
COMP 2804 — Assignment 2 (Solutions)

Question 1: On the first page of your assignment, write your name, student number, and
course number COMP 2804.

Question 2: A small computer network consists of 6 computers. Each computer is directly
connected to 0 or more computers. Show that there are at least two computers in the net-
work that are directly connected to the same number of other computers. Is the statement
true if we have 10 computers instead of 6?

Solution: We show that the statement is true by using Pigeonhole principle. Since each
computer can be directly connected to 0 or more computers, there are six choices of con-
nections for each computer, i.e., 0, 1, 2, 3, 4 or 5 connections. But if one computer is
connected to zero computer, then no computer can be connected to five others. Similarly if
one computer is connected to five other computers, then no computer can be connected to
zero others. This means that 0 and 5 can not be simultaneously the number of connections
in a network of 6 computer. So, there are actually 5 choices and 6 computers. According to
Pigeonhole principle at least two computers must have the same number of direct connec-
tions.

The statement is still true if we have 10 computers instead of 6; now we have 10 computers
and 9 choices. Same reasoning holds for any network of n computers.

Question 3: Show that an = n2 + n+ 1 satisfies{
a0 = 1
ak = ak−1 + 2k for k > 0.

(1)

Solution: We prove by induction on n.

• Base case: If n = 0, then a0 = 1 and n2 + n + 1 = 0 + 0 + 1 = 1. It proves the base
case holds.

• Induction hypothesis: Let n ≥ 1, and assume that an−1 = (n− 1)2 + (n− 1) + 1 is true
for n− 1.

• Induction step: We have to show that an = n2 + n + 1 satisfies the given recurrence
relation. Following the recurrence and applying the induction hypothesis, we get
an = an−1 + 2n

= (n− 1)2 + (n− 1) + 1 + 2n

= n2 − 2n+ 1 + n− 1 + 1 + 2n

= n2 + n+ 1
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Question 4: Consider the following recursive function defined for positive values of n

M(n) =

{
n− 10 if n > 100
M(M(n+ 11)) if n ≤ 100

(2)

Evaluate M(120), M(111), M(97), M(94). Do you observe something interesting for the
value of M(n) for n ≤ 100?

Solution: Using the given recurrence function we evaluate the following terms:
M(120) = 120− 10 = 110

M(111) = 111− 10 = 101

M(97) = M(M(97 + 11)) = M(108) = M(108− 10) = M(98)
= M(M(98 + 11)) = M(109) = M(109− 10) = M(99)
= M(M(99 + 11)) = M(110) = M(110− 10) = M(100)
= M(M(100 + 11)) = M(111) = M(111− 10) = M(101) = 101− 10 = 91

M(94) = M(M(94 + 11)) = M(105) = M(105− 10) = M(95)
= M(M(95 + 11)) = M(106) = M(106− 10) = M(96)
= M(M(96 + 11)) = M(107) = M(107− 10) = M(97)
= M(M(97 + 11)) = M(108) = M(108− 10) = M(98)
= M(M(98 + 11)) = M(109) = M(109− 10) = M(99)
= M(M(99 + 11)) = M(110) = M(110− 10) = M(100)
= M(M(100 + 11)) = M(111) = M(111− 10) = M(101) = 101− 10 = 91

For all n ≤ 100, M(n) = 91.

Question 5: Let dn denote the number of ways that n-letters can be put into n-envelopes
so that no letter goes into the correct envelope. Show that d1 = 0, d2 = 1, d3 = 2, and in
general for n ≥ 3,

dn = (n− 1)(dn−1 + dn−2).

Solution:
d1=# of ways 1 letter can be put into 1 envelope so that it goes into the wrong envelope=0.

d2= # of ways 2 letters can be put into 2 envelopes so that no letter goes into the correct
envelope = (# of ways without restriction)-(# of ways all are in correct envelopes)-(# of
ways 1 letter is in the correct envelope)= 2!− 1− 0 = 1.

d3= # of ways 3 letters can be put into 3 envelopes so that no letter goes into the correct
envelope = (# of ways without restriction)-(# of ways all are in correct envelopes)-(# of
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ways 1 letter is in the correct envelope)-(# of ways 2 letters is in the correct envelope)=

3!− 1−
(
3
1

)
× 1− 0 = 2.

For n ≥ 3, suppose, (n−1) letters l1, l2, · · · , ln−1 have been placed into (n−1) wrong envelopes
e1, e2, · · · , en−1. Now we want to put ln. There are (n− 1) possible wrong envelopes to put
ln into. Suppose it is put into the i’th envelope. There are two cases to consider:
Case 1: suppose li is put into en, then there are dn−2 ways to put all other letters into wrong
envelopes.
Case 2: suppose li is not put into en, then there are dn−1 ways to put all other letters such
that all these are in wrong envelopes.
So, when ln is put into the ei there are (dn−1 + dn−2) ways to put all letters into wrong
envelopes. But, there are total (n− 1) wrong envelopes for ln. Finally we can see that,

dn = (n− 1)(dn−1 + dn−2), n ≥ 3

Question 6: Using induction for n ≥ 1, show that dn in the previous question can be
expressed as

dn = n!
( 1

0!
− 1

1!
+

1

2!
− 1

3!
+

1

4!
+ · · ·+ (−1)n

1

n!

)
.

Solution: The recurrence relation of the previous question can be rewritten as,

dn − ndn−1 = (−1)[(dn−1 − (n− 1)dn−2)]

Similarly,
dn−1 − (n− 1)dn−2 = (−1)[(dn−2 − (n− 2)dn−3)]

and so on till
d3 − 3d2 = (−1)[(d2 − 2d1)] = (−1)(1− 2× 0) = (−1)

And we know that d2 = 1 and d1 = 0. Therefore, dn can be redefined as

dn − ndn−1 = (−1)n, n ≥ 1

Now,
dn
n!
− dn−1

(n− 1)!
=
(
(−1)n

1

n!

)
,

Similarly,
dn−1

(n− 1)!
− dn−2

(n− 2)!
=
(
(−1)n−1

1

(n− 1)!

)
,
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and
d2
2!
− d1

1!
=
(
(−1)2

1

2!

)
,

d1
1!
− d0

0!
=
(
(−1)1

1

1!

)
Adding all together, we obtain

dn = n!
( 1

0!
− 1

1!
+

1

2!
− 1

3!
+

1

4!
+ · · ·+ (−1)n

1

n!

)
.

Question 7: Exercise 4.36 from the Course Text Book by Michiel Smid.

Solution: We describe a recursive algorithm MaxElem(S) that returns all maximal ele-
ments of S, in sorted order from left to right. Since the algorithm is recursive, we need a
base case. We take the base case to be when n = 1. In this case, the input consists of one
single point, which is obviously maximal. So we just return this single point.

Let n ≥ 2. We split S in the middle and run the algorithm recursively on each part:

• Let S1 be the set of the first n/2 points in S. Run algorithm MaxElem(S1) and let
M1 be the output.

• S2 is the set of the last n/2 points in S. Run algorithm MaxElem(S2) and let M2
be the output.

S1 S2

The merge step: observe the following,

• M2 contains all maximal elements in S2. Since M2 is to the right of S1, each point
in M2 is maximal in the entire set S.

• M1 contains all maximal elements in S1. However, points in M1 may not be maximal
in the entire set S. Let p be an arbitrary element in M1, and let q be the leftmost
element in M2. Then p is maximal in S if and only if py > qy.

From this, it follows that we can do the merge step in the following way:
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S1 S2

p

q

• Take the leftmost point q in M2.

• Walk along M1 and add all points whose y-coordinate is larger than that of q to a list
M .

• Add all points in M2 to the list M .

• Return the list M . This list contains all maximal elements in the entire set S.

The running time T (n) is the sum of the following:

• The time to split S into two sets; this can be done in O(n) time by scanning S.

• The time for the recursive call MaxElem(S1); this takes T (n/2) time.

• The time for the recursive call MaxElem(S2); this takes T (n/2) time.

• The time for the merge step; this can be done in O(n) time.

Thus, we arrive at the recurrence T (n) = O(n) + 2T (n/2) = O(n log n), which is the same
as the MergeSort recurrence.

Question 8: Give a recursive definition of the set of integers that are multiples of 3. Show
that your definition indeed generates all the elements of the set {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.

Solution: We give the following recursive definition of the set S of integers that are multiples
of 3:

1. 3 ∈ S.

2. If m,n ∈ S, then m+ n ∈ S.

3. If m,n ∈ S, then m− n ∈ S.
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Now we show that the definition above indeed generates all the elements of the set {. . . ,−6,−3, 0, 3, 6, . . .}.

Let S ′ = {3n : n ∈ N}, which clearly is a set of integers that are multiples of 3. To prove
that our definition of S also defines the set of integers that are multiples of 3, we need to
prove that S = S ′.

• We first prove by induction that S ⊆ S ′.

The base element in S is equal to 3. Since 3 = 3 · 1, this base element is in the set S ′.
Consider 2 elements m and n in S and assume that they are also in the set T ′. Thus we
assume that m = 3 · a and n = 3 · b for some integers a and b. Following our definition we
get two more integers m+ n and m− n in S, and we have m+ n = 3a+ 3b = 3(a+ b) and
m − n = 3a − 3b = 3(a − b), both of these are multiples of 3. Therefore, they are in S ′ as
well. Hence, S ⊆ S ′.

• Next we prove by induction that S ′ ⊆ S.

The base case is when n = 1, 3 · 1 ∈ S ′. By definition of S, the number 3 is an element of S.
Induction step: Let n ≥ 1 and assume that 3n is an element of S. Then, by the definition of
S, both 3(n+ 1) = 3n+ 3 and 3(n− 1) = 3n− 3 are also elements of S. Therefore, S ′ ⊆ S.

Question 9: Show that

an =
1− rn+1

1− r
, r 6= 1

satisfies the recurrence relation{
a0 = 1
ak = ak−1 + rk for k > 0.

(3)

Solution:We prove by induction on n.

• Base case: If n = 0, then a0 = 1 and 1−r0+1

1−r = 1, proving the base case holds.

• Induction hypothesis: Let n ≥ 1, and assume that an−1 = 1−rn
1−r , r 6= 1 is true for n− 1.

• Induction step: We have to show that an = 1−rn+1

1−r , r 6= 1 satisfies the given recurrence
relation.

Again following the recurrence and applying the induction hypothesis, we get
an = an−1 + rn

= 1−rn
1−r + rn

= 1−rn+rn−rn+1

1−r
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= 1−rn+1

1−r

Question 10: A binary tree is
- either one single node
- or a node whose left subtree is a binary tee and whose right subtree is a binary tree.
Show that any binary tree with n leaves has exactly 2n− 1 nodes.

Solution: The proof is by induction on the number of leaves n in the binary tree.

Base case: when n = 1. In this case, the tree consists of a single node (a leaf). Thus, the
tree has exactly 1 node, which is equal to 2n− 1.

Induction hypothesis: Let n ≥ 2 and assume the claim is true for all binary trees with less
than n leaves.

Now, let T be a binary tree with n leaves. Since n ≥ 2, T has a left subtree and a right
subtree. Let m denote the number of leaves in the left subtree. Then the right subtree has
n−m leaves.

Since m < n, the induction hypothesis implies that the left subtree has 2m− 1 nodes. Since
n−m < n, the induction hypothesis implies that the right subtree has 2(n−m)− 1 nodes.
The number of nodes in T is equal to the sum of the root, the number of nodes in the left
subtree, and the number of nodes in the right subtree. Therefore, the number of nodes in T
is equal to 1 + (2m− 1) + (2(n−m)− 1) = 2n− 1.

Question 11: (Bonus Problem:) Assume you have a set A = {a1, a2, . . . , an+1} of n + 1
positive numbers such that

∑n+1
i=1 ai = 2n. Prove or disprove that for any integer k, where

1 ≤ k ≤ 2n, we can always find a subset B ⊆ A such that the sum of elements of B equals
k.

Solution: We prove this statement is true by induction on k. Note that the elements of A
are not distinct. We assume that these elements are sorted in non-decreasing order.

Base case: When k = 1, A = {1, 1} and B = {1}. Similarly, When k = 2, A = {1, 1} and
B = {1, 1}.

Induction hypothesis: We assume that for all values l, where 1 ≤ l < k ≤ 2n we can always
find a subset B ⊆ A such that the sum of elements of B equals l.

Now, we want to show that this is also true for any k ≤ 2n.

Let (a1 + a2 + · · ·+ ai) < k, where i is minimum and
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(a1 + a2 + · · ·+ ai + ai+1) > k, for some 1 ≤ i ≤ n.

Note that if a1 + a2 + · · ·+ ai + ai+1 = k, then we have nothing to prove.

We claim that ai+1 < k. We will prove this later.

Thus, we can write a1 +a2 + · · ·+ai +ai+1 = k+β, where β < ai+1 < k. Since β < k, by our
induction hypothesis there exists a subset S of numbers from {a1+a2+· · ·+ai+ai+1} that add
up to β (set β = l). Then the sum of the remaining numbers from {a1+a2+· · ·+ai+ai+1}\S
equals to k and we are done.

Proof of claim that ai+1 < k.
Proof: Observe that

i < k

or
k ≥ i+ 1 (4)

Consider once again the numbers:

a1 a2 a3 · · · ai ai+1 · · · an an+1

‖ ‖ ‖ · · · ‖ ‖ · · · ‖ ‖
≥ 1 ≥ 1 ≥ 1 · · · ≥ 1 ≥ k + 1 · · · ≥ k + 1 ≥ k + 1

Let us take the least possible values for these numbers, and we will show that their sum
exceeds 2n.
That is, consider the sum
(a1 + a2 + · · ·+ ai) + (ai+1 + · · ·+ an + an+1)
≥ (1 + 1 + 1 + · · ·+ 1) + (k + 1 + k + 1 + · · ·+ k + 1)
= i+ (n+ 1− i)(k + 1)

Now, we claim that i+ (n+ 1− i)(k + 1) > 2n.
Proof. Since k ≥ i+ 1 by equation (4),
if

i+ (n+ 1− i)(i+ 1 + 1) ≥ 2n

or
i+ (n+ 1− i)(i+ 2) ≥ 2n

or
i+ ni+ i− i2 + 2n+ 2− 2i ≥ 2n

or
ni+ 2− i2 ≥ 0

Since n ≥ i, the above equation holds.
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