
	

	 	

2017	

IOS	CALENDAR	WEEK	VIEW	

EVAN	COOPER	
	
DATE:	 	 	 DECEMBER	15TH	2017	
SUPERVISOR:		 LOUIS	D.	NEL	
DEPARTMENT:		 SCHOOL	OF	COMPUTER	SCIENCE	
ORGANIZATION:		 CARLETON	UNIVERSITY	
COURSE:		 	 COMP	4905	–	HONOURS	PROJECT	

	

	
	

I	

ABSTRACT	

Mobile	application	Integrated	Development	Environments	(IDEs)	provide	a	wide	range	of	pre-

made	libraries	that	aid	developers	in	building	applications	for	mobile	platforms.	Xcode,	Apple’s	

IDE	for	developing	iOS	applications	for	iPhones,	iPads	and	more,	is	no	exception.	Their	

extensive	repository	of	user	interface	(UI)	elements	allows	developers	to	focus	on	the	core	

functionality	of	their	application,	rather	than	building	an	interface	from	scratch.	Alternatively,	

third-party	sources	such	as	CocoaPods,	host	even	more	(over	37	thousand)	(CocoaPods	Dev	

Team,	2017)	open-source	libraries	to	alleviate	the	limitations	of	Xcode’s	default	widgets.	

However,	there	lacks	one	library	that	can	be	very	useful	to	a	wide	range	of	applications;	the	

calendar	library	with	a	week-view	interface.	

This	project	has	successfully	created	an	original	library,	written	completely	in	iOS’	native	

language:	Swift.	It’s	graphical	and	programmatic	interfaces	mimic	that	of	a	native	library	

included	in	Xcode.	The	high-level	data	source	and	delegate	protocols	provide	simplistic	access	

to	the	complex	functionality	under	the	hood.	Modular	design	offers	a	wide	range	of	

customization	and	usage	to	the	varying	protocols.	Required	data	can	be	loaded	synchronously	

or	asynchronously	without	complex	code,	and	interface	elements	can	easily	be	changed	at	

individual	levels.

	

	
	

1	

ACKNOWLEDGEMENTS	

SWIFTDATE	

Date	and	Time	Management	is	provided	by	the	SwiftDate	library.	
Available	at	http://www.swift-date.com	
Created	by	Daniele	Margutti	and	licensed	under	MIT	License.	
	
SwiftDate	was	used	to	alleviate	the	overhead	required	to	create	sophisticated	date	objects.	
The	use	of	this	dependency	is	to	have	consistent	time	parameters	for	event	object.		 	

	

	
	

2	

TABLE	OF	CONTENTS	

ABSTRACT	...	I	

ACKNOWLEDGEMENTS	...	1	

SWIFTDATE	...	1	

LIST	OF	FIGURES	...	3	

MOTIVATION	..	4	

METHODOLOGY	...	6	

INTRODUCTION	..	6	

UIINFINITESCROLLVIEW	..	7	

Description	...	7	

Scrolling	...	9	

Access	to	Features	...	10	

Additional	Issues	&	Solutions	...	11	

WEEK	VIEW	...	13	

Description	...	13	

Week	View	Events	..	16	

Interacting	with	calendar	events	...	19	

Styling	..	22	

Dependency	-	SwiftDate	..	24	

RESULTS	...	26	

LIMITATIONS	..	26	

EXAMPLE	APPLICATION	..	27	

CONCLUSION	...	28	

BIBLIOGRAPHY	...	29	

	

	 	

	

	
	

3	

LIST	OF	FIGURES	

FIGURE	1	–	Carleton	University’s	mobile	application’s	“Weekly	Schedule”	section.	5	

FIGURE	2	–	UIInfiniteScrollView	scrolling	process	..	9	

FIGURE	3	-	UIInfiniteScrollViewDataSouce	definition.	...	11	

FIGURE	4	-	WeekViewDataSource	protocol	definition.	..	17	

FIGURE	5	-	Displaying	calendar	events	that	occur	at	the	same	time.	..	18	

FIGURE	6	-	WeekViewDelegate	protocol	definition.	..	19	

FIGURE	7	–	Interacting	with	calendar	events	...	21	

FIGURE	8	-	WeekViewStyler	protocol	definition.	...	23	

FIGURE	9	-	Using	SwiftDate	with	WeekViewDataSource	...	24	

	

	 	

	

	
	

4	

MOTIVATION	

I	first	became	aware	of	the	need	for	this	type	of	library	while	building	another	mobile	

application	for	a	project	during	my	third	year	of	undergraduate	studies.	Throughout	the	

semester,	we	were	required	to	build	a	mobile	application	to	completion,	on	a	chosen	platform,	

in	small	groups	of	students.	Schedula,	our	application,	had	a	main	goal	to	automate	the	course	

selection	process	for	Carleton	University	students	by	generating	all	permutations	of	class	

schedules	that	would	work	for	each	student	on	an	individual	level.	The	idea	for	this	application	

arose	when	my	group	and	I	were	reflecting	on	the	amount	of	manual	effort	required	to	register	

for	classes	that	would	fit	well	with	our	non-academic	lives,	such	as	work	and	other	time	

commitments.	When	building	a	schedule	with	our	application	students	have	the	ability	to	opt-

out	of	entire	days	of	classes.	They	can	also	indicate	a	preference	for	morning,	afternoon	or	

evening	classes,	and	even	input	specific	blocks	of	time	during	any	day	where	they	wouldn’t	be	

available	to	attend	classes.		

After	designing	and	implementing	the	software	to	achieve	these	goals,	the	next	step	was	to	

present	it	to	the	user.	The	view	that	displayed	the	data	to	the	user	needed	to	have	two	primary	

properties:	concurrently	display	all	five	weekdays	at	the	same	time,	and	the	ability	to	see	the	

different	classes	occurring	each	day,	similar	to	Carleton	University’s	mobile	application	that	a	

student	uses	to	view	the	classes	they	have	for	the	week	[Fig.	1].	However,	neither	iOS	or	

Android	development	environments	have	built-in	user-interface	widgets	to	display	data	in	this	

manner.	After	extensive	research,	a	third-party	library	for	Android	was	found	on	GitHub,	that	

satisfied	the	needs	of	the	interface.	This	library,	called	Android	Week	View,	is	sophisticated	and	

simplistic.	This	forced	the	application	to	be	developed	for	Android	devices,	and	still	left	the	

domain	of	Apple’s	iOS	untouchable.	However,	it	allowed	the	development	cycle	of	the	class	

project	to	focus	on	the	core	functionality,	by	alleviating	the	need	to	develop	an	intricate	

interface	element	from	scratch.	

A	year	later,	following	the	completion	of	the	class	project,	iOS	still	didn’t	have	a	native	or	third-

party	library	that	fulfilled	the	needs	of	my	third-year	course	scheduling	application,	or	of	those	

who	used	Android	Week	View	in	their	own	applications.	I	started	to	wonder	if	I	could	develop	

	

	
	

5	

my	own	week	view	interface	myself,	but	was	uncertain	as	to	why	it	had	not	been	created	

already.	My	main	justification	was	that	developers	thought	the	effort	required	would	outweigh	

the	benefit,	since	Swift	has	a	history	of	drastically	changing,	due	to	its	open	source	language	

and	the	fact	that	it	is	relatively	young	when	compared	to	the	other	popular	languages	used	

today.	Nonetheless,	Swift’s	release	cycle	has	been	slowing	down	over	the	last	year,	as	it	

approaches	its	endgame	releases,	and	the	impact	of	this	reasoning	is	becoming	less	significant	

(Apple,	2017).	Other	rationales	included	that	I	have	yet	to	find	someone	else’s	version	of	a	

week	view,	due	to	poor	search	queries	on	my	side,	incomplete	SEO’s	from	the	developer,	and	

even	the	pure	size	and	diversity	of	the	internet.	However,	I	didn’t	believe	this	to	be	the	case,	as	

the	difference	in	current	search	results	and	those	from	the	previous	year	were	minimal.	The	

idea	that	I	could	develop	my	own	version	for	iOS	platforms	became	feasible.	

	

	 	

FIGURE	1	–	Carleton	University’s	mobile	application’s	“Weekly	
Schedule”	section.	

	

	
	

6	

	

METHODOLOGY	

INTRODUCTION	

The	primary	purpose	of	this	project	was	to	design	an	iOS	library	that	can	be	used	by	developers	

within	their	mobile	applications,	no	matter	the	context	of	their	application/project.	Moreover,	

this	software	is	not	meant	to	be	used	by	the	general	consumers	of	iOS	products,	and	is	not	a	

full-fledged	app	its	self.	Throughout	development,	extra	care	was	taken	into	place	to	ensure	a	

modular	design	with	utmost	compatibility.	Hence,	this	library	and	its	single	dependency	is	also	

written	completely	in	Swift.	Not	only	is	this	project	written	in	a	single	language,	it	also	attempts	

to	mimic	Swift	design	guidelines,	so	that	it	feels	native	to	the	language	and	environment.	

In	iOS	development,	there	are	two	available	languages,	Objective-C	and	Swift.	Although	

Objective-C	is	a	language	with	more	history	and	experienced	users,	there	are	many	other	

reasons	to	why	Apple’s	Swift	language	was	chosen	for	development.	Primarily,	it	is	the	new	

language	of	choice	by	Apple	developers,	and	is	the	main	language	used	in	modern	iOS,	macOS	

and	tvOS	Software	Development	Kits	(SDKs).	Since	it	is	built	on-top	of	its	predecessor	and	the	C	

programming	language,	it	inherits	many	of	Objective-C’s	abilities,	while	at	the	same	time	

adding	its	own	advantages.	Readability	in	a	programming	language	is	crucial,	especially	when	

building	libraries	that	are	open-source.	Since	the	goal	of	this	project	is	to	develop	an	open-

source	iOS	library,	the	source-code	needs	to	be	easily	readable	to	the	developers	who	may	use	

it,	to	streamline	integration	and	minimize	errors.	Not	only	is	it	more	readable	than	Objective-C,	

its	resemblance	to	other	programming	languages	like	JavaScript	and	Python	makes	

understanding	even	easier	to	today’s	developers.	

There	are	two	primary	and	distinct	classes	that	drive	the	performance	of	this	library.	The	first	is	

the	UIInfiniteScrollView	class,	which	subclasses	and	builds	on	top	of	Swift’s	UIScrollView	class.	

The	main	goal	of	this	class	is	to	add	and	handle	certain	scrolling	abilities	that	are	not	present	in	

UIScrollView.	Secondly,	WeekView	is	the	class	that	is	meant	to	be	used	by	users	of	this	library.	It	

implements	UIInfiniteScrollView	and	adds	any	functionality	related	to	calendars.	

	

	
	

7	

UIINFINITESCROLLVIEW	

DESCRIPTION	

The	first	step	to	building	a	comprehensive	UI	library,	was	to	develop	a	sub-system	in	charge	

handing	some	core	low-end	functionality	that	would	stay	consistent	throughout	any	and	all	

iterations	of	an	iOS	Calendar	Week	View.	Primarily,	this	library	needed	to	display	a	large	set	of	

views	with	the	same	structure	known	as	sub-views,	each	representing	a	single	day.	Additionally,	

it	was	necessary	that	this	layer	could	handle	the	scrolling	functionality,	and	provide	the	fluidity	

of	an	horizontally-infinite	space,	so	users	can	freely	scroll	between	each	day.	Initially,	Swift’s	

UICollectionView	and	UIScrollView	classes	were	promising	candidates	to	fill	both	requirements	

of	the	sub-system.	Being	“[A]n	object	that	manages	an	ordered	collection	of	data	items	and	

presents	them	using	customizable	layouts”,	the	UICollectionView	already	has	the	proper	

structure	and	interface	to	be	filled	with	a	view	that	represents	each	day	(Apple,	2017).	

However,	the	UIScrollView	class	gives	more	freedom	in	terms	of	“scrolling	and	zooming	of	it’s	

contained	views”	(Apple,	2017).	Both	of	these	interfaces	quickly	became	attractive	options	as	

they	had	been	developed	by	Apple	themselves,	and	are	robust	and	sophisticated	libraries.	

However,	these	views	lacked	a	specific	ability	that	deemed	them	invaluable	to	the	project:	on	a	

horizontal	plane,	they	were	only	able	to	extend	the	plane	on	the	right	side,	and	thus	created	a	

left-hand	scroll	barrier	and	rendered	themselves	useless	on	that	side.	Ultimately,	this	meant	

that	developing	a	custom	interface	for	the	core	functionalities	would	be	necessary.		

The	custom	interface	that	successfully	handles	the	underlying	functionalities	is	known	in	this	

project	as	the	UIInfiniteScrollView	class.	An	instance	of	this	class	has	two	core	abilities:	

horizontally	or	vertically	infinite	scrolling	in	both	directions	of	the	chosen	scroll	plane,	and	

provides	higher	level	classes	a	Swift-style	interface	for	continuously	initializing	the	views	that	

would	have	a	similar	structure.	To	be	able	to	keep	track	of	the	scrolling	activities	of	a	user,	

UIInfiniteScrollView	subclasses	UIScrollView,	hence	the	similarity	in	names.	Apple’s	pre-built	

library	includes	various	scroll	listener	functions	that	are	called	during	specific	events.	To	take	

advantage	of	this	powerful	functionality,	this	interface	overrides	a	couple	key	functions	that,	

	

	
	

8	

together,	allow	for	the	constant	tracking	of	scroll	position.	This	ability	was	fundamental	to	

providing	an	experience	of	an	infinitely	long	plane.		

The	table	below	describes	the	different	parameters	within	the	UIInfiniteScrollView	class.	

Although	most	of	the	parameters	within	the	class	have	a	private	access	level,	understanding	the	

importance	and	use	of	each	parameter	is	critical	to	being	able	to	properly	use	this	library.		

Parameter	Name	 Type	 Description	
views	 [[UIView]]	 A	nested	collection	where	each	

index	at	the	top	level	is	a	
collection	of	views	meant	for	a	
specific	row/column	in	the	
scroll	view.	

viewRangeStart	 Int	 An	integer	that	represents	the	
index	at	which	to	start	loading	
the	content	of	each	
row/column	from	“views”.	

loadPageCount	 Int	 An	integer	representing	the	
number	of	pages	that	are	
active	within	the	scroll	view.	

viewSize	 CGSize	 The	size	of	each	row/column	in	
the	scroll	view.	

spacerSize	 CGFloat	 A	float	representing	the	
amount	of	spacing	between	
each	row/column.	

viewsInPageCount	 Int	 An	integer	representing	the	
number	of	rows/columns	
within	each	page.	

scrollDirection	 ScrollDirection	 The	direction	in	which	the	
scroll	view	scrolls.	Either	
vertical	or	horizontal.	

isSnapEnabled	 Bool	 A	Boolean	that	indicates	if	the	
scroll	view	should	snap	the	
closest	row/column	to	the	
edge	after	a	user	has	scrolled.	

weekView	 WeekView	 The	WeekView	instance	that	
initializes	this	class.	

dataSource	 UIInfiniteScrollViewDataSource	 An	object	that	implements	the	
UIInfiniteScrollViewDataSource	
protocol.	

	 	

	

	
	

9	

SCROLLING	

Infinite	scrolling,	either	in	the	horizontal	or	vertical	directions,	quickly	became	one	of	the	most	

difficult	challenges	to	overcome	during	the	course	of	this	project.	When	using	Xcode’s	pre-

packaged	interface	packages	on	a	horizontal	plane,	infinitely	scrolling	to	the	right	only	required	

extending	the	width	of	the	plane	by	some	arbitrary	size	that	allowed	the	addition	of	a	couple	

more	views.	On	the	contrary,	infinitely	scrolling	to	the	left	was	not	as	simplistic.	Adding	space	to	

the	leading	edge	of	a	view	requires	the	entire	view	to	be	re-initialized,	and	all	of	its	contents	to	

be	re-added.	The	same	concepts	applied	to	vertical	scrolling	planes,	where	adding	content	to	

the	bottom	is	simple,	but	not	for	top	content.	Analysing	the	work	being	done	during	this	

process	revealed	a	linear	relationship	between	the	re-initialization	time	of	the	interface	and	the	

amount	of	times	the	interface	has	already	been	re-initialized.	This	meant	that	adding	a	single	

leading	view	to	the	scrolling	plane	would	additionally	re-load	every	view	that	existed	before	it.	

Since	all	user	interface	activity	within	iOS	applications	must	execute	on	the	device’s	main	

thread,	handling	user	interaction	and	infinite	scrolling	in	this	manner	would	quickly	lead	to	poor	

performance	(Apple,	2017).		

FIGURE	2	–	UIInfiniteScrollView	scrolling	process	

	

	
	

10	

In	order	to	avoid	a	linear	relationship	in	UI	initialization	that	could	freeze	the	application	as	a	

whole,	a	constant	amount	of	real-estate	on	the	scroll	plane	needed	to	be	loaded	each	time.	The	

solution	was	to	only	load	in	views	that	are	relative	to	the	current	position	of	the	screen.	These	

views	fill	the	available	space	of	available	in	the	scroll	plane,	and	the	screen	can	freely	scroll	

through	them.	To	provide	the	appearance	and	experience	of	an	infinitely	scrolling	view,	

UIInfiniteScrollView	implements	and	uses	the	delegate	methods	of	Swift’s	UIScrollView	to	act	

on	specific	user-initiated	events.	When	the	visible	content	within	the	scroll	view	is	detected	to	

be	nearing	either	edge	of	the	loaded	content,	the	UIInfiniteScrollView	will	re-initialize	the	

content	all	the	content	within,	and	re-position	the	screen	to	the	middle	of	the	content.	This	

functionality	makes	it	appear	as	though	there	is	no	end	to	the	scroll	view’s	content,	since	the	

user’s	screen	will	never	reach	the	end,	and	they	will	not	feel	resistance	when	scrolling	the	

screen	[Fig.	2].		

	

ACCESS	TO	FEATURES	

For	high-level	classes	to	utilize	this	framework,	UIInfiniteScrollView	provides	an	easy	to	use	

interface	in	the	form	of	a	Swift-style	protocol.	Swift	protocols	define	“blueprint[s]	of	methods,	

properties,	and	other	requirements	that	suit	a	particular	task	or	piece	of	functionality”	(Apple,	

2017).	The	advantage	to	using	protocols	is	that	certain	functionalities	and	tasks	for	a	given	class	

can	be	delegated	to	other	classes,	as	long	as	they	properly	conform	to	the	protocol	in	question.	

In	Swift,	UI	objects	often	have	two	primary	protocols;	the	data-source	and	the	delegate.	

Objects	that	act	as	a	data-source	will	often	provide	the	data	that	will	populate	the	class	that	

makes	use	of	the	data-source.	Delegate	objects	often	conform	to	the	observer	pattern	(a	term	

made	mainstream	by	the	Gang	of	Four)	by	being	able	to	receive	events	and	actions,	and	then	

perform	operations	when	triggered	by	the	primary	class	(Gamma,	Helm,	Johnson,	&	Vlissides,	

1994).	In	the	context	of	this	project,	since	the	only	events	that	will	be	triggered	by	

UIInfiniteScrollView	are	related	to	scrolling,	and	they	will	always	be	handled	the	same,	only	a	

single	protocol	has	been	implemented.	UIInfiniteScrollViewDataSource	protocol	[Fig.	3]	defines	

a	single	method	with	the	task	of	creating	each	row	or	column	as	its	needed,	at	runtime.	The	

	

	
	

11	

protocol	method	is	called	synchronously	on	the	main	thread,	with	an	additional	completion	

handler	for	other	usage	scenarios.	In	order	to	properly	take	advantage	of	this	protocol	method,	

a	skeleton	for	the	row	or	column	should	be	immediately	returned	in	synchronous	fashion,	while	

additional	components	that	either	need	to	be	retrieved	from	the	internet	or	simply	take	longer	

to	create	in	general	should	be	added	via	the	completion	handler,	so	not	to	disrupt	the	main	

thread.	It	is	important	to	note	that	objects	passed	to	the	completion	handler	will	be	added	as	

sub-views	to	the	row	or	column	that	is	being	created.	For	example,	in	context	of	a	week-view	

calendar,	the	static	structure	of	the	calendar’s	day	should	be	returned	to	the	protocol	method,	

while	events	for	the	day	should	be	passed	to	the	completion	handler.	

	

FIGURE	3	-	UIInfiniteScrollViewDataSouce	definition.	

	

ADDITIONAL	ISSUES	&	SOLUTIONS	

The	improved	scroll-handling	method,	although	allowing	for	a	constant	relationship	in	UI	

initialization,	has	a	trade	off	in	terms	of	data	storage.	Given	the	fact	that	old,	unused	sub-views	

within	UIInfiniteScrollView	will	be	removed	to	make	way	for	the	new	ones,	these	views	that	are	

	

	
	

12	

being	removed	must	be	saved	to	disk,	to	allow	for	them	to	be	re-loaded	when	the	user	scrolls	

back	to	its	position	on	the	scroll	plane.	Additional	problems	also	arose,	including	saving	these	

views	to	disk	using	a	data	structure	that	facilitated	easy	retrieval	of	specific	elements,	and	re-

adding	views	with	extreme	coordinates	that	lie	outside	UIInfiniteScrollView’s	content-view	

scope.	

Despite	the	fact	that	this	one-to-one	relationship	between	disk	storage	and	rows	or	columns	

created	has	emerged	from	the	improved	scroll	mechanism,	it	has	far	less	of	a	negative	impact	

on	performance	than	the	original	scrolling	system,	as	the	same	data	that	is	being	saved	to	disk	

would	instead	to	be	saved	to	memory.	In	addition	to	the	main	thread	potentially	being	locked,	

storing	large	amounts	of	data	in	system	memory	will	eventually	become	detrimental	to	the	

performance	of	a	mobile	application	and	the	device	itself.	This	would	have	occured	especially	

quickly	when	working	with	data	types	that	have	significantly	large	sizes,	such	as	videos	or	

images.	In	order	to	re-load	these	sub-views	when	they’re	needed,	a	couple	additional	steps	

were	required	in	order	to	alleviate	new	issues	that	arose.	Firstly,	the	data	structure	that	saved	

all	the	views	needed	to	be	arranged	in	a	certain	way	that	would	make	them	easy	to	retrieve.	

The	easiest	method	was	to	save	the	views	in	an	array,	and	sort	the	array	as	the	views	appear	on	

screen;	by	their	origin’s	x	or	y	value	as	it	would	appear	on	an	infinitely	large	plane,	depending	

on	whether	UIInfiniteScrollView	scrolls	horizontally	or	vertically,	respectably.	The	primary	issue	

that	was	consequence	of	retrieving	views	from	disk	was	re-adding	views	that	extended	past	the	

content	view	of	UIInfiniteScrollView.	For	example,	views	that	live	on	the	extremities	of	the	

scrolling	plane,	have	coordinates	that	are	either	too	far	left	or	right	of	the	content	view,	as	it	

has	a	limited	width,	with	an	origin	that	always	has	x	and	y	values	of	0.	When	these	edge-views	

were	added	to	the	content	view	of	UIInfiniteScrollView,	they	were	never	visible	to	the	user	

since	the	screen	would	constantly	reset	when	nearing	the	edge,	as	design	of	the	scroll	

mechanism.		

Combatting	this	issue	proved	to	be	more	difficult	as	new	features	were	added	to	the	project.	It	

was	evident	that	the	views’	origin	coordinate	needed	to	be	modified	so	that	it	would	fit	within	

the	screen,	however,	the	modification	of	the	coordinate	would	remove	any	order	that	was	

	

	
	

13	

already	established	in	the	array	that	held	these	views.	The	solution	was	to	make	a	copy	of	the	

view	that	should	be	added,	and	add	the	new	instance	to	UIInfiniteScrollView.	The	coordinate	

modification	proved	to	be	a	simple	task,	since	only	one	of	the	x	or	y	values	of	the	copied	view	

needed	to	be	modified,	and	the	other	would	stay	constant	at	zero.	However,	when	a	copy	of	a	

view	was	made	a	larger	problem	arose.	When	copying	these	views,	there	were	often	attributes	

that	were	lost	in	the	conversion,	and	some	cases,	copying	subclasses	of	Swift’s	native	UIView	

returned	an	object	of	the	UIView	class	and	not	the	original	subclass.	The	most	important	

attribute	that	was	often	lost	was	the	array	of	gesture	recognizers,	which	made	it	impossible	to	

interact	with	most	views	that	were	added	to	UIInfiniteScrollView.	The	solution	is	a	two-step	

process.	First,	any	UIView	subclass	properties	needed	to	be	explicitly	encoded	and	decoded	by	

implementing	Swift’s	encode	function	and	decoding	initializer.	The	second	step	goes	against	

object-oriented	programming’s	practices,	by	forcing	the	copy	of	the	original	view	to	be	a	class	

of	the	created	subclass.	This	step	is	not	good	programming	practice,	as	it	breaks	a	barrier	

between	the	UIInfiniteScrollView	class,	and	the	class	that	implements	the	delegate	by	hard-

coding	and	enforcing	a	variable	to	be	of	a	certain	class,	when	that	class	lacks	any	relationship	

with	UIInfiniteScrollView.	

	

WEEK	VIEW	

DESCRIPTION	

The	final	step	towards	completion	of	this	project	was	to	develop	a	complete	interface	on	top	of	

the	completed	foundation.	Since	many	parts	are	already	being	handled	in	UIInfiniteScrollView,	

the	WeekView	class	only	had	to	focus	on	specific	properties	and	functionalities	directly	related	

to	calendars.	Primarily,	this	class	needed	to	create	new	calendar	events	for	each	day	and	

display	them.		

Initialization	of	a	WeekView,	there	are	many	different	processes	that	take	place.	Starting	

initialization	can	happen	in	different	ways	and	can	be	achieved	with	a	very	small	set	of	user-

provided	properties,	as	initializing	functions	define	default	values	for	almost	all	class-attributes.	

	

	
	

14	

If	an	instance	is	being	created	within	code,	only	the	frame	of	the	calendar	and	the	count	of	days	

that	are	concurrently	visible	are	required.	All	the	other	properties	have	default	values	and	can	

be	optionally	passed	into	the	initializer.	Storyboard	initialization	is	even	easier,	as	the	calendar’s	

frame	is	defined	explicitly	within	the	layout	files,	and	the	visible	days	property	takes	on	a	

default	value	and	can	be	optionally	modified	within	code	after	establishing	a	connection	

between	the	WeekView	in	the	storyboard	files	as	an	outlet	within	the	relevant	view	controller.		

After	initialization	of	the	primary	properties	that	were	either	provided	by	default	or	the	user,	

the	calendar	will	build	a	skeleton	for	its	own	interface.	Most	importantly,	it	will	create	an	

instance	of	UIInfiniteScrollView,	and	define	its	self	as	the	scroll	view’s	delegate	since	it	

conforms	to	the	UIInfiniteScrollViewDataSource	protocol.	The	scroll	view	will	display	all	the	It	

will	then	build	the	time	view,	which	is	visible	on	the	left	side.	This	view	displays	a	selected	or	

default	range	(09:00	to	17:00)	of	hours	during	the	day,	which	is	used	to	easily	distinguish	the	

time	at	any	point	within	the	calendar.	Lastly,	a	top-anchored	view	is	created	which	displays	the	

month	and	year	of	the	calendar.		

The	table	below	describes	the	different	parameters	within	the	WeekView	class.	Although	most	

of	the	parameters	within	the	class	have	a	private	access	level,	understanding	the	importance	

and	use	of	each	parameter	is	critical	to	being	able	to	properly	use	this	library.		

Parameter	Name	 Type	 Description	
monthAndYearText	 UITextView	 A	text	view	that	displays	the	

month	and	the	year.	It	is	at	
the	top	of	the	WeekView.	

timeView	 UIView	 A	view	that	displays	each	
hour	of	the	day,	or	specified	
time	interval.	It	is	on	the	left	
of	the	WeekView,	under	
monthAndYearText.	

scrollView	 UIInfiniteScrollView	 The	scroll	view	that	will	
display	each	day	in	the	
calendar,	along	with	the	
events	for	that	day.	It	is	to	
the	right	of	timeView	and	
under	monthAndYearText.	

	

	
	

15	

events	 [WeekViewEvent]	 A	collection	of	
WeekViewEvents	that	were	
created	
WeekViewDataSource	
protocol.	

initDate	 DateInRegion	 The	initial	date	that	the	
WeekView	will	open	at.	

visibleDays	 Int	 The	amount	of	days	that	are	
concurrently	visible.	

startHour	 Int	 The	first	hour	of	the	day	to	
display	within	the	WeekView.	

endHour	 Int	 The	last	hour	of	the	day	to	
display	within	the	WeekView.	

headerHeight	 CGFloat	 The	height	of	the	header	
included	in	each	day,	
displaying	information	such	
as	the	day	of	the	week	and	
day	of	the	month.	

respondsToInteraction	 Bool	 A	Boolean	value	indicating	if	
the	WeekView	should	
respond	to	user	interaction	
with	individual	events.	

nowLineEnabled	 Bool	 A	Boolean	value	indicating	if	
the	WeekView	should	display	
a	line	a	the	current	time.	

colorTheme	 Theme	 A	theme	used	for	coloring	
the	components	of	the	
WeekView.	Either	light	or	
dark.	

font	 UIFont	 The	font	used	throughout	the	
WeekView.	

nowLineColor	 UIColor	 The	color	of	a	line	that	
displays	the	current	time	in	
WeekView	

nowLine	 CAShapeLayer	 The	line	and	the	circle	that,	
combined,	display	the	
current	time	in	WeekView.	nowCircle	 UIView	

dataSource	 WeekViewDataSource	 The	object	that	implements	
the	WeekViewDataSource	
protocol.	

delegate	 WeekViewDelegate	 The	object	that	implements	
the	WeekViewDelegate	
protocol.	

	

	
	

16	

styler	 WeekViewStyler	 The	object	that	implements	
the	WeekViewStyler	
protocol.	

	

WEEK	VIEW	EVENTS	

Displaying	calendar	events	is	the	core	objective	to	this	project.	Since	they	are	so	fundamental	

to	the	design	and	flow	of	the	library,	the	creation	of	the	WeekViewEvent	class	was	necessary.	

This	class	represents	a	calendar	event	that	would	be	typically	displayed	in	a	calendar.	Most	

importantly,	it	houses	start	and	end	properties	that	together	represent	a	specific	interval	in	

time	to	which	the	event	occupies.	Additionally,	it	the	event	has	a	title	property	that	is	meant	for	

a	clear	and	concise	description	of	the	meaning	of	the	event.	Unimportant	to	a	user	of	this	

library,	but	fundamental	to	internal	logic,	WeekViewEvents	self-initialize	a	unique	identifier	

(UUID)	that	easily	distinguishes	its	self	from	all	other	calendar	events.	

Adding	events	to	the	calendar	makes	use	of	WeekView’s	data	source	protocol	method,	

WeekViewDataSource	[Fig.	4].	Conforming	to	this	protocol	is	the	most	important	step	to	using	

this	library,	as	it	is	the	single	access	point	to	populating	a	calendar	with	events.	For	each	day,	

this	protocol’s	only	method,	weekViewGenerateEvents,	is	called	and	expects	a	collection	of	

events	that	occur	during	that	day.	Each	time	that	the	protocol	method	is	called,	it	provides	the	

implementing	class	with	the	date	of	which	the	events	are	expected	to	occur	within.	In	a	

calendar,	it	makes	sense	to	separate	events	by	the	day	that	they	occur,	as	most	only	last	for	a	

few	hours	a	day,	and	rarely	span	across	multiple	days.	Unfortunately,	due	to	this	

implementation,	calendar	events	that	do	span	multiple	days	are	sometimes	incorrectly	

represented	to	the	user	by	only	being	visible	in	the	first	day	that	they	occur.	A	work-around	

solution	for	this	issue	is	to	separate	the	event	to	a	day-by-day	basis,	and	return	each	day	

individually	to	the	protocol	method.	

	

	
	

17	

	

FIGURE	4	-	WeekViewDataSource	protocol	definition.	

Not	only	is	the	WeekViewDataSource	the	most	important	protocol	for	WeekView,	it	also	has	

the	most	complex	functionality.	When	the	WeekView	needs	to	call	upon	the	data	source	

method,	it	will	start	a	new	background	thread	to	retrieve	the	collection	of	events,	meaning	that	

weekViewGenerateEvents	is	actually	called	asynchronously.	In	a	developer’s	perspective	who	

would	use	this	library,	this	implementation	allows	for	their	events	to	be	fetched	synchronously	

or	asynchronously	from	the	internet,	without	any	additional	overhead.	In	Swift,	threads	are	

started	and	managed	by	the	DispatchQueue	class,	which	is	simply	a	pool	of	tasks.	Tasks	are	

allocated	CPU	time	by	the	iOS	device	its	self,	based	on	the	type	of	operations	that	will	be	

completed.	For	example,	every	iOS	application	has	a	high-priority	user	interface	thread	(UI)	

who’s	main	purpose	is	to	make	changes	to	the	screen	that	a	user	sees.	For	the	WeekView,	each	

task	added	to	the	pool	is	a	single	call	to	the	data	source	protocol	for	a	single	day.	The	challenge	

that	occurs	when	working	with	threads	in	any	programming	language	and	system,	is	that	there	

is	no	guarantee	provided	by	the	computer	that	one	thread	will	finish	before	the	other.	Solving	

this	issue,	and	having	the	ability	for	out-of-order	execution	is	known	in	computer	science	as	

	

	
	

18	

concurrency.	The	WeekView	is	able	to	compute	events	concurrently	by	executing	completion	

handler	method	on	the	main	thread	after	the	events	have	completed.	The	completion	handler	

uses	the	collection	of	generated	events	to	create	the	views	to	represent	them,	and	send	them	

to	its	UIInfiniteScrollView’s	data	source	protocol	completion	handler	to	be	added.		

Comparing	calendar	events	is	equally	important	as	creating	them.	For	example,	it	is	important	

to	determine	whether	two	calendar	events	overlap	with	each	other,	so	that	they	can	be	

displayed	properly.	Without	the	ability	to	compare	the	timing	of	calendar	events,	users	may	not	

be	able	to	see	or	interact	with	certain	events,	if	they	appear	directly	behind	another.	

Implementing	Swift’s	Comparable	protocol,	by	defining	the	“less-than”	and	“equal-to”	

operators	allows	for	simplistic	determination	on	which	event	occurs	before	another.	By	

comparing	event	timelines	against	each	other,	events	that	occur	at	the	same	time	can	be	

displayed	properly.	Showing	events	that	occur	at	the	same	time	requires	their	width	to	be	

divided	proportionally,	and	their	x-coordinate	be	modified	accordingly	[Fig.	5].	

	

FIGURE	5	-	Displaying	calendar	events	that	occur	at	the	same	time.	

	

	
	

19	

INTERACTING	WITH	CALENDAR	EVENTS	

In	today’s	digital	world,	not	only	is	it	important	to	display	data,	but	to	interact	and	modify	it	as	

well.	The	WeekViewDelegate	protocol	allows	for	more	complex	interaction	aside	from	scrolling	

through	days	of	the	week.	Allowing	users	to	interface	with	calendar	events	is	the	primary	

function	of	the	protocol’s	weekViewDidClickOnEvent	method,	and	allows	developers	to	define	

the	nature	and	behaviour	of	the	interaction.	By	allowing	its	self	to	handle	user	interaction,	

WeekView	can	receive	a	touch-gesture	event,	determine	the	location	and	impact	of	the	touch	

and	handle	it	accordingly.		

	

FIGURE	6	-	WeekViewDelegate	protocol	definition.	

	

	
	

20	

After	the	WeekView	calls	on	its	delegate	to	receive	each	event,	it	will	call	on	its	styler	property	

to	create	the	view	for	the	event.	When	events	are	initialized,	they	automatically	initialize	a	

constant	unique	identifier	(UID)	property	that	is	used	to	easily	differentiate	its	self	from	other	

events.	Event	views	are	subclasses	of	UIView,	which	are	native	Swift	objects	that	manage	

content	for	a	specified	rectangular	area	on	a	device’s	screen.	The	subclass	of	UIView,	

WeekViewEventView,	only	adds	a	single	property,	which	is	its	event’s	UID.	Similar	to	an	event’s	

UID,	it	is	fundamental	to	identifying	the	view’s	event	from	other	events	in	the	calendar.	With	

the	view	now	created,	either	through	the	default	or	custom	implementation	of	the	

WeekViewStyler,	a	gesture	recognizer	is	added	to	the	view,	so	that	it	can	handle	interaction.	In	

Swift,	gesture	recognizers	"[decouple]	the	logic	for	recognizing	a	sequence	of	touches	(or	other	

input)	and	acting	on	that	recognition”	(Apple,	2017).	Each	event	view’s	gesture	recognizer	will	

call	on	an	internal	function	to	WeekView,	that	handles	the	interaction	and	sends	the	

information	to	the	delegate	through	the	weekViewDidClickOnEvent	method.	

	

	
	

21	

Implementing	the	delegate	method	is	straight	forward,	and	requires	minimal	overhead.	A	class	

that	conforms	the	WeekViewDelegate	protocol	will	simply	need	to	set	the	delegate	property	of	

the	app’s	WeekView	instance	to	its	self,	and	implement	the	protocol	method.	It	will	be	now	

ready	to	handle	gestures	acted	on	any	calendar	event,	since	the	event	is	passed	through	the	

delegate.	An	implementation	of	the	protocol	can	include	anything	from	printing	the	event’s	

details	to	the	console,	or	presenting	a	new	view	to	the	user	that	can	focus	on	more	detailed	

information	related	to	the	event	[Fig.	7].	

FIGURE	7	–	Interacting	with	calendar	events	

	

	
	

22	

STYLING	

Creating	a	framework	with	the	objective	for	it	to	be	used	by	many	different	developers	and	

projects,	requires	the	interface	to	be	adaptable	to	the	style	of	the	various	applications	that	

would	possibly	use	it.	It	is	important	to	provide	this	ability	to	users	of	this	library,	as	every	

application	has	unique	style,	and	generic	libraries	that	discourage	customization	will	most	likely	

be	rejected	during	the	planning	phase	of	an	application.	In	order	to	achieve	this	type	of	

functionality,	a	WeekView	implements	a	protocol	that	handles	various	interface	components.	

The	WeekViewStyler	protocol	[Fig.	8]	contains	a	few	different	and	optional	methods	that	give	

an	implementation	the	ability	to	change	any	user	interface	component.	It	allows	for	definitions	

of	the	view	that	a	calendar	event	is	placed	in,	the	column	that	an	event	is	placed	which	

represents	an	individual	day	and	the	column’s	header	that	by	convention,	displays	the	date.	In	

each	protocol	method,	there	is	a	recurring	parameter	of	a	container	that	is	extremely	

important	to	the	usage	of	custom	styling.	When	allowing	users	to	modify	the	view	components	

of	the	WeekView,	it	became	apparent	that	some	constraints	to	the	level	of	customizability	

needed	to	be	added.	Each	container	provided	to	the	protocol	methods	is	the	container	that	will	

host	the	new	view	that	is	being	created.	This	means	that	views	that	are	returned	to	any	

WeekViewStyler	protocol	methods	need	to	have	the	same	dimensions	as	the	container	that	

was	provided	during	their	function	call.	Otherwise,	the	WeekView	will	use	its	own	

implementation	of	the	styling	method	to	define	the	required	view.	Adding	this	verification	step	

prevents	an	implementation	of	WeekView	to	be		

By	default,	in	Swift,	all	protocol	methods	are	mandatory.	This	means	that	a	class	which	

conforms	to	a	protocol	must	implement	all	the	methods	that	are	defined	in	the	protocol.	In	

most	cases,	this	type	of	conformity	is	expected,	however,	in	the	context	of	this	project,	a	

developer	who	is	adding	the	WeekView	to	their	application	may	only	want	to	modify	specific	

parts	of	the	view,	and	keep	the	default	implementation	for	others.	By	consequence,	the	default	

implementation	needs	to	be	defined	in	the	WeekView	class	to	cover	the	case	where	not	all	

protocol	methods	are	defined	by	a	given	instance	of	WeekView.	During	initialization	of	each	

customizable	view,	the	WeekView	will	check	to	see	if	it’s	“styler”	property	responds	to	the	

	

	
	

23	

protocol	method	responsible	for	the	creation	of	the	given	view,	and	call	upon	it	to	initialize	the	

view.	In	the	case	where	the	styler	does	not	respond	the	method,	WeekView	will	use	its	own	

implementation	of	the	method	and	provide	the	default	functionality	for	view	creation.	This	is	

made	possible	by	Swift’s	responds(to:)	method,	which	tests	whether	objects	respond	to	specific	

function	calls,	and	ultimately	allows	developers	who	use	this	library	to	modify	the	view	freely	

by	implementing	only	the	protocol	methods	they	require.	

	

FIGURE	8	-	WeekViewStyler	protocol	definition.	

	

	

	

	
	

24	

	

DEPENDENCY	-	SWIFTDATE	

During	the	course	of	development,	it	became	difficult	to	create	and	manage	sophisticated	date	

objects	with	Swift’s	native	Date	structure.	Creating	Date	objects	for	specific	times	required	odd	

calculations	such	as	the	difference	in	time	between	initialization	of	such	an	object,	and	the	

actual	date	that	was	attempting	to	be	created.	Additionally,	modifying	dates	in	Swift	was	even	

more	difficult	to	accomplish,	since	it	required	initialization	of	helper	objects	that	were	difficult	

to	understand.	After	attempting	to	work	with	Swift’s	Date	library,	I	decided	to	use	a	popular	

third-party	date	management	library	called	SwiftDate.	It	made	initialization	and	modification	of	

dates	extremely	easy,	since	both	could	be	accomplished	in	a	single	line	of	code.	Additionally,	

SwiftDate	is	able	to	manage	date	objects	across	different	time-zones	by	default,	providing	an	

added	benefit	that	would	have	required	valuable	and	significant	time	and	effort	to	achieve,	if	

Swift’s	natural	Date	library	was	used.	

The	documentation	provided	with	SwiftDate	was	also	a	contributing	factor	to	it	being	chosen	to	

as	the	date	management	system	supporting	this	project.	It	outlines	in	detail	how	to	create	and	

modify	date	objects	in	an	easy-to-read	fashion.	Each	parameter	and	method	are	clearly	and	

precisely	explained,	allowing	any	user	of	this	library	to	quickly	understand	how	to	use	this	

library.	The	documentation	also	explains	how	Additionally,	the	SwiftDate	documentation	even	

provides	a	conceptual	overview	that	describes	the	entire	platform,	in	order	to	provide	a	general	

understanding	of	its	abilities.	

	

FIGURE	9	-	Using	SwiftDate	with	WeekViewDataSource	

Ultimately,	due	to	SwiftDate’s	ease	of	use,	documentation	and	popularity,	it	was	an	easy	

decision	for	it	to	be	included	in	this	project	as	a	replacement.	Most	of	SwiftDate’s	use	within	

	

	
	

25	

this	project	is	internal,	and	not	exposed	to	users.	However,	within	the	WeekViewDataSource	

protocol	method,	calendar	events	are	expected	to	be	returned,	with	each	calendar	event	

expecting	a	start	and	end	date.	The	implementation	of	this	requirement	is	straight	forward	and	

can	be	accomplished	in	minimal	lines	of	code	[Fig.	9].	I	have	confidence	that	developers	who	

are	using	this	library	in	their	applications	will	be	able	to	quickly	and	easily	understand	how	to	

use	SwiftDate.	 	

	

	
	

26	

RESULTS	

LIMITATIONS	

Although	much	has	been	accomplished	with	this	project,	there	are	some	limitations	to	the	

features	that	the	library	provides.		

The	skeleton	of	the	display	is	generated	by	the	UIInfiniteScrollView	class,	who’s	main	purpose	is	

to	allow	for	similar	content	to	be	scrollable	through	an	infinite	timeline,	on	either	a	horizontal	

or	vertical	plane.	While	this	functionality	is	crucial	to	the	fundamentals	of	the	calendar’s	

scrolling	ability,	the	implementation	has	the	unfortunate	limitation	of	a	single-dimensional	

scroll	plane.	In	the	context	of	a	calendar,	this	means	that	the	entire	length	of	a	single	day	must	

be	visible	at	all	times	on	the	user’s	screen.	It	may	be	difficult	for	devices	that	have	limited	

screen	real-estate	to	legibly	display	a	full	twenty-four	hours	of	possible	content	all	at	once.	

Fixing	this	issue	would	require	UIInfiniteScrollView	to	allow	for	a	limited	amount	of	scrolling,	

opposite	the	infinite	plane.	Unfortunately,	the	time	limitations	of	this	project	prohibited	the	

ability	to	add	such	functionality.	

Responding	to	interaction	with	calendar	events	was	one	of	the	last	features	that	was	added	to	

the	calendar	view.	As	explained	previously,	since	certain	properties	of	the	UIView	class	such	as	

the	collection	of	gesture	recognizers	would	be	lost	when	a	copy	of	the	view	was	created,	the	

UIInfiniteScrollView	class	could	not	be	completely	independent	of	the	WeekView	class.	More	

specifically,	the	UIInfiniteScrollView	would	have	to	re-add	the	gesture	recognizers	that	were	

lost.	This	required	the	explicit	re-initialization	of	these	attributes	and	by	consequence,	forced	

the	scroll	view	to	choose	the	type	of	recognizer	that	was	being	added	to	the	views	beneath	it.	

Although	interaction	is	still	possible	with	the	calendar	events,	the	design	of	the	components	

only	allows	for	the	library	to	respond	to	one	specific	gesture;	a	tap.	In	order	to	solve	this	

limitation,	the	scroll	view	mechanism	would	need	to	avoid	copying	views	and	should	use	the	

original	instances	provided	by	the	data	source	protocol.	

Although	this	library	accomplishes	its	primary	goal	of	being	able	to	display	calendar	events	in	a	

week	view,	a	useful	feature	would	be	the	ability	to	change	the	scope	of	the	view	on	demand.	

	

	
	

27	

More	specifically,	it	would	be	useful	if	one	could	change	the	number	of	days	that	are	

concurrently	visible	at	runtime.	Currently,	an	instance	of	WeekView	will	be	able	to	only	show	a	

fixed	number	of	days	at	a	time,	and	making	a	change	to	that	would	require	re-initialization	of	

the	entire	WeekView.	There	are	many	consequences,	however	the	most	critical	issue	would	be	

the	fact	that	all	previously	created	calendar	events	would	need	to	be	initialized	again,	making	

this	issue	more	severe	when	events	are	loaded	from	the	internet.	Along	the	same	lines,	fully-

functional	calendar	applications	have	more	than	just	a	week	view	like	the	one	provided	in	this	

library.	For	example,	the	default	iOS	calendar	application	contains	a	month	view	in	which	users	

gain	an	overview	of	the	entire	month.	Other	calendar	applications,	such	as	Microsoft’s	Outlook,	

even	include	overviews	for	an	entire	year.	Ultimately,	this	library	would	be	significantly	more	

useful	and	powerful	to	users	if	they	had	the	ability	to	scale	the	scope	of	their	calendar	from	

their	choosing	whilst	keeping	their	data	intact.	

	

EXAMPLE	APPLICATION	

In	the	git	repository	that	hosts	the	source	code	for	this	project,	there	is	an	included	example	

iOS	application	that	demonstrates	the	abilities	of	this	library.	Alongside	the	documentation	

provided	in	a	“readme”	file	and	within	the	comments	of	the	code,	developers	can	reference	the	

provided	application	to	gain	a	better	understanding	of	the	implementation	and	usefulness	of	

this	project.	

The	goal	of	the	application	was	not	to	create	a	feature-heavy	and	complete	app,	but	to	only	

have	the	necessary	components	required	to	showcase	this	library.	The	application	has	a	single	

view	controller	with	only	two	properties:	an	instance	of	WeekView,	and	a	small	user-interface	

class	used	for	interaction	with	events.	

The	WeekView	instance	is	initialized	with	as	many	default	values	as	possible,	and	defines	the	

respondsToInteraction	value	to	be	true,	allowing	for	the	view	controller	to	handle	interactions	

with	the	calendar	events.	Additionally,	the	view	controller	implements	all	three	WeekView	

protocols;	WeekViewDataSource,	WeekViewDelegate	and	WeekViewStyler.	It	populates	each	

	

	
	

28	

day	with	a	single	event	through	the	data	source	protocol.	It	handles	event	interaction	by	

displaying	a	dismissible	popup	over	the	screen	with	information	about	the	event	with	the	

EventDetailLauncher	class,	which	is	a	is	a	simple	class	that	encapsulates	the	ability	to	display	

and	dismiss	a	minimalistic	popup	view	over	the	entire	screen.	Finally,	it	implements	custom	

styling	by	modifying	only	the	event	view	with	a	custom	view.	

	

CONCLUSION	

In	all,	this	project	has	accomplished	its	primary	goals.	Swift	Week	View	is	an	original	iOS	library	

that	has	alleviated	the	missing	functionality	of	Apple’s	default	calendar	application	that	is	

shipped	with	iOS	devices,	by	being	able	to	display	calendar	events	in	a	week-view.	It’s	default	

implementation	visually	resembles	other	iOS	and	macOS	applications.	By	providing	public	

protocols	as	high-level	interfaces	to	the	complex	functionality,	alongside	programmatic	and	

storyboard	initialization	options,	this	interface	component	has	an	experience	of	an	authentic	

Swift	interface	library.	After	completing	this	project,	developing	the	original	course	scheduling	

application	that	motivated	the	creation	of	the	WeekView	is	now	significantly	more	possible	in	

iOS.	I	plan	to	continue	the	development	of	this	project	to	add	additional	features	and	eliminate	

the	limitations	described	earlier.		 	

	

	
	

29	

BIBLIOGRAPHY	

Apple.	(2017,	September	19).	Code	Diagnostics	Documentation.	Retrieved	September	25,	2017,	

from	Main	Thread	Checker:	

https://developer.apple.com/documentation/code_diagnostics/main_thread_checker	

Apple.	(2017,	September	19).	Swift	Documentation.	Retrieved	September	25,	2017,	from	

Protocols:	

https://developer.apple.com/libary/content/documentation/Swift/Conceptual/Swift_Pr

ogramming_Language/Protocols.html	

Apple.	(2017,	September	24).	Swift	Evolution.	Retrieved	September	25,	2017,	from	Apple	

GitHub:	https://apple.github.io/swift-evolution	

Apple.	(2017,	September	19).	UICollectionView.	Retrieved	September	25,	2017,	from	UIKit	

Documentation:	https://developer.apple.com/documentation/uikit/uicollectionview	

Apple.	(2017,	September	19).	UIGestureRecognizer.	Retrieved	September	25,	2017,	from	UIKit	

Documentation:	https://developer.apple.com/documentation/uikit/uigesturerecognizer	

Apple.	(2017,	September	19).	UIScrollView.	Retrieved	September	25,	2017,	from	UIKit	

Documentation:	https://developer.apple.com/documentation/uikit/uiscrollview	

CocoaPods	Dev	Team.	(2017,	September	16).	CocoaPods.org.	Retrieved	September	15,	2017,	

from	CocoaPods.org:	https://cocoapods.org/	

Gamma,	E.,	Helm,	R.,	Johnson,	R.,	&	Vlissides,	J.	(1994,	November).	Design	Patterns	Book.	

Retrieved	from	Gang	of	Four:	http://wiki.c2.com/?DesignPatternsBook	

malcommac.	(2017,	November	26).	SwiftDate	Main	Concepts.	Retrieved	from	SwiftDate:	

https://malcomman.github.io/SwiftDate/main_concepts.html	

	

	

