Quick Review of Probability

Anil Maheshwari
School of Computer Science
Carleton University
Canada

Outline

Sample Space \& Events

Random Variable

Geometric Distribution

Coupon Collector Problem

Sample Space \& Events

Basic Definition

Definitions

Sample Space $S=$ Set of Outcomes.
Events $\mathcal{E}=$ Subsets of S.
Probability is a function from subsets $A \subseteq S$ to positive real numbers between $[0,1]$ such that:

1. $\operatorname{Pr}(S)=1$
2. For all $A, B \subseteq S$ if $A \cap B=\emptyset, \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.
3. If $A \subset B \subseteq S, \operatorname{Pr}(A) \leq \operatorname{Pr}(B)$.
4. Probability of complement of $A, \operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A)$.

Basic Definition

Examples:

1. Flipping a fair coin:

$$
\begin{aligned}
& S=\{H, T\} \\
& \mathcal{E}=\{\emptyset,\{H\},\{T\}, S=\{H, T\}\}
\end{aligned}
$$

2. Flipping fair coin twice:

$$
\begin{aligned}
& S=\{H H, H T, T H, T T\} ; \\
& \mathcal{E}=\{\emptyset,\{H H\},\{H T\},\{T H\},\{T T\}, \\
& \{H H, T T\},\{H H, T H\},\{H H, H T\}, \\
& \{H T, T H\},\{H T, T T\},\{T H, T T\}, \\
& \{H H, H T, T H\},\{H H, H T, T T\},\{H H, T H, T T\}, \\
& \{H T, T H, T T\}, S=\{H H, H T, T H, T T\}\}
\end{aligned}
$$

3. Rolling fair die twice:
$S=\{(i, j): 1 \leq i, j \leq 6\}$;
$\mathcal{E}=\{\emptyset,\{1,1\},\{1,2\}, \ldots, S\}$

Random Variable

Expectation

Definition

A random variable X is a function from sample space S to Real numbers, $X: S \rightarrow \Re$.
Expected value of a discrete random variable X is given by

$$
E[X]=\sum_{s \in S} X(s) * \operatorname{Pr}(X=X(s)) .
$$

Note: Its a misnomer to say X is a random variable, it's a function.
Example: Flip a fair coin and define the random variable $X:\{H, T\} \rightarrow \Re$ as

$$
X= \begin{cases}1 & \text { Outcome is Heads } \\ 0 & \text { Outcome is Tails }\end{cases}
$$

$E[X]=\sum_{s \in\{H, T\}} X(s) * \operatorname{Pr}(X=X(s))=1 * \frac{1}{2}+0 * \frac{1}{2}=\frac{1}{2}$

Linearity of Expectation

Definition

Consider two random variables X, Y such that $X, Y: S \rightarrow \Re$, then $E[X+Y]=E[X]+E[Y]$.
In general, consider n random variables $X_{1}, X_{2}, \ldots, X_{n}$ such that $X_{i}: S \rightarrow \Re$, then $E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]$.

Example: Flip a fair coin n times and define n random variable X_{1}, \ldots, X_{n} as

$$
X_{i}= \begin{cases}1 & \text { Outcome is Heads } \\ 0 & \text { Outcome is Tails }\end{cases}
$$

$E\left[X_{1}+\cdots+X_{n}\right]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=\frac{1}{2}+\cdots+\frac{1}{2}=\frac{n}{2}$
$=$ Expected \# of Heads in n tosses.

Geometric Distribution

Geometric Distribuition

Definition

Perform a sequence of independent trials till the first success. Each trial succeeds with probability p (and fails with probability $1-p$).
A Geometric Random Variable X with parameter p is defined to be equal to $n \in N$ if the first $n-1$ trials are failures and the n-th trial is success. Probability distribution function of X is

$$
\operatorname{Pr}(X=n)=(1-p)^{n-1} p .
$$

Let Z to be the r.v. that equals the \# failures before the first success, i.e. $Z=X-1$.

Problem: Evaluate $E[X]$ and $E[Z]$.
To show: $E[Z]=\frac{1-p}{p}$ and $E[X]=1+\frac{1-p}{p}=\frac{1}{p}$.

Computation of $E[Z]$

$Z=$ \# failures before the first success.
Set $q=1-p$.

- $\operatorname{Pr}(Z=k)=q^{k} p$
- $\frac{1}{1-q}=\sum_{k=0}^{\infty} q^{k}$ (for $0<q<1$)
- $\frac{1}{(1-q)^{2}}=\sum_{k=0}^{\infty} k q^{k-1}$

$$
\begin{aligned}
E[Z] & =\sum_{k=0}^{\infty} k \operatorname{Pr}(Z=k) \\
& =\sum_{k=0}^{\infty} k q^{k} p \\
& =p q \sum_{k=0}^{\infty} k q^{k-1} \\
& =\frac{p q}{(1-q)^{2}}=\frac{1-p}{p}
\end{aligned}
$$

Examples

Examples:

1. Flipping a fair coin till we get a Head:

$$
p=\frac{1}{2} \text { and } E[X]=\frac{1}{p}=2
$$

2. Roll a die till we see a 6 :

$$
p=\frac{1}{6} \text { and } E[X]=\frac{1}{p}=6
$$

3. Keep buying LottoMax tickets till we win (assuming we have 1 in 33294800 chance).
$p=\frac{1}{33294800}$ and $E[X]=\frac{1}{p}=33,294,800$.

Coupon Collector Problem

Coupon's Collector Problem

Problem Definition

There are a total of n different types of coupons (Pokemon cards). A cereal manufacturer has ensured that each cereal box contains a coupon. Probability that a box contains any particular type of coupon is $\frac{1}{n}$. What is the expected number of boxes we need to buy to collect all the n coupons?

Define r.v. $N_{1}, N_{2}, \ldots, N_{n}$, where $N_{i}=\#$ of boxes bought till the i-th coupon is collected.
Each N_{i} is a geometric random variable.

Coupon's Collector Problem Contd.

Let $N=\sum_{j=1}^{n} N_{i}$; Note $N_{1}=1$
$E\left[N_{j}\right]=\frac{1}{\text { Pr of success in finding the } j^{\text {th }} \text { coupon }}=\frac{1}{\frac{n-j+1}{n}}$
$E[N]=\sum_{j=1}^{n} \frac{n}{n-j+1}=n H_{n}$, where $H_{n}=n$-th Harmonic Number.
$H_{n}=\sum_{i=1}^{n} \frac{1}{i}$ and $\ln n \leq H_{n} \leq \ln n+1$.
Thus, $E[N]=n H_{n} \approx n \ln n$,

Is $E[N]=n H_{n}=n \ln n$ a good estimate?

What is the probability that $E[N]$ exceeds $2 n H_{n}$? Applying Markov's Inequality: $\operatorname{Pr}(X>s) \leq \frac{E[X]}{s} \operatorname{Pr}\left(N>2 n H_{n}\right)<\frac{E[N]}{2 n H_{n}}=\frac{n H_{n}}{2 n H_{n}}=\frac{1}{2}$

Can we have a better bound?
Next: We show $\operatorname{Pr}(N>n \ln n+c n)<\frac{1}{e^{c}}$
Pr. of missing a coupon after $n \ln n+c n$ boxes have been bought $=\left(1-\frac{1}{n}\right)^{n \ln n+n c} \leq e^{-\frac{1}{n}(n \ln n+c n)}=\frac{1}{n e^{c}}$.

Pr. of missing at least one coupon $\leq n\left(\frac{1}{n e^{c}}\right)=\frac{1}{e^{c}}$.

References

1. Introduction to Probability by Blitzstein and Hwang, CRC Press 2015.
2. Courses Notes of COMP 2804 by Michiel Smid.
3. Probability and Computing by Mitzenmacher and Upfal, Cambridge Univ. Press 2005.
4. My Notes on Algorithm Design.
