Estimating Frequency Moments F_{0} and F_{2}

Anil Maheshwari
anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

Outline

Frequency Moments
Estimating F_{0}
Algorithm
Correctness
Further Improvements
Estimating F_{2}
Correctness
Improving Variance
Complexity

Frequency Moments

Frequency Moments

Definition

Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a stream, where elements are from universe $U=\{1, \ldots, u\}$. Let $m_{i}=\#$ of elements in A that are equal to i. The k-th frequency moment $F_{k}=\sum_{i=1}^{u} m_{i}^{k}$, where $0^{0}=0$.

Example: $F_{k}=\sum_{i=1}^{u} m_{i}^{k}$

$A=(3,2,4,7,2,2,3,2,2,1,4,2,2,2,1,1,2,3,2)$ and $m_{1}=m_{3}=3, m_{2}=10$, $m_{4}=2, m_{7}=1, m_{5}=m_{6}=0$
$F_{0}=\sum_{i=1}^{7} m_{i}^{0}=3^{0}+10^{0}+3^{0}+2^{0}+0^{0}+0^{0}+1^{0}=5$
(\# of Distinct Elements in A)
$F_{1}=\sum_{i=1}^{7} m_{i}^{1}=3^{1}+10^{1}+3^{1}+2^{1}+0^{1}+0^{1}+1^{1}=19$
(\# of Elements in A)
$F_{2}=\sum_{i=1}^{7} m_{i}^{2}=3^{2}+10^{2}+3^{2}+2^{2}+0^{2}+0^{2}+1^{2}=123$
(Surprise Number)

Streaming Problem

Find frequency moments in a stream

Input: A stream A consisting of n elements from universe $U=\{1, \ldots, u\}$.
Output: Estimate Frequency Moments F_{k} 's for different values of k.

Our Task: Estimate F_{0} and F_{2} using sublinear space

Reference: The space complexity of estimating frequency moments by Noga Alon, Yossi Matias, and Mario Szegedy, Journal of Computer Systems and Science, 1999.

Estimating F_{0}

Estimating F_{0}

Computation of F_{0}

Input: Stream $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where each $a_{i} \in U=\{1, \ldots, u\}$.
Output: An estimate \hat{F}_{0} of number of distinct elements F_{0} in A such that $\operatorname{Pr}\left(\frac{1}{c} \leq \frac{\hat{F}_{0}}{F_{0}} \leq c\right) \geq 1-\frac{2}{c}$ for some constant c using sublinear space.

Algorithm

Algorithm for Estimating F_{0}

Input: Stream A and a hash function $h: U \rightarrow U$
Output: Estimate \hat{F}_{0}

Step 1: Initialize $R:=0$
Step 2: For each elements $a_{i} \in A$ do:

1. Compute binary representation of $h\left(a_{i}\right)$
2. Let r be the location of the rightmost 1 in the binary representation
3. if $r>R, R:=r$

Step 3: Return $\hat{F}_{0}=2^{R}$

Space Requirements $=O(\log u)$ bits

Correctness

Observation 1

Let d to be smallest integer such that $2^{d} \geq u$ (d-bits are sufficient to represent numbers in U)

Observation 1

$$
\operatorname{Pr}\left(\text { rightmost } 1 \text { in } h\left(a_{i}\right) \text { is at location } \geq r+1\right)=\frac{1}{2^{r}}
$$

Proof: For that to happen the last r bits in $h\left(a_{i}\right)$ must be 0 . Since h is a hash function from universal family of hash functions, this happens with probability $\left(\frac{1}{2}\right)^{r}$.

Observations 2

Observation 2

For $a_{i} \neq a_{j}, \operatorname{Pr}$ (rightmost 1 in $h\left(a_{i}\right) \geq r+1$ and rightmost 1 in
$\left.h\left(a_{j}\right) \geq r+1\right)=\frac{1}{2^{2 r}}$
Proof: $h\left(a_{i}\right)$ and $h\left(a_{j}\right)$ are independent as $a_{i} \neq a_{j}$.
$\operatorname{Pr}\left(\right.$ rightmost 1 in $h\left(a_{i}\right) \geq r+1$ and rightmost 1 in $\left.h\left(a_{j}\right) \geq r+1\right)=\operatorname{Pr}\left(\right.$ rightmost 1 in $\left.h\left(a_{i}\right) \geq r+1\right) \times \operatorname{Pr}($ rightmost 1 in $\left.h\left(a_{j}\right) \geq r+1\right)=\frac{1}{2^{r}} \times \frac{1}{2^{r}}=\frac{1}{2^{2 r}}$

Observations 3

Fix $r \in\{1, \ldots, d\} . \forall x \in A$, define indicator r.v:

$$
I_{x}^{r}= \begin{cases}1, & \text { if the rightmost } 1 \text { is at location } \geq r+1 \text { in } h(x) \\ 0, & \text { otherwise }\end{cases}
$$

Let $Z^{r}=\sum I_{x}^{r}$ (sum is over distinct elements of A)

Observation 3

The following holds:

1. $E\left[I_{x}^{r}\right]=\frac{1}{2^{r}}$
2. $\operatorname{Var}\left[I_{x}^{r}\right]=\frac{1}{2^{r}}\left(1-\frac{1}{2^{r}}\right)$
3. $E\left[Z^{r}\right]=\frac{F_{0}}{2^{r}}$
4. $\operatorname{Var}\left[Z^{r}\right] \leq E\left[Z^{r}\right]$

Observation 3.1

Observation 3.1

$$
E\left[I_{x}^{r}\right]=\frac{1}{2^{r}}
$$

$$
\text { Proof: } E\left[I_{x}^{r}\right]=1 \times \operatorname{Pr}\left(I_{x}^{r}=1\right)+0 \times \operatorname{Pr}\left(I_{x}^{r}=0\right)=\frac{1}{2^{r}}
$$

Note that $\operatorname{Pr}\left(I_{x}^{r}=1\right)$ corresponds to
$\operatorname{Pr}($ rightmost 1 in $h(x)$ is at location $\geq r+1)=\frac{1}{2^{r}}$ by Observation 1 .

Observation 3.2

Observation 3.2

$$
\operatorname{Var}\left[I_{x}^{r}\right]=E\left[I_{x}^{r 2}\right]-E\left[I_{x}^{r}\right]^{2}=\frac{1}{2^{r}}\left(1-\frac{1}{2^{r}}\right)
$$

Proof: Note that the variance of a random variable X is given by $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$.
$E\left[I_{x}^{r 2}\right]=1^{2} \operatorname{Pr}\left(I_{x}^{r}=1\right)=\frac{1}{2^{r}}$
Then $E\left[I_{x}^{r}{ }^{2}\right]-E\left[I_{x}^{r}\right]^{2}=\frac{1}{2^{r}}-\left(\frac{1}{2^{r}}\right)^{2}=\frac{1}{2^{r}}\left(1-\frac{1}{2^{r}}\right)$

Observation 3.3

Observation 3.3

$$
E\left[Z^{r}\right]=\frac{F_{0}}{2^{r}}
$$

Proof: Let $A^{\prime} \subseteq A$ be the set of distinct elements of A.
Note that $F_{0}=\left|A^{\prime}\right|$.
By definition $Z^{r}=\sum_{x \in A^{\prime}} I_{x}^{r}$
Then, $E\left[Z^{r}\right]=E\left[\sum_{x \in A^{\prime}} I_{x}^{r}\right]=\sum_{x \in A^{\prime}} E\left[I_{x}^{r}\right]=\sum_{x \in A^{\prime}} \frac{1}{2^{r}}=\frac{F_{0}}{2^{r}}$

Observation 3.4

Observation 3.4

$\operatorname{Var}\left[Z^{r}\right]=\frac{F_{0}}{2^{r}}\left(1-\frac{1}{2^{r}}\right) \leq \frac{F_{0}}{2^{r}}=E\left[Z^{r}\right]$
Proof: $\operatorname{Var}\left[Z^{r}\right]=\operatorname{Var}\left[\sum_{x \in A^{\prime}} I_{x}^{r}\right]$
For two independent random variables X and Y,
$\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
$\operatorname{Var}\left[Z^{r}\right]=\operatorname{Var}\left[\sum_{x \in A^{\prime}} I_{x}^{r}\right]=\sum_{x \in A^{\prime}} \operatorname{Var}\left[I_{x}^{r}\right]=F_{0} \frac{1}{2^{r}}\left(1-\frac{1}{2^{r}}\right) \leq \frac{F_{0}}{2^{r}}=E\left[Z^{r}\right]$

Observation 4

Observation 4

```
If }\mp@subsup{2}{}{r}>c\mp@subsup{F}{0}{},\operatorname{Pr}(\mp@subsup{Z}{}{r}>0)<\frac{1}{c
```

Proof: Recall Markov's inequality for a random variable X, $\operatorname{Pr}(X \geq s) \leq \frac{E[X]}{s}$, where $s>0$ and X takes positive values.
What is the number of distinct elements $x \in A$, whose hash map $h(x)$ has its rightmost 1 in position $\geq r+1$?
$=Z^{r}=\sum_{x \in A^{\prime}} I_{x}^{r}$
What is $\operatorname{Pr}\left(Z^{r}>0\right) ? \Leftrightarrow$ What is $\operatorname{Pr}\left(Z^{r} \geq 1\right)$.
By Markov's inequality: $\operatorname{Pr}\left(Z^{r} \geq 1\right) \leq \frac{E\left[Z^{r}\right]}{1}=E\left[Z^{r}\right]=\frac{F_{0}}{2^{r}}<\frac{1}{c}$.

Chebyshev's Inequality

Chebyshev's Inequality

$$
\operatorname{Pr}(|X-E[X]| \geq \alpha) \leq \frac{\operatorname{Var}[X]}{\alpha^{2}}
$$

Proof: Recall Markov's inequality for a random variable X, $\operatorname{Pr}(X \geq s) \leq \frac{E[X]}{s}$, where $s>0$ and X takes positive values.

Now

$$
\begin{aligned}
\operatorname{Pr}(|X-E[X]| \geq \alpha) & =\operatorname{Pr}\left((X-E[X])^{2} \geq \alpha^{2}\right) \\
& \leq \frac{E\left[(X-E[X])^{2}\right]}{\alpha^{2}} \\
& =\frac{\operatorname{Var}[X]}{\alpha^{2}}
\end{aligned}
$$

Observation 5

Observation 5

If $c 2^{r}<F_{0}, \operatorname{Pr}\left(Z^{r}=0\right)<\frac{1}{c}$
Proof: Recall Chebyshev's inequality $\operatorname{Pr}(|X-E[X]| \geq \alpha) \leq \frac{\operatorname{Var}[X]}{\alpha^{2}}$.
For a random variable $X, \operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-E[X]| \geq E[X])$, as the event $|X-E[X]| \geq E[X]$ includes $X \leq 0$ and $X \geq 2 E[X]$.

Now, $\operatorname{Pr}\left(Z^{r}=0\right) \leq \operatorname{Pr}\left(\left|Z^{r}-E\left[Z^{r}\right]\right| \geq E\left[Z^{r}\right]\right)$.

$$
\begin{aligned}
\operatorname{Pr}\left(Z^{r}=0\right) & \leq \operatorname{Pr}\left(\left|Z^{r}-E\left[Z^{r}\right]\right| \geq E\left[Z^{r}\right]\right) \\
& \leq \frac{\operatorname{Var}\left[Z^{r}\right]}{E\left[Z^{r}\right]^{2}} \\
& \leq \frac{E\left[Z^{r}\right]}{E\left[Z^{r}\right]^{2}} \\
& =\frac{1}{E\left[Z^{r}\right]}=\frac{2^{r}}{F_{0}}<\frac{1}{c}
\end{aligned}
$$

Observation 6

Claim

Set $\hat{F}_{0}=2^{R}$. We have $\operatorname{Pr}\left(\frac{1}{c} \leq \frac{\hat{F}_{0}}{F_{0}} \leq c\right) \geq 1-\frac{2}{c}$
Proof We have that
Observation 4: if $2^{r}>c F_{0}, \operatorname{Pr}\left(Z^{r}>0\right)<\frac{1}{c}$
Observation 5, if $c 2^{r}<F_{0}, \operatorname{Pr}\left(Z^{r}=0\right)<\frac{1}{c}$
When do we produce a wrong answer?
Case 1: $\hat{F}_{0}=2^{R}>c F_{0}$, but this happens with $\operatorname{Pr}\left(Z^{R}>0\right)<\frac{1}{c}$
Case 2: $c 2^{R}=c \hat{F}_{0}<F_{0}$, but this happens with $\operatorname{Pr}\left(Z^{R}=0\right)<\frac{1}{c}$
Therefore, with probability $\leq \frac{2}{c}$, we produce a wrong answer.
\Longrightarrow with probability $\geq 1-\frac{2}{c}$, we produce the right answer, i.e.,

$$
\operatorname{Pr}\left(\frac{1}{c} \leq \frac{\hat{F}_{0}}{F_{0}} \leq c\right) \geq 1-\frac{2}{c}
$$

Further Improvements

Improving success probability

Execute the algorithm s times in parallel
(with independent hash functions)
Let R to the median value among these runs
Return $\hat{F}_{0}=2^{R}$
Note: Algorithm uses $O(s \log u)$ bits.

Claim

For $c>4$, there exists $s=O\left(\log \frac{1}{\epsilon}\right), \epsilon>0$, such that $\operatorname{Pr}\left(\frac{1}{c} \leq \frac{\hat{F}_{0}}{F_{0}} \leq c\right) \geq 1-\epsilon$.

Technique: Median + Chernoff Bounds

Improving success probability (contd.)

i-th Run of the Algorithm:
Step 1: Initialize $R_{i}:=0$
Step 2: For each elements $a_{i} \in A$ do:

1. Compute binary representation of $h\left(a_{i}\right)$
2. Let r be the location of the rightmost 1 in the binary representation
3. if $r>R_{i}, R_{i}:=r$

Step 3: Return R_{i}

Let $R=\operatorname{Median}\left(R_{1}, R_{2}, \ldots, R_{s}\right)$

Indicator Random Variables

Define X_{1}, \ldots, X_{s} be indicator random variables:

$$
X_{i}= \begin{cases}0, & \text { if success, i.e. } \frac{1}{c} \leq \frac{2^{R_{i}}}{F_{0}} \leq c \\ 1, & \text { otherwise }\end{cases}
$$

1. $E\left[X_{i}\right]=\operatorname{Pr}\left(X_{i}=1\right) \leq \frac{2}{c}=\beta<\frac{1}{2}($ Since $c>4)$
2. Let $X=\sum_{i=1}^{s} X_{i}=$ Number of failures in s runs
3. $E[X] \leq s \beta<\frac{s}{2}$
4. If $X<\frac{s}{2}$, then $\frac{1}{c} \leq \frac{2^{R}}{F_{0}} \leq c$ $\left(R=\operatorname{Median}\left(R_{1}, R_{2}, \ldots, R_{s}\right)\right)$

Chernoff Bounds

Chernoff Bounds

If r.v. X is sum of independent identical indicator r.v. and $0<\delta<1$, $\operatorname{Pr}(X \geq(1+\delta) E[X]) \leq e^{-\frac{\delta^{2} E[X]}{3}}$

Proof: See my notes
An example: Toss a fair coin n-times. Let X be the total number of heads obtained in these n-trials. Evaluate $\operatorname{Pr}\left(X \geq \frac{3}{4} n\right)$

$$
\begin{aligned}
\operatorname{Pr}\left(X \geq \frac{3}{4} n\right) & =\operatorname{Pr}\left(X \geq\left(1+\frac{1}{2}\right) \frac{n}{2}\right) \\
& =\operatorname{Pr}\left(X \geq\left(1+\frac{1}{2}\right) E[X]\right) \\
& \leq e^{-\frac{\left(\frac{1}{2}\right)^{2} E[X]}{3}} \\
& =e^{-\frac{n}{24}}
\end{aligned}
$$

Main Result

Claim

For any $\epsilon>0$, if $s=O\left(\log \frac{1}{\epsilon}\right), \operatorname{Pr}\left(X<\frac{s}{2}\right) \geq 1-\epsilon$
Proof: We show that $\operatorname{Pr}\left(X \geq \frac{s}{2}\right)<\epsilon$.

$$
E[X]=s \beta<\frac{s}{2}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(X \geq \frac{s}{2}\right) & =\operatorname{Pr}\left(X-E[X] \geq \frac{s}{2}-E[X]\right) \\
& =\operatorname{Pr}\left(X-E[X] \geq \frac{s}{2}-s \beta\right) \\
& =\operatorname{Pr}\left(X-E[X] \geq \frac{\frac{1}{2}-\beta}{\beta} s \beta\right) \\
& =\operatorname{Pr}\left(X-E[X] \geq \frac{\frac{1}{2}-\beta}{\beta} E[X]\right) \\
& =\operatorname{Pr}\left(X \geq\left(1+\frac{\frac{1}{2}-\beta}{\beta}\right) E[X]\right)
\end{aligned}
$$

Proof (contd.)

$$
\begin{aligned}
& \qquad \begin{aligned}
& \operatorname{Pr}\left(X \geq \frac{s}{2}\right)=\operatorname{Pr}\left(X \geq\left(1+\frac{\frac{1}{2}-\beta}{\beta}\right) E[X]\right) \\
& \leq e^{-\frac{1}{3}\left(\frac{\frac{1}{2}-\beta}{\beta}\right)^{2} E[X]} \\
& \text { We want } e^{-\frac{1}{3}\left(\frac{\frac{1}{2}-\beta}{\beta}\right)^{2} E[X]} \leq \epsilon
\end{aligned}
\end{aligned}
$$

Substitute $E[X]=s \beta$ and we have
$-\frac{1}{3}\left(\frac{\frac{1}{2}-\beta}{\beta}\right)^{2} s \beta \leq \ln \epsilon$
$\Leftrightarrow s \geq \frac{3}{\beta}\left(\frac{\beta}{\frac{1}{2}-\beta}\right)^{2} \ln \frac{1}{\epsilon}$
\Longrightarrow if $s \in O\left(\ln \frac{1}{\epsilon}\right), \operatorname{Pr}\left(X \geq \frac{s}{2}\right)<\epsilon$.

Estimating F_{2}

Estimating F_{2}

Input: Stream A and hash function $h: U \rightarrow\{-1,+1\}$
Output: Estimate \hat{F}_{2} of $F_{2}=\sum_{i=1}^{u} m_{i}^{2}$

Algorithm (Tug of War)

Step 1: Initialize $Y:=0$.
Step 2: For each element $x \in U$, evaluate $r_{x}=h(x)$.
Step 3: For each element $a_{i} \in A, Y:=Y+r_{a_{i}}$
Step 4: Return $\hat{F}_{2}=Y^{2}$

Correctness

Observation 1

Observation 1

$E\left[r_{i}\right]=0$
Proof: $E\left[r_{i}\right]=-1 \times \frac{1}{2}+1 \times \frac{1}{2}=0$

Observation 2

Observation 2

$$
\begin{aligned}
& \text { Let } Y=\sum_{i=1}^{u} r_{i} m_{i} \\
& E\left[Y^{2}\right]=\sum_{i=1}^{u} m_{i}^{2}=F_{2}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
E\left[Y^{2}\right] & =E\left[\sum_{i=1}^{u} r_{i} m_{i} \sum_{j=1}^{u} r_{j} m_{j}\right] \\
& =E\left[\sum_{i=1}^{u} r_{i}^{2} m_{i}^{2}+\sum_{i, j: i \neq j} r_{i} r_{j} m_{i} m_{j}\right] \\
& =\sum_{i=1}^{u} E\left[r_{i}^{2} m_{i}^{2}\right]+\sum_{i, j: i \neq j} E\left[r_{i} r_{j} m_{i} m_{j}\right] \\
& =\sum_{i=1}^{u} E\left[m_{i}^{2}\right]+\sum_{i, j: i \neq j} m_{i} m_{j} E\left[r_{i}\right] E\left[r_{j}\right] \\
& =\sum_{i=1}^{u} m_{i}^{2}=F_{2}
\end{aligned}
$$

Observation 3

Observation 3

$\operatorname{Pr}\left(\left|Y^{2}-E\left[Y^{2}\right]\right| \geq \sqrt{2} c E\left[Y^{2}\right]\right) \leq \frac{1}{c^{2}}$ for any positive constant c. (I.e., Y^{2} approximates $F_{2}=E\left[Y^{2}\right]$ within a constant factor with $\operatorname{Pr} \geq 1-\frac{1}{c^{2}}$)

Proof: Recall Chebyshev's inequality $\operatorname{Pr}(|X-E[X]| \geq \alpha) \leq \frac{\operatorname{Var}[X]}{\alpha^{2}}$.
Now, $\operatorname{Pr}\left(\left|Y^{2}-E\left[Y^{2}\right]\right| \geq \sqrt{2} c E\left[Y^{2}\right]\right) \leq \frac{\operatorname{Var}\left[Y^{2}\right]}{\left(\sqrt{2} c E\left[Y^{2}\right]\right)^{2}}$.
$\operatorname{Var}\left[Y^{2}\right]=E\left[Y^{4}\right]-E\left[Y^{2}\right]^{2}$

$$
\begin{aligned}
E\left[Y^{4}\right] & =E\left[\sum_{i=1}^{u} r_{i} m_{i} \sum_{j=1}^{u} r_{j} m_{j} \sum_{k=1}^{u} r_{k} m_{k} \sum_{l=1}^{u} r_{l} m_{l}\right] \\
& =\sum_{i=1}^{u} E\left[r_{i}^{4} m_{i}^{4}\right]+6 \sum_{1 \leq i<j \leq u} E\left[r_{i}^{2} r_{j}^{2} m_{i}^{2} m_{j}^{2}\right] \\
& =\sum_{i=1}^{u} m_{i}^{4}+6 \sum_{1 \leq i<j \leq u} m_{i}^{2} m_{j}^{2}
\end{aligned}
$$

Observation 4 contd.

$$
\begin{aligned}
\operatorname{Var}\left[Y^{2}\right] & =E\left[Y^{4}\right]-E\left[Y^{2}\right]^{2} \\
& =\sum_{i=1}^{u} m_{i}^{4}+6 \sum_{1 \leq i<j \leq u} m_{i}^{2} m_{j}^{2}-\left(\sum_{i=1}^{u} m_{i}^{2}\right)^{2} \\
& =4 \sum_{1 \leq i<j \leq u} m_{i}^{2} m_{j}^{2} \\
& \leq 2 F_{2}^{2}
\end{aligned}
$$

Now, $\frac{\operatorname{Var}\left[Y^{2}\right]}{\left(\sqrt{2} c E\left[Y^{2}\right]\right)^{2}}=\frac{2 F_{2}^{2}}{\left(\sqrt{2} c E\left[Y^{2}\right]\right)^{2}}=\frac{2 F_{2}^{2}}{2 c^{2} F_{2}^{2}}=\frac{1}{c^{2}}$
Thus, $\operatorname{Pr}\left(\left|Y^{2}-E\left[Y^{2}\right]\right| \geq \sqrt{2} c E\left[Y^{2}\right]\right) \leq \frac{\operatorname{Var}\left[Y^{2}\right]}{\left(\sqrt{2} c E\left[Y^{2}\right]\right)^{2}}=\frac{1}{c^{2}}$

Improving Variance

Improving the Variance

Execute the algorithm k times (using independent hash functions) resulting in $Y_{1}^{2}, Y_{2}^{2}, \ldots, Y_{k}^{2}$.
Output $\bar{Y}^{2}=\frac{1}{k} \sum_{i=1}^{k} Y_{i}^{2}$
Observations:

1. $E\left[\bar{Y}^{2}\right]=E\left[Y^{2}\right]=F_{2}$
2. $\operatorname{Var}\left[\bar{Y}^{2}\right]=\frac{1}{k} \operatorname{Var}\left[Y^{2}\right]$
(Note: $\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X]$)
3. $\operatorname{Pr}\left(\left|\bar{Y}^{2}-E\left[\bar{Y}^{2}\right]\right| \geq \sqrt{\frac{2}{k}} c E\left[\bar{Y}^{2}\right]\right) \leq \frac{1}{c^{2}}$
4. Set $k=O\left(\frac{1}{\epsilon^{2}}\right)$, we have

$$
\operatorname{Pr}\left(\left|\bar{Y}^{2}-E\left[\bar{Y}^{2}\right]\right| \geq \epsilon c E\left[\bar{Y}^{2}\right]\right) \leq \frac{1}{c^{2}}
$$

Complexity

Space Complexity

Algorithm (Tug of War)

Step 1: Initialize $Y:=0$.
Step 2: For each element $x \in U$, evaluate $r_{x}=h(x)$.
Step 3: For each element $a_{i} \in A, Y:=Y+r_{a_{i}}$
Step 4: Return $\hat{F}_{2}=Y^{2}$

- Need to store Y and $\left(r_{1}, r_{2}, \ldots, r_{u}\right)$. Y requires $O(\log n)$ bits.
- We needed r_{i} 's to be 2 -wise and 4 -wise independent hash functions.
- 4 -wise independent functions can be maintained using $O(\log u)$ bits.
- Total space required is $O(\log n+\log u)$.

References

1. The space complexity of estimating frequency moments by Noga Alon, Yossi Matias, and Mario Szegedy, Journal of Computer Systems and Science, 1999.
2. Probabilistic Counting by Philippe Flajolet and G. Nigel Martin, 24th Annual Symposium on Foundations of Computer Science, 1983.
3. Notes on Algorithm Design by A.M
4. Several Lecture Notes (Tim Roughgarden, Ankush Moitra, Lap Chi Lau, Yufei Tao, John Augustine,...)
