
Entity Relationship Diagram Mapping

by

Cheryl Dunn

Comp 4905

Prof. Lou D. Nel

School of Computer Science

Carleton University

Ottawa, Ontario

December 15, 2017

2

Abstract

Entity Relationship Mapper (ER Mapper) is an android app that takes an Entity-Relationship

diagram (ER Diagram) and maps it to its Relations, finds its Functional Dependencies, perform

normalization and creates a relational database. Users can draw an ER Diagram on a canvas, such

that they can create, remove and edit Entity, Attribute and Relationship objects from the canvas.

When the user is satisfied with their diagram, they can select to save or normalize the diagram into

a relational schema in third normal form maintaining lossless join and dependency preservation

properties to create a database.

Acknowledgments

I would like to thank Professor Louis Nel for his support and expert advice as well as for use

of his JavaFXNormalizer code which allowed for Functional Dependencies to be normalized

preserving lossless join and dependency preservation properties.

3

Table of Contents

Abstract .. 2

Acknowledgments ... 2

Table of Contents ... 3

List of Figures .. 5

List of Tables ... 5

1. Introduction .. 6

2. Setup ... 6

2.1 Downloading Android studio .. 6

2.2 Using emulator in android studio .. 7

2.3 Using an android device. ... 7

3. Running the software ... 7

3.1 Create a New Drawing ... 7

3.2 Creating Objects .. 8

3.3 Saving the Diagram ... 8

3.4 Normalize the Diagram .. 8

3.5 Create a Database .. 9

3.6 Accessing Files .. 9

4. Research ... 9

4.1 ER Diagram Components .. 9

4.1.1 Entity Relationship Diagrams ... 9

4.1.2 Entity objects .. 10

4.1.3 Attribute .. 11

4.1.4 Relationship .. 11

4.2 Relation Schema Mapping and Normalization .. 12

4

4.2.1 Decomposing Relationships ... 12

4.2.2 Finding Functional Dependencies .. 13

4.2.3 Performing Normalization .. 13

5. ER Mapper App ... 14

5.1 Work Schedule ... 15

5.2 Functional Requirements ... 15

5.3 Use Case Models ... 16

6. Object Models .. 25

6.1 Component Classes .. 28

6.1.2 ShapeObjects .. 28

6.1.3 Entity/Entity sets/Weak Enitites ... 28

6.1.4 Attribute/Attribute sets/SetOfAttributeSets .. 28

6.1.5 Relationship/Cardinality ... 29

6.1.6 Relations/Relation Schema ... 30

6.1.7 Functional Dependencies / Dependency Set ... 31

6.2 Logic Classes ... 31

6.2.1 Activity Classes .. 32

6.2.2 ER Diagram .. 32

6.2.3 Draw Objects .. 33

6.2.4 FD Normalization ... 34

7. Results .. 37

8. Conclusion .. 38

References .. 40

5

List of Figures

Figure 1. ER Diagram Symbol .. 10

Figure 2. Weak Entity Example ... 11

Figure 3. Relationship Types ... 12

Figure 4. High Level ER Mapper Use Case .. 17

Figure 5. Create Diagram Use Case .. 18

Figure 6. Normalize Use Case .. 19

Figure 7. High Level UML Models .. 26

Figure 8. Components UML Model ... 27

Figure 9. Logic UML Model .. 31

Figure 10. ER Mapper Drawing .. 33

Figure 11. Completed ER Diagram ... 34

Figure 12. Normalized ER Diagram .. 36

List of Tables

Table 1. Summary of Normal Forms Based on Primary Keys and Corresponding

Normalization ... 14

Table 2. Expected and Final Work Schedule ... 15

Table 3. List of Functional Requirements ... 16

Table 4. High Level Use Case Descriptions ... 19

Table 5. Create Diagram Use Case Descriptions ... 20

Table 6. Normalize Diagram Use Case Descriptions .. 23

Table 7. Test Case Matrix .. 37

6

1. Introduction

Computers have countless applications in the world ranging from text editors to games to

security and much more. An important part of each of these application is storing information. In

some scenarios, the best way to do so is by using a relational database. Relational databases

organize a collection of data as schemas in tables. When designing a database, it is important to

organize the data so that it is modeled in a realistic way to support the real world that it is modelling

as well as reduced redundancy and errors. An Entity Relationship (ER) Diagram is a widely used

method for conceptualizing and visualizing the logical structure of a Relational database. There is

also an Extended ER Diagram that hands specializations and generalizations, which will not be

used in the completion of this project. By creating an ER Diagram and normalizing it to its

functional dependencies database designers can easily and realistically model the real world as a

database. The purpose of this project is there for to create an android app (ER Mapper) that allows

users to draw an ER diagram and it automatically normalized in order to generate a database. The

ER Mapper app has a practical use as in a lecture, or meeting environment this app can help teach

students or clients about ER Diagrams and the normalization process. ER Mapper provides an

interface that allows for users to interact with the diagram and get an idea of the ER Diagrams

design process along with how the normalization process occurs. As an android app ER Mapper

can be used on any android device, though a tablet or device with a better bigger screen is best.

This allows for users to get an idea quickly and efficiently of what their database design. This

report Demonstrates how to setup and run the ER mapper program and explains how the program

talks an ER Diagram, maps it to its Relations and Functional Dependencies to create a database.

2. Setup

Clone the Git repository from https://github.com/CD11/ERmapper or unzip the project from

its Compressed Zip file, into the repository of your choice.

2.1 Downloading Android studio

1. Install Android studio 3.0 with

➢ JRE: 1.8.0_152-release-9159b01

➢ JVMOpenJDK 64-bit Server VM by JetBrains s.r.o

7

2. In Android studio go to File -> open an existing android studio project

➢ A dialog will pop up, select the directory where you saved ERMapper, and select

ERMapper->ERMapper->APP.

2.2 Using emulator in android studio

1. In Android studio go to Tools > Android > SDK Manager

2. When the pop up screen opens select Nougat 7.0.0 or Nougat 7.1.1

➢ (The program requires a min API Level of 24)

3. In Android studio go to Tools > Android > AVD Manager

4. When the pop up screen opens select create virtual device

➢ Go to Tablets > Nexus 10 then press Next

5. On the Next screen make sure the SDK that you choose from step 2 is selected, and then

click next and finish

2.3 Using an android device.

1. Install OEM USB drivers corresponding to the device you are using, go to

https://developer.android.com/studio/run/oem-usb.html for more information.

2. Enable USB Debugging on your android device

➢ Open the Settings app.

➢ (Only on Android 8.0 or higher) Select System.

➢ Scroll to the bottom and select About phone.

➢ Scroll to the bottom and tap Model number 7 times.

➢ Return to the previous screen to find Developer options near the bottom.

3. Running the software

 Once the code has been imported and all the necessary software is set up you can run the

program. To run the program, press the green arrow. This will launch a prompt that asks the user

to select a device, emulated or physical, and press OK. This will install the software onto the

android device or launch the emulator. It may take a minute or two to download and start up the

system, but when it is ready the ER Mapper will launch.

3.1 Create a New Drawing

From the initial screen select new ER Diagram, this will launch a new activity with a blank

canvas, and some button along the bottom.

8

3.2 Creating Objects

Press either the Entity or Attribute button to create either object. They will appear in the Top

left side of the canvas; an Entity will be square, and an Attribute will be oval. Both can be moved

around by clicking and dragging them around the screen.

Press the Relationship object to create a relationship. Once the button is selected, click on

either an entity or attribute object, a line will appear that connects the object to the user’s mouse

or finger. Click the second object to create the connection. If for some reason the relationship is

not created on the first try or the line is no longer available, click on the relationship button again.

When a relationship between two Entitles is created, a “1” will appear above the line next to the

object, this is denoting relationship cardinality, and can be set to 1, N or M.

Note:

1. Double clicking an Entity can set it to weak,

2. Every Foreign key must have an identifying primary key with the same name

3. Double clicking and Attribute can set it to primary

4. All objects have a name that can be edited by clicking it, however it uses an

onFocusChange listener, so after you edit the name you must click something else on the

screen, or press tab or enter.

3.3 Saving the Diagram

By pressing save the diagram you will save from the drawing screen, the diagram in XML

format to the android device.

3.4 Normalize the Diagram

Pressing Normalize from the drawing screen will launch a new Activity that automatically

converts all entity objects to relations, creating a relational Schema, finding all functional

dependencies and normalizing the schema into third normal form. From here one will be able to

see all attributes, functional dependencies, min cover, candidate keys, and lossless join

/dependency preserving tables.

9

3.5 Create a Database

By pressing the create database button the system will open a connection to a SQLite database

and create a new database inserting each relation from the schema as a table in the database.

3.6 Accessing Files

Once an ER Diagram has been saved, or a diagram has been created they are saved to the

internal storage of the android device. Within android studio you can access the files from your

emulated or physical device by

1. view->tool window ->device file explorer, this will cause a file explorer to appear on the

right-hand side of android studio

2. In the prompt go to data->data->cd.com.ermapper

3. Database files are stored in the database folder, and xml files are stored in the files folder.

4. Research

Within this section key ideas and concepts regarding ER Diagrams, FDNormalization and

Databases are identified and discussed. All research comes from the Book Fundamentals of

Database Systems by Ramex Elmasri & Shamkant B. Navathe, as well as from COMP3005 Winter

2015 course notes provided by Professor Louis Nel.

4.1 ER Diagram Components

To draw an ER Diagram, it is important to understand what they are, along with its

components. Components include symbols that are used to represent a different concept in the

diagram including Entities, Attributes and Relationships. It should be noted now that the ER

Mapper app will only work with relational databases which is a database that uses tables and

specific constraints to model data.

4.1.1 Entity Relationship Diagrams

 ER Diagrams are a visualization that represents relationships between Entities. Entities,

modeled as squares, represent a real-world concept, and create the tables in your Relational

database. Attributes, modelled as ovals, represent properties of their corresponding Entity or

Relationship and are stored as columns of the Relational table in a database. Every Entity can

have multiple Attributes; however, it requires at least one Attribute to be a primary key (which

uniquely identifies each row in the table). In an ER Diagram the primary key attribute(s) are

10

identified with an underline underneath their name. A Relationship is a line that connects

Attributes and Entities, they may also indicate the cardinality of the Relationship.

Figure 1. ER Diagram Symbol, from the book Fundamentals of Database Systems below

shows the Symbols that may appear in an ER Diagram.

Figure 1. ER Diagram Symbol

4.1.2 Entity objects

An Entity object is a distinguishable object that is part of the mini-world modeled by the

database. In a Relational database, an Entity will be a Relation/Table. Entities can have different

types. Regular Entities have a primary key Attribute, and are Strong Entities. Weak Entities cannot

be distinguished by themselves as they do not have a unique key Attribute. For a weak Entity to

be identified a primary key is defined using a foreign key to its strong Entity and always has a total

participation constraint. Figure 2. Weak Entity Example shows a weak Relationship where Grade

is the weak Entity, and class is the Strong Entity. The primary key of grade is “C#”, “S#”, where

code references the primary key of “S#” of Student and “C#” of Course.

11

Figure 2. Weak Entity Example

4.1.3 Attribute

An Attribute is a property describes an Entity object, and stored as a column in a relational

table. An Attribute property may also describe a property of a Relationship. A candidate key is

the set or primary keys that uniquely identify the table. A super key is a set of Attributes in a

relation schema, where no two tuples in the Attribute set will have t1[S] = t2[S]. The removal of

any Attribute from the super key will prevent it from being a super key. A Foreign Key Attribute

is an Attribute that references a primary key Attribute of another table. Finally, a Composite

Attribute is an Attribute that is composed of several components

4.1.4 Relationship

A Relationship relates two or more Entities with a specific meaning. The degree of

Relationship is the number of Entities that participate in a Relationship. A binary relationship has

a degree of 2, a ternary relationship has a degree of 3 and a n-ary relationship has a degree of N.

Each participating Entity in a Relationship has a cardinality which can be 1:1, 1: N or M: N.

Figure 3. Relationship Types, is an example that depicts different types of participation and

cardinality of Relations. An Identifying Relationship type relates a weak Entity type to its owner.

12

In Figure 2. Weak Entity Example, the Relationship Depends on represents an identifying

Relationship.

Figure 3. Relationship Types

4.2 Relation Schema Mapping and Normalization

The outcome of this project is a relational schema in third normal form that is mapped from

the ER Diagram drawn by a user that can be mapped to a database. To properly create a relational

schema an algorithm must be used to: convert n-ary Relationships to binary Relationships, find

Functional Dependencies and perform normalization.

4.2.1 Decomposing Relationships

Before normalizing the diagram, The ER Diagram gets mapped to a RelationSchema, by

looking at each Relationship and its Entities and deriving Relations. As discussed in the research

section, a binary Relationship is a Relationship between two Entity objects, a ternary has three

Entity objects and n-ary has n Entity objects. Relationships with a higher degree make it harder to

specify the constraints of a Relation. Therefore; we can decompose the higher degree

Relationships to binary to simplify the process. Decomposition to binary Relationships can be

done following steps from Fundamentals of Database Systems:

13

1. For each ternary/ n-ary Relationship type R, where n>2, create a new Relationship S to

represent R

2. Include as foreign key Attributes in S the primary keys of the Relations that represent the

participating Entity types

3. Also include any simple Attributes of the n-ary Relationship type (or simple components of

composite Attributes) as Attributes of S

4.2.2 Finding Functional Dependencies

Once the ER Diagram has been mapped to a relational schema, it is possible to identify the

constraints for each Entity in the system. As defined in section 14.2.1 in Fundamentals of Database

systems:

“A Functional Dependency, denoted X -> Y, between two sets of Attributes X and Y that are

subsets of [Relation] R specifies a constraint on the possible tuples that can form a Relation

state r of R. The constraint is that, for any two tuples t1 and t2 in r have t1[x] = t2[x], they

must also have t1[Y] = t2[y].”

This definition means that for any value Y in a tuple is defined by X and it can be said that Y

is functionally dependent on X. A Functional Dependency can have multiple different values,

every Attribute of X is called the left had side, and every Attribute of Y is called the right-hand

side. A set of Functional Dependencies exists for each Relation, where each Relation also must

have a primary key. By identifying the Functional Dependencies, it is possible to find redundant

and trivial information.

4.2.3 Performing Normalization

To ensure the relational schema has a good design without redundant or trivial information

the normalization process is used. Normalization is the process of decomposing the relational

schema into smaller relations using their candidate keys and functional dependencies (Nel, 2015c).

Boyce Codd proposed the normalization process using First Normal Form, Second Normal Form

and Third Normal Form. Boyce Codd later suggests Boyce-Codd Normal Form and Fourth

Normal Form, but for this project, third normal form is sufficient. In order to be in Third Normal

form, each Relation must also meet the requirements for First and Second normal forms which are

as follows:

14

1. First Normal Form: has no composite/multivalued Attributes along with nested Relations

2. Second Normal Form: every non-prime Attribute in a Relation is fully functionally dependent

on the primary key

3. Third Normal Form: requires that no nonprime Attribute has transitive dependency, meaning

each FD X->Z and Z-> Y. It also must maintain the lossless join property and dependency

preservation property

➢ The lossless join property ensures that any instance of the original Relation can be

decomposed into smaller Relations with no loss of information

➢ The dependency preservation property ensures that after the Relation is decomposed each

Functional Dependency still holds

To convert Relations into their normal form one can follow the steps provided in Table 1.

Summary of Normal Forms Based on Primary Keys and Corresponding Normalization. The code

provided by Professor Louis Nel, handles the normalization contains the code to maintain lossless

join property and dependency preservation property.

Table 1. Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form Test Remedy

First (1NF) Relation should have no multivalued

Attributes or nested Relations

Form a new Relation for each multivalued

Attribute or nested Relation

Second (2NF) For Relations where primary key

contains multiple Attributes, no

nonkey Attribute should be

functionally dependent of the primary

key

Decompose and set up a new Relation for

each partial key with its dependent

Attribute(s). Make sure to keep a Relation

with the original primary key and any

Attributes that are fully functionally

dependent on it

Third (3NF) Relation should not have a nonkey

Attribute functionally determined by

another nonkey Attribute (or by set of

nonkey Attributes). That is, there

should be no transitive dependency of

a nonkey Attribute on the primary

key.

Decompose and set up a Relation that

includes the nonkey Attribute(s) that

functionally determine(s) other nonkey

Attribute(s).

5. ER Mapper App

ER Mapper is an android app that allows the user to create an ER Diagram and generate a

relational schema in third normal form in order to create a database. Below are descriptions of the

work required to complete the project including: work schedule, function requirements, use cases,

and system models that explain how the system is constructed and function.

15

5.1 Work Schedule

Table 2. Expected and Final Work Schedule below displays the work schedule to complete this

project, with expected and final dates.

Table 2. Expected and Final Work Schedule

Objective Estimated

Time

Due

Date

final

date

Research

1 week

Sept 3 Sept 2

Identify all functional Requirements

2 days Sept 3 Sept 2

Create Structure for ER Diagram including a user

interface

3 weeks Sept 30

Sept 20

Create structure + objects for Functional Dependencies

1 week Oct 10 Oct 5

Write + Submit Mid-term Report

1 weeks Oct 30 Oct 30

Add complex Relationships

1 week Nov 10 Nov 8

Apply rules to convert ER to FD for complex

Relationships

3 weeks Nov 10

Nov 14

Implement provided program for FD to DB

1 week Dec 1 Nov 20

Write + Submit First Draft report

2 weeks Dec 1 Dec 1

Testing and review

On going Dec 14 Dec 15

Submit Final Report 2 weeks Dec 15 Dec 15

5.2 Functional Requirements

The following are the functional requirements of the ER Mapper system. Each functional

requirement describes in Table 3. Functional Requirements a set of behaviors that can be

performed by the user and the system to create and map and normalize an ER Diagram.

16

Table 3. Functional Requirements

F-01. User must be able to create/delete Entities

a. Entities require a primary key, which is a unique name

b. In the ER Diagram the Entity will be represented by a square

F-02. Users must be able to create/remove Attributes

a. Attributes must belong to an Entity

b. Attributes can be composite or multivalued

c. In the ER Diagram the Attribute will be represented by an oval

d. The Primary Attribute will be the Primary key of the Entity, depicted with an

underline

F-03. Users must be able to create/ remove Relationships

a. Connections can be between 2 Entities

b. Connections can be between an Entity and an Attribute

c. Connections between 2 Attributes show composite or multivalued Attributes

d. Connects will be depicted with a Line

e. Relationships will be depicted with a diamond

F-04. Users must be able to select a Attribute, Entity or Relationship and move it

around the screen

F-05. The system must create an ER Diagram that contains a set of Entities with its

Attributes and connections

F-06. The system must convert the ER Diagram into a relation schema

a. The system must convert all Relationships to binary Relationships, and then

convert each Entity to a Relation

F-07. The system must identify all Functional Dependencies

F-08. The system must normalize the Relations into Third Normal Form and maintain

lossless join property and dependency preservation property.

F-09. The system must create a Relational database based on the normalized Relations.

F-10. The user must be able to save their diagram in XML format

F-11. The user must be able to save the created SQLite database

F-12. The system must be able to handle and inform users of errors without crashing

5.3 Use Case Models

The following section describes the ER Mapper Program use cases. Each use case describes

the behavior and functionality as modeled by Figure 4. High Level ER Mapper Use Case. The

system has only one actor who has an option to create a diagram or normalize a diagram.

17

Figure 4. High Level ER Mapper Use Case

 The create diagram use case describes the functionality of the system regarding creating and

drawing a diagram, as shown in Figure 5. Create Diagram Use Case.

18

Figure 5. Create Diagram Use Case

The program also allows for a diagram to be normalize as shown in Figure 6. Normalize Use

Case. In this process it takes the diagram and maps it to Relations to create a RelationSchema, then

takes the schema and places it into third normal form. Placing the schema into third normal form

ensures that the database will have a good design by removing any redundant or trivial information

and meets all Functional Dependencies.

19

Figure 6. Normalize Use Case

The use case diagrams provide a list of use cases which can be used to describe the behavior

and control flow of the system.

Table 4. High Level Use Case Descriptions walk through each use case identifying the main

actors, the system responses/states, flow of events and traceability back to the systems functional

requirements.

Table 4. High Level Use Case Descriptions

Use Case Identifier UC-1

Name ERMapper

Participating actors User

20

Flow of events 1. the user selects to create a diagram

a. the system will draw a blank canvas and allow the use to create the

diagram

2. the user selects to create the diagram Include Create Diagram

3. the user selects to normalize the diagram Include Normalize

Diagram

Entry conditions User selects Create new diagram

Exit conditions User creates a diagram or exits the system

Traceability F-01, F-09

Use Case Identifier UC-2

Name Create Diagram

Participating actors User

Flow of events 1. if the user selects to create an object

a. The system creates a new object of the format selected. Include

addEntity, AddAttribute, AddRelationship. Or the user

selects to remove an object

2. the user clicks an object

a. the system removes the object corresponding to theobject

clicked. Include removeEnitty, removeAttribute,

removeRelationship.

3. the user selects to save the diagram

a. The system saves the diagram. Include save Diagram

Entry conditions User selects create Diagram

Exit conditions User selects to normalize the diagram, or exits the system.

Traceability F-01, F-05, F-06

Error! Not a valid bookmark self-reference. depicts the control flow and traceability of how a

diagram gets created using the buttons to create objects.

Table 5. Create Diagram Use Case Descriptions

Use Case Identifier UC-3

Name Normalize Diagram

Participating actors User

Flow of events

1. if the user selects to normalize the diagram

a. The system creates a RelationSchema. Include Create

Relational mapping.

b. The system gets a normalize error.

Entry conditions User selects create Diagram

Exit conditions User selects to normalize the diagram, or exits the system.

Traceability F-09

Use Case Identifier UC-4

Name addEntity

Participating actors User

21

Flow of events 1. the user clicks the Entity button

a. the system creates a new Entity object and draws it to the

screen, and adds it to the ShapeObjects list.

Entry conditions User selects create an Entity

Exit conditions Entity object is drawn to the screen.

Traceability F-02

Use Case Identifier UC-5

Name removeEntity

Participating actors User

Flow of events 1. the user selects delete and clicks on an Entity object

a. The system searches the list of drawn objects for the selected

Entity

If the Entity is not part of a Relationship

a. The sub objects are added to the ShapeObject list

b. The Entity is removed from the shape object list

If the Entity is part of a binary Relationship

a. The system adds the sub objects of the selected Entity to the

drawnshapes list. The system adds the other Entity to the

ShapeObjects list. The Relationship is removed from the

ShapeObject list

If the Entity part of a ternary or n-ary Relationship

a. The Entity sub objects are added to the ShapeObject list

b. The Entity is removed from the Relationship

c. The system redraws the diagram

Entry conditions User selects delete an Entity

Exit conditions Object deleted and diagram is redrawn.

Traceability F-02

Use Case Identifier UC-6

Name addAttribute

Participating actors User

Flow of events 1. the user selects Attribute button

a. the system creates a new Attribute object and draws it to the

screen and adds it to the shape objects list

Entry conditions User selects create an Entity

Exit conditions The Attributed is added and diagram is redrawn

Traceability F-03

Use Case Identifier UC-7

Name removeAttribute

Participating actors User

Flow of events 1. The user selects delete and clicks on an Attribute object

a. The system searches the list of drawn objects for the selected

Attribute

b. The system takes any sub objects of the Attribute and adds it

to the shape objects list, and removes the Attribute object

22

from the drawn list

 c. The system redraws the diagram.

Entry conditions User selects to remove an Attribute

Exit conditions The Attribute is removed, and diagram is redrawn

Traceability F-03

Use Case Identifier UC-8

Name addRelationship

Participating actors User

Flow of events 1. User selects Relationship button

a. The system creates a new Relationship object

2. The user clicks one object

a. The system sets the center of the object to the initial position,

and draws a line from there that follows the mouse.

3. The user clicks a second object

a. The system sets the center of object as the second coordinates

of the line.

If the Relationship is between an Entity and an Attribute

a. the system adds the Attribute to the Entity Attribute list, and

removes the Attribute from the ShapeObjects list.

If the Relationship is between two Attributes

a. The system adds the second Attribute to the Attribute list of

the first Attribute.

If the Relationship is between two Entities

b. The system adds both Entities to the Relationship object.

c. The system creates cardinalities for each Entity

d. The Relationship is added to the general ShapeObjects list

e. Each Entity is removed from the general ShapeObjects list

If the Relationship is between an Entity and an existing Relationship

a. The Entity is added to the Relationship object list

b. The Entity is removed from the ShapeObjects list

c. The Entity gets a cardinality object

If the Relationship is between an Attribute and a Relationship

a. The system adds the Attribute to the Relationship

b. The system redraws the diagram.

Entry conditions User selects create a Relationship

Exit conditions The diagram is redrawn

Traceability F-04

Use Case Identifier UC-9

Name removeRelationship

Participating actors User

Flow of events 1. User delete and clicks a Relationship object

a. The system adds all sub objects of the Relationship to the

ShapeObjects list.

b. The system removes the Relationship from the ShapeObject

23

list if it was binary.

Entry conditions Relationship is removed, and diagram is redrawn

Exit conditions The diagram is redrawn.

Traceability F-04

Table 6. Normalize Diagram Use Case Descriptions depicts the control and traceability of the

normalization process once the user has selected to normalize the diagram.

Table 6. Normalize Diagram Use Case Descriptions

Use Case Identifier UC-10

Name Save Diagram

Participating actors User

Flow of events 1. User selects save

a. The system saves the diagram in xml format

b. The system displays a pop up with a success or error notification

Entry conditions The user selects save

Exit conditions The user presses ok on the notification.

Traceability F-11

Use Case Identifier UC-11

Name Create Relational Mapping

Participating actors User

Flow of events a. The system takes Relationships in the diagram and applies the

ER-> Relational mapping rules to create all Entities

b. The system creates a Relation for each Entity

If the Entity is not weak

a. adds the primary Attributes of the Entity to the primary key,

and all Attributes to the candidate keys.

If the Entity is weak

a. Adds the primary key of the strong Entity to the weak Entity

primary key. Adds all Attributes to the candidate keys.

If the Entity has a multivalued Attribute

a. The system creates a new Relation with the Attribute

containing the values list as the primary key

b. All Attributes in the values list are added to the candidate keys

list

c. The system removes any temporary Attributes

d. The system normalizes the schema. Include create

Functional Dependencies

Entry conditions The system creates a new RelationSchema

Exit conditions The RelationSchema is created

24

Traceability F-07

Use Case Identifier UC-12

Name Create Functional Dependencies

Participating actors User

Flow of events a. The system creates a new dependency set

b. for each Relation in the schema the system adds the primary

key to the left hand side, and the Attributes to the right hand

side

c. The system checks if the Functional Dependency is trivial

if it is not trivial, the Functional Dependency is added to the

dependency set

d. the system performs normalization on the dependency set

include Normalize dependencies

Entry conditions The system created the RelationSchema

Exit conditions All Functional Dependencies are created

Traceability F-08

Use Case Identifier UC-13

Name Normalize dependencies

Participating actors User

Flow of events a. The system finds the minimal cover of the dependency set

b. The system finds all candidate keys of the table

c. The system places any Attributes not in the set in a table of

their own.

d. If none of the tables created contain a candidate key, then a

new table is created with the candidate key

e. The system removes any redundant tables

Entry conditions The system creates a dependency set

Exit conditions The dependency set is normalized

Traceability F-09

Use Case Identifier UC-14

Name Save Database

Participating actors User

Flow of events 1. The user clicks create database

a. the system opens connection to sql

b. the system creates a new database

c. the system adds each Relation to the database

d. the system displays a success/error prompt

Entry conditions The user selects create database

Exit conditions The user accepts prompt notification

Traceability F-10, F-11

Use Case Identifier UC-15

Name Save Error

Participating actors User

Flow of events a. the system gets a file not found or database error

25

b. the file is not created or saved

c. the system displays an error prompt, extends Save Diagram,

Save Database

Entry conditions A save error occurs

Exit conditions The user accepts prompt notification

Traceability F-12

Use Case Identifier UC-16

Name Normalize Error

Participating actors User

Flow of events a. the system gets an exception when trying to parse the ER

Diagram, extends normalize diagram

b. the system displays an error prompt

Entry conditions A normalization error occurs

Exit conditions The user accepts prompt notification

Traceability F-12

6. Object Models

The following diagrams are object models that represent the systems object models. They are

packaged into two packages: Components and Logic, shown in Figure 7. High Level UML Models.

The components package contains all the classes that are objects of the system, these classes

include anything required to build an ER Diagram or a relational schema. The logic package

pertains to all classes that control the behavior of the components, including the activity classes.

26

Figure 7. High Level UML Models

27

Figure 8. Components UML Model

28

6.1 Component Classes

The component classes are modeled in Figure 8. Components UML Model and make up all

nonlogic classes that represent an idea that needs to be modeled by the ER Diagram. For better

readability the Components UML diagram includes all class objects but excludes simple functions

such as setters and getters. The ShapeObjects class, which is abstract represents shows all

functions that are inherited by the subclasses.

6.1.2 ShapeObjects

An ER Diagram is modeled using symbols, called ShapeObjects in the ER Mapper system. A

ShapeObject is an abstract class that allows for the diagram to store each ShapeObject and offers

for a single interface to be used for each ShapeObjects. Within this class there are several abstract

functions that get overwritten by the sub classes defining specific behavior, such as drawLines(),

drawShapess(), removeObj(), getallObjects(), that cover the functionality of each ShapeObject

type. Each of these objects contains a name, edit text and coordinates which allow form them all

to be drawn to the canvas. Each edit text has an event listener attached to it, making it possible for

the user to change any object name. ShapeObject extend Parceable class so that objects can be

passed between android activities. Parceable works, by decomposing an object into a parceable

object using the wrtiteToParcel() function, and it then uses the readsFromParcel()function to calls

a creator class to reconstruct the object from the parcel.

6.1.3 Entity/Entity sets/Weak Enitites

As explained in the research section, an Entity represented a Relational table, which models

some aspect of the real world. An Entity is a subclass of a ShapeObject. An Entity is represented

as a square, and contains a solid line to connect its Attributes. An Entity contains a list of Attribute,

and a Boolean which is true if weak, false otherwise. A weak Entity is drawn as a square outlining

the original square, and two solid lines connecting the Relationship to represent total participation

in the Relationship. An Entity set, contains a list of unique Entities.

6.1.4 Attribute/Attribute sets/SetOfAttributeSets

An Attribute is also a subclass of ShapeObject and its symbol is an oval. Primary Attributes

are used to uniquely identify an Entity. An attribute object represents a property of either an Entity

or Relationship. In a Relational database where every Entity is a table, each Attribute identifies a

29

column. A primary key is an Attribute that must be unique for ever row in the table. Within the

ER Mapper system to create a primary Attribute, a user can double tap the attribute they want to

set it to primary or remove the primary. A primary key attribute is identified by underlining its

name in the ER Diagram. A foreign key is a primary key of a weak Entity that references the

primary key of another table. The foreign key will be identified with a dashed underline of the

name. Along with being primary and foreign, an Attribute can be multivalued. A multivalued

attribute can be broken down into separate components, such as a date of birth, which can be

decomposed into year, month, day. If the Attribute is multivalued, the sub Attributes are stored in

a list.

An Attribute set, contains a list of unique Attributes. When a parceable creates an AttributeSet

it calls the creator for an Attribute, which causes the creator to get stuck in a loop, therefore all

multivalued Attributes are stored in an array list instead of an Attribute. Another issue that occurs

do to the parceable implementation, is that each time it calls a creator a new instance is created.

Therefore; if the same Attribute has two references, the parceable creates two new references for

it. Then when checking if an Attribute already contains that Attribute, it does not recognize the

objects as the same. As a work around, the Attribute set checks if the names are equal. It is

important to note that two Attributes with the same name cannot be added to any Attribute set.

When any Attribute is created it is called “object” + count, where the count is incremented for

every Attribute created making the name unique for every Attribute, so that it can be added to an

Attribute set before given a unique. The SetOfAttributeSets class holds a unique set of Attribute

sets.

6.1.5 Relationship/Cardinality

A Relationship is another subclass of the ShapeObject which is modeled a line connection

between two or more Entity objects. If the Relationship is an identifying Relationship, it gets a

diamond with a diamond outline, and has two solid lines to show total participation. A Relationship

object may also contain an Attribute set, representing any properties of the Relationship. An Entity

set is used to stores all Entities participating in the Relationship. Each Entity in the Relationship

can contain a different cardinality in the Relationship. Therefore, for each solid line a cardinality

object is drawn. A cardinality object contains an edit text, initially set to 1, and can be modified

by the user to model 1:1, 1: N and M : N Relationships.

30

6.1.6 Relations/Relation Schema

The Relation class represents an Relational table, derived from an Entity object and its

Attributes and Relationships. A Relation contains an AttributeSet of nonprimary keys, an

AttributeSet of primary keys and a name. A Relation is created by iterating through all Entity

Attributes, adding each to the Attribute set, checking if the Attribute is primary or foreign, and

adding it to the primary set if true. The primary key should be a subset of the Attribute set. A

relational schema, represents a unique set of Relations. When creating a RelationSchema, the

program looks at every object in the general ShapeObject list representation of the ER Diagram,

and maps it to Relations. The rules for ER to Relational mapping rules from Fundamentals of

Database Systems is used as follows:

1. For all 1:1 Relationships do

➢ Choose one of the Relations-say S-and include a foreign key in S the primary key of T

➢ It is better to choose an Entity type with total participation in R in the role of S

2. for All 1:N Relationships do

➢ create a Relation S that represent the participating Entity type at the N-side of the

Relationship type

➢ Include as foreign key in S the primary key of the Relation T that represents the 1 side

of the Relationship type

➢ Include any simple Attributes of the 1:N Relation type as Attributes of S

3. For all M:N Relationships do

➢ For each regular M:N Relationship type R, create a new Relation S to represent R

➢ Include as foreign key Attributes in S the primary keys of the Relations that represent

the participating Entity types; their combination will form the primary key of S

➢ Also include any simple Attributes of the M:N Relationship type (or simple

components of composite Attributes) as Attributes of S

4. For multivariable Attributes

➢ For each multivalued Attribute A, create a new Relation R

➢ This Relation R will include an Attribute corresponding to A, plus the primary key

Attribute K-as a foreign key in R-of the Relation that represents the Entity type of

Relationship type that has A as an Attribute

➢ The primary key of R is the combination of A and K. If the multivalued Attribute is

composite, we include its simple components

Once the ER Diagram has been mapped to its relational schema, the program can check for

constraints and remove any trivial or redundant information.

31

6.1.7 Functional Dependencies / Dependency Set

A Functional Dependency represents the constraints on a Relation. A Functional Dependency,

contains a left had side with all primary and foreign Attributes of a Relation, as well as a right-

hand side with all nonprimary Attributes of a Relation. A Dependency set contains a list of unique

Functional Dependencies.

6.2 Logic Classes

All logic classes are shown in Figure 9. Logic UML Model the following sections again

explains and describes what each class is and how they work.

Figure 9. Logic UML Model

32

6.2.1 Activity Classes

MainActivity, ERDraw and FDNormalizations are each activity classes. According to

Android studio API an activity class represents a single screen with a user interface. The

MainActivity class is the first screen that appears when the user launches the app, it launches to a

screen where the user can select to create a new ERDiagram. From there, the main activity

launches the ERDraw activity and passes it a new ER Diagram object. The ERDraw activity

creates the interface for the blank canvas. It contains several buttons at the bottom of the screen

which allows the user to draw object, adding/removing/editing the ER Diagram object. The

ERDraw activity also contains a Realative Layout where all objects are added to, and a Relative

Layout where all edit text objects are stored. This allows for all edit text objects to be placed on

top of the linear layout so that they are always visible. The user may also select the normalize

button which launches the FDNormalization activity, which creates a new interface that displays

the RelationSchema details. The FDNormalization activity has several text view objects within a

scroll box that display all information in the system, along with a create diagram button, which

will create SQLite database and save it locally to the android device.

6.2.2 ER Diagram

The ER Diagram class is used to represent an ER Diagram that will be drawn to a blank

canvas. When an object is drawn it is added to an arraylist of ShapeObjects. As each object forms

Relationship Attributes and Entities are added to their corresponding owner, then removed from

the general ShapeObject list. In doing this it ensures if there exist any objects that are not in a

Relationship, they can still get drawn, but removes storing duplicate information. Since the object

is removed from the general list, the Draw class searches each object for any of its members to

draw instead of just looking at the list. For example, suppose there exist an Entity and Attribute

object with no Relationship. Then each object will be stored in the general ShapeObject list.

 Suppose a Relationship is created between he Entity and Attribute. The Attribute gets added

to the Entity Attribute list, along with this a new Relationship is created, storing the Attribute and

Entity as objects 1 and 2. Then the Attribute and Entity are removed from the ShapeObject list

and the Relationship is added. To draw this Relationship, the Relationship drawLines() function

is called to draw the lines between the Entity and Relationship, then the draw shapes function is

call to draw the actual Entity and Attribute shapes.

33

The function relationshipDecomposition() is used to look at the diagram and organize it in

terms of its Entities. It starts by looping through every Relationship checking if it is not binary

and decomposing it to a binary Relationship, using the steps mentioned earlier. In the conversion,

several Entity objects will be created. When these Entities are created they are given the Attributes

of their connecting Entities, in some scenarios this may create an Entity that is trivial, i.e. contains

a Functional Dependency X-> Y where Y is a subset of X. To bypass this, it creates a temporary

Attribute with a name of “-1”, which allows for the Entity to be considered valid while it gets

mapped to a Relation. Once the relationshipDecomposition() function is finished the system will

have properly identified all Entity objects and Attributes, and the Entities can be mapped to their

Relations using the steps described before in the section on Relation/ RelationSchema. Once the

RelationSchema is created, there is a function removeTemps() that removes the temporary

Attributes from the Schema.

6.2.3 Draw Objects

The ERMapper starts by creating a blank canvas that allows users to draw an ER Diagram.

The general drawnObjects() function from the ER Diagram class is used to identify which can be

Entities, Attributes or Relationships, with their coordinates to be drawn to the screen. The main

page of the application seen in Figure 10. ER Mapper Drawing shows the canvas of the page, and

in the red box identifies the buttons that user can use in order to create new objects.

Figure 10. ER Mapper Drawing

Once the user has selected a button, the corresponding object is created. If the user selected to

create a Relationship the system creates a line that follows the mouse to connect to objects. If the

Relationship is valid then it gets added to the object list. The program searches the ERDiagram list

of objects and draws the correct shape, based on the object type onto the screen at the correct

34

coordinates. The canvas also has a motion event listener which activates when the user clicks the

screen. It checks if the user has clicked a coordinate that is inside a shape and then allows the user

to move that object around the screen, if the object has any Relationships it will also update those

coordinates. To create key Attributes a user can double click on the Attribute they want to make

key, and an underline will appear. To make a weak Entity the user can double click an Entity.

Once the user has completed has completed their drawing they can click normalize to normalize

the objects and create a Relation diagram. Figure 11. Completed ER Diagram below is an image

of a complete ER Diagram.

Figure 11. Completed ER Diagram

6.2.4 FD Normalization

To normalize the diagram, one must press the Normalize button from the diagram. The

ERDraw class will cause the FDNormazliation activity. This class will parse through all of its

Relationships and convert them to binary Relationships, and then create an arraylist of Entities

which entirely covers the scope of the diagram in terms of Entities, removing redundancy’s and

any information that is not relevant to creating a database such as coordinates. It will display any

relevant information in system to the screen and offer an object for the user to create a database.

35

Figure 12. Normalized ER Diagram is an example of the FDNormalization activity. In the results

section is a scroll box where the following information is displayed:

1. All Attributes

2. All Functional Dependencies

3. Minimal cover

4. Checks that the minimal cover is equivalent to all original Functional Dependencies

5. All Candidate keys of a table

6. Lossless-join and Dependency Preserving, 3NF tables

➢ This are the tables that will be used to create the database

In order to get all the Attributes, Functional Dependencies and results, the class takes the

created RelationSchema, normalizes it and performs Attribute closures. The FDNormalization

class calls the relationshipDecomposition() function which as mentioned before, decomposes all

Relationships to binary Relationships and returns a list of all the new and old Entities. The system

can then map those Entities to Relations and create a new RelationSchema by using the following

steps from the book Fundamentals of Database Systems:

1. for all Regular Entity types, assign a Relation, pick a primary key

a. if the primary key is a complex Attribute: all Attributes will be included

b. if an Attribute is complex, create a new Relation

2. for all Weak Entities, create a foreign key that references all Primary keys of its Strong

Relation

Once the RelationSchema is mapped each Functional Dependency is identified such that any

primary key in a Relation must functionally determine all other Attributes in the Relation. To do

this the program sets the primary key to the left-hand side of the Functional Dependency and all

other Attributes to the right-hand side. From the Functional Dependencies and primary keys of

each Relation, the system can use the performNormalization() function which applies the steps

that were mentioned earlier, to normalize the RelationSchema into Third Normal Form. The code

that handles checking lossless-join and dependency preservation properties was provided by

Professor Louis Nel. The algorithm itself was based on the four-step algorithm 16.6 presented

Fundamentals of Database systems, which decomposes a set of Attributes with respect to

Functional Dependencies F:

36

1. find a minimal cover Fm of F

2. for each left hand side X of FD in Fm create with columns X U A1 U A2 U ...An where

X->A1, X->A2,... X->An are all the dependencies in Fm with left hand side X

3. if none of the tables created in Step 2 contains a candidate key for the universal Relation

consisting of all the Attributes, then create a table consisting of a candidate key remove

redundant tables. If any table is a projection of another (has all its columns appearing in

another table), it is removed table

Figure 12. Normalized ER Diagram, shows the screen that gets displayed after the

normalization process which displays the System Results. The results screen prints out

information relevant to the process including, finding the minimal cover of the Relations, and

finding all candidate keys which prove that the lossless join property and dependency preservation

property hold still.

Figure 12. Normalized ER Diagram

From the FDNormalization activity page users my select to create a database. Once the button

is selected a SQLite Database is opened, and a table is created for each relation with the required

columns from the relation attributes. If the attribute is a primary key, it is designated a primary

37

key in the relation table in the database. If the attribute is a foreign key, the program searches all

relations for a primary key with the same name. As the program finds the identifying relation by

matching the name of the primary key to the foreign key, this creates a constraint on the system

that the primary key of the identifying relation has the same name as the foreign key of the weak

entity key attribute. From here the program has everything it requires to create the database, upon

which a user gets a notification that the database was successfully/ or unsuccessfully created.

7. Results

To ensure that the system works correctly, and its actual outputs match its expected outputs,

there were a series of unit tests done using unit Tests. All tests in the system display their output

to the console at the bottom of screen. The logic unit test cases (src->test) test, that functions have

the desired response of the system to ensure that the ERDiagram created and normalized. Along

with the logic test cases are the diagram and database test cases which are emulated test(src-

>androidTest) that check the system User Interaction. Table 7. Test Case Matrix shows all tests

that ran in what test suite they will run in and how they traceback to the Functional Dependencies.

The tests run by right clicking the desired test and selecting run. The tests below do not cover the

entire functionality of the system and more tests should occur to ensure that the relationship

decomposition and normalization procedures are correct and receive the desired responses. This

can occur by create several different diagrams of different varieties to test as well as by including

scenario tests that consider different sequences of execution. However even without testing the

entire functionality the completed tests give a good indication that the system is doing as expected.

note: that when running emulated test suites sometimes the tests will cause an error due to

conflict from the previously run test suite. However, they do all run successfully independently.

Table 7. Test Case Matrix

Test Cases Location Traceability

addEntity () Logic F-01

canRemoveWeakEntity() Logic F-01

CreateEntity() Diagram F-01

CreateWeakEntity () Logic F-01

removeEntity() Logic F-01

removeEntityWithAttriubte() Logic F-01

AddAttributeToEntity() Logic F-01, F02

DeleteObject() Diagram F-01, F-02, F-03

38

removeEntityFromBinaryRelationship() Logic F-01, F-03

removeEntityFromTernaryRelationship() Logic F-01, F-03

addAttribute() Logic F-02

CreateRelationship() Diagram F-02

removeAttribute() Logic F-02

removeAttriubteFromEntity() Logic F-02

setPrimaryAttribute() Logic F-02

addRelationship() Logic F-03

CreateAttribute() Diagram F-03

SelectObject() Diagram F-04

BinaryDecomposition() Logic F-06

NormalizationTest.RelationSchema() Logic F-06, F-08

NormalizationTest.FunctionalDependencies () Logic F-07, F-08

CandidateKey() Logic F-08

dp_lj() Logic F-08

MinCover() Logic F-08

NormalizationTest.GetAllEntityObjects () Logic F-08

thirdNF() Logic F-08

CreateDB() Database F-09, F-11

Save() Diagram F-10

8. Conclusion

The purpose of this project was to create an android app that will allows uses to drawn ER

Diagram and automatically generate the corresponding RelationSchema. The ERMapper program

successfully meets all of its functional requirements and successfully creates a Relational database.

The ER Mapper offers a simple and effortless way for database designer to quickly create a

database and have an idea of how the mini-world they are modelling is related.

Some issues with the system include double clicking to create a primary Attribute or a weak

Entity, as Entity and Attribute objects contain an edit text in the middle of their object, sometimes

when double tapping you tap the edit text to change the name instead of creating a primary attribute

or weak entity. This issue is especially prevalent if using a small android device or if you have

big fingers. A way to get around this would be to use a tablet pen or making the objects larger.

This shows that the small screens of android devices create a constraint on the usability of the

system. Another issue with the system occurs when mapping complex relationships including

only supporting 1, N or M being entered as relationship cardinality. Along with limitations to

cardinality as part of the relationship decomposition new entities and relationships are created with

a placeholder name, that of the relationship name, that cannot be edited, this adds some ambiguity

39

as the user may not be aware of what the entity or relationship is trying to model. The ambiguity

also creates issues with foreign keys, as they must be named the same as their identifying key in

order for the program to ensure correctness. If the primary key and foreign key do not have the

same name, the system will reference the foreign key and primary key separately instead of using

the foreign key to reference the primary key. Currently the system is set up that every primary key

of a weak entity becomes foreign, this means that the system does not support a weak entity that

has a combination of primary and foreign keys. It should also be noted that ER Diagrams

themselves are ambiguous as the system does not have an understand of what everything is so

while it ensures that the user meets the minimal constraints of an ER Diagram, such as an entity

requires a primary attribute and weak entities require strong entities, if the user creates a diagram

that incorrect the database will reflect that.

Future work for the system include performing some usability testing to find the best size and

constraints for the user interface as well as testing for more complex relationships. The system

could also include creating a file opener so that users can load already existing diagrams from their

XML format into the system. Another downside of the system is that is works only on android

devices. Android devices tend to be smaller making it difficult to draw more complex ER

Diagrams, as you cannot see the whole diagram at once. Being an android app also makes it

difficult to access any files that are saved. By creating the same system as web application so that

it is accessible on non-android devices. As a work around for this though, the app can always be

run in android studio as an emulator which allows for a bigger screen size if you do not have a

large android device, and files can be transferred from the android device to your computer, so that

once your database is created you can move it to a better location.

The ER Mapper app would be a great tool database designers and Professors to use explain

how the database design and its normalization to process to clients and students. By providing

immediate feedback the app provides faster and more efficient solution then using a pen and paper.

While the app does have some limitations including size and complexity, however with some more

testing and refactoring the app can be improved to offer an even larger variety of uses as well as

can be converted to different platforms.

40

References

Activity. (2017, October 25). Retrieved November 20, 2017, from

https://developer.android.com/reference/android/app/Activity.html

Elmasri, R., & Navathe, S. (2016). Fundamentals of Database Systems. Don Mills, Ont.:

Addison-Wesley.

Nel, L. D. (2015, Fall). Algorithmic Design with Normal Forms. COMP 3005 Course Notes Fall

2015.

Nel, L. D. (2015, Fall). Modeling ER Features with Functional Dependencies. COMP 3005

Course Notes Fall 2015.

Nel, L. D. (2015, Fall). Normal Forms. COMP 3005 Course Notes Fall 2015.

