Balls \& Bins

Anil Maheshwari
School of Computer Science Carleton University
Canada

Outline

Model

Collisions

Size of Bins

Model

Balls \& Bins

Model

We have m Balls and n Bins. We throw each ball in a bin uniformly at random.

What is the probability of following events:

1. Balls i and j are in the same bin.
2. Bin $\# i$ receives (a) 0 balls, (b) k balls, and (c) $\geq k$ balls.
3. All bins have $\leq \frac{c \ln n}{\ln \ln n}$ balls.

Applications: Birthday Paradox, Load Balancing, Perfect Hashing

Collisions

Probability of Balls i and j in the same bin

Number of Balls $=m$
Number of Bins $=n$.
$\operatorname{Pr}[$ Balls i and j in same bin $]=\frac{1}{n}$.

Expected number of collisions

Number of Balls $=m$
Number of Bins $=n$.
Define r.v. $X_{i j}(1 \leq i \leq m-1, i+1 \leq j \leq m)$ as follows:

$$
X_{i j}= \begin{cases}1 & \text { if balls } i \text { and } j \text { are in same bin } \\ 0 & \text { Otherwise }\end{cases}
$$

$\operatorname{Pr}\left(X_{i j}=1\right)=\frac{1}{n}$ and $E\left[X_{i j}\right]=\frac{1}{n}$
Define $X=\sum_{i, j} X_{i j}=$ Total \# of collisions
$E[X]=E\left[\sum_{i, j} X_{i j}\right]$
By Linearity of Expectation: $E\left[\sum_{i, j} X_{i j}\right]=\sum_{i, j} E\left[X_{i j}\right]$
Thus $E[X]=\frac{1}{n}\binom{m}{2}$

Birthday Paradox

Number of Balls $=m=$ Number of Students
Number of Bins $=n=$ Number of days in a Year.
For two students to have same Birthday:
What value of m will result in $E[X]=\frac{1}{n}\binom{m}{2} \geq 1$
For $m \geq 28, E[X]=\frac{1}{365} \frac{m(m-1)}{2} \geq 1$

Birthday Paradox Contd.

What is minimum value of m so that the probability that two students share the same birthday is $\geq \frac{1}{2}$?

Probability that all m students have distinct birthday's is given by: $\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)$

Let us use the inequality $1-x \leq e^{-x}$.
We want:

$$
\begin{aligned}
e^{-\frac{1}{n}} e^{-\frac{2}{n}} e^{-\frac{3}{n}} \ldots e^{-\frac{m-1}{n}} & \leq \frac{1}{2} \\
e^{-\frac{m(m-1)}{2 n}} & \leq \frac{1}{2}
\end{aligned}
$$

Now using $n=365$, we have $e^{-\frac{m(m-1)}{2 * 365}} \leq \frac{1}{2}$ or $m \geq 23$.

Size of Bins

Number of Balls in Bin i

Number of Balls $=m$; Number of Bins $=n$.

Problem I

What is the probability that Bin i receives no balls?

$$
\begin{aligned}
& \qquad\left(1-\frac{1}{n}\right)^{m} \leq e^{-\frac{m}{n}} \\
& \text { If } n=m,\left(1-\frac{1}{n}\right)^{n} \leq e^{-1}=0.37 .
\end{aligned}
$$

Problem II

What is the probability that Bin i receives exactly k balls?

$$
\binom{m}{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{m-k}
$$

Number of Balls in Bin i contd.

Number of Balls $=m$; Number of Bins $=n$.

Problem III

What is the probability that Bin i receives $\geq k$ balls?

$$
\leq\binom{ m}{k}\left(\frac{1}{n}\right)^{k}
$$

If $n=m$ and using Stirling's approximation $\left.\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}\right)$, we have $\binom{n}{k}\left(\frac{1}{n}\right)^{k} \leq\left(\frac{e}{k}\right)^{k}$

Expected Number of Balls in a Bin

Number of Balls $=m$; Number of Bins $=n$.

Problem IV

What is Expected \# of Balls in a Bin?

$$
=\frac{m}{n}
$$

Define a r.v. $B_{i j}$ such that

$$
B_{i j}= \begin{cases}1 & \text { if balls } i \text { is in } \operatorname{Bin} j \\ 0 & \text { Otherwise }\end{cases}
$$

Result follows from $\operatorname{Pr}\left(B_{i j}=1\right)=\frac{1}{n}$ and $E\left[B_{i j}\right]=\frac{1}{n}$.

Expected Number Empty Bins

Number of Balls $=m$; Number of Bins $=n$.

Problem V

What is Expected \# of Empty Bins?

Define a r.v. X_{i} such that

$$
X_{i}= \begin{cases}1 & \text { if Bin } i \text { is empty } \\ 0 & \text { Otherwise }\end{cases}
$$

From Problem I, $\operatorname{Pr}\left(X_{i}=1\right) \leq e^{-\frac{m}{n}}$ and $E\left[X_{i}\right] \leq e^{-\frac{m}{n}}$
Thus, $E[\#$ of Empty Bins $]=\sum_{i=1}^{n} E\left[X_{i}\right] \leq n e^{-\frac{m}{n}}$
When $n=m, E[\#$ of Empty Bins $] \leq \frac{n}{e}$

Max \# Balls in Bins

Number of Balls $=$ Number of Bins $=n$.

Max \# of Balls in Bins

With probability $\geq 1-\frac{1}{n}$ all bins receive fewer than $3 \frac{\ln n}{\ln \ln n}$ balls.
$\operatorname{Pr}(\operatorname{Bin} i$ has more that k balls $) \leq\left(\frac{e}{k}\right)^{k}$
Substitute $k=3 \frac{\ln n}{\ln \ln n}$ and show that
$\operatorname{Pr}(\operatorname{Bin} i$ has more that k balls $) \leq \frac{1}{n^{2}}$
Thus by Union Bound,
$\operatorname{Pr}($ Any bin has more that k balls $) \leq \frac{1}{n}$

Max \# Balls in Bins Contd.

Claim

For $k=3 \frac{\ln n}{\ln \ln n},\left(\frac{e}{k}\right)^{k} \leq \frac{1}{n^{2}}$

Proof.

$$
\begin{aligned}
\left(\frac{e}{k}\right)^{k} & =\left[e^{\ln \ln n} 3 \ln \right]^{\frac{3 \ln n}{\ln \ln n}} \\
& =\left[e^{1} e^{\left.\ln \frac{\ln \ln n}{3 \ln n}\right]^{\frac{3 \ln n}{\ln \ln n}}}\right. \\
& =e^{\frac{3 \ln n}{\ln \ln n}[1+\ln \ln \ln n-\ln (3 \ln n)]} \\
& =e^{\frac{3 \ln n}{\ln \ln n}[1+\ln \ln \ln n-\ln 3-\ln \ln n]} \\
& \leq e^{\frac{3 \ln n}{\ln \ln n}[\ln \ln \ln n-\ln \ln n]} \\
& =e^{\left[-3 \ln n+\frac{3 \ln n \ln \ln \ln n}{\ln \ln n}\right]}
\end{aligned}
$$

For large values of $n,-3 \ln n+\frac{3 \ln n \ln \ln \ln n}{\ln \ln n} \leq-2 \ln n$.
Thus, $\left(\frac{e}{k}\right)^{k} \leq e^{-2 \ln n}=\frac{1}{n^{2}}$

References

1. Probability and Computing by Mitzenmacher and Upfal, Cambridge Univ. Press 2005.
2. Introduction to Probability by Blitzstein and Hwang, CRC Press 2015.
3. Courses Notes of COMP 2804 by Michiel Smid.
4. My Notes on Algorithm Design.
