Singular-Value Decomposition with Applications

1

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada Matrices - Eigenvalues & Eigenvectors

Singular Value Decomposition

Low Rank Approximations

An Application

Correctness

Matrices - Eigenvalues & Eigenvectors

Given an $n \times n$ matrix A.

A non-zero vector v is an eigenvector of A, if $Av = \lambda v$ for some scalar λ . λ is the eigenvalue corresponding to vector v.

Thus, $\lambda_1 = 5$ and $\lambda_2 = 1$ are the eigenvalues of A. Corresponding eigenvectors are $v_1 = [1, 3]$ and $v_2 = [1, -1]$, as $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$.

Example

Consider symmetric matrix $S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

Its eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = 2$ and the corresponding eigenvectors are $q_1 = (1/\sqrt{2}, 1/\sqrt{2})$ and $q_2 = (1/\sqrt{2}, -1/\sqrt{2})$, respectively.

Note that eigenvalues are real and the eigenvectors are orthonormal.

$$S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Eigenvalues of Symmetric Matrices

All the eigenvalues of a real symmetric matrix S are real. Moreover, all components of the eigenvectors of a real symmetric matrix S are real.

Symmetric Matrices (contd.)

Property

Any pair of eigenvectors of a real symmetric matrix S corresponding to two different eigenvalues are orthogonal.

SVD with Applications

2023-11-19

-Matrices - Eigenvalues & Eigenvectors

-Symmetric Matrices (contd.)

Proof: Let q_1 and q_2 be two eigenvectors corresponding to $\lambda_1 \neq \lambda_2$, respectively. Thus, $Sq_1 = \lambda_1q_1$ and $Sq_2 = \lambda_2q_2$. Since *S* is symmetric, $q_1^TS = \lambda_1q_1^T$. Multiply by q_2 on the right and we obtain $\lambda_1q_1^Tq_2 = q_1^TSq_2 = q_1^T\lambda_2q_2$. Since $\lambda_1 \neq \lambda_2$ and $\lambda_1q_1^Tq_2 = q_1^T\lambda_2q_2$, this implies that $q_1^Tq_2 = 0$ and thus the eigenvectors q_1 and q_2 are orthogonal.

Symmetric matrices with distinct eigenvalues

Let *S* be a $n \times n$ symmetric matrix with *n* distinct eigenvalues and let q_1, \ldots, q_n be the corresponding orthonormal eigenvectors. Let *Q* be the $n \times n$ matrix consisting of q_1, \ldots, q_n as its columns. Then $S = Q\Lambda Q^{-1} = Q\Lambda Q^T$. Furthermore, $S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \cdots + \lambda_n q_n q_n^T$

$$S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 4 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} + 2 \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Symmetric matrix S is *positive definite* if all its eigenvalues > 0. It is *positive semi-definite* if all the eigenvalues are ≥ 0 .

An Alternate Characterization

Let S be a $n \times n$ real symmetric matrix. For all non-zero vectors $x \in \mathbb{R}^n$, if $x^T S x > 0$ holds, then all the eigenvalues of S are > 0.

SVD with Applications

2023-11-19

-Matrices - Eigenvalues & Eigenvectors

-Positive Definite Matrices

Let λ_i be an eigenvalue of S and its corresponding unit eigenvector is q_i . Note that $q_i^T q_i = 1$. Since S is symmetric, we know that λ_i is real. Now we have, $\lambda_i = \lambda_i q_i^T q_i = q_i^T \lambda_i q_i = q_i^T S q_i$. But $q_i^T S q_i > 0$, hence $\lambda_i > 0$.

Square Matrices:

A be an $n \times n$ matrix with distinct eigenvalues. $X_{n \times n}$ = Matrix of eigenvectors of A

 $AX = X\Lambda, A = X\Lambda X^{-1}, \Lambda = X^{-1}\Lambda X$

Symmetric Matrices:

S be an $n \times n$ symmetric matrix with distinct eigenvalues. $Q_{n \times n}$ = Matrix of *n*-orthonormal eigenvectors of *S* $S = Q \Lambda Q^T$

What if A is a rectangular matrix of dimensions $m \times n$?

Singular Value Decomposition

Let A be a $m \times n$ matrix of rank r with real entries.

We can find orthonormal vectors in \mathbb{R}^n such that their product with A results in a scaled copy of orthonormal vectors in \mathbb{R}^m .

Formally, we can find

- 1. Orthonormal vectors $v_1, \ldots, v_r \in \mathbb{R}^n$
- 2. Orthonormal vectors $u_1, \ldots, u_r \in \mathbb{R}^m$
- 3. Real numbers $\sigma_1, \ldots, \sigma_r \in \mathbb{R}$

4. For
$$i = 1, ..., r$$
: $Av_i = \sigma_i u_i$

5. $AV = U\Sigma$, i.e.,

$$A\begin{bmatrix}v_1 & \dots & v_r\end{bmatrix} = \begin{bmatrix}u_1 & \dots & u_r\end{bmatrix}\begin{bmatrix}\sigma_1 & & \\ & \cdot & \\ & & \cdot & \\ & & \sigma_r\end{bmatrix}$$

6. $A = U\Sigma V^T$

Example

An Example: $AV = U\Sigma$

$$\begin{bmatrix} 1 & 5 \\ 0 & 3 \\ 1 & 4 \\ 4 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} .60 & -.8 \\ .8 & .6 \end{bmatrix} = \begin{bmatrix} .58 & .39 \\ .31 & .30 \\ .48 & .28 \\ .30 & -.56 \\ .48 & -.59 \end{bmatrix} \begin{bmatrix} 7.8 & 0 \\ 0 & 5.7 \end{bmatrix}$$

Alternatively, $A = U\Sigma V^T$

$$\begin{bmatrix} 1 & 5 \\ 0 & 3 \\ 1 & 4 \\ 4 & 0 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} .58 & .39 \\ .31 & .30 \\ .48 & .28 \\ .30 & -.56 \\ .48 & -.59 \end{bmatrix} \begin{bmatrix} 7.8 & 0 \\ 0 & 5.7 \end{bmatrix} \begin{bmatrix} .60 & .8 \\ -.8 & .6 \end{bmatrix}$$

Play around with the SVD command in Wolfram Alpha for some matrices.

Symmetric and Positive semi-definite

Let A be $m \times n$ matrix, where $m \ge n$. The matrix $A^T A$ is symmetric and positive semi-definite

Proof: Symmetric: $(A^T A)^T = A^T (A^T)^T = A^T A$

Positive semi-definite: Take any non-zero vector $x \in \mathbb{R}^n$ $x^T(A^TA)x = (x^TA^T)(Ax) = (Ax)^T(Ax) = ||Ax||^2 \ge 0$

 $A^T A$ is a symmetric matrix of dimension $n \times n$. Eigenvalues of $A^T A$ are non-negative and the corresponding eigenvectors are orthonormal.

Let $\lambda_1 \geq \ldots \geq \lambda_n$ be eigenvalues of $A^T A$ and let v_1, \ldots, v_n be the corresponding eigenvectors.

$$A^T A v_i = \lambda_i v_i \Leftrightarrow v_i^T A^T A v_i = \lambda_i$$

Define
$$\sigma_i = ||Av_i|| \implies \sigma_i^2 = ||Av_i||^2 = v_i^T A^T A v_i = \lambda_i$$

Hence,
$$\sigma_i = ||Av_i|| = \sqrt{\lambda_i}$$

Consider two cases:

Full Rank: Rank of $A^T A$ is n.

Low Rank: Rank of $A^T A$ is r < n.

Assume, $\sigma_1 \ge \ldots \ge \sigma_n > 0$ ($\implies A \text{ and } A^T A \text{ has rank } n$)

Define vectors $u_1, \ldots, u_n \in \mathbb{R}^m$ as $u_i = Av_i/\sigma_i$

Orthonormal

The set of vectors $u_i = Av_i/\sigma_i$, for i = 1, ..., n, are orthonormal.

Proof: $||u_i|| = ||Av_i|| / \sigma_i = \sigma_i / \sigma_i = 1$

Consider the dot product of any two vectors u_i and u_j : $u_i^T u_j = (Av_i/\sigma_i)^T (Av_j/\sigma_j) = \frac{1}{\sigma_i \sigma_j} v_i^T A^T Av_j = \frac{1}{\sigma_i \sigma_j} v_i^T \lambda_j v_j = \frac{\lambda_j}{\sigma_i \sigma_j} v_i^T v_j = 0$

 $\Rightarrow Av_i = \sigma_i u_i \text{ for } i = 1, \dots, r = n$

SVD with Applications

-Singular Value Decomposition

Matrix $A^T A$ is Full Rank

Why is $rank(A) = rank(A^T A)$?

We will show that $Null - Space(A) \subseteq Null - Space(A^TA)$ and $Null - Space(A^TA) \subseteq Null - Space(A)$. This implies that $Null - Space(A) = Null - Space(A^TA)$ and $rank(A) = rank(A^TA) = n - rank(Null - Space(A))$.

Consider a vector $x \in Null - Space(A)$. Then $Ax = \vec{0}$ and $A^TAx = A^T(Ax) = A^T\vec{0} = \vec{0}$. $\Rightarrow x \in Null - Space(A^TA)$.

Consider a vector y such that $A^T A y = \vec{0}$. Then $y^T A^T A y = \vec{0}$ or $(Ay)^T (Ay) = \vec{0}$. $\Rightarrow Ay = \vec{0}$ and $y \in Null - space(A)$ Suppose $m \ge n$, but rank(A) = r < n.

Eigenvalues of $A^T A$

The n - r eigenvalues of $A^T A$ are equal to 0.

Proof: Consider a basis of the null space of *A*. Let x_1, \ldots, x_{n-r} be a basis of the null space of *A*. This implies that $Ax_j = 0$ for $j = 1, \ldots, n-r$. Now, $A^T A x_j = 0 = 0 x_j$. Thus, 0 is an eigenvalue of $A^T A$ corresponding to each x_i 's. Thus n - r eigenvalues of $A^T A$ are equal to 0 Consider eigenvalues and eigenvectors of $A^T A$ Let $\lambda_1 \ge \ldots \ge \lambda_r > 0$ and $\lambda_{r+1} = \ldots = \lambda_n = 0$

Let v_1, \ldots, v_r be the orthonormal vectors corresponding to $\lambda_1, \ldots, \lambda_r$

For i = 1, ..., r, define $\sigma_i = ||Av_i|| = \sqrt{\lambda_i}$ Note that $\sigma_1 \ge ... \sigma_r > 0$

For $i = 1, \ldots, r$, define $u_i = \frac{1}{\sigma_i} A v_i$

SVD for A

Vectors u_1, \ldots, u_r are orthonormal and $Av_i = \sigma_i u_i$.

${\bf SVD}$ of A

Singular Value Decomposition

For a matrix A of dimension $m \times n$, where $m \ge n$, we have

- 1. $A^T A$ is a symmetric positive semidefinite square matrix of dimension $n \times n$.
- 2. Rank of *A* is $n: \lambda_1 \ge \ldots \ge \lambda_n > 0$ are eigenvalues of $A^T A$ and v_1, \ldots, v_n the corresponding orthonormal eigenvectors. The vectors $u_i = Av_i/\sigma_i$, for $i = 1, \ldots, n$, are orthonormal, where $\sigma_i = \sqrt{\lambda_i}$.
- 3. Rank of *A* is r < n: $\lambda_1 \ge ... \ge \lambda_r > 0$ are non-zero eigenvalues of $A^T A$ and $v_1, ..., v_r$ the corresponding orthonormal eigenvectors. The vectors $u_i = Av_i/\sigma_i$, for i = 1, ..., r, are orthonormal, where $\sigma_i = \sqrt{\lambda_i}$.
- 4. $AV = U\Sigma$, where V is $n \times r$ matrix consisting of orthonormal eigenvectors of $A^T A$ corresponding to non-zero eigenvalues of $A^T A$, U is $m \times r$ matrix of orthonormal vectors given by $u_i = Av_i/\sigma_i$ for non-zero σ_i , and Σ is $r \times r$ diagonal matrix.
- 5. $AVV^T = A = U\Sigma V^T \leftarrow$ Singular-Value Decomposition of A.

We have $A = U\Sigma V^T$.

 $\boldsymbol{A}^{T}\boldsymbol{A} = (\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T})^{T}(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T}) = (\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{T})(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T}) = \boldsymbol{V}\boldsymbol{\Sigma}(\boldsymbol{U}^{T}\boldsymbol{U})\boldsymbol{\Sigma}\boldsymbol{V}^{T} = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{T}$

Matrix $A^T A$

 $A^T A$ is square symmetric matrix and it is expressed in the diagonalized form $A^T A = V \Sigma^2 V^T$. Thus, σ_i^2 's are its eigenvalues and V is its eigenvectors matrix.

Similarly, consider AA^T and we obtain that $AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

Matrix AA^T

 AA^T is square symmetric matrix and it is expressed in the diagonalized form $AA^T = U\Sigma^2 U^T$. Thus *U* is the eigenvector matrix for the symmetric matrix AA^T with the same eigenvalues as A^TA .

- Let A be a $m\times n$ matrix of real numbers of rank r
- $A_{m \times n} = U_{m \times r} \Sigma_{r \times r} V_{r \times n}^T$, where
- U is a orthonormal $m \times r$ matrix V is a orthonormal $n \times r$ matrix Σ is an $r \times r$ diagonal matrix and its (i, i)-th entry is σ_i for i = 1, ..., r
- Note that $\sigma_1 \ge \sigma_2 \ge \ldots \sigma_r > 0$ and $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues of $A^T A$
- The set of orthonormal vectors v_1, \ldots, v_r and u_1, \ldots, u_r are eigenvectors of $A^T A$ and $A A^T$, respectively. The vectors v's and u's satisfy the equation $Av_i = \sigma_i u_i$, for $i = 1, \ldots, r$
- Alternatively, we can express A as the sum of the product of rank 1 matrices

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T = \sigma_1 u_1 v_1^T + \ldots + \sigma_r u_r v_r^T$$

Low Rank Approximations

An Application

Let $A_{m \times n}$ be the Utility Matrix, where $m = 10^8$ users and $n = 10^5$ items. SVD of $A = U\Sigma V^T$ Let r of $\sigma'_i s$ are > 0Let $\sigma_1 \ge \ldots \ge \sigma_r > 0$

A can be expressed as
$$A = \sum_{i=1}^r \sigma_i u_i v_i^T = \sigma_1 u_1 v_1^T + \ldots + \sigma_r u_r v_r^T$$

Total space required to store A is $rm + rn + r^2$. If rank of A is small, it is better to store $u_1, \ldots, u_r, v_1, \ldots, v_r, \sigma_1, \ldots, \sigma_r$, rather than whole of A.

Energy of A

Energy of $A = U\Sigma V^T$ is given by $\mathcal{E} = \sum_{i=1}^r \sigma_i^2$

(Later on we will see the connection between Energy and Frobenius Norm of a matrix.)

Define $\mathcal{E}' = 0.99\mathcal{E}$, and let $j \leq r$ be the maximum index such that $\sum_{1=1}^{j} \sigma_i^2 \leq \mathcal{E}'$

Approximate
$$A$$
 by $\sum\limits_{i=1}^{j}\sigma_{i}u_{i}v_{i}^{T}$

How many cells we need to store in this representation?

- 1. First j columns of U,
- 2. j diagonal entries of Σ , and
- 3. $j \text{ rows of } V^T$.

Total Space = $j^2 + j(m+n)$ cells, or j + j(m+n) depending on how we want to store the diagonal entries of Σ .

For our example, dimension of $A_{m \times n}$ are $m = 10^8$ users and $n = 10^5$ items.

If j=20, then we need to store $j^2+j(m+n)=20^2+20\times(10^8+10^5)\approx 5,005,000~{\rm cells}$

This number is only .02% of 10^{13}

Let SVD of \boldsymbol{A} be

$$A = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{30} & -1/\sqrt{5}\\ 1/\sqrt{30} & 2/\sqrt{5}\\ 5/\sqrt{30} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5}\\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

In terms of Rank 1 Components:

$$A = \sqrt{6} \begin{bmatrix} 2/\sqrt{30} \\ 1/\sqrt{30} \\ 5/\sqrt{30} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} + 1 \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Energy of $A{:}\ \mathcal{E}(A)=\sqrt{6}^2+1^2=7$

Possible $\frac{6}{7}$ -Energy approximation of A is given by

$$A \approx \sqrt{6} \begin{bmatrix} 2/\sqrt{30} \\ 1/\sqrt{30} \\ 5/\sqrt{30} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}^T$$

An Application

Interpreting U, Σ , and V

Utility Matrix M as SVD $M = U\Sigma V^T$

 $\mathsf{M} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix}$ $= U\Sigma V^{T}$

$$= \begin{bmatrix} .13 & -.02 & .01 \\ .41 & -.07 & .03 \\ .55 & -.1 & .04 \\ .68 & -.11 & .05 \\ .15 & .59 & -.65 \\ .07 & .73 & .67 \\ .07 & .29 & -.32 \end{bmatrix} \begin{bmatrix} 12.5 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.35 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \\ .40 & -.8 & .40 & .09 & .09 \end{bmatrix}$$

- 1. 3 concepts (= rank)
- 2. U maps users to concepts
- 3. V maps items to concepts
- 4. Σ gives strength of each concept

Rank-2 Approximation

$$\begin{bmatrix} .13 & -.02 \\ .41 & -.07 \\ .55 & -.1 \\ .68 & -.11 \\ .15 & .59 \\ .07 & .73 \\ .07 & .29 \end{bmatrix} \begin{bmatrix} 12.5 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix}$$

% Loss in Energy
$$= \frac{1.35^2}{12.5^2 + 9.5^2 + 1.35^2} < 1\%$$

Consider the utility matrix M and its SVD.

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{\left[\begin{array}{c} .13 & -.02 \\ .41 & -.07 \\ .55 & -.1 \\ .68 & -.11 \\ .15 & .59 \\ .07 & .73 \\ .07 & .29 \end{bmatrix}} \begin{bmatrix} 12.5 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix}$$

MV gives mapping of each user in concept space:

[1	1	1	0	0				1.71	22
3	3	3	0	0	[.56	12		5.13	66
4	4	4	0	0	.59	.02		6.84	88
5	5	5	0	0	.56	12	=	8.55	-1.1
0	2	0	4	4	.09	.69		1.9	5.56
0	0	0	5	5	.09	.69		.9	6.9
0	1	0	2	2				.96	2.78

Suppose we want to recommend items to a new user q with the following row in the utility matrix $\begin{bmatrix} 3 & 0 & 0 & 0 \end{bmatrix}$

1. Map q to concept space:

$$qV = \begin{bmatrix} 3 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .56 & -.12 \\ .09 & .69 \\ .09 & .69 \end{bmatrix} = \begin{bmatrix} 1.68 & -.36 \end{bmatrix}$$

2. Map the vector qV to the Items space by multiplying by V^T as vector V captures the connection between items and concepts.

 $\begin{bmatrix} 1.68 & -.36 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix} = \begin{bmatrix} .98 & .98 & .98 & -.1 & -.1 \end{bmatrix}$

Suppose we want to recommend items to user q' with the following row in the utility matrix $\begin{bmatrix} 0 & 0 & 4 & 0 \end{bmatrix}$

1.
$$q'V = \begin{bmatrix} 0 & 0 & 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .56 & -.12 \\ .09 & .69 \\ .09 & .69 \end{bmatrix} = \begin{bmatrix} .36 & 2.76 \end{bmatrix}$$

2. Map q'V to the Items space by multiplying by V^T $\begin{bmatrix} .36 & 2.76 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix} = \begin{bmatrix} -.12 & .26 & -.12 & 1.93 & 1.93 \end{bmatrix}$ Suppose we want to recommend items to user q'' with the following row in the utility matrix $\begin{bmatrix} 0 & 0 & 4 & 4 & 0 \end{bmatrix}$

1.
$$q''V = \begin{bmatrix} 0 & 0 & 4 & 4 & 0 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .56 & -.12 \\ .09 & .69 \\ .09 & .69 \end{bmatrix} = \begin{bmatrix} 2.6 & 2.28 \end{bmatrix}$$

2. Map q''V to the Items space by multiplying by V^T $\begin{bmatrix} 2.6 & 2.28 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix} = \begin{bmatrix} 1.18 & 1.57 & 1.18 & 1.8 & 1.8 \end{bmatrix}$ Correctness

Frobenius Norm

Let A be a matrix of real numbers. Its Frobenius Norm $||A||_F$ is defined as $||A||_F=\sqrt{\sum\limits_{i,j}A[i,j]^2}$

Frobenius Norm via SVD of A

For a rank r matrix A with its singular-value decomposition $A = U\Sigma V^T$, its Frobenius norm is $||A||_F^2 = \Sigma_{11}^2 + \cdots + \Sigma_{rr}^2$.

SVD with Applications

N L N

-Low Rank Approximation

$$\begin{split} & \text{/hy is } ||A||_F^2 = \Sigma_{11}^2 + \dots + \Sigma_{rr}^2 ? \\ & \text{et SVD of } A = PQR \text{ (Note: } P = U, Q = \Sigma, R = V^T.) \\ & \text{ow } A_{ij} = \sum_k \sum_l p_{ik} q_{kl} r_{lj}. \\ & \text{||A||}_F^2 = \sum_i \sum_j A_{ij}^2 \\ & = \sum_i \sum_j (\sum_k \sum_l p_{ik} q_{kl} r_{lj})^2 \\ & = \sum_i \sum_j \sum_k \sum_l \sum_m \sum_n p_{ik} q_{kl} r_{lj} p_{im} q_{mn} r_{nj} \end{split}$$

Now use the fact that $q_{ab} = 0$ for $a \neq b$ and the dot-product of any two columns of p is 0 due to orthonormality of P = U. Similarly, the dot-product of any two rows of $R = V^T$ is 0. This allows us to show

$$||A||_F^2 = \sum_k q_{kk}^2 = \Sigma_{11}^2 + \dots + \Sigma_{rr}^2$$

Low Rank Approximation

obenius Norm

Let A be a matrix of real numbers. Its Frobenius Norm $||A||_F$ is defined as $||A||_F = \sqrt{\sum_{i,j} A[i,j]^2}$

Frobenius Norm via SVD of A

For a rank r matrix A with its singular-value decomposition $A = U\Sigma V^T$, its Frobenius norm is $||A||_F^2 = \Sigma_{11}^2 + \cdots + \Sigma_{rr}^2$.

Let A and A' be two matrices of real numbers of same dimensions.

Error in approximating A by A'

The error in approximating A by A' is defined as the Frobenius Norm of $||A - A'||_F = \sqrt{\sum\limits_{i,j} (A[i,j] - A'[i,j])^2}$

Let $A = U\Sigma V^T$ be a $m \times n$ matrix of real numbers of rank r. Let $1 \le r' < r$. Define a $r \times r$ diagonal matrix Σ' as follows: For i = 1 to r', $\Sigma'_{ii} = \Sigma_{ii}$ and all other entries of Σ' are 0. Let $A' = U\Sigma' V^T$.

Claim: A' is the best rank r' < r approximation of A, i.e., for any rank $r' m \times n$ matrix B, $||A - A'||_F \le ||A - B||_F$.

Given $A = U\Sigma V^T$ and $A' = U\Sigma' V^T$, $A - A' = U(\Sigma - \Sigma')V^T$. Thus, $||A - A'||_F^2 = \sum_{r'+1,r'+1}^2 + \cdots + \sum_{rr}^2$. Note that the elements $\sum_{r'+1,r'+1}, \ldots, \sum_{rr}$ were set to 0 in Σ to obtain A'. These are the *lowest energy terms* in A.

Best low rank approximation of A

For a rank r matrix A with its SVD $A = U\Sigma V^T$, its best rank r' < r approximation is obtained by the matrix A' where $A' = U\Sigma'V^T$ and Σ' is obtained from Σ by setting its r - r' smallest diagonal entries to 0.

- 1. Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press.
- G. H. Golub abd W. Kahan, Calculating the singular values and pseudo-inverse of a matriix, SIAM Journal Series B2:2:205-224, 1965.
- P. Drineas, R. Kanan and M.W. Mahoney, Fast Monte-Carlo algorithms for matrics III: Computing a compressed approximate matrix decomposition, SIAM JI. Computing 36:1: 184-206, 2006.
- J. Sun, Y. Xie, H. Zhang, and C. Faloutsos, Less is more: compact matrix decomposition for large sparse graphs, SIAM International Conference on Data Mining, 2007.