providing 

immediate feedback the app provides faster and more efficient solution then using a pen and paper. 

While the app does have some limitations including size and complexity, however with some more 

testing and refactoring the app can be improved to offer an even larger variety of uses as well as 

can be converted to different platforms. 
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