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Problem



Expert Investor Without an Expertise

Model:

1. Access to n experts (newspapers, stock briefs, . . .)

2. Predict whether TSX will go ↑ or ↓ at the end of each day.

3. Reward of $0/per day for correct prediction.

4. Costs us $1/per day for wrong prediction.

Problem: Devise an algorithm that makes prediction for each day. Suppose
we are at day t, where t ∈ {1, . . . , T}. Algorithm can use previous predictions
+ experts advises for days 1, . . . , t− 1

Objective: At the end of T days we want to be competitive with respect to
the best expert. Our cost (loss) is not significantly higher than the cost of any
expert (including the best expert).

3



Warmup



Two Scenarios

We will consider the following scenarios:

1. There is at least one (unknown) expert who is always correct.

2. The best expert (unknown) makes ≤ m mistakes over the period of T
days.
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≥ 1 Real Experts

Extra Knowledge: Among all the n experts there is at least one (unknown)
expert who is always correct.

Let the set of experts be E = {1, . . . , n}

For each day t := 1 to T do:

Step 1: Among all the remaining experts in E, poll them to find the
prediction of the majority of them for that day. Record that as
the prediction of the algorithm.

Step 2: Observe the true outcome at the end of the day. Discard all
those experts that predicted wrong from E from future
considerations.
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Warmup (contd.)

#Wrong Predictions
Algorithm makes at most O(logn) wrong predictions
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Multiplicative Weight Update Method - Idea

Extra Knowledge: The best expert (unknown) makes ≤ m mistakes over the
period of T days.

Let the set of experts be E = {1, . . . , n}
For each expert i, set its weight w1

i = 1

For each day t := 1 to T do:

Step 1: Find the weighted majority prediction of the experts. Sum total
the weights of all the experts that predict ↑ (respectively, ↓).
Whichever of the two sums is higher is the prediction for day t.

Step 2: Observe the true outcome at the end of the day t

Step 3: For all the experts i that predicted wrongly, their weight is set
to wt+1

i = wti/2. For all others, wt+1
i = wti .

7



Potential Function



Potential Function

Potential Function Φt

Define the potential function Φt for day t ∈ {1, . . . , T} to be the sum total of

the weights of all the experts at the start of day t, i.e. Φt =
n∑
i=1

wti

Observations:

1. Φ1 = n

2. If the algorithm makes a wrong prediction on day t, Φt+1 ≤ 3
4
Φt

3. If the algorithm has made M mistakes in T days, its total weight at the
end of day T , ΦT+1 ≤

(
3
4

)M
Φ1 =

(
3
4

)M
n
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Bounding Potential Function

Assume that the best Expert is i (we don’t know it’s identity).

Bounds on Potential Function

Weight of the expert i at the end of day T is ≥ ( 1
2
)m. Therefore,(

1
2

)m ≤ ΦT+1 ≤
(

3
4

)M
n
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Number of mistakes

Bounding number of mistakes
The algorithms makes at most 2.41(m+ logn) mistakes.

Proof: We had
(

1
2

)m ≤ ΦT+1 ≤
(

3
4

)M
n. Take log’s:

−m ≤ M log

(
3

4

)
+ logn

−M log

(
3

4

)
≤ m+ logn

M log

(
4

3

)
≤ m+ logn

M ≤ 2.41(m+ logn)

2
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Replacing 1
2

Choose η ∈ (0, 1
2
]

Let the set of experts be E = {1, . . . , n}
For each expert i, set its starting weight w1

i = 1

For each day t := 1 to T do:

Step 1: Find the weighted majority prediction of the experts. Sum total
the weights of all the experts that predict ↑ (respectively, ↓).
Whichever of the two sums is higher is the prediction for day t.

Step 2: Observe the true outcome at the end of the day t

Step 3: For all the experts i that predicted wrongly, their weight is set
to wt+1

i = (1− η)wti . For all others, wt+1
i = wti .
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Analysis

New Bound

For any η ∈ (0, 1
2
], we have M ≤ 2(1 + η)m+ 2

η
logn

Proof: Potential function equation: (1− η)m ≤ ΦT+1 ≤ (1− η
2
)Mn

Take log’s and use −η − η2 ≤ ln(1− η) ≤ −η for η ∈ [0, 1
2
]:

m ln(1− η) ≤ M ln(1− η

2
) + lnn

−m(η + η2) ≤ −M η

2
+ lnn

M
η

2
≤ lnn+ (η + η2)m

M ≤ 2

η
lnn+ 2(1 + η)m

2
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Randomization



An Example

For any η ∈ (0, 1
2
], we have M ≤ 2(1 + η)m+ 2

η
logn

Example: Two experts A and B.
A predicts (↑, ↓) correctly only on even numbered days
B predicts (↑, ↓) correctly only on odd numbered days

Best Expert: Wrong half the times.

How many times the Algorithm predicts wrongly?
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Improvements (contd.)

How to remove the multiplicative factor of 2 in M ≤ 2(1 + η)m+ 2
η

logn?

Use Randomization
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Objectives

Loss/Cost: Assume that the loss (costs) are real numbers in the interval
[0, 1].

Let mt
i ∈ [0, 1] denote the loss of expert i ∈ {1, . . . , n} on day t ∈ {1, . . . , T}

Objective: Algorithm to be competitive against the cost incurred by the best
expert. Assume i is the (unknown) best expert.

M t = Expected cost that the algorithm incurs on day t.

Our algorithm should have the following guarantee:

T∑
i=1

M t ≤ lnn
η

+ (1 + η)
T∑
i=1

mt
i

Total expected cost over T days is within an additive factor lnn
η

and a multi-
plicative factor (1 + η) of the best expert.
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Randomized MWU

Multiplicative Weight Update Method

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
]

For each expert i, set its initial weight w1
i = 1

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti

For each expert i, compute pti =
wt

i
Φt

Step 2: Choose an expert based on their probabilities and predict
(↑, ↓) according to the chosen expert

Step 3: Update Weights: For each expert i set wt+1
i = wti(1− ηmt

i)
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±1 Costs



MWU with costs in [−1, 1]

The costs of each expert can be positive or negative, i.e. mt
i ∈ [−1, 1]. Use

the same algorithm as for the cost [0, 1]:

MWU with costs in [−1, 1]

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
]

For each expert i, set its initial weight w1
i = 1

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti

For each expert i, compute pti =
wt

i
Φt

Step 2: Choose an expert based on their probabilities and predict
(↑, ↓) according to the chosen expert

Step 3: Update Weights: For each expert i set wt+1
i = wti(1− ηmt

i)
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Result

MWU with ±1-costs
T∑
t=1

M t ≤ lnn
η

+ ηT +
T∑
t=1

mt
i

Cost of MWU

By setting η =
√

lnn
T

in
T∑
t=1

M t ≤ lnn
η

+ ηT +
T∑
t=1

mt
i, we obtain

T∑
t=1

M t ≤ 2
√
T lnn+

T∑
t=1

mt
i
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Interpretation of the Result

T∑
t=1

M t ≤ 2
√
T lnn+

T∑
t=1

mt
i

Cost of MWU algorithm is off by an additive factor that is proportional to the
square root of the product of the number of days and the number of experts
as compared to the best expert.

Average Error: Consider the average error on each day (divide by T ):

1

T

T∑
t=1

M t ≤ 2

√
lnn

T
+

1

T

T∑
t=1

mt
i

Observe that as T increases the average error drops down. Therefore, MWU
method is able to learn from experts reasonably well when executed over a
number of days.
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