Locality-Sensitive Hashing

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Introduction

Similarity of Documents	
LSH	
Metric Spaces	
Fingerprints	
References	

Introduction

Objectives

How to find efficiently

- 1. Similar documents among a collection of documents
- 2. Similar web-pages among web-pages
- 3. Similar fingerprints among a database of fingerprints
- 4. Similar sets among a collection of sets
- 5. Similar images from a database of images
- 6. Similar vectors in higher dimensions.

Similarity of Documents

Similarity of Documents

Problem Definition

Input: A collection of web-pages.

Output: Report near duplicate web-pages.

k-shingles

Any substring of k words that appears in the document.

Text Document = "What is the likely date that the regular classes may resume in Ontario"

- 2-shingles: What is, is the, the likely, ..., in Ontario
- 3-shingles: What is the, is the likely, \dots , resume in Ontario

In practice: 9-shingles for English Text and 5-shingles for e-mails

Similarity between sets

Text Document $D \to \operatorname{Set} S$

- 1. Form all the k-shingles of D
- 2. S is the collection of all k-shingles of D

Jaccard Similarity

For a pair of sets S and T, the Jaccard Similarity is defined as

$$\mathsf{SIM}(S,T) = \tfrac{|S \cap T|}{|S \cup T|}$$

Figure 1:
$$|S| = 8$$
, $|T| = 5$, $|S \cup T| = 10$, $|S \cap T| = 3$, $SIM(S, T) = \frac{|S \cap T|}{|S \cup T|} = \frac{3}{10}$

Problem: Find Similar Sets

New Problem

Given a constant $0 \le s \le 1$ and a collection of sets $\mathcal S$, find the pairs of sets in $\mathcal S$ with Jaccard similarity $\ge s$

$$U = \{ \mathsf{Cruise}, \mathsf{Ski}, \mathsf{Resorts}, \mathsf{Safari}, \mathsf{Stay@Home} \}$$

$$S_1 = \{\text{Cruise}, \, \text{Safari}\}$$
 $S_3 = \{\text{Ski}, \, \text{Safari}, \, \text{Stay@Home}\}$

$$S_2 = \{ \text{Resorts} \}$$
 $S_4 = \{ \text{Cruise, Resorts, Safari} \}$

Problem: Given $S = \{S_1, S_2, S_3, S_4\}$ and $s = \frac{1}{2}$, report all pairs that are s-similar.

$$SIM(S_1, S_2) = \frac{0}{3} = 0$$
 $SIM(S_2, S_3) = \frac{0}{4} = 0$

$$SIM(S_1, S_3) = \frac{1}{4}$$
 $SIM(S_2, S_4) = \frac{1}{3}$

$$SIM(S_1, S_4) = \frac{2}{3}$$
 $SIM(S_3, S_4) = \frac{1}{5}$

Characteristic Matrix Representation of Sets

$$U=\{ ext{Cruise, Ski, Resorts, Safari, Stay@Home}\}$$
 $\mathcal{S}=\{S_1,S_2,S_3,S_4\}, ext{ where each } S_i\subseteq U$ e.g. $S_1=\{ ext{Cruise, Safari}\} ext{ and } S_2=\{ ext{Resorts}\}$

Characteristic matrix for S:

	S_1	S_2	S_3	S_4
Cruise	1	0	0	1
Ski	0	0	1	0
Resorts	0	1	0	1
Safari	1	0	1	1
Stay@Home	0	0	1	0

MinHash Signatures via Random Permutation

Permute Rows of characteristic matrix - $\pi:01234 \rightarrow 40312$

		S_1	S_2	S_3	S_4
0	Cruise	1	0	0	1
1	Ski	0	0	1	0
2	Resorts	0	1	0	1
3	Safari	1	0	1	1
4	Stay@Home	0	0	1	0

		S_1	S_2	S_3	S_4
0(1)	Ski	0	0	1	0
1(3)	Safari	1	0	1	1
2(4)	Stay@Home	0	0	1	0
3(2)	Resorts	0	1	0	1
4(0)	Cruise	1	0	0	1

Minhash Signatures for a set S_i w.r.t. π is the **row-number** of first non-zero element in the column corresponding to S_i

$$h(S_1) = 1$$

$$h(S_2) = 3$$

$$h(S_3) = 0$$

$$h(S_4) = 1$$

Key Lemma

Lemma

For any two sets S_i and S_j in a collection of sets S where the elements are drawn from the universe U, the probability that the minhash value $h(S_i)$ equals $h(S_j)$ is equal to the Jaccard similarity of S_i and S_j , i.e., $Pr[h(S_i) = h(S_i)] = SIM(S_i, S_i) = \frac{|S_i \cap S_j|}{|S_i \cap S_j|}$

$$Pr[h(S_i) = h(S_j)] = \mathsf{SIM}(S_i, S_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}.$$

		S_1	S_2	S_3	S_4
0	Ski	0	0	1	0
1	Safari	1	0	1	1
2	Stay@Home	0	0	1	0
3	Resorts	0	1	0	1
4	Cruise	1	0	0	1

$$Pr[h(S_1) = h(S_4)] = SIM(S_1, S_4) = \frac{|S_1 \cap S_4|}{|S_1 \cup S_4|} = \frac{2}{3}$$

9

Proof of Key Observation

Consider the rows corresponding to the columns of S_i and S_j .

Let x = Number of rows where both the columns have a 1.

Let y = Number of rows where exactly one of the columns has a 1.

S_1	S_4		
0	0		
1	1	\rightarrow	\boldsymbol{x}
0	0		
0	1	\rightarrow	y
1	1	\rightarrow	\boldsymbol{x}

Observe that $|S_i \cap S_j| = x$ and $|S_i \cup S_j| = x + y$.

Note that the rows where both the columns have 0's can't be the minHash signature of S_i or S_j .

Probability that $h(S_i)=h(S_j)$ is same as that the row corresponding to x is the 'first one' as compared to the rows corresponding to y.

Thus,
$$Pr[h(S_i) = h(S_j)] = \frac{x}{x+y} = \frac{|S_i \cap S_j|}{|S_i \cup S_j|} = \text{SIM}(S_i, S_j)$$

10

MinHashSignature Matrix

MinHash Signature matrix for $|\mathcal{S}|=11$ sets with 12 hash functions

S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}
2	2	1	0	0	1	3	2	5	0	3
1	3	2	0	2	2	1	4	2	1	2
3	0	3	0	4	3	2	0	0	4	2
0	4	3	1	5	3	3	2	3	5	4
2	1	1	0	4	1	2	1	4	2	5
4	2	1	0	5	2	3	2	3	5	4
2	4	3	0	5	3	3	4	4	5	3
0	2	4	1	3	4	3	2	2	2	4
0	2	1	0	5	1	1	1	1	5	1
0	5	1	0	2	1	3	2	1	5	4
1	3	1	0	5	2	3	3	6	3	2
0	5	2	1	5	1	2	2	6	5	4

LSH

LSH for MinHash

Partitioning of a signature matrix into b=4 bands of r=3 rows each.

Band	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}
	2	2	1	0	0	1	3	2	5	0	3
- 1	1	3	2	0	2	2	1	4	2	1	2
	3	0	3	0	4	3	2	0	0	4	2
	0	4	3	1	5	3	3	2	3	5	4
II	2	1	1	0	4	1	2	1	4	2	5
	4	2	1	0	5	2	3	2	3	5	4
	2	4	3	0	5	3	3	4	4	5	3
III	0	2	4	1	3	4	3	2	2	2	4
	0	2	1	0	5	1	1	1	1	5	1
	0	5	1	0	2	1	3	2	1	5	4
IV	1	3	1	0	5	2	3	3	6	3	2
	0	5	2	1	5	1	2	2	6	5	4
	•										

Band 3: $\{S_3, S_6, S_{11}\}$ are hashed into the same bucket, and so are $\{S_8, S_9\}$

Probability of finding similar sets

Lemma

Let s>0 be the Jaccard similarity of two sets. The probability that the minHash signature matrix agrees in all the rows of at least one of the bands for these two sets is $f(s)=1-(1-s^r)^b$.

Band	S_1	S_2	S_3	S_4	S_5	s_6	S_7	S ₈	S_9	S ₁₀	S ₁₁
	2	2	1	0	0	1	3	2	5	0	3
1	1	3	2	0	2	2	1	4	2	1	2
	3	0	3	0	4	3	2	0	0	4	2
	0	4	3	1	5	3	3	2	3	5	4
II.	2	1	1	0	4	1	2	1	4	2	5
	4	2	1	0	5	2	3	2	3	5	4
	2	4	3	0	5	3	3	4	4	5	3
III	0	2	4	1	3	4	3	2	2	2	4
	0	2	1	0	5	1	1	1	1	5	1
	0	5	1	0	2	1	3	2	1	5	4
IV	1	3	1	0	5	2	3	3	6	3	2
	0	5	2	1	5	1	2	2	6	5	4

Claim: Pr(signatures agree in all rows of ≥ 1 bands for S_i and S_j with Jaccard Similarity s)= $f(s) = 1 - (1 - s^r)^b$. Answer the following:

- 1. Probability that the signature agrees in a row
- 2. Probability that the signature agrees in all rows of a band
- 3. Probability that the signature doesn't agree in at least one of the rows of a band
- 4. Probability that the signature doesn't agree in any of the bands
- 5. Probability that the signature agrees in at least one of the bands

Understanding f(s)

$$f(s) = 1 - (1 - s^r)^b$$
 for different values of s, b , and r :

(b, r)	(4, 3)	(16, 4)	(20, 5)	(25, 5)	(100, 10)
$f(s) = 1 - (1 - s^r)^b \searrow$					
s = 0.2	0.0316	0.0252	0.0063	0.0079	0.0000
s = 0.4	0.2324	0.3396	0.1860	0.2268	0.0104
s = 0.5	0.4138	0.6439	0.4700	0.5478	0.0930
s = 0.6	0.6221	0.8914	0.8019	0.8678	0.4547
s = 0.8	0.9432	0.9997	0.9996	0.9999	0.9999
s = 1.0	1.0	1.0	1.0	1.0	1.0
Threshold $t = \left(\frac{1}{b}\right)^{\left(\frac{1}{r}\right)}$	0.6299	0.5	0.5492	0.5253	0.6309

Comments on S-Curve

- 1. For what values of s, f''(s) = 0? $s = \left(\frac{r-1}{br-1}\right)^{\frac{1}{r}}$
- 2. For values of br >> 1, $s \approx \left(\frac{1}{b}\right)^{\frac{1}{r}}$
- 3. Steepest slope occurs at $s \approx (1/b)^{(1/r)}$
- 4. If the Jaccard similarity s of the two sets is above the threshold $t=(\frac{1}{b})^{\frac{1}{r}}$, the probability that they will be found potentially similar is very high.
- 5. Consider the entries in the row corresponding to s=0.8 in the table and observe that most of the values for $f(s=0.8) \to 1$ as s>t.

Computational Summary

- Input: Collection of m text documents of size $\mathcal D$
- k-shingles: Size = $k\mathcal{D}$
- Characteristic matrix of size $|U| \times m$, where U is the universe of all possible k-shingles
- Signature matrix of size $n \times m$ using n-permutations
- $\lceil \frac{n}{r} \rceil$ bands each consisting of r rows
- Hash maps from bands to buckets
- Output: All pairs of documents that are in the same bucket corresponding to a band
- Check whether the pairs correspond to similar documents!
- With the right choice of threshold Pr(the pair is similar) → 1

Metric Spaces

What makes LSH works?

How can we apply for other 'similarity' problems?

How can we apply for 'nearest neighbor' problems?

Metric Spaces

Consider a finite set X. A metric or distance measure d on X is a function $d: X \times X \to [0, \infty)$ satisfying the following properties. For all elements $u, v, w \in X$:

- 1. Non-negativity: $d(u, v) \geq 0$.
- 2. Symmetric: d(u, v) = d(v, u).
- 3. Identity: d(u, v) = 0 if and only if u = v.
- 4. Triangle Inequality: $d(u,v) + d(v,w) \ge d(u,w)$.

Examples: Euclidean distance among set of n-points in plane.

Euclidean Distance

Let X = Set of n-points in plane.

Euclidean distance between any two points $p_i=(x_i,y_i)$ and $p_j=(x_j,y_j)$ is $d(p_i,p_j)=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}$.

Euclidean Distance Metric

X with the Euclidean distance measure satisfies the metric properties.

- 1. Non-negativity: $d(u, v) \ge 0$.
- 2. Symmetric: d(u, v) = d(v, u).
- 3. Identity: d(u, v) = 0 if and only if u = v.
- 4. Triangle Inequality: $d(u, v) + d(v, w) \ge d(u, w)$.

Jaccard Distance Metric

 \mathcal{S} = A collection of sets. Jaccard Distance between two sets $S,T\in\mathcal{S}$ is ${\sf JD}(S,T)=1-{\sf SIM}(S,T).$

Jaccard Distance Metric

Set $\mathcal S$ with the Jaccard distance measure satisfies the metric properties.

- 1. Non-negativity: $JD(S,T) \ge 0$.
- 2. Symmetric: JD(S,T) = JD(S,T).
- 3. Identity: JD(S,T) = 0 if and only if S = T.
- 4. Triangle Inequality: $JD(S,T) + JD(T,U) \ge JD(S,U)$.

Key Property of MinHash Signatures

Let d_1 and d_2 be two Jaccard distances such that $d_1 < d_2$. Let $p_1 = 1 - d_1/d$ and $p_2 = 1 - d_2/d$.

- 1. If $JD(S,T) \leq d_1$ then $Pr[h(S) = h(T)] \geq p_1$.
- 2. If $JD(S,T) \geq d_2$ then $Pr[h(S) = h(T)] \leq p_2$.

Hamming Distance Metric

X =Set of d-dimensional Boolean vectors.

Hamming distance ${\sf HAM}(u,v){\sf = Number}$ of coordinates in which two vectors $u,v\in X$ differ.

Hamming Distance Metric

Hamming distance is a metric over the *d*-dimensional vectors.

- 1. Non-negativity: $\mathsf{HAM}(u,v) \geq 0$.
- 2. Symmetric: HAM(u, v) = HAM(v, u).
- 3. Identity: HAM(u, v) = 0 if and only if u = v.
- 4. Triangle Inequality: $\mathsf{HAM}(u,v) + \mathsf{HAM}(v,w) \ge \mathsf{HAM}(u,w)$.

Hamming Distance Metric (contd.)

Consider two d-dimensional Boolean vectors u and v.

 $\mathsf{HAM}(u,v)$ = Number of coordinates in which u and v differ

Let $f_i(x) = i$ -th coordinate of u.

For a randomly chosen index $i, \Pr[f_i(u) = f_i(v)] = 1 - \frac{\mathsf{HAM}(u,v)}{d}$

$$Pr[f_i(u) = f_i(v)] = 1 - \frac{\text{HAM}(u,v)}{d} = 1 - \frac{3}{8} = \frac{5}{8}$$

Hash Function - Key Property

Let d_1 and d_2 be two distances such that $d_1 < d_2$. Let $p_1 = 1 - d_1/d$ and $p_2 = 1 - d_2/d$.

- 1. If $\mathsf{HAM}(u,v) \leq d_1$ then $Pr[f_i(u) = f_i(v)] \geq p_1$
- 2. If $\mathsf{HAM}(u,v) \geq d_2$ then $\Pr[f_i(u) = f_i(v)] \leq p_2$

LSH For Near Neighbors in 2D

P= Set of points in 2d and $\Delta > 0$ a parameter.

Define hash function f_l by a line l with random orientation as follows:

Partition l into intervals of equal size 2Δ .

Orthogonally project all points of P on l.

Let $f_l(x)$ be the interval in which $x \in P$ projects to.

LSH For Near Neighbors (contd.)

Key Property of Hash Function

- 1. If $d(x,y) \leq \Delta$, then $Pr[f_l(x) = f_l(y)] \geq 1/2$.
- 2. If $d(x, y) > 4\Delta$, then $Pr[f_l(x) = f_l(y)] \le 1/3$.

Proof: Assume l is horizontal. We first show that if $d(x,y) \leq \Delta$, then $Pr[f_l(x) = f_l(y)] \geq 1/2$.

Let m be the mid-point of the interval $f_l(x)$.

In $f_l(x)$, with probability 1/2 the projection of x lies to the left of m. With probability 1/2, the projection of y lies to the right of projection of x.

$$\implies$$
 projection of y lies in $f_l(x)$ (i.e., $f_l(x) = f_l(y)$) as $d(x,y) \leq \Delta$.

Thus with probability 1/4, projections of x and y lie in $f_l(x)$ where the projection of x is to the left of m and the projection of y is to the right of the projection of x.

Same reasoning holds when $f_l(x)$ is to the right of m and the projection of y is to the left of the projection of x.

Since the above two cases are mutually exclusive, $Pr[f_l(x) = f_l(y)] \ge 1/2$.

Proof (contd.)

Now consider the case when $d(x,y) > 4\Delta$.

We want to show that $Pr[f_l(x) = f_l(y)] \le 1/3$.

Let θ be the angle of the line passing through x and y with respect to l.

For the projections of x and y to fall in the same interval, we will need that $d(x,y)\cos\theta \leq 2\Delta$.

For this to happen $\cos\theta \le 1/2$, or the angle the line xy forms with the horizontal needs to be between 60° and 90° .

This has at most 1/3-rd chance.

.

Fingerprints

Matching Fingerprints

Fingerprints consists of **minutia points** and patterns that form ridges and bifurcations

Fingerprint with an overlay grid

Fingerprint mapped to a normalized grid cell

Minutia of two fingerprints

Statistical Analysis from fingerprint analyst:

- 1. Pr(minutia in a random grid cell of a fingerprint) = 0.2
- 2. Pr(given two fingerprints of the same finger and that one fingerprint has a minutia in a grid cell, other fingerprint has the minutia in that cell) = 0.85
- 3. Pick 3 random grid cells and define a (hash) function f that sends two fingerprints to the same bucket if they have minutia in each of those three cells
- 4. Pr(two arbitrary fingerprints will map to the same bucket by f) = $0.2^6 = 0.000064$
- 5. Pr(f maps the fingerprints of the same finger to the same bucket) = $0.2^3 \times 0.85^3 = 0.0049$

Probabilistic Amplification

Suppose we have 1000 such functions and we take 'OR' of these functions

- 1. Pr(two fingerprints from different fingers map to the same bucket) $= 1 (1 0.000064)^{1000} \approx 0.061$
- 2. Pr(two fingerprints of the same finger map to the same bucket) $= 1 (1 0.0049)^{1000} \approx 0.992$

Take two groups of $1000\ \text{functions}$ each and report a match if it's a match in both the groups.

- 1. Pr(two fingerprints from different fingers map to the same bucket) $\approx 0.061^2 = 0.0037$
- 2. Pr(two fingerprints of the same finger map to the same bucket) $\approx 0.992^2 = 0.984$

References

Conclusions

LSH has abundance of applications (Image Similarity, Documents Similarity, Nearest Neighbors, Similar Gene-Expressions, . . .)

Main References:

- Piotr Indyk and Rajeev Motwani, Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality, STOC1998
- Aristides Gionis, Piotr Indyk and Rajeev Motwani, Similarity Search in High Dimensions via Hashing, VLDB 1999
- LSH Algorithm and Implementation
 http://www.mit.edu/~andoni/LSH/
- 4. Chapter 3 in MMDS book (mmds.org)
- 5. Chapter on LSH in My Notes on Topics in Algorithm Design