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Abstract. Security vulnerabilities can be patched in order based on
their severity as indicated by an assigned score, to minimize the chance
and impact of potential exploits. However, it often takes several days
for an analyst to assign a CVSS score, leaving a window of opportunity
for attackers. Existing solutions heavily rely on the accuracy of current
vulnerability scoring, which suffers from potential bias and errors intro-
duced by human analysts. In this paper, we propose VIET, a tool that ex-
tracts essential information from vulnerability descriptions, which can be
loosely mapped to CVSS metrics, and facilitates vulnerability evaluation.
We trained a dedicated cybersecurity linguistic model based on 209,842
vulnerability descriptions and implemented a Bidirectional LSTM net-
work trained on 800 labeled vulnerability descriptions. We evaluate the
effectiveness of VIET through F1-scores and the efficiency of the mod-
els in terms of training time. The results show that VIET can extract
essential entities to determining a vulnerability’s severity level, reducing
analysis time and addressing inconsistencies in the evaluation process.

Keywords: Cybersecurity · NER · Vulnerability Assessment.

1 Introduction

Security vulnerabilities often lead to serious consequences for individuals, orga-
nizations, and society as a whole. Unpatched vulnerabilities can be exploited
by cyber-criminals to launch attacks, such as ransomware, phishing, and denial-
of-service. Due to such attacks, the number of compromised personal data has
reached 300 million pieces in the beginning of the year 2023 [1]. The Common
Vulnerabilities and Exposures (CVE) program [2] and the National Vulnerability
Database (NVD) [3] are commonly used by organizations to discover and patch
vulnerabilities before they are exploited by attackers. The CVE program assigns
a unique CVE-ID to each of the vulnerabilities submitted by the public, which is
then received by NVD for analysis and assigning a Common Vulnerability Scor-
ing System (CVSS) [4] score. There are 199,786 vulnerabilities (March 2023) in
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the database, which are fetched by hundreds of security products [5] and used
in security migration/network hardening solutions [6].

However, based on data collected for vulnerabilities published in 2022, the
analysis of a vulnerability typically takes days (median processing time is 7
days). This may result in delays in identifying and thus patching high-severity
vulnerabilities. Note that as vulnerability patching incurs costs [7] (e.g., service
outage, risk of introducing new issues, manpower), it usually needs to be prior-
itized based on severity in enterprise environments. Furthermore, the process of
assigning CVSS scores could be influenced by potential bias and limitations of
individual analysts. To make things worse, erroneous or inconsistent evaluation
may lead to a wrong decision in vulnerability prioritization systems that rely on
CVSS scores for the severity level.

Existing solutions mainly focus on utilizing deep learning approaches to pro-
cess vulnerability description text, e.g., one-layer shallow Convolutional Neural
Network (CNN) [8], and multi-task learning approach [9], and predict a multi-
class severity level of vulnerabilities. These methods heavily depend on the accu-
racy of the current vulnerability scoring, which is used as input for training. The
aforementioned bias and inconsistency can be detrimental to the effectiveness
and reliability, e.g., the same description text in different vulnerability entries
may be assigned very different severity levels.

Instead of relying on existing scoring, this paper first reviews a large corpus
of vulnerability descriptions and identifies the essential information needed for
severity evaluation. Based on this, we propose a tool for extracting entities in vul-
nerability information, called VIET, which can facilitate the severity evaluation
of vulnerabilities. It can reduce analysis time and help address inconsistencies
in the evaluation process (see Section 2.2 and the example in Section 3). Specif-
ically, we follow a novel data science pipeline to implement such a tool. First,
we trained a dedicated cybersecurity linguistic model based on 9.7M words from
209,842 vulnerability descriptions (we include the rejected vulnerability descrip-
tions to enlarge the possible corpus); Second, we implemented a Bidirectional
long short-term memory (BiLSTM) network trained based on 40K labeled words
from 800 vulnerability descriptions. Third, we conducted experiments to evalu-
ate the effectiveness of our tool. Therefore, our main contributions are threefold:
– To the best of our knowledge, in the context of utilizing vulnerability de-

scriptions, this is the first effort towards a novel entity extraction method
for identifying vulnerability entities for assessing the severity level of vulner-
abilities. The labeled data for training, to the best of our knowledge, is the
largest dataset based on vulnerability descriptions.

– We train a specialized linguistic model for cybersecurity. This model is based
on a large corpus of 9.7 million words from 209,842 vulnerability descriptions,
which includes all the existing vulnerability descriptions. By training this
model, this paper advances the state-of-the-art in cybersecurity NLP and
creates a valuable resource for future research.

– We evaluate the effectiveness and efficiency of VIET based on different
lengths of the vulnerability descriptions from different years. Our results
demonstrate the effectiveness and efficiency of our solution.
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Table 1: CVSS V3
Base Score

Attack Vector Attack Comp. Privileges Req. User Interaction Conf. Inte. Ava. Scope
Network Low None None None None None UnchangedAdjacent
Local high Low Required Low Low Low ChangedPhysical High High High High

The remainder of the paper is organized as follows. Section 2 provides back-
ground information and a motivating example. Section 3 details the VIET method-
ology. Section 4 discusses the datasets and the technique used to process the
datasets. Section 5 presents the experiment results. Section 6 reviews the re-
lated work and Section 7 concludes the paper with future directions.

2 Preliminaries

In this section, we first explain a few terms to facilitate subsequent discussions.
Then, we present a motivating example and discuss the technical challenges of
our work.

2.1 NVD and CVSS Metrics

NVD. The National Vulnerability Database (NVD)3 is a government-maintained
database of vulnerability information that follows industry standards. The NVD
receives updates from MITRE’s Common Vulnerability and Exposures (CVE)
List, ensuring the database is up to date. Each CVE record in the CVE List is
supplemented with additional information on the NVD website, such as sever-
ity scores, weakness enumeration, and security checklist references. The website
also includes information on vulnerable product versions, components, attack
vectors, and impact. Our paper primarily concentrates on vulnerability descrip-
tions and CVSS vulnerability characteristics. As of march 2023, NVD contains
199,786 vulnerabilities.
CVSS. Each CVE record in NVD includes two severity scores, namely, CVSS
Version 3 and CVSS Version 2, along with their respective characteristics. CVSS
V2 has six basic vulnerability characteristics, namely, attack vector (AV), at-
tack complexity (AC), authentication (AU), confidentiality (C), integrity (I),
and availability (A), while CVSS V3 does not have AU but includes three new
metrics: physical (P), privileges required (PR), and user interaction (UI) in vec-
tors (See Table 1, highlighted cells are the newly introduced metrics). The new
metrics in CVSS V3 aim to provide a more accurate and complete representation
of the security risk of vulnerabilities. The scoring system ranges from 0 to 10,
with higher scores indicating more severe vulnerabilities.
3 https://nvd.nist.gov
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Fig. 1: Processing time (left), Length of the Descriptions (right)

Vulnerability description. CVE Numbering Authorities (CNAs) are responsi-
ble for assigning unique CVE IDs to vulnerabilities. Before assigning a CVE ID,
CNAs validate the submitted vulnerability to ensure it is not already assigned
or fully patched. The vulnerability description [10], which includes information
such as the affected product, version, component, vulnerability type, and con-
ditions/requirements to exploit the vulnerability, is normally provided by the
reporter or created using the CVE Assignment Team’s template by CNAs. The
MITRE CNA of Last Resort (CNA-LR) analyzes publicly available third-party
reports on vulnerabilities, known as "references". It extracts the relevant infor-
mation from each reference, resolves any conflicting information or inconsistent
terminology usage, and then writes the vulnerability description. Although the
National Vulnerability Database (NVD) is synchronized with the CVE List, the
CVE description can only be submitted through the CVE List, and the NVD has
no control over the CVE descriptions. An NVD analyst may manually search
through the Internet to gather any other relevant publicly available materials
and information during the analysis process. Due to the large number of vulner-
abilities, it may take several days before the CVSS is attributed. Figure 1 (left)
shows the process time for vulnerabilities, and Figure 1 (right) shows that the
most common length for a vulnerability description is around 25∼70 characters.

2.2 Motivating Example

Figure 2 depicts three vulnerabilities (CVE-2017-5807, CVE-2017-5808, CVE-
2017-5809) having identical vulnerability description, and further assigned to
three analysts to evaluate the severity level. The three analysts may make the
following decisions based on their own judgement:

– The first analyst considers this vulnerability to be easily exploitable with
only remote access, as indicated by the word remote in the description, and
also believes arbitrary code execution will lead to a total compromise of
confidentiality, integrity, and availability (see detailed CVSS metrics in Sec-
tion 2). As a result, a severity score of 10/10 is assigned to this vulnerability,
which means top priority to be patched.
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Description

Day 1

CVE‐2017‐5807

CVE‐2017‐5808

Avail.Integ.Conf.Auth.Comp.Access

NoneNoneCompleteNot Req.LowLocal

CompleteNoneNoneNot Req.LowRemote

CompleteCompleteCompleteNot ReqLowRemote

Median processing 
time: 7 days (2022)

4.9

7.8

10
Inconsistent 
evaluation

CVSS score not available: No mitigation decision

Attack window

Day 7+

Low severity level, 
low patch priority 

CVE ‐ ID  Different analysts assess 
vulnerability description

CVSS score attributed

A Remote Arbitrary 
Code Execution 
vulnerability in HPE 
Data Protector 
version prior to 8.17 
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Fig. 2: The motivating example

– The second analyst also acknowledges remote access as with the first analyst.
Nonetheless, different impact metrics are considered, i.e., only availability is
undermined if this vulnerability is exploited. Hence, 7.8/10 is assigned.

– The third analyst mistakenly considers the required access to be local
(which is inconsistent with “a remote arbitrary code execution”) and only
leading to information disclosure (confidentiality) as the impact of this vul-
nerability. Thus, this vulnerability is scored 4.9/10.

Adding to the manual analysis time already leaving an attack window, im-
properly/wrongly assigned CVSS scores may further delay patching extending
the attack window favoring the attacker. We thus propose to leverage NER tech-
niques to extract vulnerability-specific entities from vulnerability descriptions for
score derivation, which can serve as a new basis to complement the analysts.

Part-of-Speech:

Vulnerability in the Oracle Marketing product of Oracle E-Business Suite ( component : Marketing Administration ) .

Supported versions that are affected are 12.1.1 - 12.1.3 and 12.2.3 - 12.2.9 .

Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Marketing .

Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle Marketing , attacks may significantly impact 

additional products .

Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Marketing accessible data as well as unauthorized update 

, insert or delete access to some of Oracle Marketing accessible data .
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Named Entity Recognition:

Vulnerability in the Oracle Marketing product of Oracle E-Business Suite ( component : Marketing Administration ) .

Supported versions that are affected are 12.1.1 - 12.1.3 and 12.2.3 - 12.2.9 .

Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Marketing .

Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle Marketing , attacks may significantly 
impact additional products .

Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Marketing accessible data as well as unauthorized 

update , insert or delete access to some of Oracle Marketing accessible data .
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Vulnerability in the Oracle Marketing product of Oracle E-Business Suite ( component : Marketing Administration ) .

Supported versions that are affected are 12.1.1 - 12.1.3 and 12.2.3 - 12.2.9 .

Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Marketing .

Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle Marketing , attacks may significantly 

impact additional products .

Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Marketing accessible data as well as 

unauthorized update , insert or delete access to some of Oracle Marketing accessible data .
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Enhanced++ Dependencies:

— Text to annotate —
interaction from a person other than the attacker and while the vulnerability is in Oracle Marketing, attacks may significantly impact additional products. Successful attacks of this 
vulnerability can result in unauthorized access to critical data or complete access to all Oracle Marketing accessible data as well as unauthorized update, insert or delete access 
to some of Oracle Marketing accessible data. 

— Annotations —
parts-of-speech named entities dependency parse relations

— Language —
English Submit

Fig. 3: Name Entity Recognition with CoreNLP

Challenges. To extract entities, we first evaluated vulnerability descriptions us-
ing CoreNLP [11], which is currently the state-of-the-art name entity extraction
implementation. However, we found that CoreNLP failed to process vulnerability
descriptions, as it often misclassifies security-related terms, such as categorizing
"attacks" under the concept of "cause of death" (see Figure 3). This might
be due to lacking vulnerability terminologies in the underlying linguistic model
in CoreNLP. Therefore, a fine-tuned linguistic model is necessary to capture
vulnerability-related entities. Previous research on attack entity extraction has
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focused on extracting entities related to creating attack graphs [12] and detect-
ing inconsistencies in vulnerable versions [13]. A clear definition of the entities
that are correlated with vulnerability evaluation is missing.

3 Design of VIET

This section first provides an overview of VIET, followed by the detailed method-
ologies for its major components.

Vulnerability in the 
Oracle … Supported 
versions that are 
affected are 12.1.1‐
12.1.3 and 12.2.3‐
12.2.9… allows 
unauthenticated 
attacker … attacks 
require human 
interaction … may 
significantly impact 
additional products 
… 

CVE‐2019‐2995

LSTM

LSTM

LSTM

LSTM

Forward LSTM

Backward LSTM

LSTM

LSTM

LSTM

LSTM

Dense Layer

SoftM
ax

W
ord2vec Cyber Linguistic M

odel

Vulnerability in the Oracle Marketing product of 
Oracle E‐Business Suite. Supported versions that are 
affected are 12.1.1‐12.1.3 and 12.2.3‐12.2.9. Easily 
exploitable vulnerability allows unauthenticated 
attacker with network access via HTTP to 
compromise Oracle Marketing. Successful attacks 
require human interaction from a person other than 
the attacker and while the vulnerability is in Oracle 
Marketing, attacks may significantly impact 
additional products. Successful attacks of this 
vulnerability can result in unauthorized access to 
critical data or complete access to all Oracle 
Marketing accessible data as well as unauthorized 
update, insert or delete access to some of Oracle 
Marketing accessible data.

CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:L/A:N

Vulnerability Linguistic Model

VIET Model Description w/ highlighted Vul. Entities

Fig. 4: The Architecture

3.1 Overview

Figure 4 depicts the two major components of VIET, vulnerability linguistic
model and VIET model.

The vulnerability linguistic model is designed to train vulnerability-specific
word embeddings using a dataset of 209,842 vulnerability descriptions (including
rejected CVEs) from the NVD. Unlike existing works that rely on pre-trained
models, our approach involves fine-tuning the linguistic model with vulnerability
terminologies. Specifically, we fine-tune the linguistic model using the Word2Vec
algorithm. We did not choose other language models like BERT [14] because,
aside from training such complex and deep models being too expensive (while
Word2Vec has only one hidden layer), specifically Binyamini et al. [12] showed
that the pre-trained and fine-tuned BERT performed significantly worse than
Word2Vec in such entity extraction tasks, and its visualization of the word em-
bedding space is also poorly clustered. As a result, our approach can achieve
good embedding representations with limited training data (9.7M corpus).

The VIET model utilizes the trained vulnerability linguistic model as input
to its embedding layer. The embedding layer then feeds into a BiLSTM layer,
which contains both forward and backward LSTM layers. The output from these
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layers is then passed through a dense layer and a Softmax layer to output the
extracted vulnerability entities.

3.2 The Vulnerability Linguistic Model

In this section, we present the details of the vulnerability linguistic model with
examples. We implemented both continuous bag-of-words (CBOW) and skip-
gram (SG) variants of the Word2Vec algorithm. Both variants generate word
embeddings that contain information about the surrounding words. In our case,
we use vulnerability descriptions as inputs to fine-tune the word embeddings.
In CBOW, we predict the center word from the context while in SG algorithm
we try to predict the context words from the center word. In terms of training
efficiency, CBOW is far better than SG, and it becomes more obvious as the
corpus or window size increases, because CBOW only needs to do one represen-
tation (embedding) learning for each central word whereas SG needs (window
size - 1) times. In dealing with low-frequency words, SG is more sensitive than
CBOW, if there are many uncommon words in the text, SG will predict the
usage environment of uncommon words to achieve a better prediction result.

Fig. 5: CBOW and Skip Gram Algorithms

Example 1. Figure 5 illustrates the difference between the CBOW and SG algo-
rithms when applied to the context “Easily exploitable vulnerability allows unau-
thenticated attacker with network access via HTTP”. With window size 5, SG
uses the word “attacker“ as input to predict the surrounding 10 words “Eas-
ily, exploitable, vulnerability, allows, unauthenticated, with, network, access, via,
HTTP”, while CBOW takes the context set ⟨Easily, exploitable, vulnerability, al-
lows, unauthenticated, with, network, access, via, HTTP⟩ as input and predicts
the output word “attacker”. In both algorithms, as a result of the training, the
word “attacker“ becomes closer to the set of context words ⟨Easily, exploitable,
vulnerability, allows, unauthenticated, with, network, access, via, HTTP⟩ since
they appear closely and frequently in the same part of the sentence. Hence, the
word “attacker” will start to contain “vulnerability” meanings and be more effec-
tively used in the vulnerability linguistic model for accurate entity extraction.

IFIP DBSec 2023 (authors copy)



8 S. Zhang et al.

P (wt ∈ Ct|wc) =
exp(wT

c wt)∑
wi∈Ct

exp(wT
c wi)

(1)

Equation 1 is the softmax function to predict a probability of 1 if the wt ∈ Ct

or 0 otherwise, where Ct is the set of all context words based on a center word,
and wc, wt, and wi are the embeddings of the center word, target word, and any
word in all available context words, respectively.

3.3 Vulnerability Entity Extraction

Named Entity Extraction (NER) is a technique used in many areas of Natural
Language Processing (NLP). The main task of this technique is to extract named
entities from text, which can include things like names of people, places, orga-
nizations, and dates, among others. NER is an important tool for many NLP
applications, including sentiment analysis, document classification, and question
answering, among others. By identifying and extracting named entities from
text, NER can help improve the accuracy and effectiveness of these applications.
To identify and define the entity categories, we conducted a thorough analysis of

Table 2: The List of Vulnerability Entities (S: Supplementary, E: Essential)
Vul. Entity Descriptions Example Dist.

S

Application Vulnerable software Openssl, Websphere 0.0636
CVE ID A CVE identifier Cve-2015-1924 0.0101

File Vulnerable file wp-admin/options.php 0.0038
Update Service pack installation SP1 0.0026
Vendor The vendor names Microsoft, Oracle 0.0125
Version The application versions 12.1.0.5 0.08
Function The vulnerable function getdevices() 0.0027

Network Protocol The network protocol HTTP, dns 0.0026
OS The operating system names Android, windows 0.0112

E

Vul. Impact The consequences of exploiting Vul. Obtain sensitive information 0.0766
Vul. Type The Vul. types Memory corruption vulnerability 0.0574

Vul. Complexity The technique that used to exploit the Vul. via crafted encrypted data 0.0322
Vul. Vector The context that a vulnerability gets exploited Remote attackers, physical access 0.0317
Privileges The privileges that required to exploit the Vul. Remote authenticated users 0.0169

O Other words do not belong any of above a, the 0.596

the language used in vulnerability descriptions. This involved studying a large
corpus of vulnerability descriptions and identifying the various types of entities
that were commonly mentioned.

Our analysis revealed two main types of entities: supplementary entities
and essential entities. Supplementary entities are those that cannot be directly
mapped to CVSS metrics, but are still important for understanding the con-
text of the vulnerability. Examples of supplementary entities include software
names, version numbers, impacted components, and vendors, among others. On
the other hand, essential entities are those that can be loosely mapped to CVSS
metrics. These entities are critical for assessing the severity of a vulnerability
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VIET: Extracting Entities in Vulnerability Description Text 9

and include things like vulnerability impact, vulnerability complexity, etc. Ta-
ble 2 shows the list of vulnerability entities with definition, examples, and the
distribution of each entity in the labelled data.

By defining these two entity categories, we were able to develop a more ef-
fective approach for extracting and analyzing vulnerability-specific information
from textual descriptions. This allowed us to build a tool that could automati-
cally identify and extract essential entities, making it easier for security analysts
to evaluate vulnerabilities and prioritize remediation efforts.

Vul. 
Impact

S

C

I

A

Vul. 
Vector AV

network access 

allows unauthenticated attacker

Pri. PR

impact additional products

unauthorized update insert or delete access; 
complete access;
compromise oracle marketing

Vul. 
Type

Vul. 
Comp.

AC

UI
human interaction

Fig. 6: A loose mapping between vulnerability entities and CVSS metrics

Example 2. Figure 6 illustrates the loose mapping between vulnerability entities
and CVSS metrics. For example, with the extracted “allows unauthenticated at-
tacker” entity from the description, the analyst can easily assign “None” to the
privilege metric. Similarly, with the extracted “network access” entity, the analyst
can assign “Network” to attack vector seamlessly.

4 Dataset

In this section, we first explain how to obtain our input dataset then we illustrate
the techniques we used to process the dataset.
NVD entries. The NVD data feed, which provides a JSON-formatted archive
of security vulnerabilities from 1999 to March 2023, contains 209K vulnerability
descriptions, including those labeled as Rejected, with a total of 9.7M words.
In order to train a vulnerability linguistic model with a larger dataset related
to the cybersecurity domain, we utilized all of the vulnerability descriptions,
including those with rejected CVEs.
Tokenization. We take into account multiple factors when selecting and label-
ing inputs, e.g., time span, as dated vulnerability scoring issues may have been
fixed or not reflect new insights/versions (e.g., CVSS v3.0), reasonable quan-
tity, as manual annotation is very time-consuming. Considering in the work of
Binyamini et al. [12] 650 vulnerability descriptions were labeled (and we can
target slightly higher), we used a stratified sampling method to randomly se-
lect 800 vulnerability descriptions (40K words) from the past eight years (2015-
2022), with 100 descriptions from each year. Due to the presence of specific

IFIP DBSec 2023 (authors copy)



10 S. Zhang et al.

words from the cybersecurity domain, it is not ideal to use common tokeniza-
tion processes like NLTK tokenization for word segmentation. Such methods
may split complete links or file names into meaningless pieces due to special
symbols (e.g., admin.php?m=admin&c=site&a=save). To preserve the meaning
of cybersecurity-specific words, we used the simple split() function to segment
the descriptions by spaces between words. In cases where there were no spaces
between punctuation marks and words (e.g., “(word,” “word).”), we used Regex
to remove stranded whitespace and punctuation for further processing of the
segmented words.
Manual labeling. To alleviate the time-consuming manual labeling process, we
first employ an automatic labeling algorithm proposed by Bridge et al. [15] to
label the entities such as, “application”, “version”, and “vendor” which reduced
the proportion of “O” from 80% to 60%. However, as this autolabeling method
labels vulnerability-specific entities only as relevant-terms, we have to further
manually label those. Since Bridge et al. [15] used standard IOB-tagging for
many multi-word names commonplace, they labeled the beginning word of an
entity name with “B-X”, any word in this entity name beside the beginning word
is tagged with “I-X” and labeled unidentified words with “O” where X defined
as a type of attack entity, we also applied this concept in the subsequent man-
ual labeling after we generated the automatically labeled dataset through the
automatic labeling process. For the subsequent manual labeling, we replaced
the relevant term gazetteer that contains the words related to cybersecurity do-
main and 13 vulnerability categories [5] with Vulnerability type, Vulnerability
impact, and Vulnerability vector which helped us to reduce the time of manual
labeling. In this paper, we consider the following five essential vulnerability en-
tities: Vulnerability vector, Vulnerability impact, Vulnerability type, Privilege,
Vulnerability complexity as our mean Vulnerability vector, Vulnerability impact,
Privilege, and Vulnerability complexity, 8 supplementary vulnerability entities:
Vendor, Version, Application, CVE ID, Update, Function, and Network proto-
col, and other words not possessing any cybersecurity meaning labeled as “O”.
A short description and distribution of these entities are presented in Table 2.
Data imbalanced. Despite the reduction of the proportion labeled with “O”
from 80% to 60%, there still exist entities that are less common such as “Network
protocol” and “Privileges”. To better balance the data, we applied the weighted
cross-entropy loss function [12] to cope with this issue.

5 Experiment

In this section, we first provide details about how the experiment was set up and
then present the results for both models.

5.1 Experiment Setup

All the experiment steps are developed in Python 3.9 and executed on a Mac-
book Pro running macOS Monterey, with Apple M1 Pro chip and 16.0GB of
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RAM. For the vulnerability linguistic model, we leverage Word2Vec [16] with
both algorithms, CBOW and Skip-gram, implementation from Gensim [17]. The
embedding vector generated from the vulnerability linguistic model is fed into
the embedding layer implemented based on Keras [18]. The deep learning model
in VIET, e.g. BiLSTM, is implemented based on the Keras.layers library [18] to
generate sentence embedding for the entire description and extract vulnerability
entities. The evaluation metric, e.g., loss is implemented based on scikit-learn
[19]. The data preprocessing and auto-labelling is based on pandas [20].

5.2 Evaluation of the Vulnerability Linguistic Model

To evaluate the proposed vulnerability linguistic models, we compared two fine-
tuned models, CBOW and Skip-gram, with the default pretrained model. The
pretrained vectors were trained on a subset of the Google News dataset, con-
sisting of approximately 100 billion words. The model contains 300-dimensional
vectors for 3 million words and phrases.4 We chose not to use the Wikipedia pre-
trained model as it contains words from too many domains, and the performance
of such a model is relatively slow.

The fine-tuned models take vulnerability descriptions as domain specific in-
put and perform training based on the pretrained model. To evaluate the perfor-
mance of the fine-tuned models, we examine the semantic similarities between a
selected word and the top closest words. In this set of the experiment, we chose
words “OS”, “priviledges”, “attackers”, and “overflow”.
Results. The word2vec model without fine-tuning as shown in Figure 7(c) per-
forms the worst in both separating the selected words and identifying meaningful
neighbouring words. The word “attackers” cluster is very close the word “privi-
lege” cluster. The words considered close to it are, “attacker” (the singular form
of the chosen word), “assailant” (which only makes sense in natural languages),
and other words that do not have a cybersecurity meaning. The word “priviledge”
and “overflow” perform even worse as they only get different form or format of
the original words such as, “priviledged” (the past tense), “priviledges” (the sin-
gular form), “Overflow” (the first word in upper case), “overflowing” (present
participle), etc. The word “OS” cluster is surprisingly good. It contains differ-
ent operating systems, e.g., “windows”, “UNIX”, and words related to “OS”, e.g.,
“CPU”. We assume that’s because the pretrained model is based on Google news
which might have security related articles that contribute to understanding a
computer science related word. However, it is evident from this experiment that
the pretrained model cannot fully capture vulnerability-specific terminologies.

The word2vec-CBOW model in Figure 7(a) shows the best performance in
clustering different selected words and their neighboring words. All the selected
words are well separated in their respective clusters. In the “attackers” cluster,
we observe the words that are used to describe attackers from vulnerability de-
scriptions, such as, “remote”, “allows”, “arbitrary” (sample description from CVE-
2015-0876: “allow remote attackers to inject arbitrary web script”), etc. The word
4 https://huggingface.co/fse/word2vec-google-news-300
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Table 3: Dataset summary and training time for the vulnerability linguistic mod-
els

Year # of Vul. Des. # of Corpus W2V-CBOW W2V-SG
1999-2023 209K 9.7M 29.67 min 124.28 min

overflows

buffer
underflow

stack

heap

based

privileges

execution

escalationlocal

disclosure

needed

remote

viaallows

possibly

arbitraryunspecified

10

apple

mac
x

before

11

W2V-CBOW

overflow
privilege
attackers
OS

(a) W2V CBOW

buffer

stack

integer

overflows

heap

based

escalation
elevation

privileges
local

disclosure

execution

allows
remote

via

arbitrary
execute

unspecified

mac

on

junos

pan

d77

command

W2V-Skip-Gram
overflow
privilege
attackers
OS

(b) W2V SG (c) W2V Pretrained

Fig. 7: A visualization based on e t-Distributed Stochastic Neighbor Embedding
(t-SNE) of the word embedding space for selected words based on CBOW fine-
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cluster “priviledge” properly captured the words that are commonly close to it as
well, e.g., “escalation” (CVE-2017-0313: “escalation of privileges”), “local” (CVE-
2017-3740: “an attacker with local privileges”). This result demonstrates that
with our input vulnerability description, we fine-tuned the model that captures
cybersecurity-specific meanings. Similarly, the word2vec-SG model (Figure 7(b))
could also capture cybersecurity-specific meanings after fine-tuning. However, as
shown in Table 3, fine-tuning the word2vec-SG model may take four times more
time than the word2vec-CBOW model. The performance of both models in vul-
nerability entity extraction will be studied in the second experiment thoroughly.

5.3 Evaluation of theVIET Model

In this set of the experiments, we evaluate the performance of the VIET model
against four different metrics, i.e., accuracy, precision, F1-score, and recall. Then
we study the efficiency and scalability of the model.
Performance of vulnerability entity extraction. We train the model based
on the 800 automatically and manually labeled vulnerability descriptions with
different hyperparameters. The results, as shown in Table 4 and Table 5, follow
the separation ratio 0.9:0.1 for the training and the testing dataset, i.e., 90%
of the data goes for training and 10% for testing. We have experimented with
other data separation; but the 0.9:0.1 separation yields the best performance.
Although, we evaluated our model against four metrics, we choose F1-score as the
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Table 4: F1-scores of the different models in essential vulnerability entity extrac-
tion: CBOW vs. SG

Models Vul. Vector Vul. Impact Vul. Type Pri. Vul. Comp. Macro Ave. Weighted Ave.
CBOW w/o POS
D100-L50 0.682 0.626 0.436 0.254 0.245 0.35 0.964
D100-L100 0.752 0.682 0.555 0.444 0.458 0.453 0.972
D100-L200 0.803 0.747 0.734 0.623 0.508 0.516 0.977
D300-L50 0.764 0.704 0.701 0.357 0.342 0.492 0.972
D300-L100 0.848 0.754 0.722 0.7 0.446 0.5 0.976
D300-L200 0.851 0.773 0.746 0.757 0.505 0.58 0.977
CBOW w/ POS
D100-L50 0.878 0.795 0.809 0.706 0.625 0.5961 0.9792
D100-L100 0.916 0.807 0.846 0.723 0.679 0.604 0.980
D100-L200 0.917 0.788 0.862 0.738 0.635 0.721 0.980
D300-L50 0.901 0.793 0.835 0.752 0.679 0.655 0.981
D300-L100 0.914 0.805 0.857 0.817 0.628 0.67 0.981
D300-L200 0.902 0.807 0.86 0.831 0.719 0.68 0.9839

SG-D300-L200 0.902 0.801 0.826 0.750 0.636 0.583 0.978

main metric to compare between different models since our data is not balanced
and F1-score offers the best comparison within such a dataset. We first trained
the model without the part-of-speech (POS) module, then we added it back to
demonstrate the improvement of such a module.

Table 5: F1-scores of the different models in supplementary vulnerability entity
extraction: CBOW vs. SG

Models Vendor Version Application CVE ID Update Function Network Protocol
CBOW w/o POS
D100-L50 0.522 0.637 0.367 0.35 0 0 0
D100-L100 0.641 0.716 0.565 0.836 0 0 0
D100-L200 0.675 0.746 0.617 0.852 0 0 0.286
D300-L50 0.718 0.691 0.572 0.324 0.667 0 0.4
D300-L100 0.694 0.734 0.604 0.735 0 0 0.154
D300-L200 0.675 0.7424 0.613 0.784 0.667 0 0.5
CBOW w/ POS
D100-L50 0.727 0.835 0.542 0.967 0 0.333 0.588
D100-L100 0.8 0.814 0.567 0.79 0.8 0.25 0.588
D100-L200 0.721 0.81 0.576 0.984 0.286 0.588 0.675
D300-L50 0.8 0.824 0.572 0.984 0.667 0.333 0.588
D300-L100 0.753 0.825 0.559 0.984 0.8 0.333 0.667
D300-L200 0.759 0.825 0.718 0.984 0.667 0.286 0.556

SG-D300-L200 0.741 0.452 0.636 0.984 0.000 0.333 0.588

Results. Table 4 presents the evaluation results for our model to extract es-
sential vulnerability entities, including vulnerability vector, vulnerability impact,
vulnerability type, privilege, and vulnerability complexity. We also provide the
macro average and weighted average for each model. Our best F1-score was
achieved when training the model without POS module, with 300 embedding
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dimensions and 200 LSTM units. The vulnerability vector entity achieved the
highest F1-score of 0.851, followed by the privilege entity with an F1-score of
0.757. It is worth noting that in the closest related work [12], the F1-scores
for different entities range from 0.4 to 0.94. Our results fall within this range,
indicating that our approach is acceptable for this task.

To further improve the F1-score in our model, we perform training the same
hyperparameter combinations with a POS module. In NLP, it’s quite important
to recognize parts of speech as it helps in sentence analysis and comprehension.
The role a word plays in a sentence denotes its part of speech. In our design, we
utilized “B-Entity” and “I-Entity” labels to identify the beginning and internal
parts of entities. By integrating our labels with POS tagging, we can potentially
improve the F1-score by accurately identifying entity boundaries. With 300 em-
bedding dimensions and 200 LSTM units, our model with POS module achieves
F1-score 0.902 and 0.831 for the vulnerability vector entity and the privilege
entity, respectively. Despite taking four times longer to train the word2vec Skip-
gram embedding model, it was only able to achieve relatively similar or slightly
worse results when trained with POS tagging compared to the word2vec CBOW
embedding model.

Table 5 shows the evaluation results for our model to extract supplemen-
tary vulnerability entities. Generally, the results are not as good as those for
extracting essential vulnerability entities because supplementary entities are less
commonly found in vulnerability descriptions. However, our results are still ac-
ceptable when we include the POS module in the training. For example, we
achieve an F1-score of 0.825 for the version entity, while [12] achieves an F1-
score of 0.77 for extracting versions.
Efficiency and scalability. Figure 8 shows the training time of the VIET
model in six different hyperparameter combinations. Figure 9 illustrates the ac-
curacy and loss versus the number of training epoch. Finally, Figure 10 demon-
strates the prediction time based on different input lengths of the descriptions.
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Type CBOW Training Time w/O POS Training Time w POS

1 D = 100
L = 50 6.65 min 7.99 min

2 D = 100
L = 100 8.05 min 10.3 min

3 D = 100
L = 300 15.33 min 14.86 min

4 D = 300
L = 50 15.62 min 19.08 min

5 D = 300
L = 100 19.75 min 15.62 min

6 D = 300
L = 200 32.25 min 26.68 min

(b) Experiment D. vs. Total Training Time

Fig. 8: Training time of the Bi-LSTM model with and without POS tags vs.
Different word embedding dimensions (D) and LSTM cells (L) (second per
Epoch)(a), Total training time (min)(b)
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Results. The training time results shown in Figure 8 indicate that the POS
module introduces an additional time cost to the model training. When compar-
ing the best performance (Type 6) in Figure 8b, the model with POS module
required an extra 5s per epoch for training. However, as early stopping was im-
plemented in the model training, the training process stops when the validation
loss increases while the training loss is still decreasing. The model with POS
module only requires 26.68 minutes, while the one without POS needs 32.25
minutes to finish the training. This is because the model with POS module
converges faster. The results in Figure 9 suggest that, in general, the models
can reach early stop after training for only 10-20 epochs. This indicates that
training the models to a reasonable level of accuracy is relatively easy and does
not require a large amount of computational resources. Additionally, Figure 10
demonstrates that our solution is efficient, as the model with POS tagging takes
an average of 0.96 seconds and only an average of 0.11 seconds is needed for the
model trained without POS tagging to complete a prediction.

6 Related Work

In recent years, there has been a growing body of research on automating the pre-
diction of severity scores, exploitability metrics, and impact metrics of vulnerabil-
ities since vulnerability assessment is still primarily done manually. Researchers
have focused on utilizing Natural Language Processing (NLP) to address various
security problems, including vulnerability assessment.

One of the earliest works in the field of automated vulnerability assessment
was conducted by Weerawardhana et al. [21]. They developed a tool that utilized
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Stanford Named Entity Recognition (NER) to automatically extract software
names, versions, and impacts from vulnerability descriptions from the NVD.

To predict the CVSS exploitability metrics and impact metrics by extracting
information from vulnerability descriptions, the majority of research has focused
on three main learning approaches: single-task, multi-target, and multi-task. Ya-
mamoto et al. [22] were the first to use descriptions of software vulnerabilities
from the NVD with a supervised Latent Dirichlet Allocation topic model to
predict these CVSS metrics. Gong et al. [9] utilized multi-task learning to pre-
dict CVSS characteristics based on the vulnerability descriptions. Each charac-
ter had its own label and classifier that used a shared sentence representation
based on a Bi-LSTM model with an attention mechanism for capturing implicit
correlations among related vulnerability characteristics. There are also six well-
known ML models that most researchers used to do vulnerability classification:
Naïve Bayes (NB) [23], Logistic Regression (LR) [24], Support Vector Machine
(SVM) [25], Random Forest (RF) [26], XGBoost - Extreme Gradient Boosting
(XGB) [27] and Light Gradient Boosting Machine (LGBM) [28]. As shown in
their results, these data-driven methods performed well with satisfactory accu-
racy in extracting information and predicting characteristics or severity scores
from vulnerability descriptions. However, predicting scores for new vulnerabil-
ities from description text, but based on existing past CVSS scores that were
assigned by security analysts still suffers from the bias/inconsistency issues we
pointed out earlier, such as the same vulnerability description being assigned
different severity levels. Therefore, we choose to directly perform vulnerability
entity extraction from description text without relying on existing scores, which
can be subsequently mapped to exploitability and impact metrics in the CVSS
score system to either derive a score, or provide a reference for security analysts,
improving accuracy and reducing analysis time.

7 Conclusion

We have developed a novel, end-to-end tool for extracting vulnerability entities
from the description text of a security vulnerability. This tool enables security
analysts to easily identify the essential vulnerability entities that loosely map
to the CVSS metrics. This does not rely on the existing CVSS scores avoiding
potential bias or inaccuracy introduced by human analysts. In particular, we
have trained a vulnerability linguistic model on a corpus of 9.7M words from over
200K vulnerability descriptions. This linguistic model can be applied to many
other NLP tasks in the vulnerability domain. Furthermore, we have manually
labeled 800 vulnerability descriptions containing 40K words, which is, to the
best of our knowledge, the largest dataset for vulnerability descriptions. This
dataset as well as the models can be utilized to further automate vulnerability
evaluation and scoring, which we consider as future work.
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