Count-Min Sketch

Anil Maheshwari
School of Computer Science
Carleton University
Canada

Review

Outline

Review

Count-Min Sketch

Complexity Analysis

Probability Preliminaries

Proof of the claim

Conclusions

Misra \& Gries [82] Algorithm

Finding Heavy Hitters

Input: A stream consisting of n elements and fixed integer $k<n$.
Output: Report all heavy hitters, i.e. elements that occur $\geq n / k$ times.

1. Initialize k bins, each with null element and a counter with 0 .
2. For each element x in the stream do
if $x \in \operatorname{Bin} b$ then increment bin b 's counter
elseif find a bin whose counter is 0 and

- Assign x to this bin
- Assign 1 to its counter
else decrement the counter of every bin.

3. Output elements in the bins.

Analysis of Misra and Gries Algorithm

Claim

Let $f_{x}^{*}=$ Frequency of x in the stream. Each heavy hitter x is in one of the bins with counter value $\geq f_{x}^{*}-n / k$.

Correctness: What can be the minimum value of the counter of a heavy hitter?

Running Time:

Initializing k bins: $O(k)$ time
Processing each element requires looking at $O(k)$ bins.
Total Run Time $=O(n k)$
Space: $O(k)$
Reference: J. Misra and D. Gries,"Finding repeated elements" in Science of Computer Programming, Vol. 2 (2): 143-152, 1982.

Count-Min Sketch

Generalize More

For a data stream, using very little space, we are interested to report

1. All the elements that occur frequently, e.g at least 2% times.
2. For each element, its (approximate) frequency.

Count-Min Sketch Data Structure

Input: An array (stream) A consisting of n numbers and r hash functions h_{1}, \ldots, h_{r}, where $h_{i}: \mathbb{N} \rightarrow\{1, \ldots, b\}$
Output: $C M S[\cdot, \cdot]$ table consisting of r rows and b columns
for $i=1$ to r do
for $j=1$ to b do
$C M S[i, j] \leftarrow 0$
end
end
for $i=1$ to n do
for $j=1$ to r do
$C M S\left[j, h_{j}(A[i])\right] \leftarrow C M S\left[j, h_{j}(A[i])\right]+1$
end
end
return $C M S[\cdot, \cdot]$

Illustration of Algorithm

Let $b=10$ and $r=3$.
Assume that stream $A=x y y$.
Assume the following h-values for x and y :
For x : $h_{1}(x)=3, h_{2}(x)=8$, and $h_{3}(x)=5$
For $y: h_{1}(y)=6, h_{2}(y)=8$, and $h_{3}(y)=1$

$C M S[*, *]=$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | | | | | |
| 2 | | | | | | | | | | |
| 3 | | | | | | | | | | |

```
for \(i=1\) to \(n\) do
    for \(j=1\) to \(r\) do
    \({ }^{1} \operatorname{CMS}\left[j, h_{j}(A[i])\right] \leftarrow C M S\left[j, h_{j}(A[i])\right]+1\)
    end
```

end

Updating CMS table

An example with $b=10$ and $r=3$ and assume that stream $A=x y y$

After Initialization:

	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0

Execution of Algorithm

An example with $b=10$ and $r=3$ and assume that stream $A=x y y$
Assume the following h-values for x and y :
For $x: h_{1}(x)=3, h_{2}(x)=8$, and $h_{3}(x)=5$
For $y: h_{1}(y)=6, h_{2}(y)=8$, and $h_{3}(y)=1$

	1	2	3	4	5	6	7	8	9	10
1										
2										
3										

Updating CMS table

Insertion of $x: h_{1}(x)=3, h_{2}(x)=8$, and $h_{3}(x)=5$:

	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0

After inserting x :

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0
3	0	0	0	0	1	0	0	0	0	0

Updating CMS table

Insertion of 1st $y: h_{1}(y)=6, h_{2}(y)=8$, and $h_{3}(y)=1$ that hashes to locations 6,8, and 1 :

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0
3	0	0	0	0	1	0	0	0	0	0

After inserting 1st y :

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	1	0	0	0	0
2	0	0	0	0	0	0	0	2	0	0
3	1	0	0	0	1	0	0	0	0	0

Updating CMS table

Insertion of 2nd y (hashes to same locations 6,8, and 1):

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	1	0	0	0	0
2	0	0	0	0	0	0	0	2	0	0
3	1	0	0	0	1	0	0	0	0	0

After inserting 2nd y :

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	2	0	0	0	0
2	0	0	0	0	0	0	0	3	0	0
3	2	0	0	0	1	0	0	0	0	0

Complexity Analysis

Observations

Let $n=$ Total number of items in the stream.
$f_{x}^{*}=$ True frequency of x in the stream.

Let $f_{x}=\min \left\{C M S\left[1, h_{1}(x)\right], \ldots, C M S\left[r, h_{r}(x)\right]\right\}$.
Report f_{x} as the estimate on the frequency of x.

Observations:

1. The size of CMS table $(=b r)$ is independent of n.
2. CMS table can be computed in $O(b r+n r)$ time.
3. For any $x \in A$, and for any $j=1, \ldots, r, C M S\left[j, h_{j}(x)\right] \geq f_{x}^{*}$
4. f_{x} is an overestimate as $f_{x} \geq f_{x}^{*}$

Assume - Proof comes later

Claim

Let $b=\frac{2}{\epsilon}$. Then $\operatorname{Pr}\left[f_{x}-f_{x}^{*} \geq \epsilon n\right] \leq \frac{1}{2^{r}}$

Corollary

With probability at least $1-1 / 2^{r}, f_{x}^{*} \leq f_{x} \leq f_{x}^{*}+\epsilon n$

Reporting Frequent Elements

Suppose we want to report all the elements of A that occur approximately $\geq n / k$ times for some integer k.

- In the Claim, set $\epsilon=1 / 3 k$. Then $b=\frac{2}{\epsilon}=6 k$.
- Construct CMS table of size $b r=6 k r$.
- Scan A and compute the entries in the $C M S$ table.
- Maintain a set of $O(k)$ items that occur most frequently among all the elements in A scanned so far. How?

Heap Data Structure

The items are stored in a HEAP with f_{x} values as the key.
What is a Heap?
An array that stores n elements and supports:

- Find Max or Min: Report the element with the smallest/largest key value in Heap in $O(1)$ time.
- Insert (x, k) : Insert element x with key k in Heap in $O(\log n)$ time.
- Delete (x) : Delete element x from Heap in $O(\log n)$ time.
- ...

Reporting Frequent Elements contd.

Assume we have scanned $i-1$ items and have updated the $C M S$ table and the heap.
Consider the i-th item (say $x=A[i]$) and we perform the following:

1. For $j=1$ to r : update the $C M S$ table by executing
$C M S\left[j, h_{j}(x)\right] \leftarrow C M S\left[j, h_{j}(x)\right]+1$.
2. Let $f_{x}=\min \left\{C M S\left[1, h_{1}(x)\right], \ldots, C M S\left[r, h_{r}(x)\right]\right\}$. If $f_{x} \geq i / k$, do:
2.1 If $x \in$ heap, delete x and re-insert it again with the updated f_{x} value.
2.2 If $x \notin$ heap, then insert it in the heap and remove all the elements whose count is less than i / k.

Reporting Frequent Elements contd.

Claim

[Cormode and Muthukrishnan 2005] Elements that occur approx. n / k times in a data stream of size n can be reported in $O(k r+n r+n \log k)$ time using $O(k r)$ space with high probability.

Proof.

Recall Corollary: $f_{x}^{*} \leq f_{x} \leq f_{x}^{*}+\epsilon n=f_{x}^{*}+n / 3 k$.
This implies:

- Heap contains elements whose frequency is at least $n / k-n / 3 k=0.667 n / k$ (with high probability).
- Size of heap $=O(k)$
- Time Complexity: $O(b r+n r+n \log k)=O(k r+n r+n \log k)$ as $b=6 k$.
- Total Space $=O(b r+k)=O(k r)$

Probability Preliminaries

Markov's Inequality

Let us recall Markov's inequality:

Theorem

Let X be a non-negative discrete random variable and $s>0$ be a constant. Then $P(X \geq s) \leq E[X] / s$.

Proof.

$$
\begin{aligned}
& E[X]=\sum_{i=0}^{\infty} i . P(X=i) \\
& \geq \sum_{i=s}^{\infty} i . P(X=i) \\
& \geq s \sum_{i=s}^{\infty} P(X=i) \\
&=s P(X \geq s)
\end{aligned}
$$

Hence, $P(X \geq s) \leq E[X] / s$.

Linearity of Expectation

Let X and Y be two random variables mapping elements of a sample space S to real numbers. Assume that expected values $E[X]$ and $E[Y]$ are finite. Linearity of Expectation says that $E[X+Y]=E[X]+E[Y]$ (Note that X and Y need not be independent.).

$$
\begin{aligned}
E[X+Y] & =\sum_{\omega \in S}(X+Y)[\omega] \cdot P(\omega) \\
& =\sum_{\omega \in S}(X[\omega]+Y[\omega]) \cdot P(\omega) \\
& =\sum_{\omega \in S}(X[\omega] \cdot P(\omega)+Y[\omega] \cdot P(\omega)) \\
& =\sum_{\omega \in S} X[\omega] \cdot P(\omega)+\sum_{\omega \in S} Y[\omega] \cdot P(\omega) \\
& =E[X]+E[Y]
\end{aligned}
$$

This generalizes to the sum of n random variables:
$E\left[X_{1}+\cdots+X_{n}\right]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]$.

An Example

1. Roll a fair die n times and sum total the outcomes. What is the expected value of this sum?
2. You toss a fair coin n times. What is the expected number of Heads?
3. What is the probability that the number of Heads is at least $\frac{4}{5} n$?

Proof of the claim

Bounding f_{x}

Claim

$$
\text { Let } b=\frac{2}{\epsilon} \text {. Then } \operatorname{Pr}\left[f_{x}-f_{x}^{*} \geq \epsilon n\right] \leq \frac{1}{2^{r}}
$$

Proof Sketch: Let V be the set of different values in the stream A. Define indicator r.v. I_{y} corresponding to each value $y \in A$ as follows:

$$
I_{y}= \begin{cases}1 & \text { if } h_{j}(y)=h_{j}(x) \\ 0, & \text { otherwise }\end{cases}
$$

Note: $\operatorname{Pr}\left(I_{y}=1\right)=1 / b$, as the hash function h_{j} maps y uniformly at random in one of the m buckets of row j in the CMS table.
Thus, $E\left[I_{y}\right]=1 \cdot \operatorname{Pr}\left(I_{y}=1\right)+0 \cdot \operatorname{Pr}\left(I_{y}=0\right)=1 / b$.

Proof Contd.

$$
\begin{equation*}
C M S\left[j, h_{j}(x)\right]=f_{x}^{*}+\sum_{\substack{y \in V \\ y \neq x}} I_{y} * f_{y}^{*} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
E\left[C M S\left[j, h_{j}(x)\right]\right]=f_{x}^{*}+E\left[\sum_{\substack{y \in V \\ y \neq x}} I_{y} * f_{y}^{*}\right] \tag{2}
\end{equation*}
$$

Proof Contd.

By Linearity of Expectation, we have

$$
\begin{align*}
E\left[C M S\left[j, h_{j}(x)\right]\right] & =f_{x}^{*}+\sum_{\substack{y \in V \\
y \neq x}} E\left[I_{y}\right] * f_{y}^{*} \tag{3}\\
& =f_{x}^{*}+\sum_{\substack{y \in V \\
y \neq x}} \frac{1}{b} f_{y}^{*} \tag{4}\\
& =f_{x}^{*}+\frac{1}{b} \sum_{\substack{y \in V \\
y \neq x}} f_{y}^{*} \tag{5}\\
& \leq f_{x}^{*}+\frac{n}{b} \tag{6}
\end{align*}
$$

Proof Contd.

By setting $b=\frac{2}{\epsilon}$, we obtain

$$
\begin{equation*}
E\left[C M S\left[j, h_{j}(x)\right]\right] \leq f_{x}^{*}+\frac{n}{b}=f_{x}^{*}+\epsilon n / 2 \tag{7}
\end{equation*}
$$

Define r. v.: $X_{j}=\left|C M S\left[j, h_{j}(x)\right]-f_{x}^{*}\right|$

- $E\left[X_{j}\right] \leq n / b=\epsilon n / 2$.
- Apply Markov's inequality: $\operatorname{Pr}\left(X_{j}>2(\epsilon n / 2)\right) \leq 1 / 2$.
- Therefore, $\operatorname{Pr}\left(X_{j}>\epsilon n\right) \leq 1 / 2$ holds for all $j \in\{1, \ldots, r\}$.
- X_{j} is independent of X_{k} as hash functions h_{j} and h_{k} are independent for any $k \neq j$.
- For $f_{x}=\min \left\{C M S\left[1, h_{1}(x)\right], \ldots, C M S\left[r, h_{r}(x)\right]\right\}$, $\operatorname{Pr}\left[\left|f_{x}-f_{x}^{*}\right| \geq \epsilon n\right] \leq \frac{1}{2^{r}}$

Conclusions

Conclusions on CMS

Simple idea with important applications.
Consider a vector $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
Initially $v=0$.
Update at time t is a pair $(j, c): v_{j} \leftarrow v_{j}+c$.
Using only small space, answer queries of the form

1. Point Query: Report v_{i}
2. Range Query $[l, r]$: Report $\sum_{i=l}^{r} v_{i}$
3. Inner product of two vectors: $u \cdot v$
4. In general, c can be positive or negative - replace min by median.

Reference: An improved data stream summary: the count-min sketch and its applications, G. Cormode and S. Muthukrishnan, J. Algorithms 55(1): 58-75, 2005.

