Locality-Sensitive Hashing

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada
Introduction
Objectives

How to find efficiently

1. Similar documents among a collection of documents
2. Similar web-pages among web-pages
3. Similar fingerprints among a database of fingerprints
4. Similar sets among a collection of sets
5. Similar images from a database of images
6. Similar vectors in higher dimensions.
Similarity of Documents
Problem Definition

Input: A collection of web-pages.

Output: Report near duplicate web-pages.

k-shingles

Any substring of k words that appears in the document.

Text Document = “What is the likely date that the regular classes may resume in Ontario”

2–shingles: What is, is the, the likely, . . . , in Ontario

3–shingles: What is the, is the likely, . . . , resume in Ontario

In practice: 9–shingles for English Text and 5–shingles for e-mails
Similarity between sets

Text Document \(D \rightarrow \text{Set } S \)

1. Form all the \(k \)-shingles of \(D \)
2. \(S \) is the collection of all \(k \)-shingles of \(D \)

Jaccard Similarity

For a pair of sets \(S \) and \(T \), the Jaccard Similarity is defined as

\[
\text{SIM}(S, T) = \frac{|S \cap T|}{|S \cup T|}
\]

Figure 1: \(|S| = 8, |T| = 5, |S \cup T| = 10, |S \cap T| = 3, \text{SIM}(S, T) = \frac{|S \cap T|}{|S \cup T|} = \frac{3}{10}\)
New Problem

Given a constant $0 \leq s \leq 1$ and a collection of sets S, find the pairs of sets in S with Jaccard similarity $\geq s$

$U = \{\text{Cruise, Ski, Resorts, Safari, Stay@Home}\}$

$S_1 = \{\text{Cruise, Safari}\} \quad S_3 = \{\text{Ski, Safari, Stay@Home}\}$

$S_2 = \{\text{Resorts}\} \quad S_4 = \{\text{Cruise, Resorts, Safari}\}$

Problem: Given $S = \{S_1, S_2, S_3, S_4\}$ and $s = \frac{1}{2}$, report all pairs that are s-similar.

$$\text{SIM}(S_1, S_2) = \frac{0}{3} = 0 \quad \text{SIM}(S_2, S_3) = \frac{0}{4} = 0$$

$$\text{SIM}(S_1, S_3) = \frac{1}{4} \quad \text{SIM}(S_2, S_4) = \frac{1}{3}$$

$$\text{SIM}(S_1, S_4) = \frac{2}{3} \quad \text{SIM}(S_3, S_4) = \frac{1}{5}$$
Characteristic Matrix Representation of Sets

\[U = \{ \text{Cruise, Ski, Resorts, Safari, Stay@Home} \} \]

\[S = \{ S_1, S_2, S_3, S_4 \} \], where each \(S_i \subseteq U \)
e.g. \(S_1 = \{ \text{Cruise, Safari} \} \) and \(S_2 = \{ \text{Resorts} \} \)

Characteristic matrix for \(S \):

<table>
<thead>
<tr>
<th></th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruise</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ski</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Resorts</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Safari</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stay@Home</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
MinHash Signatures via Random Permutation

Permute Rows of characteristic matrix - $\pi : 01234 \rightarrow 40312$

<table>
<thead>
<tr>
<th></th>
<th>Cruise</th>
<th>Ski</th>
<th>Resorts</th>
<th>Safari</th>
<th>Stay@Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S$_1$</th>
<th>S$_2$</th>
<th>S$_3$</th>
<th>S$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0(1)</td>
<td>Ski</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1(3)</td>
<td>Safari</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2(4)</td>
<td>Stay@Home</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3(2)</td>
<td>Resorts</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4(0)</td>
<td>Cruise</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Minhash Signatures for a set S_i w.r.t. π is the row-number of first non-zero element in the column corresponding to S_i

- $h(S_1) = 1$
- $h(S_2) = 3$
- $h(S_3) = 0$
- $h(S_4) = 1$
Key Lemma

Lemma

For any two sets S_i and S_j in a collection of sets S where the elements are drawn from the universe U, the probability that the minhash value $h(S_i)$ equals $h(S_j)$ is equal to the Jaccard similarity of S_i and S_j, i.e.,

$$Pr[h(S_i) = h(S_j)] = \text{SIM}(S_i, S_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}.$$

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ski</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Safari</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Stay@Home</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Resorts</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Cruise</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$$Pr[h(S_1) = h(S_4)] = \text{SIM}(S_1, S_4) = \frac{|S_1 \cap S_4|}{|S_1 \cup S_4|} = \frac{2}{3}$$
Proof of Key Observation

Consider the rows corresponding to the columns of S_i and S_j.

Let $x =$ Number of rows where both the columns have a 1.

Let $y =$ Number of rows where exactly one of the columns has a 1.

\[
\begin{array}{cc}
S_1 & S_4 \\
0 & 0 \\
1 & 1 & \rightarrow & x \\
0 & 0 \\
0 & 1 & \rightarrow & y \\
1 & 1 & \rightarrow & x
\end{array}
\]

Observe that $|S_i \cap S_j| = x$ and $|S_i \cup S_j| = x + y$.

Note that the rows where both the columns have 0’s can’t be the minHash signature of S_i or S_j.

Probability that $h(S_i) = h(S_j)$ is same as that the row corresponding to x is the ‘first one’ as compared to the rows corresponding to y.

Thus, $Pr[h(S_i) = h(S_j)] = \frac{x}{x+y} = \frac{|S_i \cap S_j|}{|S_i \cup S_j|} = \text{SIM}(S_i, S_j)$
MinHash Signature matrix for $|S| = 11$ sets with 12 hash functions

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
<th>S_{10}</th>
<th>S_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
LSH
Partitioning of a signature matrix into $b = 4$ bands of $r = 3$ rows each.

<table>
<thead>
<tr>
<th>Band</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
<th>S_{10}</th>
<th>S_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Band 3: $\{S_3, S_6, S_{11}\}$ are hashed into the same bucket, and so are $\{S_8, S_9\}$
Probability of finding similar sets

Lemma

Let $s > 0$ be the Jaccard similarity of two sets. The probability that the minHash signature matrix agrees in all the rows of at least one of the bands for these two sets is $f(s) = 1 - (1 - s^r)^b$.

<table>
<thead>
<tr>
<th>Band</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
<th>S_{10}</th>
<th>S_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Claim: \(\Pr(\text{signatures agree in all rows of } \geq 1 \text{ bands for } S_i \text{ and } S_j \text{ with Jaccard Similarity } s) = f(s) = 1 - (1 - s^r)^b \). Answer the following:

1. Probability that the signature agrees in a row
2. Probability that the signature agrees in all rows of a band
3. Probability that the signature doesn’t agree in at least one of the rows of a band
4. Probability that the signature doesn’t agree in any of the bands
5. Probability that the signature agrees in at least one of the bands
Understanding $f(s)$

$$f(s) = 1 - (1 - s^r)^b$$ for different values of $s, b,$ and r:

<table>
<thead>
<tr>
<th>(b, r)</th>
<th>$(4, 3)$</th>
<th>$(16, 4)$</th>
<th>$(20, 5)$</th>
<th>$(25, 5)$</th>
<th>$(100, 10)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(s) = 1 - (1 - s^r)^b$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s = 0.2$</td>
<td>0.0316</td>
<td>0.0252</td>
<td>0.0063</td>
<td>0.0079</td>
<td>0.0000</td>
</tr>
<tr>
<td>$s = 0.4$</td>
<td>0.2324</td>
<td>0.3396</td>
<td>0.1860</td>
<td>0.2268</td>
<td>0.0104</td>
</tr>
<tr>
<td>$s = 0.5$</td>
<td>0.4138</td>
<td>0.6439</td>
<td>0.4700</td>
<td>0.5478</td>
<td>0.0930</td>
</tr>
<tr>
<td>$s = 0.6$</td>
<td>0.6221</td>
<td>0.8914</td>
<td>0.8019</td>
<td>0.8678</td>
<td>0.4547</td>
</tr>
<tr>
<td>$s = 0.8$</td>
<td>0.9432</td>
<td>0.9997</td>
<td>0.9996</td>
<td>0.9999</td>
<td>0.9999</td>
</tr>
<tr>
<td>$s = 1.0$</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Threshold $t = \left(\frac{1}{b}\right)\left(\frac{1}{r}\right)$</td>
<td>0.6299</td>
<td>0.5</td>
<td>0.5492</td>
<td>0.5253</td>
<td>0.6309</td>
</tr>
</tbody>
</table>
S-curve

\[f(s) = 1 - (1 - s)^b \]

- $r = 3, b = 4$
- $r = 4, b = 16$
- $r = 5, b = 20$
- $r = 5, b = 25$
- $r = 10, b = 100$
Comments on S-Curve

1. For what values of s, $f''(s) = 0$?

 \[s = \left(\frac{r-1}{br-1} \right)^{\frac{1}{r}} \]

2. For values of $br >> 1$, $s \approx \left(\frac{1}{b} \right)^{\frac{1}{r}}$

3. Steepest slope occurs at $s \approx (1/b)^{(1/r)}$

4. If the Jaccard similarity s of the two sets is above the threshold $t = \left(\frac{1}{b} \right)^{\frac{1}{r}}$, the probability that they will be found potentially similar is very high.

5. Consider the entries in the row corresponding to $s = 0.8$ in the table and observe that most of the values for $f(s = 0.8) \rightarrow 1$ as $s > t$.
Computational Summary

- **Input:** Collection of \(m \) text documents of size \(D \)
- \(k \)-shingles: Size = \(kD \)
- Characteristic matrix of size \(|U| \times m \), where \(U \) is the universe of all possible \(k \)-shingles
- Signature matrix of size \(n \times m \) using \(n \)-permutations
- \(\lceil \frac{n}{r} \rceil \) bands each consisting of \(r \) rows
- Hash maps from bands to buckets
- Output: All pairs of documents that are in the same bucket corresponding to a band
- Check whether the pairs correspond to similar documents!
- With the right choice of threshold
 \(\Pr(\text{the pair is similar}) \rightarrow 1 \)
Metric Spaces
What makes LSH works?

How can we apply for other ‘similarity’ problems?
How can we apply for ‘nearest neighbor’ problems?
Consider a finite set X. A *metric* or *distance measure* d on X is a function $d : X \times X \to [0, \infty)$ satisfying the following properties. For all elements $u, v, w \in X$:

1. **Non-negativity:** $d(u, v) \geq 0$.
2. **Symmetric:** $d(u, v) = d(v, u)$.
3. **Identity:** $d(u, v) = 0$ if and only if $u = v$.
4. **Triangle Inequality:** $d(u, v) + d(v, w) \geq d(u, w)$.

Examples: Euclidean distance among set of n-points in plane.
Euclidean Distance

Let $X = \text{Set of } n\text{-points in plane.}$ Euclidean distance between any two points $p_i = (x_i, y_i)$ and $p_j = (x_j, y_j)$ is $d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$.

Euclidean Distance Metric

X with the Euclidean distance measure satisfies the metric properties.

1. Non-negativity: $d(u, v) \geq 0$.
2. Symmetric: $d(u, v) = d(v, u)$.
3. Identity: $d(u, v) = 0$ if and only if $u = v$.
4. Triangle Inequality: $d(u, v) + d(v, w) \geq d(u, w)$.

\[d(u, v) + d(v, w) \geq d(u, w) \]
Jaccard Distance Metric

S = A collection of sets. Jaccard Distance between two sets $S, T \in S$ is $\text{JD}(S, T) = 1 - \text{SIM}(S, T)$.

Jaccard Distance Metric

Set S with the Jaccard distance measure satisfies the metric properties.

1. Non-negativity: $\text{JD}(S, T) \geq 0$.
2. Symmetric: $\text{JD}(S, T) = \text{JD}(T, S)$.
3. Identity: $\text{JD}(S, T) = 0$ if and only if $S = T$.
4. Triangle Inequality: $\text{JD}(S, T) + \text{JD}(T, U) \geq \text{JD}(S, U)$.

Key Property of MinHash Signatures

Let d_1 and d_2 be two Jaccard distances such that $d_1 < d_2$. Let $p_1 = 1 - d_1/d$ and $p_2 = 1 - d_2/d$.

1. If $\text{JD}(S, T) \leq d_1$ then $Pr[h(S) = h(T)] \geq p_1$.
2. If $\text{JD}(S, T) \geq d_2$ then $Pr[h(S) = h(T)] \leq p_2$.
Hamming Distance Metric

\[X = \text{Set of } d\text{-dimensional Boolean vectors.} \]

Hamming distance \(\text{HAM}(u, v) = \) Number of coordinates in which two vectors \(u, v \in X \) differ.

An Example:

\[
\begin{align*}
 u &= 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \\
 v &= 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \\
 \text{HAM}(u, v) &= 3
\end{align*}
\]

Hamming Distance Metric

Hamming distance is a metric over the \(d \)-dimensional vectors.

1. Non-negativity: \(\text{HAM}(u, v) \geq 0 \).
2. Symmetric: \(\text{HAM}(u, v) = \text{HAM}(v, u) \).
3. Identity: \(\text{HAM}(u, v) = 0 \) if and only if \(u = v \).
4. Triangle Inequality: \(\text{HAM}(u, v) + \text{HAM}(v, w) \geq \text{HAM}(u, w) \).
Hamming Distance Metric (contd.)

Consider two d-dimensional Boolean vectors u and v.

$\text{HAM}(u, v) =$ Number of coordinates in which u and v differ

Let $f_i(x) = i$-th coordinate of u.

For a randomly chosen index i, $Pr[f_i(u) = f_i(v)] = 1 - \frac{\text{HAM}(u, v)}{d}$

Example:

\[
\begin{array}{cccccccc}
 u &=& 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
 v &=& 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

$Pr[f_i(u) = f_i(v)] = 1 - \frac{\text{HAM}(u, v)}{d} = 1 - \frac{3}{8} = \frac{5}{8}$

Hash Function - Key Property

Let d_1 and d_2 be two distances such that $d_1 < d_2$. Let $p_1 = 1 - d_1 / d$ and $p_2 = 1 - d_2 / d$.

1. If $\text{HAM}(u, v) \leq d_1$ then $Pr[f_i(u) = f_i(v)] \geq p_1$

2. If $\text{HAM}(u, v) \geq d_2$ then $Pr[f_i(u) = f_i(v)] \leq p_2$
P = Set of points in 2d and $\Delta > 0$ a parameter.
Define hash function f_l by a line l with random orientation as follows:

Partition l into intervals of equal size 2Δ.
Orthogonally project all points of P on l.
Let $f_l(x)$ be the interval in which $x \in P$ projects to.
Key Property of Hash Function

1. If $d(x, y) \leq \Delta$, then $Pr[f_l(x) = f_l(y)] \geq 1/2$.
2. If $d(x, y) > 4\Delta$, then $Pr[f_l(x) = f_l(y)] \leq 1/3$.

Proof: Assume l is horizontal. We first show that if $d(x, y) \leq \Delta$, then $Pr[f_l(x) = f_l(y)] \geq 1/2$.

Let m be the mid-point of the interval $f_l(x)$.

In $f_l(x)$, with probability $1/2$ the projection of x lies to the left of m. With probability $1/2$, the projection of y lies to the right of projection of x.

\implies projection of y lies in $f_l(x)$ (i.e., $f_l(x) = f_l(y)$) as $d(x, y) \leq \Delta$.

Thus with probability $1/4$, projections of x and y lie in $f_l(x)$ where the projection of x is to the left of m and the projection of y is to the right of the projection of x.

Same reasoning holds when $f_l(x)$ is to the right of m and the projection of y is to the left of the projection of x.

Since the above two cases are mutually exclusive, $Pr[f_l(x) = f_l(y)] \geq 1/2$.

Now consider the case when $d(x, y) > 4\Delta$.

We want to show that $Pr[f_l(x) = f_l(y)] \leq 1/3$.

Let θ be the angle of the line passing through x and y with respect to l. For the projections of x and y to fall in the same interval, we will need that $d(x, y) \cos \theta \leq 2\Delta$.

For this to happen $\cos \theta \leq 1/2$, or the angle the line xy forms with the horizontal needs to be between 60° and 90°.

This has at most $1/3$-rd chance.
Fingerprints
Matching Fingerprints

Fingerprints consists of **minutia points** and patterns that form ridges and bifurcations.
Fingerprint with an overlay grid

Fingerprint mapped to a normalized grid cell
Statistical Analysis from fingerprint analyst:

1. \(\Pr(\text{minutia in a random grid cell of a fingerprint}) = 0.2 \)

2. \(\Pr(\text{given two fingerprints of the same finger and that one fingerprint has a minutia in a grid cell, other fingerprint has the minutia in that cell}) = 0.85 \)

3. Pick 3 random grid cells and define a (hash) function \(f \) that sends two fingerprints to the same bucket if they have minutia in each of those three cells

4. \(\Pr(\text{two arbitrary fingerprints will map to the same bucket by } f) = 0.2^6 = 0.000064 \)

5. \(\Pr(f \text{ maps the fingerprints of the same finger to the same bucket}) = 0.2^3 \times 0.85^3 = 0.0049 \)
Suppose we have 1000 such functions and we take ‘OR’ of these functions

1. $\Pr(\text{two fingerprints from different fingers map to the same bucket})$
 \[= 1 - (1 - 0.000064)^{1000} \approx 0.061 \]

2. $\Pr(\text{two fingerprints of the same finger map to the same bucket})$
 \[= 1 - (1 - 0.0049)^{1000} \approx 0.992 \]

Take two groups of 1000 functions each and report a match if it’s a match in both the groups.

1. $\Pr(\text{two fingerprints from different fingers map to the same bucket})$
 \[\approx 0.061^2 = 0.0037 \]

2. $\Pr(\text{two fingerprints of the same finger map to the same bucket})$
 \[\approx 0.992^2 = 0.984 \]
References
Conclusions

LSH has abundance of applications
(Image Similarity, Documents Similarity, Nearest Neighbors, Similar Gene-Expressions, . . .)

Main References:

2. Aristides Gionis, Piotr Indyk and Rajeev Motwani, Similarity Search in High Dimensions via Hashing, VLDB 1999
3. LSH Algorithm and Implementation
 http://www.mit.edu/~andoni/LSH/
4. Chapter 3 in MMDS book (mmds.org)
5. Chapter on LSH in My Notes on Topics in Algorithm Design