Balls & Bins

Anil Maheshwari

School of Computer Science
Carleton University
Canada
Outline

Model

Collisions

Size of Bins
Model
Balls & Bins

Model

We have m Balls and n Bins. We throw each ball in a bin uniformly at random.

What is the probability of following events:

1. Balls i and j are in the same bin.
2. Bin $\#i$ receives (a) 0 balls, (b) k balls, and (c) $\geq k$ balls.
3. All bins have $\leq \frac{c \ln n}{\ln \ln n}$ balls.

Applications: Birthday Paradox, Load Balancing, Perfect Hashing
Collisions
Probability of Balls i and j in the same bin

Number of Balls = m
Number of Bins = n.

\[Pr[\text{Balls } i \text{ and } j \text{ in same bin}] = \frac{1}{n}. \]
Expected number of collisions

Number of Balls = m
Number of Bins = n.

Define r.v. X_{ij} ($1 \leq i \leq m - 1$, $i + 1 \leq j \leq m$) as follows:

$$X_{ij} = \begin{cases} 1 & \text{if balls } i \text{ and } j \text{ are in same bin} \\ 0 & \text{Otherwise} \end{cases}$$

$Pr(X_{ij} = 1) = \frac{1}{n}$ and $E[X_{ij}] = \frac{1}{n}$

Define $X = \sum_{i,j} X_{ij}$ = Total # of collisions

$$E[X] = E[\sum_{i,j} X_{ij}]$$

By Linearity of Expectation: $E[\sum_{i,j} X_{ij}] = \sum_{i,j} E[X_{ij}]$

Thus $E[X] = \frac{1}{n} \binom{m}{2}$
Birthday Paradox

Number of Balls = \(m \) = Number of Students
Number of Bins = \(n \) = Number of days in a Year.

For two students to have same Birthday:
What value of \(m \) will result in
\[
E[X] = \frac{1}{n} \binom{m}{2} \geq 1
\]

For \(m \geq 28 \),
\[
E[X] = \frac{1}{365} \frac{m(m-1)}{2} \geq 1
\]
Birthday Paradox Contd.

What is minimum value of m so that the probability that two students share the same birthday is $\geq \frac{1}{2}$?

Probability that all m students have distinct birthday’s is given by:

$$(1 - \frac{1}{n})(1 - \frac{2}{n})(1 - \frac{3}{n}) \ldots (1 - \frac{m-1}{n})$$

Let us use the inequality $1 - x \leq e^{-x}$.

We want:

$$e^{-\frac{1}{n}} e^{-\frac{2}{n}} e^{-\frac{3}{n}} \ldots e^{-\frac{m-1}{n}} \leq \frac{1}{2}$$

$$e^{-\frac{m(m-1)}{2n}} \leq \frac{1}{2}$$

Now using $n = 365$, we have $e^{-\frac{m(m-1)}{2*365}} \leq \frac{1}{2}$ or $m \geq 23$.

Size of Bins
Number of Balls in Bin \(i\)

Number of Balls = \(m\); Number of Bins = \(n\).

Problem I

What is the probability that Bin \(i\) receives no balls?

\[
(1 - \frac{1}{n})^m \leq e^{-\frac{m}{n}}
\]

If \(n = m\), \((1 - \frac{1}{n})^n \leq e^{-1} = 0.37\).

Problem II

What is the probability that Bin \(i\) receives exactly \(k\) balls?

\[
\binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k}
\]
Number of Balls in Bin i contd.

Number of Balls = m; Number of Bins = n.

Problem III

What is the probability that Bin i receives $\geq k$ balls?

\[
\leq \binom{m}{k} \left(\frac{1}{n} \right)^k
\]

If $n = m$ and using Stirling's approximation \((\binom{n}{k} \leq \left(\frac{en}{k} \right)^k)\), we have

\[
\binom{n}{k} \left(\frac{1}{n} \right)^k \leq \left(\frac{e}{k} \right)^k
\]
Number of Balls = m; Number of Bins = n.

Problem IV

What is Expected # of Balls in a Bin?

\[\frac{m}{n} \]

Define a r.v. B_{ij} such that

\[B_{ij} = \begin{cases}
1 & \text{if balls } i \text{ is in Bin } j \\
0 & \text{Otherwise}
\end{cases} \]

Result follows from $Pr(B_{ij} = 1) = \frac{1}{n}$ and $E[B_{ij}] = \frac{1}{n}.$
Expected Number Empty Bins

Number of Balls = \(m \); Number of Bins = \(n \).

Problem V
What is Expected # of Empty Bins?

Define a r.v. \(X_i \) such that

\[
X_i = \begin{cases}
1 & \text{if Bin } i \text{ is empty} \\
0 & \text{Otherwise}
\end{cases}
\]

From Problem I, \(Pr(X_i = 1) \leq e^{-\frac{m}{n}} \) and \(E[X_i] \leq e^{-\frac{m}{n}} \)

Thus, \(E[\# \text{ of Empty Bins}] = \sum_{i=1}^{n} E[X_i] \leq ne^{-\frac{m}{n}} \)

When \(n = m \), \(E[\# \text{ of Empty Bins}] \leq \frac{n}{e} \)
Max # Balls in Bins

Number of Balls = Number of Bins = n.

Max # of Balls in Bins

With probability $\geq 1 - \frac{1}{n}$ all bins receive fewer than $3\frac{\ln n}{\ln \ln n}$ balls.

$$P_r(\text{Bin } i \text{ has more that } k \text{ balls}) \leq \left(\frac{e}{k}\right)^k$$

Substitute $k = 3\frac{\ln n}{\ln \ln n}$ and show that

$$P_r(\text{Bin } i \text{ has more that } k \text{ balls}) \leq \frac{1}{n^2}$$

Thus by Union Bound,

$$P_r(\text{Any bin has more that } k \text{ balls}) \leq \frac{1}{n}$$
Max # Balls in Bins Contd.

Claim

For $k = 3 \frac{\ln n}{\ln \ln n}$, $(\frac{e}{k})^k \leq \frac{1}{n^2}$

Proof.

\[
\left(\frac{e}{k} \right)^k = \left[\frac{\ln \ln n}{e \frac{\ln \ln n}{3 \ln n}} \right]^{3 \ln n \frac{\ln \ln n}{\ln \ln n}} \\
= \left[e^{1+\frac{\ln \ln n}{3 \ln n}} \right]^{\frac{3 \ln n}{\ln \ln n}} \\
= e^{\frac{3 \ln n}{\ln \ln n}} [1+\ln \ln n + \ln (3 \ln n)] \\
= e^{\frac{3 \ln n}{\ln \ln n}} [1+\ln \ln n + 3 - \ln \ln n] \\
\leq e^{\frac{3 \ln n}{\ln \ln n}} [\ln \ln n - \ln \ln n] \\
= e^{\left[-3 \ln n + \frac{3 \ln n \ln \ln \ln n}{\ln \ln n} \right]}
\]

For large values of n, $-3 \ln n + \frac{3 \ln n \ln \ln \ln n}{\ln \ln n} \leq -2 \ln n$.

Thus, $(\frac{e}{k})^k \leq e^{-2 \ln n} = \frac{1}{n^2}$
3. Courses Notes of COMP 2804 by Michiel Smid.