
Estimating Frequency Moments F0 and F2

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

1

Outline

Frequency Moments

Estimating F0

Algorithm

Correctness

Further Improvements

Estimating F2

Correctness

Improving Variance

Complexity

2

Frequency Moments

Frequency Moments

Definition
Let A = (a1, a2, . . . , an) be a stream, where elements are from universe
U = {1, . . . , u}. Let mi = # of elements in A that are equal to i. The k-th

frequency moment Fk =
u∑
i=1

mk
i , where 00 = 0.

3

Example: Fk =
u∑

i=1

mk
i

A = (3, 2, 4, 7, 2, 2, 3, 2, 2, 1, 4, 2, 2, 2, 1, 1, 2, 3, 2) and m1 = m3 = 3, m2 = 10,
m4 = 2, m7 = 1, m5 = m6 = 0

F0 =
7∑
i=1

m0
i = 30 + 100 + 30 + 20 + 00 + 00 + 10 = 5

(# of Distinct Elements in A)

F1 =
7∑
i=1

m1
i = 31 + 101 + 31 + 21 + 01 + 01 + 11 = 19

(# of Elements in A)

F2 =
7∑
i=1

m2
i = 32 + 102 + 32 + 22 + 02 + 02 + 12 = 123

(Surprise Number)
. . .

4

Streaming Problem

Find frequency moments in a stream
Input: A stream A consisting of n elements from universe U = {1, . . . , u}.
Output: Estimate Frequency Moments Fk ’s for different values of k.

Our Task: Estimate F0 and F2 using sublinear space

Reference: The space complexity of estimating frequency moments by Noga
Alon, Yossi Matias, and Mario Szegedy, Journal of Computer Systems and
Science, 1999.

5

Estimating F0

Estimating F0

Computation of F0

Input: Stream A = (a1, a2, . . . , an), where each ai ∈ U = {1, . . . , u}.
Output: An estimate F̂0 of number of distinct elements F0 in A such that
Pr
(

1
c
≤ F̂0

F0
≤ c
)
≥ 1− 2

c
for some constant c using sublinear space.

6

Algorithm

Algorithm for Estimating F0

Input: Stream A and a hash function h : U → U

Output: Estimate F̂0

Step 1: Initialize R := 0

Step 2: For each elements ai ∈ A do:

1. Compute binary representation of h(ai)

2. Let r be the location of the rightmost 1 in the binary
representation

3. if r > R, R := r

Step 3: Return F̂0 = 2R

Space Requirements = O(log u) bits

7

Correctness

Observation 1

Let d to be smallest integer such that 2d ≥ u (d-bits are sufficient to represent
numbers in U)

Observation 1

Pr(rightmost 1 in h(ai) is at location ≥ r + 1) = 1
2r

Proof: For that to happen the last r bits in h(ai) must be 0. Since h is a hash
function from universal family of hash functions, this happens with probability
(1
2
)r.

2

8

Observations 2

Observation 2
For ai 6= aj , Pr(rightmost 1 in h(ai) ≥ r + 1 and rightmost 1 in
h(aj) ≥ r + 1) = 1

22r

Proof: h(ai) and h(aj) are independent as ai 6= aj .

Pr(rightmost 1 in h(ai) ≥ r + 1 and rightmost 1 in
h(aj) ≥ r + 1) = Pr(rightmost 1 in h(ai) ≥ r + 1)× Pr(rightmost 1 in
h(aj) ≥ r + 1) = 1

2r
× 1

2r
= 1

22r

2

9

Observations 3

Fix r ∈ {1, . . . , d}. ∀x ∈ A, define indicator r.v:

Irx =

1, if the rightmost 1 is at location ≥ r + 1 in h(x)

0, otherwise

Let Zr =
∑
Irx (sum is over distinct elements of A)

Observation 3
The following holds:

1. E[Irx] = 1
2r

2. V ar[Irx] = 1
2r

(
1− 1

2r

)
3. E[Zr] = F0

2r

4. V ar[Zr] ≤ E[Zr]

10

Observation 3.1

Observation 3.1

E[Irx] = 1
2r

Proof: E[Irx] = 1× Pr(Irx = 1) + 0× Pr(Irx = 0) = 1
2r

Note that Pr(Irx = 1) corresponds to
Pr(rightmost 1 in h(x) is at location ≥ r + 1) = 1

2r
by Observation 1.

2

11

Observation 3.2

Observation 3.2

V ar[Irx] = E[Irx
2]− E[Irx]2 = 1

2r

(
1− 1

2r

)
Proof: Note that the variance of a random variable X is given by
V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2.

E[Irx
2] = 12Pr(Irx = 1) = 1

2r

Then E[Irx
2]− E[Irx]2 = 1

2r
− (1

2r
)2 = 1

2r

(
1− 1

2r

)
2

12

Observation 3.3

Observation 3.3

E[Zr] = F0
2r

Proof: Let A′ ⊆ A be the set of distinct elements of A.

Note that F0 = |A′|.

By definition Zr =
∑
x∈A′

Irx

Then, E[Zr] = E[
∑
x∈A′

Irx] =
∑
x∈A′

E[Irx] =
∑
x∈A′

1
2r

= F0
2r

2

13

Observation 3.4

Observation 3.4

V ar[Zr] = F0
2r

(
1− 1

2r

)
≤ F0

2r
= E[Zr]

Proof: V ar[Zr] = V ar[
∑
x∈A′

Irx]

For two independent random variables X and Y ,
V ar[X + Y] = V ar[X] + V ar[Y].

V ar[Zr] = V ar[
∑
x∈A′

Irx] =
∑
x∈A′

V ar[Irx] = F0
1
2r

(
1− 1

2r

)
≤ F0

2r
= E[Zr]

2

14

Observation 4

Observation 4

If 2r > cF0, Pr(Zr > 0) < 1
c

Proof: Recall Markov’s inequality for a random variable X,
Pr(X ≥ s) ≤ E[X]

s
, where s > 0 and X takes positive values.

What is the number of distinct elements x ∈ A, whose hash map h(x) has its
rightmost 1 in position ≥ r + 1?

= Zr =
∑
x∈A′

Irx

What is Pr(Zr > 0)? ⇔What is Pr(Zr ≥ 1).

By Markov’s inequality: Pr(Zr ≥ 1) ≤ E[Zr]
1

= E[Zr] = F0
2r
< 1

c
.

2

15

Chebyshev’s Inequality

Chebyshev’s Inequality

Pr(|X − E[X]| ≥ α) ≤ V ar[X]

α2

Proof: Recall Markov’s inequality for a random variable X,
Pr(X ≥ s) ≤ E[X]

s
, where s > 0 and X takes positive values.

Now

Pr(|X − E[X]| ≥ α) = Pr((X − E[X])2 ≥ α2)

≤ E[(X − E[X])2]

α2

=
V ar[X]

α2

2

16

Observation 5

Observation 5

If c2r < F0, Pr(Zr = 0) < 1
c

Proof: Recall Chebyshev’s inequality Pr(|X − E[X]| ≥ α) ≤ V ar[X]

α2 .

For a random variable X, Pr(X = 0) ≤ Pr(|X − E[X]| ≥ E[X]), as the
event |X − E[X]| ≥ E[X] includes X ≤ 0 and X ≥ 2E[X].

Now, Pr(Zr = 0) ≤ Pr(|Zr − E[Zr]| ≥ E[Zr]).

Pr(Zr = 0) ≤ Pr(|Zr − E[Zr]| ≥ E[Zr])

≤ V ar[Zr]

E[Zr]2

≤ E[Zr]

E[Zr]2

=
1

E[Zr]
=

2r

F0
<

1

c

2

17

Observation 6

Claim

Set F̂0 = 2R. We have Pr
(

1
c
≤ F̂0

F0
≤ c
)
≥ 1− 2

c

Proof We have that
Observation 4: if 2r > cF0, Pr(Zr > 0) < 1

c

Observation 5, if c2r < F0, Pr(Zr = 0) < 1
c

When do we produce a wrong answer?
Case 1: F̂0 = 2R > cF0, but this happens with Pr(ZR > 0) < 1

c

Case 2: c2R = cF̂0 < F0, but this happens with Pr(ZR = 0) < 1
c

Therefore, with probability ≤ 2
c
, we produce a wrong answer.

=⇒ with probability ≥ 1− 2
c
, we produce the right answer, i.e.,

Pr
(

1
c
≤ F̂0

F0
≤ c
)
≥ 1− 2

c

2

18

Further Improvements

Improving success probability

Execute the algorithm s times in parallel
(with independent hash functions)
Let R to the median value among these runs

Return F̂0 = 2R

Note: Algorithm uses O(s log u) bits.

Claim

For c > 4, there exists s = O(log 1
ε
), ε > 0, such that

Pr(1
c
≤ F̂0

F0
≤ c) ≥ 1− ε.

Technique: Median + Chernoff Bounds

19

Improving success probability (contd.)

i-th Run of the Algorithm:

Step 1: Initialize Ri := 0

Step 2: For each elements ai ∈ A do:

1. Compute binary representation of h(ai)
2. Let r be the location of the rightmost 1 in the binary representation
3. if r > Ri, Ri := r

Step 3: Return Ri

Let R = Median(R1, R2, . . . , Rs)

20

Indicator Random Variables

Define X1, . . . , Xs be indicator random variables:

Xi =

0, if success, i.e. 1
c
≤ 2Ri

F0
≤ c

1, otherwise

1. E[Xi] = Pr(Xi = 1) ≤ 2
c

= β < 1
2

(Since c > 4)

2. Let X =
s∑
i=1

Xi = Number of failures in s runs

3. E[X] ≤ sβ < s
2

4. If X < s
2
, then 1

c
≤ 2R

F0
≤ c

(R = Median(R1, R2, . . . , Rs))

21

Chernoff Bounds

Chernoff Bounds
If r.v. X is sum of independent identical indicator r.v. and 0 < δ < 1,

Pr(X ≥ (1 + δ)E[X]) ≤ e−
δ2E[X]

3

Proof: See my notes

An example: Toss a fair coin n-times. Let X be the total number of heads
obtained in these n-trials. Evaluate Pr(X ≥ 3

4
n)

Pr(X ≥ 3

4
n) = Pr(X ≥ (1 +

1

2
)
n

2
)

= Pr(X ≥ (1 +
1

2
)E[X])

≤ e−
(1
2
)2E[X]

3

= e−
n
24

22

Main Result

Claim

For any ε > 0, if s = O(log 1
ε
), Pr(X < s

2
) ≥ 1− ε

Proof: We show that Pr(X ≥ s
2
) < ε.

E[X] = sβ < s
2

Pr(X ≥ s

2
) = Pr(X − E[X] ≥ s

2
− E[X])

= Pr(X − E[X] ≥ s

2
− sβ)

= Pr(X − E[X] ≥
1
2
− β
β

sβ)

= Pr(X − E[X] ≥
1
2
− β
β

E[X])

= Pr(X ≥
(

1 +
1
2
− β
β

)
E[X])

23

Proof (contd.)

Pr(X ≥ s

2
) = Pr(X ≥

(
1 +

1
2
− β
β

)
E[X])

≤ e
− 1

3

(
1
2
−β
β

)2

E[X]

We want e
− 1

3

(
1
2
−β
β

)2

E[X]

≤ ε

Substitute E[X] = sβ and we have

− 1
3

(1
2
−β
β

)2
sβ ≤ ln ε

⇔ s ≥ 3
β

(
β

1
2
−β

)2
ln 1

ε

=⇒ if s ∈ O(ln 1
ε
), Pr(X ≥ s

2
) < ε.

2

24

Estimating F2

Estimating F2

Input: Stream A and hash function h : U → {−1,+1}

Output: Estimate F̂2 of F2 =
u∑
i=1

m2
i

Algorithm (Tug of War)

Step 1: Initialize Y := 0.

Step 2: For each element x ∈ U , evaluate rx = h(x).

Step 3: For each element ai ∈ A, Y := Y + rai

Step 4: Return F̂2 = Y 2

25

Correctness

Observation 1

Observation 1
E[ri] = 0

Proof: E[ri] = −1× 1
2

+ 1× 1
2

= 0

2

26

Observation 2

Observation 2

Let Y =
u∑
i=1

rimi

E[Y 2] =
u∑
i=1

m2
i = F2

Proof:

E[Y 2] = E[

u∑
i=1

rimi

u∑
j=1

rjmj]

= E[

u∑
i=1

r2im
2
i +

∑
i,j:i6=j

rirjmimj]

=
u∑
i=1

E[r2im
2
i] +

∑
i,j:i6=j

E[rirjmimj]

=

u∑
i=1

E[m2
i] +

∑
i,j:i6=j

mimjE[ri]E[rj]

=
u∑
i=1

m2
i = F2

2

27

Observation 3

Observation 3

Pr
(
|Y 2 − E[Y 2]| ≥

√
2cE[Y 2]

)
≤ 1

c2
for any positive constant c. (I.e., Y 2

approximates F2 = E[Y 2] within a constant factor with Pr ≥ 1− 1
c2

)

Proof: Recall Chebyshev’s inequality Pr(|X − E[X]| ≥ α) ≤ V ar[X]

α2 .

Now, Pr
(
|Y 2 − E[Y 2]| ≥

√
2cE[Y 2]

)
≤ V ar[Y 2]

(
√
2cE[Y 2])2

.

V ar[Y 2] = E[Y 4]− E[Y 2]2

E[Y 4] = E

[
u∑
i=1

rimi

u∑
j=1

rjmj

u∑
k=1

rkmk

u∑
l=1

rlml

]

=

u∑
i=1

E[r4im
4
i] + 6

∑
1≤i<j≤u

E[r2i r
2
jm

2
im

2
j]

=

u∑
i=1

m4
i + 6

∑
1≤i<j≤u

m2
im

2
j

28

Observation 4 contd.

V ar[Y 2] = E[Y 4]− E[Y 2]2

=

u∑
i=1

m4
i + 6

∑
1≤i<j≤u

m2
im

2
j −

(
u∑
i=1

m2
i

)2

= 4
∑

1≤i<j≤u

m2
im

2
j

≤ 2F 2
2

Now, V ar[Y 2]

(
√

2cE[Y 2])2
=

2F2
2

(
√

2cE[Y 2])2
=

2F2
2

2c2F2
2

= 1
c2

Thus, Pr
(
|Y 2 − E[Y 2]| ≥

√
2cE[Y 2]

)
≤ V ar[Y 2]

(
√
2cE[Y 2])2

= 1
c2

2

29

Improving Variance

Improving the Variance

Execute the algorithm k times (using independent hash functions) resulting in
Y 2
1 , Y

2
2 , . . . , Y

2
k .

Output Ȳ 2 = 1
k

k∑
i=1

Y 2
i

Observations:

1. E[Ȳ 2] = E[Y 2] = F2

2. V ar[Ȳ 2] = 1
k
V ar[Y 2]

(Note: V ar[cX] = c2V ar[X])

3. Pr
(
|Ȳ 2 − E[Ȳ 2]| ≥

√
2
k
cE[Ȳ 2]

)
≤ 1

c2

4. Set k = O(1
ε2

), we have

Pr
(
|Ȳ 2 − E[Ȳ 2]| ≥ εcE[Ȳ 2]

)
≤ 1

c2

30

Complexity

Space Complexity

Algorithm (Tug of War)

Step 1: Initialize Y := 0.

Step 2: For each element x ∈ U , evaluate rx = h(x).

Step 3: For each element ai ∈ A, Y := Y + rai

Step 4: Return F̂2 = Y 2

• Need to store Y and (r1, r2, . . . , ru).
Y requires O(logn) bits.

• We needed ri’s to be 2-wise and 4-wise independent hash functions.

• 4-wise independent functions can be maintained using O(log u) bits.

• Total space required is O(logn+ log u).

31

References

1. The space complexity of estimating frequency moments by Noga Alon,
Yossi Matias, and Mario Szegedy, Journal of Computer Systems and
Science, 1999.

2. Probabilistic Counting by Philippe Flajolet and G. Nigel Martin, 24th
Annual Symposium on Foundations of Computer Science, 1983.

3. Notes on Algorithm Design by A.M

4. Several Lecture Notes (Tim Roughgarden, Ankush Moitra, Lap Chi Lau,
Yufei Tao, John Augustine,...)

32

	Frequency Moments
	Estimating F0
	Algorithm
	Correctness
	Further Improvements
	Estimating F2
	Correctness
	Improving Variance
	Complexity

