Balls & Bins

Anil Maheshwari

School of Computer Science Carleton University Canada

1

Model

Collisions

Size of Bins

Model

Balls & Bins

Model

We have m Balls and n Bins. We throw each ball in a bin uniformly at random.

What is the probability of following events:

- 1. Balls i and j are in the same bin.
- 2. Bin #i receives (a) 0 balls, (b) k balls, and (c) $\ge k$ balls.
- 3. All bins have $\leq \frac{c \ln n}{\ln \ln n}$ balls.

Applications: Birthday Paradox, Load Balancing, Perfect Hashing

Collisions

Number of Balls = mNumber of Bins = n.

 $Pr[Balls \ i \text{ and } j \text{ in same bin}] = \frac{1}{n}.$

Number of Balls = mNumber of Bins = n.

Define r.v. X_{ij} $(1 \le i \le m - 1, i + 1 \le j \le m)$ as follows:

 $X_{ij} = \begin{cases} 1 & \text{if balls } i \text{ and } j \text{ are in same bin} \\ 0 & \text{Otherwise} \end{cases}$

 $Pr(X_{ij} = 1) = \frac{1}{n} \text{ and } E[X_{ij}] = \frac{1}{n}$

Define $X = \sum_{i,j} X_{ij}$ = Total # of collisions

 $E[X] = E[\sum_{i,j} X_{ij}]$

By Linearity of Expectation: $E[\sum_{i,j} X_{ij}] = \sum_{i,j} E[X_{ij}]$

Thus $E[X] = \frac{1}{n} \binom{m}{2}$

Birthday Paradox

Number of Balls = m = Number of Students Number of Bins = n = Number of days in a Year.

For two students to have same Birthday: What value of *m* will result in $E[X] = \frac{1}{n} {m \choose 2} \ge 1$

For $m \ge 28$, $E[X] = \frac{1}{365} \frac{m(m-1)}{2} \ge 1$

What is minimum value of m so that the probability that two students share the same birthday is $\geq \frac{1}{2}$?

Probability that all m students have distinct birthday's is given by: $(1-\frac{1}{n})(1-\frac{2}{n})(1-\frac{3}{n})\dots(1-\frac{m-1}{n})$

Let us use the inequality $1 - x \le e^{-x}$.

We want:

$$e^{-\frac{1}{n}}e^{-\frac{2}{n}}e^{-\frac{3}{n}}\dots e^{-\frac{m-1}{n}} \leq \frac{1}{2}$$
$$e^{-\frac{m(m-1)}{2n}} \leq \frac{1}{2}$$

Now using n = 365, we have $e^{-\frac{m(m-1)}{2*365}} \le \frac{1}{2}$ or $m \ge 23$.

Size of Bins

Number of Balls = m; Number of Bins = n.

Problem I

What is the probability that Bin i receives no balls?

$$\left(1 - \frac{1}{n}\right)^m \le e^{-\frac{m}{n}}$$

If
$$n = m$$
, $(1 - \frac{1}{n})^n \le e^{-1} = 0.37$.

Problem II

What is the probability that Bin *i* receives exactly *k* balls?

$$\binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k}$$

Number of Balls = m; Number of Bins = n.

Problem III

What is the probability that Bin *i* receives $\geq k$ balls?

$$\leq \binom{m}{k} \left(\frac{1}{n}\right)^k$$

If n = m and using Stirling's approximation $\binom{n}{k} \leq \left(\frac{en}{k}\right)^k$, we have $\binom{n}{k} \left(\frac{1}{n}\right)^k \leq \left(\frac{e}{k}\right)^k$

Expected Number of Balls in a Bin

Number of Balls = m; Number of Bins = n.

Problem IV

What is Expected # of Balls in a Bin?

$$=\frac{m}{n}$$

Define a r.v. B_{ij} such that

$$B_{ij} = \begin{cases} 1 & \text{if balls } i \text{ is in Bin } j \\ 0 & \text{Otherwise} \end{cases}$$

Result follows from $Pr(B_{ij} = 1) = \frac{1}{n}$ and $E[B_{ij}] = \frac{1}{n}$.

Number of Balls = m; Number of Bins = n.

Problem V What is Expected # of Empty Bins?

Define a r.v. X_i such that

$$X_i = \begin{cases} 1 & \text{if Bin } i \text{ is empty} \\ 0 & \text{Otherwise} \end{cases}$$

From Problem I, $Pr(X_i = 1) \leq e^{-\frac{m}{n}}$ and $E[X_i] \leq e^{-\frac{m}{n}}$ Thus, $E[\texttt{# of Empty Bins}] = \sum_{i=1}^{n} E[X_i] \leq ne^{-\frac{m}{n}}$ When n = m, $E[\texttt{# of Empty Bins}] \leq \frac{n}{e}$ Number of Balls = Number of Bins = n.

Max # of Balls in Bins

With probability $\geq 1 - \frac{1}{n}$ all bins receive fewer than $3 \frac{\ln n}{\ln \ln n}$ balls.

 $Pr(\text{Bin } i \text{ has more that } k \text{ balls}) \leq \left(\frac{e}{k}\right)^k$

Substitute $k = 3 \frac{\ln n}{\ln \ln n}$ and show that

 $Pr(\text{Bin } i \text{ has more that } k \text{ balls}) \leq \frac{1}{n^2}$

Thus by Union Bound,

 $Pr(Any bin has more that k balls) \leq \frac{1}{n}$

Max # Balls in Bins Contd.

Claim

For
$$k = 3 \frac{\ln n}{\ln \ln n}, \left(\frac{e}{k}\right)^k \le \frac{1}{n^2}$$

Proof.

$$\begin{aligned} \left(\frac{e}{k}\right)^k &= \left[e\frac{\ln\ln n}{3\ln n}\right]^{\frac{3\ln n}{\ln\ln n}} \\ &= \left[e^1e^{\ln\frac{\ln\ln n}{3\ln n}}\right]^{\frac{3\ln n}{\ln\ln n}} \\ &= e^{\frac{3\ln n}{\ln\ln n}\left[1+\ln\ln\ln n-\ln(3\ln n)\right]} \\ &= e^{\frac{3\ln n}{\ln\ln n}\left[1+\ln\ln\ln n-\ln(3\ln n)\right]} \\ &= e^{\frac{3\ln n}{\ln\ln n}\left[1+\ln\ln\ln n-\ln\ln n\right]} \\ &\leq e^{\frac{3\ln n}{\ln\ln n}\left[\ln\ln\ln n-\ln\ln n\right]} \\ &= e^{\left[-3\ln n+\frac{3\ln n\ln\ln\ln n}{\ln\ln n}\right]} \end{aligned}$$

For large values of n, $-3\ln n + \frac{3\ln n \ln \ln \ln n}{\ln \ln n} \le -2\ln n$. Thus, $\left(\frac{e}{k}\right)^k \le e^{-2\ln n} = \frac{1}{n^2}$

References

- 1. Probability and Computing by Mitzenmacher and Upfal, Cambridge Univ. Press 2005.
- 2. Introduction to Probability by Blitzstein and Hwang, CRC Press 2015.
- 3. Courses Notes of COMP 2804 by Michiel Smid.
- 4. My Notes on Algorithm Design.