Count-Min Sketch

Anil Maheshwari

School of Computer Science Carleton University Canada

1

Review

Outline

Review

Count-Min Sketch

Complexity Analysis

Probability Preliminaries

Proof of the claim

Conclusions

Misra & Gries [82] Algorithm

Finding Heavy Hitters

Input: A stream consisting of *n* elements and fixed integer k < n. **Output:** Report all heavy hitters, i.e. elements that occur $\ge n/k$ times.

- 1. Initialize k bins, each with null element and a counter with 0.
- For each element x in the stream do if x ∈ Bin b then increment bin b's counter

elseif find a bin whose counter is 0 and

- Assign x to this bin
- Assign 1 to its counter

else decrement the counter of every bin.

3. Output elements in the bins.

Analysis of Misra and Gries Algorithm

Claim

Let $f_x^* =$ Frequency of x in the stream. Each heavy hitter x is in one of the bins with counter value $\geq f_x^* - n/k$.

Correctness: What can be the minimum value of the counter of a heavy hitter?

Running Time:

Initializing k bins: O(k) time Processing each element requires looking at O(k) bins. Total Run Time = O(nk)

Space: O(k)

Reference: J. Misra and D. Gries, "Finding repeated elements" in Science of Computer Programming, Vol. 2 (2): 143 -152, 1982.

Count-Min Sketch

Generalize More

For a data stream, using very little space, we are interested to report

- 1. All the elements that occur frequently, e.g at least 2% times.
- 2. For each element, its (approximate) frequency.

Input: An array (stream) A consisting of n numbers and r hash functions $h_1,\ldots,h_r,$ where $h_i:\mathbb{N}\to\{1,\ldots,b\}$

Output: $CMS[\cdot, \cdot]$ table consisting of r rows and b columns

```
1 for i = 1 to r do
        for j = 1 to b do
 2
        CMS[i, j] \leftarrow 0
 3
       end
 4
5 end
6 for i = 1 to n do
       for j = 1 to r do
7
        CMS[j, h_i(A[i])] \leftarrow CMS[j, h_i(A[i])] + 1
 8
        end
 9
10 end
11 return CMS[\cdot, \cdot]
```

Illustration of Algorithm

Let b = 10 and r = 3. Assume that stream A = xyy. Assume the following h-values for x and y: For x: $h_1(x) = 3$, $h_2(x) = 8$, and $h_3(x) = 5$ For y: $h_1(y) = 6$, $h_2(y) = 8$, and $h_3(y) = 1$

$$\begin{array}{l} \text{for } i=1 \text{ to } n \text{ do} \\ & \text{for } j=1 \text{ to } r \text{ do} \\ & \mid \quad CMS[j,h_j(A[i])] \leftarrow CMS[j,h_j(A[i])] + 1 \\ & \text{ end} \end{array}$$

end

An example with b = 10 and r = 3 and assume that stream A = xyy

After Initialization:

	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0

Execution of Algorithm

An example with b = 10 and r = 3 and assume that stream A = xyy

Assume the following h-values for x and y:

For
$$x$$
: $h_1(x) = 3$, $h_2(x) = 8$, and $h_3(x) = 5$
For y : $h_1(y) = 6$, $h_2(y) = 8$, and $h_3(y) = 1$

Updating CMS table

Insertion of x: $h_1(x) = 3$, $h_2(x) = 8$, and $h_3(x) = 5$:

	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0

After inserting *x*:

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0
3	0	0	0	0	1	0	0	0	0	0

Updating CMS table

Insertion of 1st y: $h_1(y) = 6$, $h_2(y) = 8$, and $h_3(y) = 1$ that hashes to locations 6,8, and 1:

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	1	0	0
3	0	0	0	0	1	0	0	0	0	0

After inserting 1st y:

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	1	0	0	0	0
2	0	0	0	0	0	0	0	2	0	0
3	1	0	0	0	1	0	0	0	0	0

Insertion of 2nd y (hashes to same locations 6,8, and 1):

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	1	0	0	0	0
2	0	0	0	0	0	0	0	2	0	0
3	1	0	0	0	1	0	0	0	0	0

After inserting 2nd y:

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	2	0	0	0	0
2	0	0	0	0	0	0	0	3	0	0
3	2	0	0	0	1	0	0	0	0	0

Complexity Analysis

Observations

Let n = Total number of items in the stream. $f_x^* =$ True frequency of x in the stream.

Let $f_x = \min\{CMS[1, h_1(x)], \dots, CMS[r, h_r(x)]\}$. Report f_x as the estimate on the frequency of x.

Observations:

- 1. The size of CMS table (= br) is independent of n.
- 2. CMS table can be computed in O(br + nr) time.
- 3. For any $x \in A$, and for any $j = 1, \ldots, r$, $CMS[j, h_j(x)] \ge f_x^*$
- 4. f_x is an overestimate as $f_x \ge f_x^*$

Assume - Proof comes later

Claim

Let
$$b = \frac{2}{\epsilon}$$
. Then $Pr[f_x - f_x^* \ge \epsilon n] \le \frac{1}{2^r}$

Corollary

With probability at least $1 - 1/2^r$, $f_x^* \leq f_x \leq f_x^* + \epsilon n$

Suppose we want to report all the elements of A that occur approximately $\geq n/k$ times for some integer k.

- In the Claim, set $\epsilon = 1/3k$. Then $b = \frac{2}{\epsilon} = 6k$.
- Construct CMS table of size br = 6kr.
- Scan A and compute the entries in the CMS table.
- Maintain a set of O(k) items that occur most frequently among all the elements in A scanned so far. How?

The items are stored in a HEAP with f_x values as the key.

What is a Heap?

An array that stores n elements and supports:

- Find Max or Min: Report the element with the smallest/largest key value in Heap in O(1) time.
- Insert(x, k): Insert element x with key k in Heap in $O(\log n)$ time.
- Delete(x): Delete element x from Heap in $O(\log n)$ time.

• ...

Assume we have scanned i - 1 items and have updated the CMS table and the heap.

Consider the *i*-th item (say x = A[i]) and we perform the following:

- 1. For j = 1 to r: update the CMS table by executing $CMS[j, h_j(x)] \leftarrow CMS[j, h_j(x)] + 1.$
- 2. Let $f_x = \min\{CMS[1, h_1(x)], \dots, CMS[r, h_r(x)]\}.$ If $f_x \ge i/k$, do:
 - 2.1 If $x \in$ heap, delete x and re-insert it again with the updated f_x value.
 - 2.2 If $x \notin$ heap, then insert it in the heap and remove all the elements whose count is less than i/k.

Reporting Frequent Elements contd.

Claim

[Cormode and Muthukrishnan 2005] Elements that occur approx. n/k times in a data stream of size n can be reported in $O(kr + nr + n \log k)$ time using O(kr) space with high probability.

Proof.

Recall Corollary: $f_x^* \le f_x \le f_x^* + \epsilon n = f_x^* + n/3k$. This implies:

- Heap contains elements whose frequency is at least n/k n/3k = 0.667n/k (with high probability).
- Size of heap = O(k)
- Time Complexity: $O(br + nr + n \log k) = O(kr + nr + n \log k)$ as b = 6k.
- Total Space= O(br + k) = O(kr)

Probability Preliminaries

Let us recall Markov's inequality:

Theorem

Let *X* be a non-negative discrete random variable and s > 0 be a constant. Then $P(X \ge s) \le E[X]/s$.

Proof.

$$\begin{split} E[X] &= \sum_{i=0}^{\infty} i.P(X=i) \\ &\geq \sum_{i=s}^{\infty} i.P(X=i) \\ &\geq s \sum_{i=s}^{\infty} P(X=i) \\ &= sP(X \geq s). \end{split}$$

Hence, $P(X \ge s) \le E[X]/s$.

Let *X* and *Y* be two random variables mapping elements of a sample space *S* to real numbers. Assume that expected values E[X] and E[Y] are finite. Linearity of Expectation says that E[X + Y] = E[X] + E[Y] (Note that *X* and *Y* need not be independent.).

$$E[X+Y] = \sum_{\omega \in S} (X+Y)[\omega] \cdot P(\omega)$$

=
$$\sum_{\omega \in S} (X[\omega] + Y[\omega]) \cdot P(\omega)$$

=
$$\sum_{\omega \in S} (X[\omega] \cdot P(\omega) + Y[\omega] \cdot P(\omega))$$

=
$$\sum_{\omega \in S} X[\omega] \cdot P(\omega) + \sum_{\omega \in S} Y[\omega] \cdot P(\omega)$$

=
$$E[X] + E[Y]$$

This generalizes to the sum of *n* random variables: $E[X_1 + \dots + X_n] = E[X_1] + \dots + E[X_n].$

An Example

- 1. Roll a fair die *n* times and sum total the outcomes. What is the expected value of this sum?
- 2. You toss a fair coin n times. What is the expected number of Heads?
- 3. What is the probability that the number of Heads is at least $\frac{4}{5}n$?

Proof of the claim

Bounding f_x

Claim

Let
$$b = \frac{2}{\epsilon}$$
. Then $Pr[f_x - f_x^* \ge \epsilon n] \le \frac{1}{2^r}$

Proof Sketch: Let *V* be the set of different values in the stream *A*. Define indicator r.v. I_y corresponding to each value $y \in A$ as follows:

$$I_y = \begin{cases} 1 & \text{if } h_j(y) = h_j(x) \\ 0, & \text{otherwise} \end{cases}$$

Note: $Pr(I_y = 1) = 1/b$, as the hash function h_j maps y uniformly at random in one of the m buckets of row j in the CMS table.

Thus, $E[I_y] = 1 \cdot Pr(I_y = 1) + 0 \cdot Pr(I_y = 0) = 1/b$.

Proof Contd.

$$CMS[j, h_j(x)] = f_x^* + \sum_{\substack{y \in V \\ y \neq x}} I_y * f_y^*$$
(1)

$$E[CMS[j, h_j(x)]] = f_x^* + E[\sum_{\substack{y \in V \\ y \neq x}} I_y * f_y^*]$$
(2)

By Linearity of Expectation, we have

Proof Contd.

By setting $b = \frac{2}{\epsilon}$, we obtain

$$E[CMS[j, h_j(x)]] \le f_x^* + \frac{n}{b} = f_x^* + \epsilon n/2$$
(7)

Define r. v.: $X_j = |CMS[j, h_j(x)] - f_x^*|$

- $E[X_j] \le n/b = \epsilon n/2.$
- Apply Markov's inequality: $Pr(X_j > 2(\epsilon n/2)) \le 1/2$.
- Therefore, $Pr(X_j > \epsilon n) \le 1/2$ holds for all $j \in \{1, \ldots, r\}$.
- X_j is independent of X_k as hash functions h_j and h_k are independent for any k ≠ j.
- For $f_x = \min\{CMS[1, h_1(x)], \dots, CMS[r, h_r(x)]\},$ $Pr[|f_x - f_x^*| \ge \epsilon n] \le \frac{1}{2^r}$

Conclusions

Simple idea with important applications.

```
Consider a vector v = (v_1, v_2, \dots, v_n).
Initially v = 0.
Update at time t is a pair (j, c): v_j \leftarrow v_j + c.
Using only small space, answer queries of the form
```

- 1. Point Query: Report v_i
- 2. Range Query [l, r]: Report $\sum_{i=l}^{r} v_i$
- 3. Inner product of two vectors: $u \cdot v$
- 4. In general, c can be positive or negative replace min by median.

Reference: An improved data stream summary: the count-min sketch and its applications, G. Cormode and S. Muthukrishnan, J. Algorithms 55(1): 58-75, 2005.