0.1 Section Title

Let $n \geq 1$ and $k \geq 0$ be integers. Consider n people P_1, P_2, \ldots, P_n who are outside of a room. Inside this room, there are n + k chairs $C_1, C_2, \ldots, C_{n+k}$. These n people enter the room one by one in the order of their indices and, for each i with $1 \leq i \leq n$, person P_i is supposed to sit down in chair C_i . However, the first person P_1 is drunk¹ and, instead of taking chair C_1 , chooses one of the n+k chairs uniformly at random and sits down in the chosen chair. (Chair C_1 may be the chosen chair.) From then on, when person P_i enters the room, P_i checks if chair C_i is occupied. If this is not the case, P_i sits down in chair C_i . Otherwise, P_i chooses one of the unoccupied chairs uniformly at random and sits down in the chosen chair.

We want to determine the probability that, at the end, the last person P_n sits in chair C_n . Before we analyze this probability, we present the algorithm in pseudocode:

Algorithm TAKEASEAT(n, k):

// the input consists of n persons P_1, P_2, \ldots, P_n and // n + k chairs $C_1, C_2, \ldots, C_{n+k}$ // all random choices made are mutually independent j = uniformly random element of $\{1, 2, \ldots, n+k\}$; person P_1 sits down in chair C_j ; for i = 2 to ndo if chair C_i is unoccupied then person P_i sits down in chair C_i else j = index of a uniformly random unoccupied chair; person P_i sits down in chair C_j endif endif

We define the event

 $A_{n,k}$ = "after algorithm TAKEASEAT(n,k) has terminated, person P_n sits in chair C_n ".

The probability that was mentioned above is given by

$$p_{n,k} = \Pr\left(A_{n,k}\right).$$

¹maybe P_1 is the President of the Carleton Computer Science Society?

We will present two different ways to determine the probability $p_{n,k}$.

0.1.1 A First Solution

Let us start with the case when n = 2. In this case, event $A_{2,k}$ happens if and only if person P_1 chooses one of the chairs $C_1, C_3, C_4, \ldots, C_{2+k}$. Since P_1 chooses one of the 2 + k chairs uniformly at random, it follows that

$$p_{2,k} = \Pr(A_{2,k}) = \frac{k+1}{k+2}$$

Assume from now on that $n \geq 3$. We are going to derive a recurrence relation that expresses $p_{n,k}$ in terms of $p_{2,k}, p_{3,k}, \ldots, p_{n-1,k}$.

Consider the index j of the chair that P_1 chooses.

- If $j \in \{1, n+1, n+2, \ldots, n+k\}$, then for each $i = 2, 3, \ldots, n$, chair C_i is unoccupied at the beginning of the *i*-th iteration and, thus, person P_i sits down in chair C_i . In particular, event $A_{n,k}$ occurs.
- If j = n, then chair C_n is occupied at the beginning of the *n*-th iteration and, thus, event $A_{n,k}$ does not occur.
- Assume $j \in \{2, 3, \ldots, n-1\}$. Then for each $i = 2, 3, \ldots, j-1$, chair C_i is unoccupied at the beginning of the *i*-th iteration and, thus, person P_i sits down in chair C_i . At the beginning of the *j*-th iteration, the chairs $C_1, C_{j+1}, C_{j+2}, \ldots, C_{n+k}$ are unoccupied and person P_j chooses one of these chairs uniformly at random. Thus, the iterations $j, j + 1, \ldots, n$ can be viewed as running algorithm TAKEASEAT(n j + 1, k), where the n j + 1 persons are $P_j, P_{j+1}, \ldots, P_n$ and the n j + 1 + k chairs are $C_1, C_{j+1}, C_{j+2}, \ldots, C_{n+k}$. In this case, event $A_{n,k}$ occurs if and only if, after algorithm TAKEASEAT(n j + 1, k) has terminated, person P_n sits in chair C_n , i.e., event $A_{n-j+1,k}$ occurs.

Based on this, we define the events

$$B_{n,k,j}$$
 = "during algorithm TAKEASEAT (n,k) , person P_1 chooses chair C_i "

for j = 1, 2, ..., n + k. Since exactly one of these events is guaranteed to occur, we can apply the Law of Total Probability (Theorem ??) and obtain

$$\Pr\left(A_{n,k}\right) = \sum_{j=1}^{n+k} \Pr\left(A_{n,k} \mid B_{n,k,j}\right) \cdot \Pr\left(B_{n,k,j}\right).$$

For any j with $1 \le j \le n+k$, we have $\Pr(B_{n,k,j}) = 1/(n+k)$. We have seen above that

$$\Pr(A_{n,k} \mid B_{n,k,j}) = \begin{cases} 1 & \text{if } j \in \{1, n+1, n+2, \dots, n+k\}, \\ 0 & \text{if } j = n, \\ \Pr(A_{n-j+1,k}) & \text{if } j \in \{2, 3, \dots, n-1\}. \end{cases}$$

We conclude that

$$p_{n,k} = \Pr(A_{n,k})$$

= $\frac{k+1}{n+k} + \sum_{j=2}^{n-1} \Pr(A_{n-j+1,k}) \cdot \Pr(B_{n,k,j})$
= $\frac{k+1}{n+k} + \sum_{j=2}^{n-1} p_{n-j+1,k} \cdot \frac{1}{n+k},$

i,e,. we have derived the recurrence relation for $p_{n,k}$. If we write out the terms in this summation, then we get, for $n \geq 3$,

$$p_{n,k} = \frac{k+1}{n+k} + \frac{1}{n+k} \left(p_{2,k} + p_{3,k} + \dots + p_{n-1,k} \right).$$

As we have seen above, the base case is given by

$$p_{2,k} = \frac{k+1}{k+2}.$$

It remains to solve the recurrence. If you use the recurrence to determine $p_{n,k}$ for some small values of n, then you will notice that they are all equal to (k+1)/(k+2). This suggests that

$$p_{n,k} = \frac{k+1}{k+2}$$

for all integers $n \ge 2$. Using induction on n, it can easily be proved that this is indeed the case. Note that $p_{n,k}$ does not depend on n. In particular, if k = 0, then the probability that person P_n sits in chair C_n is equal to 1/2.

0.1.2 A Second Solution

Our second solution is obtained by modifying algorithm TAKEASEAT(, n, k): Person P_1 is still drunk and, instead of taking chair C_1 , chooses one of the n + k chairs uniformly at random and sits down in the chosen chair. From then on, for i = 2, 3, ..., n - 1, when person P_i enters the room, P_i checks if chair C_i is occupied. If this is not the case, P_i sits down in chair C_i . Otherwise, P_i kicks P_1 out of chair C_i , P_i sits down in chair C_i , after which P_1 chooses one of the unoccupied chairs uniformly at random and sits down in the chosen chair. In pseudocode, this new algorithm is as follows:

Algorithm TAKEASEAT'(n, k): // the input consists of n persons P_1, P_2, \ldots, P_n and // n + k chairs $C_1, C_2, \ldots, C_{n+k}$ // all random choices made are mutually independent j = uniformly random element of $\{1, 2, \ldots, n + k\}$; person P_1 sits down in chair C_j ; for i = 2 to n - 1do // P_2 sits in C_2, P_3 sits in C_3, \ldots, P_{i-1} sits in C_{i-1} if chair C_i is occupied then // P_1 is in C_i j = uniformly random element of $\{1, i + 1, i + 2, \ldots, n + k\}$; person P_1 sits down in chair C_j endif; person P_i sits down in chair C_i endifor

After algorithm TAKEASEAT'(n, k) has terminated, each person P_i (for $i = 2, 3, \ldots, n-1$) sits in chair C_i , whereas person P_1 sits in one of the chairs $C_1, C_n, C_{n+1}, \ldots, C_{n+k}$. Event $A_{n,k}$ occurs if and only if, again after algorithm TAKEASEAT'(n, k) has terminated, person P_1 sits in one of the chairs $C_1, C_{n+1}, C_{n+2}, \ldots, C_{n+k}$. Intuitively, at the end of the algorithm, P_1 sits in a uniformly random chair from the k+2 chairs $C_1, C_n, C_{n+1}, \ldots, C_{n+k}$. If this is indeed the case, then $p_{n,k} = \Pr(A_{n,k}) = (k+1)/(k+2)$. Below, we will formalize this.

For each $j = 1, 2, \ldots, n-1$, define the event

$$B_{n,k,j}$$
 = "during the *j*-th iteration, person P_1 chooses one of the chairs $C_1, C_n, C_{n+1}, \dots, C_{n+k}$."

(We consider the first two lines of the algorithm to be the first iteration.)

Since exactly one of these events is guaranteed to occur, the Law of Total Probability (Theorem ??) implies that

$$\Pr\left(A_{n,k}\right) = \sum_{j=1}^{n-1} \Pr\left(A_{n,k} \mid B_{n,k,j}\right) \cdot \Pr\left(B_{n,k,j}\right).$$

Define the event

 $B_{n,k}$ = "a uniformly random element from the set $\{1, n, n+1, \dots, n+k\}$ is not equal to n."

Then for each j with $1 \leq j \leq n-1$, we have

$$\Pr(A_{n,k} \mid B_{n,k,j}) = \Pr(B_{n,k}) = \frac{k+1}{k+2}.$$

It follows that

$$p_{n,k} = \Pr(A_{n,k})$$

$$= \sum_{j=1}^{n-1} \frac{k+1}{k+2} \cdot \Pr(B_{n,k,j})$$

$$= \frac{k+1}{k+2} \sum_{j=1}^{n-1} \Pr(B_{n,k,j})$$

$$= \frac{k+1}{k+2},$$

because the latter summation is equal to 1.