Majority element using $O(1)$ memory

Anil Maheshwari

School of Computer Science
Carleton University
Canada
Majority Element
Finding the Majority Element

Input: A stream consisting of n elements and it is given that it has a majority element, i.e. it occurs at least $1 + \lceil \frac{n}{2} \rceil$ times

Output: The majority element.

An Example: $n = 19$

Input Stream = [3 2 4 7 2 2 3 2 2 1 4 2 2 2 1 1 2 3 2]
Finding the Majority Element

Input: A stream consisting of \(n \) elements and it is given that it has a majority element.
Output: The majority element.

Solution 1: Store the stream in an array \(A \).
Sort and pick the middle element (if elements can be ordered).

Input: 3 2 4 7 2 2 3 2 2 1 4 2 2 2 1 1 2 3 2

Sorted: 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 4 4 7
Finding the Majority Element

Input: A stream consisting of \(n \) elements and it is given that it has a majority element.

Output: The majority element.

Solution 2: Count frequency of each element.

Input: 3 2 4 7 2 2 3 2 2 1 4 2 2 2 1 1 2 3 2

<table>
<thead>
<tr>
<th>Element</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Finding the Majority Element

Input: A stream consisting of \(n \) elements and it is given that it has a majority element.

Output: The majority element.

Memory required in Solutions 1 & 2 \(\geq \) Number of distinct elements in the stream.

What if we can only use \(O(1) \) **space?**
Majority Algorithm

Input: Array A of size n consisting a majority element

Output: The majority element

1. $c \leftarrow 0$
2. for $i = 1$ to n do
 3. if $c = 0$ then
 4. $\text{current} \leftarrow A[i]; \ c \leftarrow c + 1$
 5. end
 6. else
 7. if $A[i] = \text{current}$ then
 8. $c \leftarrow c + 1$
 9. end
 10. else
 11. $c \leftarrow c - 1$
 12. end
 13. end
14. end
15. return current
for $i = 1$ to n do
 if $c = 0$ then
 current $\leftarrow A[i]; c \leftarrow c + 1$
 end
 else
 if $A[i] = current$ then
 $c \leftarrow c + 1$
 end
 else
 $c \leftarrow c - 1$
 end
 end
end
return current
Analysis of Majority Algorithm

Observations

1. Algorithm maintains only two variables: c and current.
2. Correctness: Each non-majority element can ‘kill’ at most one majority element.

Claim

By performing a single pass, using only $O(1)$ additional space, we can report the majority element of A (if it exists).
Generalization
2nd Problem

Generalization

For a data stream \(A \), using very little space, we are interested to report

1. All the elements that occur at least \(\frac{n}{4} \) times.
2. All the elements that occur at least \(\frac{n}{k} \) times for some constant \(k \), i.e. report all \textit{heavy-hitters}.
Input: A stream consisting of \(n \) elements and an integer constant \(k < n \).
Output: All the elements that occur at least \(n/k \) times.

1. Initialize \(k \) bins, each with null element and a counter with 0.
2. **For** each element \(x \) in the stream **do**
 - if \(x \in \text{Bin } b \) then increment bin \(b \)'s counter
 - elseif find a bin whose counter is 0 and
 - Assign \(x \) to this bin
 - Assign 1 to its counter
 - else decrement the counter of every bin.
3. Output elements in the bins.
Analysis of Misra and Gries Algorithm

Running Time:
Initializing \(k \) bins: \(O(k) \) time
Processing each element requires looking at \(O(k) \) bins.
Total Run Time = \(O(nk) \)

Space: \(O(k) \)
Correctness: What can be the minimum value of the counter of a heavy hitter?

Claim

Let \(f_x^* \) = Frequency of \(x \) in the stream. Each heavy hitter \(x \) is in one of the bins with counter value \(\geq f_x^* - n/k \).

Proof.

Homework!