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Frequency Moments



Frequency Moments

Definition
Let A = (a1, a2, . . . , an) be a stream, where elements are from universe
U = {1, . . . , u}. Let mi = # of elements in A that are equal to i. The k-th

frequency moment Fk =
u∑
i=1

mk
i , where 00 = 0.
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Example: Fk =
u∑

i=1

mk
i

A = (3, 2, 4, 7, 2, 2, 3, 2, 2, 1, 4, 2, 2, 2, 1, 1, 2, 3, 2) and m1 = m3 = 3, m2 = 10,
m4 = 2, m7 = 1, m5 = m6 = 0

F0 =
7∑
i=1

m0
i = 30 + 100 + 30 + 20 + 00 + 00 + 10 = 5

(# of Distinct Elements in A)

F1 =
7∑
i=1

m1
i = 31 + 101 + 31 + 21 + 01 + 01 + 11 = 19

(# of Elements in A)

F2 =
7∑
i=1

m2
i = 32 + 102 + 32 + 22 + 02 + 02 + 12 = 123

(Surprise Number)
. . .
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Streaming Problem

Find frequency moments in a stream
Input: A stream A consisting of n elements from universe U = {1, . . . , u}.
Output: Estimate Frequency Moments Fk ’s for different values of k.

Our Task: Estimate F0 and F2 using sublinear space

Reference: The space complexity of estimating frequency moments by Noga
Alon, Yossi Matias, and Mario Szegedy, Journal of Computer Systems and
Science, 1999.

5



Estimating F0



Estimating F0

Computation of F0

Input: Stream A = (a1, a2, . . . , an), where each ai ∈ U = {1, . . . , u}.
Output: An estimate F̂0 of number of distinct elements F0 in A such that
Pr
(

1
c
≤ F̂0

F0
≤ c
)
≥ 1− 2

c
for some constant c using sublinear space.
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Algorithm



Algorithm for Estimating F0

Input: Stream A and a hash function h : U → U

Output: Estimate F̂0

Step 1: Initialize R := 0

Step 2: For each elements ai ∈ A do:

1. Compute binary representation of h(ai)

2. Let r be the location of the rightmost 1 in the binary
representation

3. if r > R, R := r

Step 3: Return F̂0 = 2R

Space Requirements = O(log u) bits
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Correctness



Observation 1

Let d to be smallest integer such that 2d ≥ u (d-bits are sufficient to represent
numbers in U )

Observation 1

Pr(rightmost 1 in h(ai) is at location ≥ r + 1) = 1
2r

Proof: For that to happen the last r bits in h(ai) must be 0. Since h is a hash
function from universal family of hash functions, this happens with probability
( 1
2
)r.

2
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Observations 2

Observation 2
For ai 6= aj , Pr(rightmost 1 in h(ai) ≥ r + 1 and rightmost 1 in
h(aj) ≥ r + 1) = 1

22r

Proof: h(ai) and h(aj) are independent as ai 6= aj .

Pr(rightmost 1 in h(ai) ≥ r + 1 and rightmost 1 in
h(aj) ≥ r + 1) = Pr(rightmost 1 in h(ai) ≥ r + 1)× Pr(rightmost 1 in
h(aj) ≥ r + 1) = 1

2r
× 1

2r
= 1

22r

2
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Observations 3

Fix r ∈ {1, . . . , d}. ∀x ∈ A, define indicator r.v:

Irx =

1, if the rightmost 1 is at location ≥ r + 1 in h(x)

0, otherwise

Let Zr =
∑
Irx (sum is over distinct elements of A)

Observation 3
The following holds:

1. E[Irx] = 1
2r

2. V ar[Irx] = 1
2r

(
1− 1

2r

)
3. E[Zr] = F0

2r

4. V ar[Zr] ≤ E[Zr]
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Observation 3.1

Observation 3.1

E[Irx] = 1
2r

Proof: E[Irx] = 1× Pr(Irx = 1) + 0× Pr(Irx = 0) = 1
2r

Note that Pr(Irx = 1) corresponds to
Pr(rightmost 1 in h(x) is at location ≥ r + 1) = 1

2r
by Observation 1.

2
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Observation 3.2

Observation 3.2

V ar[Irx] = E[Irx
2]− E[Irx]2 = 1

2r

(
1− 1

2r

)
Proof: Note that the variance of a random variable X is given by
V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2.

E[Irx
2] = 12Pr(Irx = 1) = 1

2r

Then E[Irx
2]− E[Irx]2 = 1

2r
− ( 1

2r
)2 = 1

2r

(
1− 1

2r

)
2
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Observation 3.3

Observation 3.3

E[Zr] = F0
2r

Proof: Let A′ ⊆ A be the set of distinct elements of A.

Note that F0 = |A′|.

By definition Zr =
∑
x∈A′

Irx

Then, E[Zr] = E[
∑
x∈A′

Irx] =
∑
x∈A′

E[Irx] =
∑
x∈A′

1
2r

= F0
2r

2
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Observation 3.4

Observation 3.4

V ar[Zr] = F0
2r

(
1− 1

2r

)
≤ F0

2r
= E[Zr]

Proof: V ar[Zr] = V ar[
∑
x∈A′

Irx]

For two independent random variables X and Y ,
V ar[X + Y ] = V ar[X] + V ar[Y ].

V ar[Zr] = V ar[
∑
x∈A′

Irx] =
∑
x∈A′

V ar[Irx] = F0
1
2r

(
1− 1

2r

)
≤ F0

2r
= E[Zr]

2
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Observation 4

Observation 4

If 2r > cF0, Pr(Zr > 0) < 1
c

Proof: Recall Markov’s inequality for a random variable X,
Pr(X ≥ s) ≤ E[X]

s
, where s > 0 and X takes positive values.

What is the number of distinct elements x ∈ A, whose hash map h(x) has its
rightmost 1 in position ≥ r + 1?

= Zr =
∑
x∈A′

Irx

What is Pr(Zr > 0)? ⇔What is Pr(Zr ≥ 1).

By Markov’s inequality: Pr(Zr ≥ 1) ≤ E[Zr ]
1

= E[Zr] = F0
2r
< 1

c
.

2
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Chebyshev’s Inequality

Chebyshev’s Inequality

Pr(|X − E[X]| ≥ α) ≤ V ar[X]

α2

Proof: Recall Markov’s inequality for a random variable X,
Pr(X ≥ s) ≤ E[X]

s
, where s > 0 and X takes positive values.

Now

Pr(|X − E[X]| ≥ α) = Pr((X − E[X])2 ≥ α2)

≤ E[(X − E[X])2]

α2

=
V ar[X]

α2

2
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Observation 5

Observation 5

If c2r < F0, Pr(Zr = 0) < 1
c

Proof: Recall Chebyshev’s inequality Pr(|X − E[X]| ≥ α) ≤ V ar[X]

α2 .

For a random variable X, Pr(X = 0) ≤ Pr(|X − E[X]| ≥ E[X]), as the
event |X − E[X]| ≥ E[X] includes X ≤ 0 and X ≥ 2E[X].

Now, Pr(Zr = 0) ≤ Pr(|Zr − E[Zr]| ≥ E[Zr]).

Pr(Zr = 0) ≤ Pr(|Zr − E[Zr]| ≥ E[Zr])

≤ V ar[Zr]

E[Zr]2

≤ E[Zr]

E[Zr]2

=
1

E[Zr]
=

2r

F0
<

1

c

2
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Observation 6

Claim

Set F̂0 = 2R. We have Pr
(

1
c
≤ F̂0

F0
≤ c
)
≥ 1− 2

c

Proof We have that
Observation 4: if 2r > cF0, Pr(Zr > 0) < 1

c

Observation 5, if c2r < F0, Pr(Zr = 0) < 1
c

When do we produce a wrong answer?
Case 1: F̂0 = 2R > cF0, but this happens with Pr(ZR > 0) < 1

c

Case 2: c2R = cF̂0 < F0, but this happens with Pr(ZR = 0) < 1
c

Therefore, with probability ≤ 2
c
, we produce a wrong answer.

=⇒ with probability ≥ 1− 2
c
, we produce the right answer, i.e.,

Pr
(

1
c
≤ F̂0

F0
≤ c
)
≥ 1− 2

c

2
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Further Improvements



Improving success probability

Execute the algorithm s times in parallel
(with independent hash functions)
Let R to the median value among these runs

Return F̂0 = 2R

Note: Algorithm uses O(s log u) bits.

Claim

For c > 4, there exists s = O(log 1
ε
), ε > 0, such that

Pr( 1
c
≤ F̂0

F0
≤ c) ≥ 1− ε.

Technique: Median + Chernoff Bounds
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Improving success probability (contd.)

i-th Run of the Algorithm:

Step 1: Initialize Ri := 0

Step 2: For each elements ai ∈ A do:

1. Compute binary representation of h(ai)
2. Let r be the location of the rightmost 1 in the binary representation
3. if r > Ri, Ri := r

Step 3: Return Ri

Let R = Median(R1, R2, . . . , Rs)
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Indicator Random Variables

Define X1, . . . , Xs be indicator random variables:

Xi =

0, if success, i.e. 1
c
≤ 2Ri

F0
≤ c

1, otherwise

1. E[Xi] = Pr(Xi = 1) ≤ 2
c

= β < 1
2

(Since c > 4)

2. Let X =
s∑
i=1

Xi = Number of failures in s runs

3. E[X] ≤ sβ < s
2

4. If X < s
2
, then 1

c
≤ 2R

F0
≤ c

(R = Median(R1, R2, . . . , Rs))
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Chernoff Bounds

Chernoff Bounds
If r.v. X is sum of independent identical indicator r.v. and 0 < δ < 1,

Pr(X ≥ (1 + δ)E[X]) ≤ e−
δ2E[X]

3

Proof: See my notes

An example: Toss a fair coin n-times. Let X be the total number of heads
obtained in these n-trials. Evaluate Pr(X ≥ 3

4
n)

Pr(X ≥ 3

4
n) = Pr(X ≥ (1 +

1

2
)
n

2
)

= Pr(X ≥ (1 +
1

2
)E[X])

≤ e−
( 1
2
)2E[X]

3

= e−
n
24
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Main Result

Claim

For any ε > 0, if s = O(log 1
ε
), Pr(X < s

2
) ≥ 1− ε

Proof: We show that Pr(X ≥ s
2
) < ε.

E[X] = sβ < s
2

Pr(X ≥ s

2
) = Pr(X − E[X] ≥ s

2
− E[X])

= Pr(X − E[X] ≥ s

2
− sβ)

= Pr(X − E[X] ≥
1
2
− β
β

sβ)

= Pr(X − E[X] ≥
1
2
− β
β

E[X])

= Pr(X ≥
(

1 +
1
2
− β
β

)
E[X])

23



Proof (contd.)

Pr(X ≥ s

2
) = Pr(X ≥

(
1 +

1
2
− β
β

)
E[X])

≤ e
− 1

3

(
1
2
−β
β

)2

E[X]

We want e
− 1

3

(
1
2
−β
β

)2

E[X]

≤ ε

Substitute E[X] = sβ and we have

− 1
3

( 1
2
−β
β

)2
sβ ≤ ln ε

⇔ s ≥ 3
β

(
β

1
2
−β

)2
ln 1

ε

=⇒ if s ∈ O(ln 1
ε
), Pr(X ≥ s

2
) < ε.

2
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Estimating F2



Estimating F2

Input: Stream A and hash function h : U → {−1,+1}

Output: Estimate F̂2 of F2 =
u∑
i=1

m2
i

Algorithm (Tug of War)

Step 1: Initialize Y := 0.

Step 2: For each element x ∈ U , evaluate rx = h(x).

Step 3: For each element ai ∈ A, Y := Y + rai

Step 4: Return F̂2 = Y 2
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Correctness



Observation 1

Observation 1
E[ri] = 0

Proof: E[ri] = −1× 1
2

+ 1× 1
2

= 0

2
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Observation 2

Observation 2

Let Y =
u∑
i=1

rimi

E[Y 2] =
u∑
i=1

m2
i = F2

Proof:

E[Y 2] = E[

u∑
i=1

rimi

u∑
j=1

rjmj ]

= E[

u∑
i=1

r2im
2
i +

∑
i,j:i6=j

rirjmimj ]

=
u∑
i=1

E[r2im
2
i ] +

∑
i,j:i6=j

E[rirjmimj ]

=

u∑
i=1

E[m2
i ] +

∑
i,j:i6=j

mimjE[ri]E[rj ]

=
u∑
i=1

m2
i = F2

2
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Observation 3

Observation 3

Pr
(
|Y 2 − E[Y 2]| ≥

√
2cE[Y 2]

)
≤ 1

c2
for any positive constant c. (I.e., Y 2

approximates F2 = E[Y 2] within a constant factor with Pr ≥ 1− 1
c2

)

Proof: Recall Chebyshev’s inequality Pr(|X − E[X]| ≥ α) ≤ V ar[X]

α2 .

Now, Pr
(
|Y 2 − E[Y 2]| ≥

√
2cE[Y 2]

)
≤ V ar[Y 2]

(
√
2cE[Y 2])2

.

V ar[Y 2] = E[Y 4]− E[Y 2]2

E[Y 4] = E

[
u∑
i=1

rimi

u∑
j=1

rjmj

u∑
k=1

rkmk

u∑
l=1

rlml

]

=

u∑
i=1

E[r4im
4
i ] + 6

∑
1≤i<j≤u

E[r2i r
2
jm

2
im

2
j ]

=

u∑
i=1

m4
i + 6

∑
1≤i<j≤u

m2
im

2
j
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Observation 4 contd.

V ar[Y 2] = E[Y 4]− E[Y 2]2

=

u∑
i=1

m4
i + 6

∑
1≤i<j≤u

m2
im

2
j −

(
u∑
i=1

m2
i

)2

= 4
∑

1≤i<j≤u

m2
im

2
j

≤ 2F 2
2

Now, V ar[Y 2]

(
√

2cE[Y 2])2
=

2F2
2

(
√

2cE[Y 2])2
=

2F2
2

2c2F2
2

= 1
c2

Thus, Pr
(
|Y 2 − E[Y 2]| ≥

√
2cE[Y 2]

)
≤ V ar[Y 2]

(
√
2cE[Y 2])2

= 1
c2

2
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Improving Variance



Improving the Variance

Execute the algorithm k times (using independent hash functions) resulting in
Y 2
1 , Y

2
2 , . . . , Y

2
k .

Output Ȳ 2 = 1
k

k∑
i=1

Y 2
i

Observations:

1. E[Ȳ 2] = E[Y 2] = F2

2. V ar[Ȳ 2] = 1
k
V ar[Y 2]

(Note: V ar[cX] = c2V ar[X])

3. Pr
(
|Ȳ 2 − E[Ȳ 2]| ≥

√
2
k
cE[Ȳ 2]

)
≤ 1

c2

4. Set k = O( 1
ε2

), we have

Pr
(
|Ȳ 2 − E[Ȳ 2]| ≥ εcE[Ȳ 2]

)
≤ 1

c2
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Complexity



Space Complexity

Algorithm (Tug of War)

Step 1: Initialize Y := 0.

Step 2: For each element x ∈ U , evaluate rx = h(x).

Step 3: For each element ai ∈ A, Y := Y + rai

Step 4: Return F̂2 = Y 2

• Need to store Y and (r1, r2, . . . , ru).
Y requires O(logn) bits.

• We needed ri’s to be 2-wise and 4-wise independent hash functions.

• 4-wise independent functions can be maintained using O(log u) bits.

• Total space required is O(logn+ log u).
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