# Markov Chains and Page Rank 

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

Matrices

## Matrices

1. A Rectangular Array
2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse; Determinant
3. Row Operations; Linear Equations; Gaussian Elimination
4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular; Orthogonal; Orthonormal
5. Transformations - Eigenvalues and Eigenvectors
6. Rank; Column and Row Space; Null Space
7. Applications: Page Rank, Dimensionality Reduction, Recommender Systems, ...

## Matrix Vector Product

Matrix-vector product: $A x=b$

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \times 4+1 \times-2 \\
3 \times 4+4 \times-2
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right]
$$

$$
\left[\begin{array}{l}
6 \\
4
\end{array}\right]
$$

## Matrix Vector Product

$A x=b$ as linear combination of columns:
$\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}4 \\ -2\end{array}\right]=4\left[\begin{array}{l}2 \\ 3\end{array}\right]-2\left[\begin{array}{l}1 \\ 4\end{array}\right]$

## Eigenvalues and Eigenvectors

Given an $n \times n$ matrix $A$.
A non-zero vector $v$ is an eigenvector of $A$, if $A v=\lambda v$ for some scalar $\lambda$.
$\lambda$ is the eigenvalue corresponding to vector $v$.

## Example

Let $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$
Observe that

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=5\left[\begin{array}{l}
1 \\
3
\end{array}\right] \text { and }\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=1\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Thus, $\lambda_{1}=5$ and $\lambda_{2}=1$ are the eigenvalues of $A$. Corresponding eigenvectors are $v_{1}=[1,3]$ and $v_{2}=[1,-1]$, as $A v_{1}=\lambda_{1} v_{1}$ and $A v_{2}=\lambda_{2} v_{2}$.

## Computation of Eigenvalues and Eigenvectors

Given an $n \times n$ matrix $A$, we want to find eigenvalues $\lambda$ 's and the corresponding eigenvectors that satisfy $A v=\lambda v$.

We can express $A v=\lambda v$ as $(A-\lambda I) v=0$, where $I$ is $n \times n$ identity matrix.
Suppose $B=A-\lambda I$.
If $B$ is invertible, than the only solution of $B v=0$ is $v=0$, as $B^{-1} B v=B^{-1} 0$ or $v=0$.

Thus $B$ isn't invertible and hence the determinant of $B$ is 0 .
We solve the equation $\operatorname{det}(A-\lambda I)=0$ to obtain eigenvalues $\lambda$.
Once we know an eigenvalue $\lambda_{i}$, we can solve $A v_{i}=\lambda_{i} v_{i}$ to obtain the corresponding eigenvector $v_{i}$.

## Computation of Eigenvalues and Eigenvectors

Let us find the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$
$\operatorname{det}(A-\lambda I)=\left[\begin{array}{cc}2-\lambda & 1 \\ 3 & 4-\lambda\end{array}\right]=0$
$(2-\lambda)(4-\lambda)-3=0$
$\lambda^{2}-6 \lambda+5=0$, and the two roots are $\lambda_{1}=5$ and $\lambda_{2}=1$.
To find the eigenvector $v_{1}=[a, b]$, we can solve $\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=5\left[\begin{array}{l}a \\ b\end{array}\right]$.
This gives: $2 a+b=5 a$ and $b=3 a$. Thus $v_{1}=[1,3]$ is an eigenvector corresponding to $\lambda_{1}=5$.
Similarly, for $v_{2}$, we have $\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=1\left[\begin{array}{l}a \\ b\end{array}\right]$.
This gives $2 a+b=a$, or $a=-b$. Thus, $v_{2}=[1,-1]$ is an eigenvector corresponding to $\lambda_{2}=1$.

## Eigenvalues of $A^{k}$

Let $A v_{i}=\lambda_{i} v_{i}$
Consider: $A^{2} v_{i}=A\left(A v_{i}\right)=A\left(\lambda_{i} v_{i}\right)=\lambda_{i}\left(A v_{i}\right)=\lambda_{i}\left(\lambda_{i} v_{i}\right)=\lambda_{i}^{2} v_{i}$
$\Longrightarrow A^{2} v_{i}=\lambda_{i}^{2} v_{i}$

Eigenvalues of $A^{k}$
For an integer $k>0, A^{k}$ has the same eigenvectors as $A$, but the eigenvalues are $\lambda^{k}$.

## Markov Matrices

## Markov Matrices

$1 / 3$


|  | P | Q | R |
| :---: | :---: | :---: | :---: |
| P | 0 | $1 / 3$ | $1 / 3$ |
| Q | $1 / 2$ | 0 | $2 / 3$ |
| R | $1 / 2$ | $2 / 3$ | 0 |

## Markov Chain

- $X_{0}, X_{1}, \ldots$ be a sequence of $r$. v. that evolve over time.
- At time 0 , we have $X_{0}$, followed by $X_{1}$ at time $1, \ldots$
- Assume each $X_{i}$ takes value from the set $\{1, \ldots, n\}$ that represents the set of states.
- This sequence is a Markov chain if the probability that $X_{m+1}$ equals a particular state $\alpha_{m+1} \in\{1, \ldots, n\}$ only depends on what is the state of $X_{m}$ and is completely independent of the states of $X_{0}, \ldots, X_{m-1}$.

Memoryless property:

$$
\begin{aligned}
& P\left[X_{m+1}=\alpha_{m+1} \mid X_{m}=\alpha_{m}, X_{m-1}=\alpha_{m-1}, \ldots, X_{0}=\alpha_{0}\right]=P\left[X_{m+1}=\alpha_{m+1} \mid X_{m}=\right. \\
& \left.\alpha_{m}\right], \text { where } \alpha_{0}, \ldots, \alpha_{m+1}, \cdots \in\{1, \ldots, n\}
\end{aligned}
$$

## Memoryless Property



|  | P | Q | R |
| :---: | :---: | :---: | :---: |
| P | 0 | $1 / 3$ | $1 / 3$ |
| Q | $1 / 2$ | 0 | $2 / 3$ |
| R | $1 / 2$ | $2 / 3$ | 0 |

## Markov Matrices

What is a Markov Matrix?

A square matrix $A$ is a Markovian Matrix if

1. $A[i, j]=$ probability of transition from the state $j$ to state $i$.
2. Sum of the values within any column is 1 (= probability of leaving from a state to any of the possible states).

## State Transitions

Start in an initial state and in each successive step make a transition from the current state to the next state respecting the probabilities.

1. What is the probability of reaching the state $j$ after taking $n$ steps starting from the state $i$ ?
2. Given an initial probability vector representing the probabilities of starting in various states, what is the steady state? After traversing the chain for a large number of steps, what is the probability of landing in various states?


## Types of States

Recurrent State: A state $i$ is recurrent if starting from state $i$, with probability 1 , we can return to the state $i$ after making finitely many transitions.

Transient State: A state $i$ is transient, i.e. there is a non-zero probability of not returning to the state $i$.


Figure 1: Recurrent States=\{1,2,3\}. Transient States=\{4,5,6\}

## Irreducible Markov Chains

A Markov chain is irreducible if it is possible to go between any pair of states in a finite number of steps. Otherwise it is called reducible.

Observation: If the graph is strongly connected then it is irreducible.


## Aperiodic Markov Chains

## Period of a state

Period of a state $i$ is the greatest common divisor (GCD) of all possible number of steps it takes the chain to return to the state $i$ starting from $i$.

Note: If there is no way to return to $i$ starting from $i$, then its period is undefined.

## Aperiodic Markov Chain

A Markov chain is aperiodic if the periods of each of its states is 1 .

## Eigenvalues of Markov Matrices

$A=\left[\begin{array}{ccc}0 & 1 / 3 & 1 / 3 \\ 1 / 2 & 0 & 2 / 3 \\ 1 / 2 & 2 / 3 & 0\end{array}\right]$
Eigenvalues of $A$ are the roots of $\operatorname{det}(A-\lambda I)=0$

| Eigenvalue | Eigenvector |
| :--- | :---: |
| $\lambda_{1}=1$ | $v_{1}=(2 / 3,1,1)$ |
| $\lambda_{2}=-2 / 3$ | $v_{2}=(0,-1,1)$ |
| $\lambda_{3}=-1 / 3$ | $v_{3}=(-2,1,1)$ |

Observe: Largest (principal) eigenvalue is 1 and the corresponding (principal) eigenvector is $(2 / 3,1,1)$. Note that $A v_{i}=\lambda_{i} v_{i}$, for $i=1, \ldots, 3$. Any vector $v$ can be converted to a unit vector: $\frac{v}{\|v\|}$.
For example, for $v_{1}=\left(\frac{2}{3}, 1,1\right)$, the unit vector $\frac{v_{1}}{\left\|v_{1}\right\|}$ is $\frac{3}{\sqrt{22}}\left(\frac{2}{3}, 1,1\right)$.
The vector $\frac{1}{2 / 3+1+1}(2 / 3,1,1)=(2 / 8,3 / 8,3 / 8)$ has the property that all its components add to 1 and it points in the same direction as $v_{1}$.

## Principal Eigenvalue of Markov Matrices

## Principal Eigenvalue <br> The largest eigenvalue of a Markovian matrix is 1

See Notes on Algorithm Design for the proof.
Idea: Let $B=A^{T}$
$\overrightarrow{1}$ is an Eigenvector of $B$, as $B \overrightarrow{1}=1 \overrightarrow{1}$
$\Longrightarrow 1$ is an Eigenvalue of $A$.
Using contradiction, show that $B$ cannot have any eigenvalue $>1$

## Eigenvalues of Powers of $A$

$$
A=\left[\begin{array}{ccc}
0 & 1 / 3 & 1 / 3 \\
1 / 2 & 0 & 2 / 3 \\
1 / 2 & 2 / 3 & 0
\end{array}\right]
$$

Note that all the entries in $A^{2}$ are $>0$ and all the entries within a column still adds to 1.

$$
A^{2}=\left[\begin{array}{ccc}
1 / 3 & 2 / 9 & 2 / 9 \\
1 / 3 & 11 / 17 & 1 / 6 \\
1 / 3 & 1 / 6 & 11 / 17
\end{array}\right]
$$

## $A^{k}$ is Markovian

If the entries within each column of $A$ adds to 1 , then entries within each column of $A^{k}$, for any integer $k>0$, will add to 1 .

## Random Surfer Model

Initial: Surfer with probability vector $u_{0}=(1 / 3,1 / 3,1 / 3)$
$u_{1}=A u_{0}=\left[\begin{array}{ccc}0 & 1 / 3 & 1 / 3 \\ 1 / 2 & 0 & 2 / 3 \\ 1 / 2 & 2 / 3 & 0\end{array}\right]\left[\begin{array}{c}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]=\left[\begin{array}{c}4 / 18 \\ 7 / 18 \\ 7 / 18\end{array}\right]$
$u_{2}=A u_{1}=\left[\begin{array}{ccc}0 & 1 / 3 & 1 / 3 \\ 1 / 2 & 0 & 2 / 3 \\ 1 / 2 & 2 / 3 & 0\end{array}\right]\left[\begin{array}{l}4 / 18 \\ 7 / 18 \\ 7 / 18\end{array}\right]=\left[\begin{array}{c}7 / 27 \\ 10 / 27 \\ 10 / 27\end{array}\right]$
Likewise, we compute $u_{3}=A u_{2}=[20 / 81,61 / 162,61 / 162]$,
$u_{4}=A u_{3}=[61 / 243,91 / 243,91 / 243]$,
$u_{5}=A u_{4}=[182 / 729,547 / 1458,547 / 1458]$,
$u_{\infty}=[0.25,0.375,0.375]=[2 / 8,3 / 8,3 / 8]$

## Linear Combination of Eigenvectors

$$
\begin{aligned}
u_{0}= & {\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 / 3 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] } \\
u_{1} & =A u_{0} \\
& =c_{1} A v_{1}+c_{2} A v_{2}+c_{3} A v_{3} \\
& =c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+c_{3} \lambda_{3} v_{3}\left(\operatorname{as} A v_{i}=\lambda_{i} v_{i}\right)
\end{aligned}
$$

Thus,

$$
u_{1}=A\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]=c_{1} \lambda_{1}\left[\begin{array}{c}
2 / 3 \\
1 \\
1
\end{array}\right]+c_{2} \lambda_{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3} \lambda_{3}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

## Linear Combination of Eigenvectors(contd.)

$$
u_{2}=A u_{1}=A^{2} u_{0}=c_{1} \lambda_{1}^{2}\left[\begin{array}{c}
2 / 3 \\
1 \\
1
\end{array}\right]+c_{2} \lambda_{2}^{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3} \lambda_{3}^{2}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

In general, for integer $k>0, u_{k}=A^{k} u_{0}=c_{1} \lambda_{1}^{k} v_{1}+c_{2} \lambda_{2}^{k} v_{2}+c_{3} \lambda_{3}^{k} v_{3}$, i.e.

$$
u_{k}=A^{k}\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]=c_{1} \lambda_{1}^{k}\left[\begin{array}{c}
2 / 3 \\
1 \\
1
\end{array}\right]+c_{2} \lambda_{2}^{k}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3} \lambda_{3}^{k}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

and that equals

$$
u_{k}=c_{1} 1^{k}\left[\begin{array}{c}
2 / 3 \\
1 \\
1
\end{array}\right]+c_{2}\left(-\frac{2}{3}\right)^{k}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3}\left(-\frac{1}{3}\right)^{k}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

## Linear Combination of Eigenvectors(contd.)

For large values of $k,\left(\frac{2}{3}\right)^{k} \rightarrow 0$ and $\left(\frac{1}{3}\right)^{k} \rightarrow 0$. The above expression reduces to

$$
u_{k} \approx c_{1}\left[\begin{array}{c}
2 / 3 \\
1 \\
1
\end{array}\right]=\frac{3}{8}\left[\begin{array}{c}
2 / 3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 / 8 \\
3 / 8 \\
3 / 8
\end{array}\right]
$$

Note that the value of $c_{1}$ is derived by solving the equation for
$u_{0}=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$ for $u_{0}=[1 / 3,1 / 3,1 / 3]$

## Linear Combination of Eigenvectors(contd.)

$$
\begin{aligned}
& \text { Suppose } u_{0}=[1 / 4,1 / 4,1 / 2] \\
& u_{1}=A u_{0}=[1 / 4,11 / 24,7 / 24] \\
& u_{2}=A u_{1}=[1 / 4,23 / 72,31 / 72] \\
& u_{3}=A u_{2}=[1 / 4,89 / 216,73 / 216] \\
& \ldots \\
& u_{\infty}=[2 / 8,3 / 8,3 / 8]
\end{aligned}
$$

## Convergence?

## Entries in $A^{k}$

Assume that all the entries of a Markov matrix $A$, or of some finite power of $A$, i.e. $A^{k}$ for some integer $k>0$, are strictly $>0$. $A$ corresponds to an irreducible aperiodic Markov chain.

Irreducible: for any pair of states $i$ and $j$, it is always possible to go from state $i$ to state $j$ in finite number of steps with positive probability.

Period of a state $i$ : GCD of all possible number of steps it takes the chain to return to the state $i$ starting from $i$.

Aperiodic: $M$ is aperiodic if the GCD is 1 for the period of each of the states in $M$.

## Properties of Markov Matrix $A$, when $A^{k}>0$


$A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 / 2 & 0 \\ 0 & 1 / 2 & 0\end{array}\right] A^{2}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 1 / 2 & 0 \\ 0 & 1 / 2 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 1 / 2 & 0 \\ 0 & 1 / 2 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 1 / 2 & 0 \\ 1 / 2 & 1 / 4 & 1 \\ 1 / 2 & 1 / 4 & 0\end{array}\right]$
$A^{3}=\left[\begin{array}{ccc}1 / 2 & 1 / 4 & 0 \\ 1 / 4 & 5 / 8 & 1 / 2 \\ 1 / 4 & 1 / 8 & 1 / 2\end{array}\right] A^{4}=\left[\begin{array}{ccc}1 / 4 & 1 / 8 & 1 / 2 \\ 5 / 8 & 9 / 16 & 1 / 4 \\ 1 / 8 & 5 / 16 & 1 / 4\end{array}\right]$
$A^{4}>0$ and for $k \geq 4, A^{k}>0$.
$A$ corresponds to irreducible aperiodic Markov chain.

## Perron-Frobenius Theorem

Assume $A$ corresponds to an irreducible aperiodic Markov chain $M$.
Perron-Frobenius Theorem from linear algebra states that

1. Largest eigenvalue 1 of $A$ is unique
2. All other eigenvalues of $A$ have magnitude strictly smaller than 1
3. All the coordinates of the eigenvector $v_{1}$ corresponding to the eigenvalue 1 are $>0$
4. The steady state corresponds to the eigenvector $v_{1}$

## Pagerank

## Pagerank Algorithm

Problem: How to rank the web-pages?

Ranking assigns a real number to each web-page.
The higher the number, the more important the page is.
Needs to be automated, as the web is extremely large.

We will study the Page Rank algorithm.
Source: Page, Brin, Motwani, Winograd, The PageRank citation ranking: Bringing order to the Web published as a technical report in1998).

## Web as a Graph

- $G=(V, E)$ is a positively weighted directed graph
- Each web-page is a vertex of $G$
- If a web-page $u$ points (links) to the web-page $v$, there is a directed edge from $u$ to $v$
- The weight of an edge $u v$ is $\frac{1}{\text { out-degree }(u)}$

Assume $V=\left\{v_{1}, \ldots, v_{n}\right\}$
$n \times n$ adjacency matrix $M$ of $G$ is:
$M(i, j)=\left\{\begin{array}{lc}\frac{1}{\text { out-degree }\left(v_{j}\right)}, & \text { if } v_{j} v_{i} \in E \\ 0 & \text { otherwise }\end{array}\right.$
Assumption: A surfer will make a random transition from a web-page to what it points to.

## An Example



## Remarks

1. Assumes users will visit useful pages rather than useless pages.
2. Random Surfer Model - Assume initially a web-surfer is equally likely to be at any node of $G$, given by the vector $v_{0}=(1 /|V|, \ldots, 1 /|V|)$.
3. In each step it makes a transition: $v_{1}=M v, v_{2}=M v_{1}=M^{2} v_{0}, \ldots$, $v_{k}=M v_{k-1}=M^{k} v_{0}$.
4. Need to worry about sink nodes/dead ends; circling within same set of nodes; and whether we will reach a steady state?

## Abstract representation of a web graph



- In-Component: Nodes that can reach strongly-connected component
- Out-component: Nodes that can be reached from strongly-connected component
- Possibly multiple copies of above configuration


## Avoiding Sink Nodes

Idea: Make sink nodes point to all other nodes.
$M=\left[\begin{array}{ccccc}0 & 0 & 1 / 2 & 1 / 3 & 0 \\ 1 / 2 & 0 & 0 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 & 0 & 0 \\ 0 & 1 / 2 & 1 / 2 & 1 / 3 & 0 \\ 0 & 0 & 0 & 1 / 3 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}0 & 0 & 1 / 2 & 1 / 3 & 1 / 5 \\ 1 / 2 & 0 & 0 & 0 & 1 / 5 \\ 1 / 2 & 1 / 2 & 0 & 0 & 1 / 5 \\ 0 & 1 / 2 & 1 / 2 & 1 / 3 & 1 / 5 \\ 0 & 0 & 0 & 1 / 3 & 1 / 5\end{array}\right]=Q$


## Teleportation - Key Idea

Define $K=\alpha Q+\frac{1-\alpha}{n} E$
Teleportation Parameter: $0<\alpha<1$, e.g $\alpha=0.9$
$E$ is a $n \times n$ matrix of all 1 s.
Observations on $K$ :

1. Each entry of $K$ is $>0$
2. The entries within each column sums to 1
3. $K$ satisfies the requirements of irreducible aperiodic Markov chain
4. Its largest eigenvalue is 1
5. By Perron-Frobenius Theorem, the steady state (=page ranks) correspond to the principal eigenvector

## Conclusions

Computational Issues: $K=\alpha Q+\frac{1-\alpha}{n} E$
$Q$ is sparse and $E$ is special.
Favors: Teleport to specific pages. Teleport to topic-sensitive pages (Sports, Business, Science, News, ...) based on the profile of the user.

Caution: Real story is not that simple

## References

1. Link Analysis Chapter in mmds.org
2. Chapter on Matrices in CS in my notes on algorithm design
3. Page, Brin, Motwani, Winograd, The PageRank citation ranking: Bringing order to the Web published as a technical report in1998.
4. Brin and Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine, Computer Networks 56 (18): 3825-3833, Reprinted in 2012.
