Estimating Frequency Moments F_0 and F_2

1

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Frequency Moments

Estimating F₀

Algorithm

Correctness

Further Improvements

Estimating F₂

Correctness

Improving Variance

Complexity

Frequency Moments

Frequency Moments

Definition

Let $A = (a_1, a_2, \ldots, a_n)$ be a stream, where elements are from universe $U = \{1, \ldots, u\}$. Let $m_i = \#$ of elements in A that are equal to i. The k-th frequency moment $F_k = \sum_{i=1}^u m_i^k$, where $0^0 = 0$.

Example: $F_k = \sum_{i=1}^u m_i^k$

A = (3, 2, 4, 7, 2, 2, 3, 2, 2, 1, 4, 2, 2, 2, 1, 1, 2, 3, 2) and $m_1 = m_3 = 3$, $m_2 = 10$, $m_4 = 2$, $m_7 = 1$, $m_5 = m_6 = 0$

$$F_0 = \sum_{i=1}^{\ell} m_i^0 = 3^0 + 10^0 + 3^0 + 2^0 + 0^0 + 0^0 + 1^0 = 5$$
 (# of Distinct Elements in *A*)

$$F_1 = \sum_{i=1}^{7} m_i^1 = 3^1 + 10^1 + 3^1 + 2^1 + 0^1 + 0^1 + 1^1 = 19$$
(# of Elements in A)

$$F_2 = \sum_{i=1}^{7} m_i^2 = 3^2 + 10^2 + 3^2 + 2^2 + 0^2 + 0^2 + 1^2 = 123$$

(Surprise Number)

Find frequency moments in a stream

Input: A stream *A* consisting of *n* elements from universe $U = \{1, ..., u\}$. **Output:** Estimate Frequency Moments F_k 's for different values of *k*.

Our Task: Estimate F_0 and F_2 using sublinear space

Reference: The space complexity of estimating frequency moments by Noga Alon, Yossi Matias, and Mario Szegedy, Journal of Computer Systems and Science, 1999.

Estimating *F*₀

Estimating *F*₀

Computation of *F*⁰

Input: Stream $A = (a_1, a_2, \ldots, a_n)$, where each $a_i \in U = \{1, \ldots, u\}$. **Output:** An estimate \hat{F}_0 of number of distinct elements F_0 in A such that $Pr\left(\frac{1}{c} \leq \frac{\hat{F}_0}{F_0} \leq c\right) \geq 1 - \frac{2}{c}$ for some constant c using sublinear space.

Algorithm

Input: Stream *A* and a hash function $h: U \to U$ **Output:** Estimate \hat{F}_0

Step 1: Initialize R := 0

Step 2: For each elements $a_i \in A$ do:

- 1. Compute binary representation of $h(a_i)$
- 2. Let r be the location of the rightmost 1 in the binary representation

3. if r > R, R := r

Step 3: Return $\hat{F}_0 = 2^R$

Space Requirements = $O(\log u)$ bits

Correctness

Let d to be smallest integer such that $2^d \ge u$ (d-bits are sufficient to represent numbers in U)

Observation 1

 $Pr(\text{rightmost } 1 \text{ in } h(a_i) \text{ is at location } \geq r+1) = \frac{1}{2^r}$

Proof: For that to happen the last *r* bits in $h(a_i)$ must be 0. Since *h* is a hash function from universal family of hash functions, this happens with probability $(\frac{1}{2})^r$.

For $a_i \neq a_j$, $Pr(\text{rightmost } 1 \text{ in } h(a_i) \geq r+1 \text{ and rightmost } 1 \text{ in } h(a_j) \geq r+1) = \frac{1}{2^{2r}}$

Proof: $h(a_i)$ and $h(a_j)$ are independent as $a_i \neq a_j$.

 $Pr(\text{rightmost } 1 \text{ in } h(a_i) \ge r+1 \text{ and rightmost } 1 \text{ in } h(a_j) \ge r+1) = Pr(\text{rightmost } 1 \text{ in } h(a_i) \ge r+1) \times Pr(\text{rightmost } 1 \text{ in } h(a_j) \ge r+1) = \frac{1}{2^r} \times \frac{1}{2^r} = \frac{1}{2^{2r}}$

Fix $r \in \{1, \ldots, d\}$. $\forall x \in A$, define indicator r.v:

$$I_x^r = \begin{cases} 1, & \text{if the rightmost } 1 \text{ is at location} \geq r+1 \text{ in } h(x) \\ 0, & \text{otherwise} \end{cases}$$

Let $Z^r = \sum I_x^r$ (sum is over **distinct** elements of A)

Observation 3

The following holds:

1.
$$E[I_x^r] = \frac{1}{2^r}$$

2. $Var[I_x^r] = \frac{1}{2^r} \left(1 - \frac{1}{2^r}\right)$
3. $E[Z^r] = \frac{F_0}{2^r}$
4. $Var[Z^r] \le E[Z^r]$

 $E[I_x^r] = \tfrac{1}{2^r}$

Proof:
$$E[I_x^r] = 1 \times Pr(I_x^r = 1) + 0 \times Pr(I_x^r = 0) = \frac{1}{2^r}$$

Note that $Pr(I_x^r = 1)$ corresponds to $Pr(\text{rightmost } 1 \text{ in } h(x) \text{ is at location } \ge r+1) = \frac{1}{2r}$ by Observation 1.

$$Var[I_x^r] = E[I_x^{r^2}] - E[I_x^r]^2 = \frac{1}{2^r} \left(1 - \frac{1}{2^r}\right)$$

Proof: Note that the variance of a random variable *X* is given by $Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$. $E[I_x^{r^2}] = 1^2 Pr(I_x^r = 1) = \frac{1}{2^r}$ Then $E[I_x^{r^2}] - E[I_x^{r}]^2 = \frac{1}{2^r} - (\frac{1}{2^r})^2 = \frac{1}{2^r} (1 - \frac{1}{2^r})$

 $E[Z^r] = \frac{F_0}{2^r}$

Proof: Let $A' \subseteq A$ be the set of distinct elements of A.

Note that $F_0 = |A'|$.

By definition $Z^r = \sum_{x \in A'} I^r_x$ Then, $E[Z^r] = E[\sum_{x \in A'} I^r_x] = \sum_{x \in A'} E[I^r_x] = \sum_{x \in A'} \frac{1}{2^r} = \frac{F_0}{2^r}$

 $Var[Z^r] = \frac{F_0}{2^r} \left(1 - \frac{1}{2^r}\right) \le \frac{F_0}{2^r} = E[Z^r]$

Proof: $Var[Z^r] = Var[\sum_{x \in A'} I_x^r]$

For two independent random variables X and Y, Var[X + Y] = Var[X] + Var[Y].

 $Var[Z^{r}] = Var[\sum_{x \in A'} I_{x}^{r}] = \sum_{x \in A'} Var[I_{x}^{r}] = F_{0}\frac{1}{2^{r}} \left(1 - \frac{1}{2^{r}}\right) \le \frac{F_{0}}{2^{r}} = E[Z^{r}]$

Observation 4

If $2^r > cF_0$, $Pr(Z^r > 0) < \frac{1}{c}$

Proof: Recall Markov's inequality for a random variable X, $Pr(X \ge s) \le \frac{E[X]}{s}$, where s > 0 and X takes positive values.

What is the number of distinct elements $x \in A$, whose hash map h(x) has its rightmost 1 in position $\geq r + 1$?

$$=Z^r = \sum_{x \in A'} I^r_x$$

What is $Pr(Z^r > 0)$? \Leftrightarrow What is $Pr(Z^r \ge 1)$.

By Markov's inequality: $Pr(Z^r \ge 1) \le \frac{E[Z^r]}{1} = E[Z^r] = \frac{F_0}{2^r} < \frac{1}{c}$.

Chebyshev's Inequality

 $Pr(|X - E[X]| \ge \alpha) \le \frac{Var[X]}{\alpha^2}$

Proof: Recall Markov's inequality for a random variable X, $Pr(X \ge s) \le \frac{E[X]}{s}$, where s > 0 and X takes positive values. Now

$$Pr(|X - E[X]| \ge \alpha) = Pr((X - E[X])^2 \ge \alpha^2)$$
$$\le \frac{E[(X - E[X])^2]}{\alpha^2}$$
$$= \frac{Var[X]}{\alpha^2}$$

Observation 5

If $c2^r < F_0$, $Pr(Z^r = 0) < \frac{1}{c}$

Proof: Recall Chebyshev's inequality $Pr(|X - E[X]| \ge \alpha) \le \frac{Var[X]}{\alpha^2}$.

For a random variable X, $Pr(X = 0) \le Pr(|X - E[X]| \ge E[X])$, as the event $|X - E[X]| \ge E[X]$ includes $X \le 0$ and $X \ge 2E[X]$.

Now, $Pr(Z^r = 0) \le Pr(|Z^r - E[Z^r]| \ge E[Z^r])$.

$$Pr(Z^{r} = 0) \leq Pr(|Z^{r} - E[Z^{r}]| \geq E[Z^{r}])$$

$$\leq \frac{Var[Z^{r}]}{E[Z^{r}]^{2}}$$

$$\leq \frac{E[Z^{r}]}{E[Z^{r}]^{2}}$$

$$= \frac{1}{E[Z^{r}]} = \frac{2^{r}}{F_{0}} < \frac{1}{c}$$

Claim

Set
$$\hat{F}_0 = 2^R$$
. We have $Pr\left(\frac{1}{c} \le \frac{\hat{F}_0}{F_0} \le c\right) \ge 1 - \frac{2}{c}$

Proof We have that

Observation 4: if $2^r > cF_0$, $Pr(Z^r > 0) < \frac{1}{c}$ Observation 5, if $c2^r < F_0$, $Pr(Z^r = 0) < \frac{1}{c}$

When do we produce a wrong answer? Case 1: $\hat{F}_0 = 2^R > cF_0$, but this happens with $Pr(Z^R > 0) < \frac{1}{c}$ Case 2: $c2^R = c\hat{F}_0 < F_0$, but this happens with $Pr(Z^R = 0) < \frac{1}{c}$

Therefore, with probability $\leq \frac{2}{c}$, we produce a wrong answer.

 \implies with probability $\geq 1 - \frac{2}{c}$, we produce the right answer, i.e.,

$$Pr\left(\frac{1}{c} \le \frac{\hat{F}_0}{F_0} \le c\right) \ge 1 - \frac{2}{c}$$

Further Improvements

Execute the algorithm *s* times in parallel (with independent hash functions) Let *R* to the median value among these runs Return $\hat{F}_0 = 2^R$

Note: Algorithm uses $O(s \log u)$ bits.

Claim

For c > 4, there exists $s = O(\log \frac{1}{\epsilon}), \epsilon > 0$, such that $Pr(\frac{1}{c} \leq \frac{\hat{F}_0}{F_0} \leq c) \geq 1 - \epsilon$.

Technique: Median + Chernoff Bounds

Improving success probability (contd.)

i-th Run of the Algorithm:

```
Step 1: Initialize R_i := 0Step 2: For each elements a_i \in A do:1. Compute binary representation of h(a_i)2. Let r be the location of the rightmost 1 in the binary representation3. if r > R_i, R_i := rStep 3: Return R_i
```

Let $R = Median(R_1, R_2, \ldots, R_s)$

Define X_1, \ldots, X_s be indicator random variables:

$$X_i = \begin{cases} 0, & \text{if success, i.e. } \frac{1}{c} \le \frac{2^{R_i}}{F_0} \le c \\ 1, & \text{otherwise} \end{cases}$$

1.
$$E[X_i] = Pr(X_i = 1) \le \frac{2}{c} = \beta < \frac{1}{2}$$
 (Since $c > 4$)

- 2. Let $X = \sum_{i=1}^{5} X_i$ = Number of failures in *s* runs
- 3. $E[X] \leq s\beta < \frac{s}{2}$
- 4. If $X < \frac{s}{2}$, then $\frac{1}{c} \leq \frac{2^R}{F_0} \leq c$ $(R = \text{Median}(R_1, R_2, \dots, R_s))$

Chernoff Bounds

If r.v. X is sum of independent identical indicator r.v. and $0 < \delta < 1$, $Pr(X \ge (1 + \delta)E[X]) \le e^{-\frac{\delta^2 E[X]}{3}}$

Proof: See my notes

An example: Toss a fair coin n-times. Let X be the total number of heads obtained in these n-trials. Evaluate $Pr(X\geq \frac{3}{4}n)$

$$Pr(X \ge \frac{3}{4}n) = Pr(X \ge (1 + \frac{1}{2})\frac{n}{2})$$

= $Pr(X \ge (1 + \frac{1}{2})E[X])$
 $\le e^{-\frac{(\frac{1}{2})^2 E[X]}{3}}$
= $e^{-\frac{n}{24}}$

Main Result

Claim

For any $\epsilon > 0$, if $s = O(\log \frac{1}{\epsilon})$, $Pr(X < \frac{s}{2}) \ge 1 - \epsilon$

Proof: We show that $Pr(X \ge \frac{s}{2}) < \epsilon$.

 $E[X] = s\beta < \tfrac{s}{2}$

1

$$Pr(X \ge \frac{s}{2}) = Pr(X - E[X] \ge \frac{s}{2} - E[X])$$
$$= Pr(X - E[X] \ge \frac{s}{2} - s\beta)$$
$$= Pr(X - E[X] \ge \frac{\frac{1}{2} - \beta}{\beta}s\beta)$$
$$= Pr(X - E[X] \ge \frac{\frac{1}{2} - \beta}{\beta}E[X])$$
$$= Pr(X \ge \left(1 + \frac{\frac{1}{2} - \beta}{\beta}\right)E[X])$$

$$Pr(X \ge \frac{s}{2}) = Pr(X \ge \left(1 + \frac{\frac{1}{2} - \beta}{\beta}\right) E[X])$$
$$\le e^{-\frac{1}{3} \left(\frac{\frac{1}{2} - \beta}{\beta}\right)^2 E[X]}$$

We want
$$e^{-\frac{1}{3}\left(\frac{1}{2}-\beta}{\beta}\right)^2 E[X]} \leq \epsilon$$

Substitute $E[X] = s\beta$ and we have $-\frac{1}{3}\left(\frac{\frac{1}{2}-\beta}{\beta}\right)^2 s\beta \le \ln \epsilon$ $\Leftrightarrow s \ge \frac{3}{\beta}\left(\frac{\beta}{\frac{1}{2}-\beta}\right)^2 \ln \frac{1}{\epsilon}$ $\implies \text{if } s \in O(\ln \frac{1}{\epsilon}), Pr(X \ge \frac{s}{2}) < \epsilon.$

Estimating *F*₂

Input: Stream A and hash function $h: U \to \{-1, +1\}$

Output: Estimate \hat{F}_2 of $F_2 = \sum_{i=1}^u m_i^2$

Algorithm (Tug of War)

Step 1: Initialize Y := 0.

Step 2: For each element $x \in U$, evaluate $r_x = h(x)$.

Step 3: For each element $a_i \in A$, $Y := Y + r_{a_i}$

Step 4: Return $\hat{F}_2 = Y^2$

Correctness

Observation 1

 $E[r_i] = 0$

Proof: $E[r_i] = -1 \times \frac{1}{2} + 1 \times \frac{1}{2} = 0$

Observation 2

Let
$$Y = \sum_{i=1}^{u} r_i m_i$$

 $E[Y^2] = \sum_{i=1}^{u} m_i^2 = F_2$

Proof:

$$E[Y^{2}] = E[\sum_{i=1}^{u} r_{i}m_{i}\sum_{j=1}^{u} r_{j}m_{j}]$$

$$= E[\sum_{i=1}^{u} r_{i}^{2}m_{i}^{2} + \sum_{i,j:i\neq j} r_{i}r_{j}m_{i}m_{j}]$$

$$= \sum_{i=1}^{u} E[r_{i}^{2}m_{i}^{2}] + \sum_{i,j:i\neq j} E[r_{i}r_{j}m_{i}m_{j}]$$

$$= \sum_{i=1}^{u} E[m_{i}^{2}] + \sum_{i,j:i\neq j} m_{i}m_{j}E[r_{i}]E[r_{j}]$$

$$= \sum_{i=1}^{u} m_{i}^{2} = F_{2}$$

 $Pr\left(|Y^2 - E[Y^2]| \ge \sqrt{2}cE[Y^2]\right) \le \frac{1}{c^2}$ for any positive constant c. (I.e., Y^2 approximates $F_2 = E[Y^2]$ within a constant factor with $\Pr \ge 1 - \frac{1}{c^2}$)

Proof: Recall Chebyshev's inequality $Pr(|X - E[X]| \ge \alpha) \le \frac{Var[X]}{\alpha^2}$. Now, $Pr(|Y^2 - E[Y^2]| \ge \sqrt{2}cE[Y^2]) \le \frac{Var[Y^2]}{(\sqrt{2}cE[Y^2])^2}$. $Var[Y^2] = E[Y^4] - E[Y^2]^2$

$$E[Y^{4}] = E\left[\sum_{i=1}^{u} r_{i}m_{i}\sum_{j=1}^{u} r_{j}m_{j}\sum_{k=1}^{u} r_{k}m_{k}\sum_{l=1}^{u} r_{l}m_{l}\right]$$
$$= \sum_{i=1}^{u} E[r_{i}^{4}m_{i}^{4}] + 6\sum_{1 \le i < j \le u} E[r_{i}^{2}r_{j}^{2}m_{i}^{2}m_{j}^{2}]$$
$$= \sum_{i=1}^{u} m_{i}^{4} + 6\sum_{1 \le i < j \le u} m_{i}^{2}m_{j}^{2}$$

$$Var[Y^{2}] = E[Y^{4}] - E[Y^{2}]^{2}$$

= $\sum_{i=1}^{u} m_{i}^{4} + 6 \sum_{1 \le i < j \le u} m_{i}^{2} m_{j}^{2} - \left(\sum_{i=1}^{u} m_{i}^{2}\right)^{2}$
= $4 \sum_{1 \le i < j \le u} m_{i}^{2} m_{j}^{2}$
 $\le 2F_{2}^{2}$

Now, $\frac{Var[Y^2]}{(\sqrt{2}cE[Y^2])^2} = \frac{2F_2^2}{(\sqrt{2}cE[Y^2])^2} = \frac{2F_2^2}{2c^2F_2^2} = \frac{1}{c^2}$ Thus, $Pr\left(|Y^2 - E[Y^2]| \ge \sqrt{2}cE[Y^2]\right) \le \frac{Var[Y^2]}{(\sqrt{2}cE[Y^2])^2} = \frac{1}{c^2}$

Improving Variance

Execute the algorithm k times (using independent hash functions) resulting in $Y_1^2, Y_2^2, \ldots, Y_k^2$. Output $\bar{Y}^2 = \frac{1}{k} \sum_{i=1}^k Y_i^2$

Observations:

- 1. $E[\bar{Y}^2] = E[Y^2] = F_2$
- 2. $Var[\bar{Y}^2] = \frac{1}{k}Var[Y^2]$ (Note: $Var[cX] = c^2Var[X]$)
- **3.** $Pr\left(|\bar{Y}^2 E[\bar{Y}^2]| \ge \sqrt{\frac{2}{k}}cE[\bar{Y}^2]\right) \le \frac{1}{c^2}$
- 4. Set $k = O(\frac{1}{\epsilon^2})$, we have $Pr\left(|\bar{Y}^2 - E[\bar{Y}^2]| \ge \epsilon c E[\bar{Y}^2]\right) \le \frac{1}{c^2}$

Complexity

Algorithm (Tug of War)

```
Step 1: Initialize Y := 0.

Step 2: For each element x \in U, evaluate r_x = h(x).

Step 3: For each element a_i \in A, Y := Y + r_{a_i}

Step 4: Return \hat{F}_2 = Y^2
```

- Need to store Y and (r_1, r_2, \ldots, r_u) . Y requires $O(\log n)$ bits.
- We needed r_i 's to be 2-wise and 4-wise independent hash functions.
- 4-wise independent functions can be maintained using $O(\log u)$ bits.
- Total space required is $O(\log n + \log u)$.

References

- The space complexity of estimating frequency moments by Noga Alon, Yossi Matias, and Mario Szegedy, Journal of Computer Systems and Science, 1999.
- 2. Probabilistic Counting by Philippe Flajolet and G. Nigel Martin, 24th Annual Symposium on Foundations of Computer Science, 1983.
- 3. Notes on Algorithm Design by A.M
- 4. Several Lecture Notes (Tim Roughgarden, Ankush Moitra, Lap Chi Lau, Yufei Tao, John Augustine,...)