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Abstract—In cybersecurity, being able to quantify the level of
security has been a long quest so that decisions can be made
toward improving security. Various metrics have been proposed
and applied, which can usually be computed from collected
measurements. However, only certain aspects of the target system
are measured corresponding to the purpose the metrics were
designed for, be it software vulnerabilities or configuration errors,
thus lacking a concise and clear image of the overall security of
a system for the practitioners to act on, especially when it comes
to large-scale or complex systems.

We argue that overall security metrics are defined by humans
based on specific security goals before they can be computed.
Therefore, we propose a hybrid approach to the aggregation
of well-established individual security metrics by combining
machine computation with human decision making. In particular,
we modify the Analytic Hierarchy Process (AHP) to reach a
group decision of selected ‘“‘experts”, which can derive the weights
of individual metrics for their aggregation. We showcase its
feasibility by selecting several common metrics to measure the
target systems in our testbed, and conducting an AHP survey
with seventeen experts. The resulted overall security score for
the target systems shows how our approach enables comparison
of the overall security between those systems. By considering
cloud-oriented settings, we also showcase how this approach can
be applicable to today’s virtualized environments.

Index Terms—Security Metrics, Metric Aggregation, AHP, CIS
Benchmarks

I. INTRODUCTION

In recent years, network/computer security has risen in
priority for many organizations [1]. Security metrics [2] can be
an effective tool to facilitate quantifying the risks to network
environments and individual computers. In particular, well-
defined security metrics can also assist in security-related
decision making and increase the level of security awareness
within the organization.

There have been a wide variety of security metrics proposed
from different perspectives [2], e.g., attack surface, human fac-
tors, security incidents. Nonetheless, software vulnerabilities
are still one main factor considered for security metrics, and
intuitively, more vulnerabilities implies a greater risk, therefore
numerous existing works [3]—-[5] take into account the number
of software vulnerabilities. Such works are usually based on
vulnerability repositories as exemplified by the National Vul-
nerability Database (NVD) [6], a public repository of reported
software vulnerabilities, and the Common Vulnerabilities and
Exposures project (CVEs) [7]. In addition to the quantity of
vulnerabilities, their severity matters as well. The Common
Vulnerability Scoring System (CVSS) [8] is a widely adopted
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standard that is used to quantify the severity of vulnerabilities
and assign a numerical value to each vulnerability, as a
score available in the NVD database. The CVSS score of
individual vulnerabilities has become a foundational metric
for developing security analysis tools or frameworks.

However, such metrics for individual vulnerabilities do not
take into account the influence between different factors. For
example, CVSS does not provide a way to aggregate network
reachability into an overall CVSS score (note that network
configuration is per-deployment information, not in software
code). In this case, an online system with a few vulnerabilities
could be considered less vulnerable than an offline system
with many vulnerabilities negatively affecting the remediation
order of the two systems. Moreover, for the same secu-
rity factor, individual metrics cannot reflect the interactions
between different entities of a complex system in modern
cloud-based environments. For example, one vulnerability may
satisfy the precondition (e.g., gaining the admin privilege) of
another vulnerability, i.e., vulnerability chaining [9]. Hence,
a simplistic approach such as averaging up the CVSS scores
for multiple vulnerabilities cannot reflect an exact picture of
the real overall security of the system. At same time, although
there is the paradigm of attack modeling, as represented by the
large body of research using attack graphs [10], [11], the multi-
factor/multi-entity aggregation is still not addressed!, or put
another way, the graph-based attack modeling is orthogonal
to the aggregation problem.

Therefore, what is needed is a way to aggregate existing

individual security metrics for multiple factors or entities into
one overall security score. This is particularly necessary in
the era of cloud computing,where massive virtual hosts are
co-located with mutual influences, which makes deriving an
overall security level more challenging.
The challenge. When a decision maker would like to learn
about the security level of an entity, involving multiple fac-
tors/entities, how can the individual security metrics (e.g.,
multiple CVSS scores) of individual entities (e.g., VMs or
containers) be aggregated into one overall (relative) score?

We argue that although certain individual security metrics
might be widely accepted and do represent a specific risk
factor (e.g., the severity of a vulnerability), overall security is
still rather defined [12] by security experts (humans) followed
by machine computation based on the measurements for the

!An attack graph always has a single node/system as the target.
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defined metrics. For instance, whether one system is more
secure than others depends on what security factors are taken
into account (e.g., the organization may consider password
policies), and their importance as defined by the experts
considering their roles in the overall security. In this paper,
we propose a hybrid approach to reflect this reality in the
aggregation of individual security metrics. We first rely on
modern decision making techniques to capture the security
experts’ opinions about the importance of the selected met-
rics (human-determined weights), calculate individual metric
scores using collected measurements (machine computation),
and then aggregate with weighted scores, hence the hybrid
nature of the approach.

For the human-determined weights, we make use of the
analytic hierarchy process (AHP) [13] approach to convert
human opinions into numerical values, i.e., the weights. In par-
ticular, we introduce a new variant of AHP. Unlike the original
AHP involving human opinions to determine both the metric
weights and the metric scores of the systems (more subjectiv-
ity), we only use it for the purpose of weight derivation and
rely on machine computation/telemetry for the metric scores.
Doing so not only reduces subjectivity, but also improves
scalability, enabling automation. More detailed explanation of
this AHP adaptation can be found in Sections IIT and IV-A.

To demonstrate the feasibility of our proposed approach,
we apply it to a real scenario by selecting several state-of-
the-art security metrics, collecting measurements from pre-
configured environments, running open-source cloud-oriented
telecom functions, obtaining metric weights via AHP ques-
tionnaires and performing the calculation of an overall score
accordingly. We consider the following metrics, as examples
(explained in Section IV): 1) non-compliance to the Center
for Internet Security (CIS) [14] benchmarks to represent
container/VM misconfigurations; 2) software vulnerabilities;
3) Internet reachability; and 4) open network ports. Note that
these could also be other various metrics of the decision
makers’ choice.

Contributions:

« We propose a hybrid approach to the aggregation of indi-
vidual security metrics by combining human opinions and
well-established machine-computed scores, into an over-
all security score, which we believe is the first of its kind.

o« We retrofit the AHP approach for our purpose and
design questionnaires to obtain the weights from selected
human experts, who are typically security specialists.

o To demonstrate feasibility, we use a real scenario to
simulate such a decision-making process in an IT
environment by choosing typical security metrics and
involving participants who have sufficient knowledge,
and deriving an overall score with the proposed approach.

II. BACKGROUND

Security metrics. To better understand the extent of something
and make an informed decision about it, we first need a
way to measure it, e.g., the temperature outside in °C for

a dressing decision or the speed of a vehicle in km/h to
enforce the speed limit. Likewise, it is desirable that we can
take a measurement of security and represent it in a certain
unit. However, the challenge stems from the complexity of
security, as it is determined by damages/losses that may only
happen in the future and what are considered to be threats.
In reality, security is also likely to involve multiple factors
instead of a single dimension. Despite various definitions, a
security metric is basically a system of related dimensions to
quantify the degree of security [15].

While quantifying individual dimensions can still be chal-
lenging, there have been established research areas [16], [17].
At the minimum, as Sanders suggests, relative metrics [18]
can still be helpful. By contrast, there is no consensus or
standard as to what security factors (dimensions) to be taken
into account. Such factors can include but are not limited to
password strength [19], VM co-residency [20] and misconfig-
urations/firewall rules [21], as well as software vulnerabilities.
It highly depends on how the stakeholders define/assume their
security threats. For example, IT environments with a large
number of employees may have to prioritize password policies
(as a human factor) compared to a small business. Therefore,
we argue that security metrics is human-defined at the high
level instead of machine-computed. This does not affect the
fact that, at the low level, metrics of individual security factors
are computed.

The CVSS metric. CVSS captures the characteristics of
individual vulnerabilities, as reflected in multiple metrics [8].
Here, we only involve the exploitability metrics of its base
score metrics to derive the probability of an exploit. The
exploitability metrics measure the relative difficulty to exploit
a vulnerability by four sub-metrics: Attack Vector (AV),
Attack Complexity (AC), Privileges Required (PR), User
Interaction (UI) and Scope (S). Ul indicates whether user
action is required for the exploit (e.g., clicking on a malicious
link). Scope indicates whether an exploited vulnerability
can affect other components with different ownership (i.e.,
“Changed” or otherwise ‘“Unchanged”). The computed
CVSS base score is a quantitative representation of the
vulnerability’s severity. Numerous existing works [3], [4],
[17] use the CVSS as a basic metric for computer security,
but vulnerabilities merely reflect what is in the software code,
not covering security factors such as network configuration
[3]. Therefore, the CVSS metric needs to be combined with
other security aspects to avoid any one-sided results.

CIS benchmarks. The Center for Internet Security (CIS) [14]
is a nonprofit organization that provides configuration base-
lines and best practices for a range of technology categories
including operating systems, virtualization software, network
devices, etc. CIS Benchmarks [22] are developed for securely
configuring systems, software and networks. Each benchmark
item corresponds to a specific configuration (e.g., the critical
docker.service file’s user:group should be root : root)
so that it can be checked against to ensure compliance.

Multi-criteria decision making. Even though we can accept
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something to be human-decided as opposed to machine-
computed, a decision made by one individual may not be reli-
able. To minimize potential biases and subjectivity, a common
practice is to make the decision collectively and collabora-
tively. Multi-Criteria Decision Making (MCDM) is a paradigm
to enable decision making by collecting a group of people’s
opinions (i.e., decision-makers) where there are (potentially
conflicting) multiple decision criteria and alternatives [23].
There have been various MDCM techniques proposed, such
as AHP, Fuzzy AHP, TOPSIS and ELECTRE [24].

Analytic Hierarchy Process (AHP) [13] is a widely-adopted
MCDM technique. It aggregates human opinions hierar-
chically by decomposing complicated problems into sub-
problems (i.e., criteria). AHP involves the following steps:
1) Define criteria, e.g., price, functionality and size for a
TV purchase decision, where the functionality can be further
broken into sub-criteria, e.g., resolution and refresh rate. 2)
Capture experts’ perspectives on the defined criteria, i.e.,
to do the pairwise comparison on the criterion importance.
3) Process the responses using a matrix, deriving criterion
weights as the normalized geometric means of each row in the
matrix. 4) Pairwise compare the alternatives (TVs) with respect
to the defined criteria, e.g., assigning a price score to each TV.
5) Rank the alternatives with weighted criteria, as the decision.

III. METHODOLOGY

We propose a hybrid decision-making approach to the
aggregation of multiple well-established computed security
metrics into a single security score. In this section, we first
discuss the generic approach at the high level that can be
adopted by an IT environment with their customization. Then,
in Section IV, we will demonstrate the entire process with a
specific setting of our choice. For an IT environment to adopt
this approach, the following customization is required: 1) Se-
lection of security factors of concern as individual metrics;
2) Determination of security decision makers; 3) Tooling for
the selected individual metrics.

To assess the security posture of an IT environment, the
factors affecting security need to be first identified. This cannot
be automated and there is no fixed set of such factors. Fur-
thermore, certain seemingly monolithic factors can actually be
broken down to sub-factors, e.g., passwords may be measured
in terms of either guessability (strength) or management pol-
icy (e.g., mandatory update frequency). Correspondingly, the
involved tools to collect data for the measurement also vary.

After the security factors (i.e., metrics) of concern have been
selected, which would be multiple in most cases, a way to
aggregate them is necessary. To achieve aggregation, one needs
to understand for what percentage of each selected metric
accounts in the total aggregated value, which is the weight.
Note that this does not mean the relationship between metrics
has to be linear, but just in terms of decision making using
the AHP technique. A greater weight implies more importance.
An analysis of and comparison between the selected security
metrics are to be done, again, by humans.

Decision makers. We consider only personnel with sufficient

security knowledge from the concerned organization or a
qualified third party to be such human candidates (as op-
posed to doing an untargeted survey), referred to as “experts”
hereafter. Examples of experts include security specialists,
security scientists/researchers, senior system administrators,
etc. Still, human opinions can be subjective or potentially
biased, regardless of their expertise [24]. Therefore, using
the AHP technique, we collect experts’ options so that the
collected data is credible, equivalent to collective/collaborative
decision making. This way, the aggregated numeric value can
represent the overall security level relatively objectively, as it
combines judgements from individual qualified personnel and
computed values from individual established metrics.

The workflow of our approach is shown in Figure 1. The
first step is to select security metrics of the organization’s
concern. The rest of the process consists of two tracks: one
track is to derive weights for the metrics, which only needs
to be done once for a given set of metrics; the other track
is to collect measurement from the target environment. In the
weight derivation track (blue area), there are three steps: 1) De-
sign AHP questionnaires, where the AHP criteria correspond
to the selected security metrics; 2) Conduct AHP surveys. In
this process, the experts are asked to systematically evaluate
given AHP criteria and pairwise compare them. This is a
crucial step since the relative importance of selected metrics is
determined here; 3) Calculate metric weights using the AHP
matrix [13] based on received responses. On the other hand,
the measurement collection track (beige area), includes auto-
mated measurement (telemetry) and metric value calculation.
In this step, the telemetry data is collected by various means
such as vulnerability scanners, network tools and automated
scripts. This step does the measurement which is followed
by an initial automatic aggregation, e.g., statistics for multiple
vulnerabilities. Then the telemetry data is converted into metric
values and followed by an initial automatic aggregation, e.g.,
statistics for multiple vulnerabilities. By the end of the two
tracks, we have both the individual computed metric values
from the target environment and the derived metric weights.
Lastly, they are aggregated to an overall security score. The
details of each step are discussed as follows.

A. Metric Selection

Some existing works use security metrics such as vul-
nerability/CVSS based metrics [3], [4], network reachabil-
ity [4] and virtualization based metrics [25]. They might be
useful for evaluating their specific security factors, but as
previously mentioned, not comprehensive. At the high level,
we consider metrics from two categories: pre-deployment
and post-deployment. Pre-deployment corresponds to inherent
risks when the product (software/hardware) is released, e.g.,
software bugs, and post-deployment reflects risks introduced
after the product has been deployed in an environment,
likely due to misconfiguration or non-optimal settings, e.g.,
insecure firewall policies. While pre-deployment metrics are
mostly based on software vulnerabilities, post-deployment
metrics could be very diverse. Aside from measuring pass-
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Fig. 1. Workflow of the proposed hybrid approach. Note that Metric selection
and Weight Derivation are a one-time effort for a given deployment

word strength/policies, examples of other factors that can be
measured include: network exposure [26] (e.g., open ports
and Internet reachability), human factors [27], system con-
figuration [21], etc. In addition to the factor selection (what
to measure), the other aspect is how to measure, e.g., to
measure the probability, impact of compromise, time or effort
to compromise, non-compliance to guidelines, attack paths,
or even configuration diversity [27]. In the case of CVSS,
compromise effort is reflected which can be converted to
probability.

B. Metric Weight Derivation

In this track, a survey is conducted through AHP question-
naires to collect expert opinions and derive metric weights.
Note that although the derived weight is usually reused for
repeated measurements, a weight refresh interval can be con-
sidered so that this step is redone to reflect the situation of the
target, when necessary.

Questionnaire design. Depending on the targeted participants
(experts) the first choice to make is the survey delivery format,
for which options may include professional online survey
websites, emails, spreadsheets, and even a dedicated mobile
app. Each option has its privacy/convenience/effectiveness
implications. The next choice will be the question format,
which is crucial. Although AHP needs pairwise comparison
as the input, the actual question format can vary, convertible
to the pair comparison (e.g., from a full ranking).

Survey conduction. Different from untargeted user surveys
where participants are recruited, our proposed decision making
survey is conducted among internally selected “experts” or
contracted third-party consultants. Thus, they are assumed to
be qualified to answer the AHP questions. Once the survey de-
livery format is decided, the questionnaires can be distributed
and responses can be collected. Note that identity disclosure
is optional depending on whether anonymity is a goal in

the organization. Exceptions apply to our evaluation as for
research purposes we need to consider the ethical aspects.
Weight calculation. This step aims to convert the comparison
results of AHP criteria into their corresponding security metric
weights. The pairwise comparison results of one individual
questionnaire can be represented by an AHP comparison
matrix. Such a comparison matrix can be used to derive the
weights of individual metrics but it only reflects one expert’s
judgement. For the weights to be more objective, we rely
on group judgements. This can be achieved by the geometric
mean method (GMM) [28], which aggregates individual com-
parison matrices into a single representative matrix. Therefore,
the security metric weights calculated from this aggregated
comparison matrix reflect the group decision.

C. Measurement Collection

Note that this track can be iterative, if we want to learn
about the up-to-date security posture at certain intervals, e.g.,
every two weeks. The derived weights from the previous AHP
step is a one-time effort and can be reused here.

Telemetry. The purpose of this step is to automatically and
preferably remotely take measurements of the target system’s
deployment by various means such as network tools, vulnera-
bility scanners, and custom scripts. With our cloud emphasis,
we measure not only the physical machines but also the virtual
machines or containers therein.

Metric value calculation. As the measured raw data could
be in various formats and from multiple sources, they need to
be processed before aggregation. Furthermore, the extracted
information from raw data needs to be converted into numer-
ical metric values. This needs to be automated with a script
because a large number of sub-metrics may be involved.

D. Metric Aggregation

Once the weights of individual metrics are ready and the in-
dividual metrics have been calculated, we aggregate them with
the formula: > m; - w; (as is done in [13]), where m; is the
computed individual metric value and w; is its derived weight
via group decisions. The result is the aggregated security score
that represents the overall security level of a target.

IV. AN APPLICATION SCENARIO

In this section, we set up a real test environment with
several qualified participants to demonstrate the entire process
shown in Figure 1. The test environment is composed of six
VMs running on a VMware ESXi 7.0.2 Supermicro server
with an Intel Xeon CPU D-1541 and 128GB RAM, and two
PCs (Ubuntu 20.04 and Windows 11). We choose to run
more telecom-oriented/cloud-native software to demonstrate
applicability. For instance, VM1 (Ubuntu) and VM3 (Debian)
run network function virtualization (NFV) [29] orchestration
software stacks using Open Source MANO (OSM) [30] and
OpenBaton [31], repectively. VM2 (Ubuntu) and VM6 (Open-
SUSE) run freeSGC [32] and Open5GS [33] respectively
simulating a 5G mobile core network. To start with, we select
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certain security factors as the security metrics, and consider
the following to be important in our environment.

Software Vulnerabilities (SV). This is one of the most
common security metrics, identified by scanning tools based
on the CVE/NVD databases with CVSS scores.

Internet Reachability (IR). Apart from a target’s inherent
vulnerabilities, the extent to which it is exposed to attackers
also matters. We consider Internet (where external bad actors
reside) reachability as a factor reflecting attacker population,
e.g., all attackers in the wild compared to only LAN attackers.
Open Network Ports (OP). Active code listening on a
network port indicates that a non-local attacker (including
LAN within the organization) can exploit the vulnerabilities.
More open ports means wider attack surface.
Virtualization/Containerization Misconfigurations (MC).
Virtualization and containerization add to the threat model
complexity, both technically and semantically. For example,
a privileged user inside the container/VM usually is not and
should not be privileged outside, effectively creating more
privilege levels; each container/VM represents a computer with
its own owner. Therefore, the degree of the container/VM
configuration’s (non-)compliance to certain best practices can
serve as a security metric.

A. Conducting AHP Surveys

In a research setting, we demonstrate how the collective
decision making using AHP surveys could be conducted in an
IT environment.

Participants. The invited participants are divided into 1)
Academia: faculty members (professors) or security lab grad-
uate students; 2) Industry: security specialists or senior system
administrators in a well-known telecom company. Considering
our special requirements that each response must be from
a person with sufficient security knowledge regarding the
involved technologies, only invited participants are allowed to
take this survey. Therefore, we did not use an online survey
website and share URLs which could be disseminated (no way
to verify eligibility). Given the small number of participants,
questionnaires were communicated by email to the experts for
pairwise comparison.

Questionnaires. We designed one main questionnaire for
the four metrics (SV, IR, OP and MC). We use the CIS
Docker/Kubernetes benchmarks [14] to quantify misconfigura-
tions, with sections as sub-metrics (detailed in Section IV-D),
so we also created two additional questionnaires for them. A
snippet of our designed questionnaires is shown in Figure 2.

NO. Security Criterion A 5 [ 4 ‘ 3 ‘ 2 ‘ 1 [ 2 [ 3 ‘ 4 Security Criterion B
1 Software Vulnerabilties K | Internet Reachability
2 Software < l » Open Ports
3 Software erabilities < J » i i i /VMs)
4 Internet < ] > Open Ports
5 Internet Reachability « T »| Misconfiguration (containers/VMs)
6 Open Ports K| ] 3| Misconfiguration (containers/VMs)

Fig. 2. The main questionnaire pairwise-comparing SV, IR, OP and MC

We map the AHP terminology [13] to our scenario: there is
a goal based on which the decision is made, e.g., in our case,

security. This goal can be further broken down into multiple
criteria, e.g., the individual security metrics like CVSS. There
are also alternatives the decision will pick the best from,
e.g., in our case, VM1, VM2, etc. Unlike the original AHP,
since pairwise comparison is not needed for the alternatives
(e.g., VM1 vs. VM2 in terms of CVSS), we only use AHP
to determine the criterion weight by pairwise-comparing the
criteria with respect to the goal, e.g., CVSS vs. open network
ports in terms of security.

Weight calculation. Each AHP with one participant will
result in one comparison matrix for the criterion weights. We

demonstrate how to calculate the weights using this matrix.
C1 C2 C3 C4

c1 1 5 1 1/3
A=\ c21/5 1 1/31/5
c3 1 3 1 1/3

c4 3 5 3 1

The comparison matrix A above is converted from one
of our questionnaire responses. The headings of rows and
columns represent our selected four security metrics (software
vulnerabilities—C]1, Internet reachability—C2, open network
ports—C3 and misconfigurations—C4). The value A;; reflects
the relative importance intensity from 1 (equal) to 9 (extreme),
downscaled to 1 to 5 in the questionnaire for simplicity
(intermediate intensities 2, 4, 6 and 8 are excluded). For
instance, A;o = 5 can be interpreted to mean that soft-
ware vulnerabilities is strongly more important than Internet
reachability. Each criterion weight is calculated by the row’s
normalized geometric mean method. Compared to arithmetic
mean, geometric mean can reduce the effect of extreme
values [34]. The geometrlc mean of the first row is calculated
by /1x5x1x1/3 1.136. Therefore, the normalized
(between 0 and 1) geometric means for each row are the
weights: 0.224, 0.067, 0.197 and 0.511.

Note that the calculation result above is only for one
individual participant. As we need a relatively unbiased group
decision, the final AHP criterion weights are calculated by
aggregating all individual comparison matrices. To this end,
we use the aggregation of individual judgments (AlJ) method
[35]. In the aggregated matrix, the element is also calculated
by geometric mean, which is [[]}_; aijk]l/n, where a;;i, is
the pairwise comparison result between criteria i and j for
group member k, and n is the total number of members. This
achieves the aggregation of individual judgements.

This weight calculation process can be done in multiple
ways such as offline/online AHP utilities and scripts. In our
experiment, we employ an AHP Excel template created by
Goepel [36] to automate the calculation process.

B. Measuring Vulnerabilities

In general, vulnerability scanning is to match deployment
information with a database of reported vulnerabilities such
as the NVD. Examination of state-of-the-art scanners, e.g.,
Nessus [37], openscap-scanner [38] and Nmap [39], shows
that deployment information can be collected in three ways:
1) software name and version from a local package manager;
2) signature/version extracted from program binary files; and
3) scanning network ports for listening services. Nmap relies
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on port scanning so is limited to identifying only vulnera-
bilities exploitable via network. Program binary files may be
significantly redundant as the majority of the files are not in
use (e.g., backup copies or previous versions). Therefore, we
choose to use the CVE Binary Tool [40] to scan for up-to-date
vulnerabilities based on the local package manager.

To calculate the software vulnerability metric value, we con-
sider two aspects: vulnerability quantity and exploit probability
of each vulnerability. The exploit probability can be computed
as proposed by Zhang et al. [41], using the CVSS exploitability
metrics shown in Table I and converting them to a probability.

TABLE 1. EXPLOITABILITY METRICS VALUE FOR CVE-2021-32036
AV AC PR Ul Scope
Network(0.85)  Low(0.77)  Low(0.62) None(0.85) Unchanged

We use CVE-2021-32036 as an example to show the exploit
probability calculation from Table I: P = 2.11 x AV x
AC x PR x UI ~ 0.728, where 2.11 is a constant and the
CVSS vectors are explained in Section II. Thus, the exploit
probability of CVE-2021-32036 is 0.728.

Finally, following the derivation of exploit probability from
CVSS vectors [41], we aggregate the normalized vulnerability
count and the arithmetic mean of exploit probability using

multiplication:
Ty

Nv_max

where P,cqn 1s the arithmetic mean of exploit probability
for all found vulnerabilities on a system; n,, is the number of
found vulnerabilities; Ny _maq is maz(n,) among all systems.
The normalized vulnerability count and mean of exploit prob-
ability are presented in column SV and column EP of Table III
in Section V-A.

P77L€(17L X

(D

C. Measuring Open Ports

Even if a vulnerability exists, it will only be exploitable
to local malware already landed on the system. A remote
attacker will not be able to exploit it until it is exposed through
an open network port on which the vulnerable code listens.
Therefore, we consider open ports to be orthogonal to software
vulnerabilities and a post-deployment attack vector. Note that
firewall rules also determine which ports are exposed and to
which network entities.

We use Nmap [39] to scan all IPv4 and IPv6 port numbers
for both TCP and UDP. The open port metric score is
calculated by the number of open ports over the maximum
number of open ports among all tested systems:

No /No_mam (2)

Although in theory, there are 65,536 ports for TCP and UDP
respectively, the number of open ports on an actual system
is usually a very small portion of the range and the rest are
closed. For the open port metric to be reasonable, we define the
maximum number of ports (/N _mqz) to be the total of unique
open ports among all tested systems. Hence, the calculated

value is relative, to the deployment-specific max. As PC2 has
the maximum number of open ports (46), given that VM1 has
30 open ports, then VM1’s open port score is 30/46 = 0.653.

D. Measuring Misconfigurations

To reflect the cloud emphasis in our proposed approach,
we choose to quantify the misconfiguration of containeriza-
tion/clustering aspect of the system (although there exist other
forms of misconfiguration to evaluate). To this end, we employ
the CIS benchmarks, which are recommended configuration
practices, to evaluate the non-compliance of the target system.
Our experiment uses CIS Docker Benchmarks v1.3.1 and
CIS Kubernetes Benchmarks v1.6.0, listing 116 and 124
security recommendations respectively. The recommendations
are grouped into sections based on components or security
rules, see Table II.

We use two open-source shell scripts [42], [43] to test the
compliance of Docker and Kubernetes configurations respec-
tively. Note that not all recommendations are applicable to
a system, e.g., if Docker Swarm is not used in a configured
Docker, the corresponding tests are skipped. For each tested
recommendation, there are four types of results: 1) Pass,
indicating compliance; 2) Fail, indicating non-compliance;
3) Not applicable, e.g., testing if file permission is set to
read-only but the file does not exist; 4) Human action needed,
e.g., recommending to run the Docker daemon as a non-root
user. We convert the results to pass or fail: if an item is not
applicable, we treat it as pass because an inapplicable item
does not have security impact. On the contrary, if an item
needs human action, we regard it as fail because the worst-
case scenario should be assumed in security (e.g., the user
may not take the required action).

Misconfiguration score calculation. The mis-configuration
score of Docker/Kubernetes is calculated by summing up
all weighted fail rates of individual sections, which can be
represented by: Z?:lFi -W; , where F is fail rate, W is
section weight and i is the index of individual sections. The fail
rate is calculated as the number of failed items divided by the
total number of items. The section weights are derived from
the two benchmark questionnaires via AHP. Table II shows the
test results of VM1’s Docker and Kubernetes configurations.
The first column lists section names (components) and the
second column lists the number of failed items over the total.

V. SECURITY METRICS AGGREGATION RESULTS

In this section, we briefly report our experiment’s results.

A. Measurement Results

It takes approximately 3-5 minutes to scan for vulnerabili-
ties on a system with around 1,800 packages and 1-2 minutes
to perform the Docker/Kubernetes tests (tool installation time
not included). Other tasks are orders of magnitude faster. Note
that timing telemetry data collection is only to have an idea of
how long measurement collection can take in our experiment
setup and may vary with metrics selected, tools used, software
packages installed, etc.
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TABLE II1. CIS BENCHMARK RESULTS (MISCONFIGURATION) OF VM 1

Docker Sections Failed / Total

TABLE IV. DERIVED METRIC WEIGHTS AND MEASURED VALUES

Sx  Weights VM1 VM2 VM3 VM4 VMS VMé PCl1 PC2

S1 11.8% .75 - 75 - 7 - 7 -
S1. Host Configuration 15720 S2  17.5% 5 - 5 - 5 - 5 R
S2. Docker Daemon Configuration 9/18 5 S3  16.0% 0 - 0 - 0 - 0 -
S3. Docker Daemon Configuration Files 0/24 <S4 16.0% 73 - 82 - 64 - 73 R
S4. Container Images and Build File Configuration 8711 5 S5  14.8% 35 - 42 - 0 - 0 R
S5. Container Runtime Configuration 11731 S6  13.0% 0 - 0 - 0 - 0 -
S6. Docker Security Operations 0/2 S7  10.9% 0 - 0 - 0 - 0 R
S7. Docker Swarm Configuration 0/10 @ -—- - - - - — oo m - —— —— - — = — — — — = = = =
Sub-score .34 0 .37 0 27 0 29 0
Kubernetes Sections Failed / Total
% S1 21.8% .28 - - Sl (0] - - -
S1. Control Plane Components 18 / 65 § S2  141% .14 - - 1 (0] - - -
S2. eted 177 5 S3  138% .33 - - .33 (0] - - -
S3. Control Plane Configuration 1/3 <S4  237% 57 - - (0] 48 - - -
S4. Worker Nodes 13/23 M S5 266% 0 - - 0 - - -
55. Policies 0726 Sub-score 26 0 0 26 11 0 0 0
SV 343% .14 .33 06 59 59 20 .14 .19
TABLE IIL MEASUREMENT DATA FOR THE MAIN CRITERIA _5 IR 22.4% 1 1 1 1 1 0 1 1
= OP 152% .65 39 37 35 24 30 24 1
Sv? EP?2 IR® OP* MC sub-metrics® MC 281% .3 0 .19 a3 19 0 A5 0
VM1 141 (0.199) 0.692 1 30 (0.652)  Kubernetes + Docker Overall Score 46 40 35 S1 S22 11 35 44
VM2 358 (0.506) 0.658 1 18 (0.391) - -
VM3 68 (0.096) 0.587 1 17 (0.370)  Docker All results are rounded to 2 decimal places
VM4 708 (1) 0.586 1 16 (0.348)  Kubernetes
VM5 708 (1) 0.586 1 11 (0.239) Kubernetes + Docker C. Aggregation Results
VM6 236 (0.333) 0.611 0 14 (0.304) - . o .
PC1 144 (0.203) 0.700 1 11 (0.239) Docker The calculated metric values of individual systems are in
PC2 266 (0.376) 0.514 1 46 (1) - columns 3 to 10 of Table IV. The sub-score shows weighted

ISoftware Vulnerabilities 2Exploit Probability ®Internet Reachability
40pen Ports ®Cloud/container misconfiguration (details in Table V)

The measurement data is shown in Table III. Column SV
shows the number of vulnerabilities in a system and the
normalized value (divided by the max); Column EP shows
the mean of exploit probability of all vulnerabilities in a
system; Column IR shows Internet reachability (Boolean) and
OP shows the number of open ports in a system and its
normalized value. Column MC shows whether the system has
Docker/Kubernetes configured. Per Formula (1), the vulnera-
bility score of VM1 is 0.199x0.692 ~ 0.138. Per Formula (2),
its open port score is 30/46 ~ 0.652.

B. Survey Results

We received 17 responses for the main questionnaire, 13 for
Docker and 12 for Kubernetes. Among these responses, there
are 5 from industry and 12 from academia (5 professors and
7 graduate students). As a known issue of pair-wise compar-
isons, the response can be potentially inconsistent between
pairs [36]. We added a consistency indicator to highlight
the top inconsistent pairs and displayed a consistency ratio
(CR). A higher CR means a higher degree of conflict in
the questionnaire. As Docker involved 7 criteria (the more
pairs the more difficult to ensure consistency), we chose to
accept response with a CR below 0.2 [44]. For the other two
questionnaires, we use a 0.1 threshold as recommended by
Saaty [13]. Eventually, we have 15 main, 12 Docker and 10
Kubernetes questionnaire results. The calculated weights of
individual security metrics and sub-metrics are shown in the
second column of Table IV (Sx = Sections).

sum of Sx scores for Docker and Kubernetes respectively.
VM1 has both Kubernetes master and worker nodes. VM4
(master node) and VM5 (worker node) form a cluster. VM3
and PC1 have only Docker. To achieve a fair comparison
of all 8 systems, we apply the following rule: both Docker
and Kubernetes will be assumed present, where absence is
naturally assigned a 0 (no risk due to inapplicability). Then the
misconfiguration (MC) score of individual systems is the mean
value: (Docker sub-score + Kubernetes sub-score)/2. There-
fore, the sub-score of a system without Docker/Kubernetes will
be 0, e.g., the Docker sub-score of VM2, VM4, VM6 and PC2.
The final overall scores are presented in the last row. It can
be seen that VMY is the most insecure (narrowly followed by
VM4) due to its high SV scores (heavily weighted), and VM6
is the most secure one unsurprisingly because it has no internet
connection and the Docker/Kubernetes is not configured on it.

VI. RELATED WORK

Amid the immense body of reserach of security met-
rics, works that address metric aggregation are not common.
HARMs [45] uses the Attack Graph (AG, with topology/path
information) to represent network-level attacks and the Attack
Tree (AT, which is the attacker goal’s breakdown) to represent
host-level attacks. For such aggregation proposals, the miss-
ing aspect—which we argued about in Section [—is human
decisions. Early uses of AHP in security metrics (e.g., Moeti
and Kalema [46], Turskis et al. [47], Sun et al. [4]) either
purely rely on human judgements (not using well-established
computed metrics) or do not address metric aggregation. There
have also been attempts to automate aggregation using ma-
chine learning, e.g., Beck and Rass [12] propose to use neural
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networks to resemble human expert’s decision making, but no
details of how this could be achieved have been disclosed in
particular when “experts” can possess arbitrary opinions.

VII. CONCLUDING REMARKS

We presented an approach to aggregate selected security
metrics into a single numerical score to represent the over-
all security level in cloud/virtualized environments. Through
conducting the AHP survey and measurement collection with
a telecom/cloud-oriented environment we set up, we showed
the feasibility of combining human opinions and machine
computation to minimize subjectivity. It should be noted that
the comparison is possible between systems against the same
selected security metrics, or across different time frames of
the same system following changes.

Metric selection and weight derivation via AHP are a one-
time process, which remains reusable across repeated runs and
environments of similar security concerns. As future work, we
may also address hierarchical aggregation, e.g., between a VM
and its host, where the challenge could be recursive derivation.
We hope the current work can shed light on future research
on security metric aggregation.
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