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Introduction



Objectives

How to find efficiently

Similar documents among a collection of documents
Similar web-pages among web-pages
Similar fingerprints among a database of fingerprints
Similar sets among a collection of sets

Similar images from a database of images

o ok~ 0D~

Similar vectors in higher dimensions.



Similarity of Documents



Similarity of Documents

Problem Definition
Input: A collection of web-pages.
Output: Report near duplicate web-pages.

k-shingles
Any substring of k£ words that appears in the document.

Text Document = “What is the likely date that the regular classes may
resume in Ontario”

2—shingles: What is, is the, the likely, ..., in Ontario
3—shingles: What is the, is the likely, ..., resume in Ontario

In practice: 9—shingles for English Text and 5—shingles for e-mails



Similarity between sets

Text Document D — Set S
1. Form all the k-shingles of D
2. S'is the collection of all k-shingles of D

Jaccard Similarity
For a pair of sets S and 7', the Jaccard Similarity is defined as

SIM(S,T) = {250

Figure 1: |S| = 8,|T| =5,|SUT| = 10,|SNT| = 3, SIM(S,T) = 350} = &




Problem: Find Similar Sets

New Problem
Given a constant 0 < s < 1 and a collection of sets S, find the pairs of sets
in S with Jaccard similarity > s

U = {Cruise, Ski, Resorts, Safari, Stay@Home}
S, = {Cruise, Safari} S3 = {Ski, Safari, Stay@Home}
S> = {Resorts} S4 = {Cruise, Resorts, Safari}

Problem: Given S = {51, S2, S5, 94} and s = 1, report all pairs that are
s-similar.
SIM(S1,82) =2 =0 SIM(S2,85) =9 =0

SIM(S1, Ss) = SIM(S2, Sa) =

N
ol

SIM(S1, S4) = 2 SIM(Ss, S4) =

tl=



Characteristic Matrix Representation of Sets

U = {Cruise, Ski, Resorts, Safari, Stay@Home}

S = {51,582, 53,54}, where each S; C U
e.g. S1 = {Cruise, Safari} and S, = {Resorts}

Characteristic matrix for S:

Sl S2 S3 S4

Cruise 1 0 0 1
Ski 0 O 1 0
Resorts 0 1 0 1
Safari 1 0 1 1
Stay@Home | 0 0 1 0




MinHash Signatures via Random Permutation

Permute Rows of characteristic matrix - = : 01234 — 40312

51 SQ 53 S4 Sl 52 53 S4
0 | Cruise 1 0 0 1 0(1) | Ski 0 0 1 0
1 | Ski o o0 1 0 1(3) | Safari 1 0o 1 1
2 | Resorts 0 1 0 1 2(4) | Stay@Home | 0 0 1 0
3 | Safari 1 0 1 1 3(2) | Resorts 0 1 0 1
4 | Stay@Home | 0 0 1 0 4(0) | Cruise 1 0 0 1

Minhash Signatures for a set S; w.r.t. 7 is the row-number of first non-zero
element in the column corresponding to S;

I
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Lemma

For any two sets .S; and S; in a collection of sets S where the elements are
drawn from the universe U, the probability that the minhash value h(S;)
equals h(S;) is equal to the Jaccard similarity of S; and S;, i.e.,

Pr[(Si) = h(S;)] = SIM(S;, §;) = |55,
S1 S22 S3 Sy
0 | Ski 0 0 1 0
1 | Safari 1 0 1 1
2 | Stay@Home | 0 0 1 0
3 | Resorts 0 1 0 1
4 | Cruise 1 0 0 1

Prlh(S1) = h(S1)] = SIM(S1, Sq) = 15105l _ 2

T |S1uUSs| T3



Proof of Key Observation

Consider the rows corresponding to the columns of S; and S;.
Let = Number of rows where both the columns have a 1.

Let y = Number of rows where exactly one of the columns has a 1.

S1 Si
0 O
1 1 = =z
0 O
o 1 = y
1 1 = =z

Observe that |S; N S;| = z and |S; U S;| = =z + v.

Note that the rows where both the columns have 0’s can’t be the minHash
signature of S; or S;.

Probability that h(S;) = h(S;) is same as that the row corresponding to x is
the first one’ as compared to the rows corresponding to y.

Thus, Prih(S:) = h(S))] = %5 = g5t = SIM(S;, S5)
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MinHash Signature matrix for |S| = 11 sets with 12 hash functions

52 53 S4 55 S(j S? SS 59 Sl() Sll
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LSH



LSH for MinHash

Partitioning of a signature matrix into b = 4 bands of » = 3 rows each.

Band S1 So Ss Sa Ss Se Sz Ss So S1i0 S11
2 2 0 0 3 2 5 0 3
| 1 3 0 2 1 4 2 1 2
3 0 0 4 2 0 0 4 2
0 4 3 1 B 3 3 2 3 5 4
1] 2 1 1 0 4 1 2 1 4 2 5
4 2 1 0 5 2 3 2 3 5 4
2 4 0 5 3 4 4 5
1] 0 2 1 3 3 2 2 2
0 2 0 5 1 1 1 5
0 1 0 2 1 3 2 1 4
[\ 1 1 0 5 2 3 3 6 2
0 2 1 5 1 2 2 6 4

Band 3: {53, Se, S11} are hashed into the same bucket, and so are {Ss, So}



Probability of finding similar sets

Lemma
Let s > 0 be the Jaccard similarity of two sets. The probability that the
minHash signature matrix agrees in all the rows of at least one of the bands

for these two sets is f(s) =1 — (1 — s")°.

Band | 5; S; S3 S5 S; Sg  S7 Ss  Sg  Sig  S11
2 2 0 0 3 2 5 0 3
I 1 3 0 2 1 4 2 1 2
3 0 0 4 2 0 0 4 2
0 4 3 1 5 3 3 2 3 5 4
I 2 1 1 0 4 1 2 1 4 2 5
4 2 1 0 5 2 3 2 3 5 4
2 4 0 5 3 4 4 5
i 0 2 1 3 3 2 2 2
0 2 0 5 1 1 1 5
0 1 0 2 1 3 2 1 4
% 1 1 0 5 2 3 3 6 2
0 2 1 5 1 2 2 6 4




Claim: Pr(signatures agree in all rows of > 1 bands for S; and S; with
Jaccard Similarity s)= f(s) = 1 — (1 — s")". Answer the following:

1. Probability that the signature agrees in a row
2. Probability that the signature agrees in all rows of a band

3. Probability that the signature doesn’t agree in at least one of the rows of
a band

4. Probability that the signature doesn’t agree in any of the bands

5. Probability that the signature agrees in at least one of the bands



Understanding f(s)

f(s) =1—(1—s")" for different values of s, b, and r:

(b, 1) 4,3) | (16,4) | (20,5) | (25,5) | (100,10)
SO =1-(1=-s")"\

s=0.2 00316 | 00252 | 0.0063 | 0.0079 0.0000

s=0.4 02324 | 03396 | 0.1860 | 0.2268 0.0104

s=0.5 04138 | 06439 | 04700 | 05478 0.0930

s=06 06221 | 08914 | 08019 | 0.8678 0.4547

s=0.8 09432 | 09997 | 09996 | 0.9999 0.9999

s=1.0 1.0 10 1.0 1.0 10
Threshold ¢t = (%)‘é) 0.6299 0.5 0.5492 | 0.5253 | 0.6309
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Comments on S-Curve

1. For what values of s, f”(s) = 0?

il oD
§= (br'rfll)T

1

2. Forvalues of br >> 1, s ~ ()~

3. Steepest slope occurs at s ~ (1/b)/™)

4. If the Jaccard similarity s of the two sets is above the threshold ¢t = (%)%,
the probability that they will be found potentially similar is very high.

5. Consider the entries in the row corresponding to s = 0.8 in the table and
observe that most of the values for f(s =0.8) -+ 1ass > t¢.



Computational Summary

e Input: Collection of m text documents of size D

e k-shingles: Size = kD

e Characteristic matrix of size |U| x m, where U is the universe of all
possible k-shingles

e Signature matrix of size n x m using n-permutations
e [2] bands each consisting of r rows
e Hash maps from bands to buckets

e Output: All pairs of documents that are in the same bucket
corresponding to a band

e Check whether the pairs correspond to similar documents!

e With the right choice of threshold
Pr(the pair is similar)— 1



Metric Spaces




What makes LSH works?

How can we apply for other ‘similarity’ problems?

How can we apply for ‘nearest neighbor’ problems?



Metric Spaces

Consider a finite set X. A metric or distance measure d on X is a function
d: X x X — [0,00) satisfying the following properties. For all elements
u,v,w € X:

1. Non-negativity: d(u,v) > 0.

2. Symmetric: d(u,v) = d(v,u).

3. Identity: d(u,v) = 0 if and only if u = v.

4. Triangle Inequality: d(u,v) + d(v,w) > d(u,w).

Examples: Euclidean distance among set of n-points in plane.

20



Euclidean Distance

Let X = Set of n-points in plane.

Euclidean distance between any two points p; = (xs,v:) and p; = (z;,y;) is
d(pi,p;) = V(@i — x3)2 + (yi — y5)2.

Euclidean Distance Metric

X with the Euclidean distance measure satisfies the metric properties.

1. Non-negativity: d(u,v) > 0.

2. Symmetric: d(u,v) = d(v,u).

3. Identity: d(u,v) = 0 if and only if u = v.

4. Triangle Inequality: d(u,v) + d(v,w) > d(u,w).

(%

d(u, v) + d(v,w) > d(u, w)

w

21



Jaccard Distance Metric

S = A collection of sets. Jaccard Distance between two sets S, T € S is
JD(S,T) =1—SIM(S,T).

Jaccard Distance Metric

Set S with the Jaccard distance measure satisfies the metric properties.

1. Non-negativity: JD(S,T) > 0.

2. Symmetric: JD(S,T) = JD(S,T).

3. Identity: JD(S,T) = 0ifand only if S =T

4. Triangle Inequality: JD(S,T") + JD(T,U) > JD(S,U).

Key Property of MinHash Signatures

Let d1 and d2 be two Jaccard distances such that d; < d2. Let
p1 = 1 —d1/dandp2 =1 —dg/d.

1. If JD(S,T) < d; then Pr[h(S) =h .
2. If JD(S,T) > dz then Pr[h(S) = h(T)] < p2.

22



Hamming Distance Metric

X = Set of d-dimensional Boolean vectors.
Hamming distance HAM(u, v)= Number of coordinates in which two vectors
u,v € X differ.

HAM(u,v) =3

An Example:

Hamming Distance Metric
Hamming distance is a metric over the d-dimensional vectors.

1. Non-negativity: HAM(u, v) > 0.

2. Symmetric: HAM(u, v) = HAM(v, u).

3. Identity: HAM(w, v) = 0 if and only if u = v.

4. Triangle Inequality: HAM(u, v) + HAM (v, w) > HAM(u, w).

23



Hamming Distance Metric (contd.)

Consider two d-dimensional Boolean vectors « and v.
HAM (u, v)= Number of coordinates in which « and v differ
Let fi(z) = i-th coordinate of w.

: . HAM (u,v

For a randomly chosen index i, Pr(f;(u) = fi(v)] = 1 — PAMQw)
o] = 1 0 0 1 1 0 1 1
Pel v 1 1 0 0 1 1 1 1

Pr{fi(u) = fi(v)] =1 — HaM2) 9 _ 3 _ 5

oo

Hash Function - Key Property
Let d; and d. be two distances such that d, < d». Let py =1 —di/d and

P2 = 1-— dz/d.
1. If HAM(u, ’U) <d then Pr[fz(u) = fz(U)] > p1
2. If HAM(u, ’U) > ds then Pr[fz(u) = fZ(U)] < p2

24



LSH For Near Neighbors in 2D

P= Set of points in 2d and A > 0 a parameter.
Define hash function f; by a line I with random orientation as follows:

Partition [ into intervals of equal size 2A.
Orthogonally project all points of P on I.
Let fi(z) be the interval in which x € P projects to.

25



LSH For Near Neighbors (contd.)

Key Property of Hash Function
1. If d(z,y) < A, then Pr(fi(z) = fi(y)] = 1/2.
2. Ifd(z,y) > 4A, then Pr{fi(z) = fi(y)] < 1/3.

Proof: Assume [ is horizontal. We first show that if d(z,y) < A, then
Pr{fi(z) = fily)] 2 1/2.
Let m be the mid-point of the interval f;(x).

In fi(x), with probability 1/2 the projection of x lies to the left of m.
With probability 1/2, the projection of y lies to the right of projection of z.

= projection of y lies in f(z) (i.e., fi(z) = fi(y)) as d(z,y) < A.

Thus with probability 1/4, projections of = and y lie in f;(z) where the
projection of z is to the left of m and the projection of y is to the right of the
projection of z.

Same reasoning holds when f;(z) is to the right of m and the projection of y
is to the left of the projection of «.

Since the above two cases are mutually exclusive, Pr[fi(z) = fi(y)] > 1/2. 26



Proof (contd.)

Now consider the case when d(xz,y) > 4A.

d(z, y) cos® < 2A 24

We want to show that Pr(f;(z) = fi(y)] < 1/3.
Let 0 be the angle of the line passing through x and y with respect to 1.

For the projections of = and y to fall in the same interval, we will need that
d(z,y) cosf < 2A.

For this to happen cos @ < 1/2, or the angle the line zy forms with the
horizontal needs to be between 60° and 90°.

This has at most 1/3-rd chance.

27



Fingerprints




Matching Fingerprints

Fingerprints consists of minutia points and patterns that form ridges and
bifurcations

Bifurcations

Ridge Ending

Ridge Dot

28



Fingerprint with an overlay grid

Fingerprint mapped to a normalized grid cell

29



Minutia of two fingerprints

Statistical Analysis from fingerprint analyst:

1. Pr(minutia in a random grid cell of a fingerprint) = 0.2

2. Pr(given two fingerprints of the same finger and that one fingerprint has
a minutia in a grid cell, other fingerprint has the minutia in that cell)
=0.85

3. Pick 3 random grid cells and define a (hash) function f that sends two
fingerprints to the same bucket if they have minutia in each of those
three cells

4. Pr(two arbitrary fingerprints will map to the same bucket by f)
= 0.2° = 0.000064

5. Pr(f maps the fingerprints of the same finger to the same bucket)
=0.2° x 0.85% = 0.0049

30



Probabilistic Amplification

Suppose we have 1000 such functions and we take ‘OR’ of these functions

1. Pr(two fingerprints from different fingers map to the same bucket)
=1— (1 —0.000064)"° ~ 0.061

2. Pr(two fingerprints of the same finger map to the same bucket)
=1—(1—0.0049)"% ~ 0.992

Take two groups of 1000 functions each and report a match if it's a match in
both the groups.

1. Pr(two fingerprints from different fingers map to the same bucket)
~ 0.061% = 0.0037

2. Pr(two fingerprints of the same finger map to the same bucket)
~ 0.992% = 0.984
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Conclusions

LSH has abundance of applications
(Image Similarity, Documents Similarity, Nearest Neighbors, Similar
Gene-Expressions, .. .)
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