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Matrices - Eigenvalues &
Eigenvectors



Eigenvalues and Eigenvectors

Given an n× n matrix A.
A non-zero vector v is an eigenvector of A, if Av = λv for some scalar λ. λ is
the eigenvalue corresponding to vector v.

Example

Let A =

[
2 1

3 4

]

Observe that

[
2 1

3 4

][
1

3

]
= 5

[
1

3

]
and

[
2 1

3 4

][
1

−1

]
= 1

[
1

−1

]

Thus, λ1 = 5 and λ2 = 1 are the eigenvalues of A.
Corresponding eigenvectors are v1 = [1, 3] and v2 = [1,−1], as Av1 = λ1v1

and Av2 = λ2v2.
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Symmetric Matrices

Example
Consider symmetric matrix S = [ 3 1

1 3 ].
Its eigenvalues are λ1 = 4 and λ2 = 2 and the corresponding eigenvectors
are q1 = (1/

√
2, 1/
√

2) and q2 = (1/
√

2,−1/
√

2), respectively.
Note that eigenvalues are real and the eigenvectors are orthonormal.

S =

[
3 1

1 3

]
=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

][
4 0

0 2

][
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

Eigenvalues of Symmetric Matrices
All the eigenvalues of a real symmetric matrix S are real. Moreover, all
components of the eigenvectors of a real symmetric matrix S are real.
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Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two
different eigenvalues are orthogonal.
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Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two
different eigenvalues are orthogonal.
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Symmetric Matrices (contd.)

Proof: Let q1 and q2 be two eigenvectors corresponding to λ1 6= λ2, respectively. Thus,

Sq1 = λ1q1 and Sq2 = λ2q2. Since S is symmetric, qT1 S = λ1qT1 . Multiply by q2 on

the right and we obtain λ1qT1 q2 = qT1 Sq2 = qT1 λ2q2. Since λ1 6= λ2 and λ1qT1 q2 =

qT1 λ2q2, this implies that qT1 q2 = 0 and thus the eigenvectors q1 and q2 are orthogonal.



Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues
Let S be a n× n symmetric matrix with n distinct eigenvalues and let
q1, . . . , qn be the corresponding orthonormal eigenvectors. Let Q be the
n× n matrix consiting of q1, . . . , qn as its columns. Then
S = QΛQ−1 = QΛQT . Furthermore, S = λ1q1q

T
1 + λ2q2q

T
2 + · · ·+ λnqnq

T
n

S =

[
3 1

1 3

]
= 4

[
1/
√
2

1/
√
2

] [
1/
√
2 1/

√
2
]
+ 2

[
1/
√
2

−1/
√
2

] [
1/
√
2 −1/

√
2
]
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Positive Definite Matrices

Symmetric matrix S is positive definite if all its eigenvalues > 0.
It is positive semi-definite if all the eigenvalues are ≥ 0.

An Alternate Characterization
Let S be a n× n real symmetric matrix. For all non-zero vectors x ∈ Rn, if
xTSx > 0 holds, then all the eigenvalues of S are > 0.
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Positive Definite Matrices

Let λi be an eigenvalue of S and its corresponding unit eigenvector is qi. Note that

qTi qi = 1. Since S is symmetric, we know that λi is real. Now we have, λi = λiq
T
i qi =

qTi λiqi = qTi Sqi. But qTi Sqi > 0, hence λi > 0.



Diagonalization Summary

Square Matrices:
A be an n× n matrix with distinct eigenvalues.
Xn×n = Matrix of eigenvectors of A

AX = XΛ, A = XΛX−1, Λ = X−1ΛX

Symmetric Matrices:
S be an n× n symmetric matrix with distinct eigenvalues.
Qn×n= Matrix of n-orthonormal eigenvectors of S

S = QΛQT

What if A is a rectangular matrix of dimensions m× n?
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Singular Value Decomposition



SVD of Rectangular Matrices

Let A be a m× n matrix of rank r with real entries.

We can find orthonormal vectors in Rn such that their product with A results
in a scaled copy of orthonormal vectors in Rm.

Formally, we can find

1. Orthonormal vectors v1, . . . , vr ∈ Rn

2. Orthonormal vectors u1, . . . , ur ∈ Rm

3. Real numbers σ1, . . . , σr ∈ R

4. For i = 1, . . . , r: Avi = σiui

5. AV = UΣ, i.e.,

A
[
v1 . . . vr

]
=
[
u1 . . . ur

]
σ1

.

.

σr


6. A = UΣV T
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Example

An Example: AV = UΣ
1 5

0 3

1 4

4 0

5 1


[
.60 −.8
.8 .6

]
=


.58 .39

.31 .30

.48 .28

.30 −.56

.48 −.59


[

7.8 0

0 5.7

]

Alternatively, A = UΣV T
1 5

0 3

1 4

4 0

5 1

 =


.58 .39

.31 .30

.48 .28

.30 −.56

.48 −.59


[

7.8 0

0 5.7

][
.60 .8

−.8 .6

]

Play around with the SVD command in Wolfram Alpha for some matrices.
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Matrix ATA

Symmetric and Positive semi-definite

Let A be m× n matrix, where m ≥ n. The matrix ATA is symmetric and
positive semi-definite

Proof:
Symmetric: (ATA)T = AT (AT )T = ATA

Positive semi-definite: Take any non-zero vector x ∈ Rn

xT (ATA)x = (xTAT )(Ax) = (Ax)T (Ax) = ||Ax||2 ≥ 0

2
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Matrix ATA (contd.)

ATA is a symmetric matrix of dimension n× n. Eigenvalues of ATA are
non-negative and the corresponding eigenvectors are orthonormal.

Let λ1 ≥ . . . ≥ λn be eigenvalues of ATA and let v1, . . . , vn be the
corresponding eigenvectors.

ATAvi = λivi ⇔ vTi A
TAvi = λi

Define σi = ||Avi|| =⇒ σ2
i = ||Avi||2 = vTi A

TAvi = λi

Hence, σi = ||Avi|| =
√
λi

Consider two cases:

Full Rank: Rank of ATA is n.

Low Rank: Rank of ATA is r < n.
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Matrix ATA is Full Rank

Assume, σ1 ≥ . . . ≥ σn > 0

( =⇒ A and ATA has rank n)

Define vectors u1, . . . , un ∈ Rm as ui = Avi/σi

Orthonormal
The set of vectors ui = Avi/σi, for i = 1, . . . , n, are orthonormal.

Proof: ||ui|| = ||Avi||/σi = σi/σi = 1

Consider the dot product of any two vectors ui and uj :
uTi uj = (Avi/σi)

T (Avj/σj) = 1
σiσj

vTi A
TAvj = 1

σiσj
vTi λjvj =

λj

σiσj
vTi vj = 0

2

⇒ Avi = σiui for i = 1, . . . , r = n
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Matrix ATA is Full Rank

Why is rank(A) = rank(ATA)?

We will show thatNull−Space(A) ⊆ Null−Space(ATA) andNull−Space(ATA) ⊆
Null − Space(A). This implies that Null − Space(A) = Null − Space(ATA) and
rank(A) = rank(ATA) = n− rank(Null − Space(A)).

Consider a vector x ∈ Null − Space(A).
Then Ax = ~0 and ATAx = AT (Ax) = AT~0 = ~0.
⇒ x ∈ Null − Space(ATA).

Consider a vector y such that ATAy = ~0.
Then yTATAy = ~0 or (Ay)T (Ay) = ~0.
⇒ Ay = ~0 and y ∈ Null − space(A)
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Matrix ATA is Low Rank

Suppose m ≥ n, but rank(A) = r < n.

Eigenvalues of ATA

The n− r eigenvalues of ATA are equal to 0.

Proof: Consider a basis of the null space of A.
Let x1, . . . , xn−r be a basis of the null space of A.
This implies that Axj = 0 for j = 1, . . . , n− r.
Now, ATAxj = 0 = 0xj .
Thus, 0 is an eigenvalue of ATA corresponding to each xi’s.
Thus n− r eigenvalues of ATA are equal to 0

2
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Handling low rank (contd.)

Consider eigenvalues and eigenvectors of ATA
Let λ1 ≥ . . . ≥ λr > 0 and λr+1 = . . . = λn = 0

Let v1, . . . , vr be the orthonormal vectors corresponding to λ1, . . . , λr

For i = 1, . . . , r, define σi = ||Avi|| =
√
λi

Note that σ1 ≥ . . . σr > 0

For i = 1, . . . , r, define ui = 1
σi
Avi

SVD for A
Vectors u1, . . . , ur are orthonormal and Avi = σiui.
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SVD of A

Singular Value Decomposition
For a matrix A of dimension m× n, where m ≥ n, we have

1. ATA is a symmetric positive semidefinite square matrix of dimension
n× n.

2. Rank of A is n: λ1 ≥ . . . ≥ λn > 0 are eigenvalues of ATA and
v1, . . . , vn the corresponding orthonormal eigenvectors. The vectors
ui = Avi/σi, for i = 1, . . . , n, are orthonormal, where σi =

√
λi.

3. Rank of A is r < n: λ1 ≥ . . . ≥ λr > 0 are non-zero eigenvalues of ATA
and v1, . . . , vr the corresponding orthonormal eigenvectors. The vectors
ui = Avi/σi, for i = 1, . . . , r, are orthonormal, where σi =

√
λi.

4. AV = UΣ, where V is n× r matrix consisting of orthonormal
eigenvectors of ATA corresponding to non-zero eigenvalues of ATA, U
is m× r matrix of orthonormal vectors given by ui = Avi/σi for non-zero
σi, and Σ is r × r diagonal matrix.

5. AV V T = A = UΣV T ← Singular-Value Decomposition of A.
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Matrices ATA and AAT

We have A = UΣV T .

ATA = (UΣV T )T (UΣV T ) = (V ΣUT )(UΣV T ) = V Σ(UTU)ΣV T = V Σ2V T

Matrix ATA

ATA is square symmetric matrix and it is expressed in the diagonalized
form ATA = V Σ2V T . Thus, σ2

i ’s are its eigenvalues and V is its
eigenvectors matrix.

Similarly, consider AAT and we obtain that
AAT = (UΣV T )(UΣV T )T = UΣV TV ΣUT = UΣ2UT .

Matrix AAT

AAT is square symmetric matrix and it is expressed in the diagonalized
form AAT = UΣ2UT . Thus U is the eigenvector matrix for the symmetric
matrix AAT with the same eigenvalues as ATA.
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Singular Value Decomposition - Summary

- Let A be a m× n matrix of real numbers of rank r

- Am×n = Um×rΣr×rV
T
r×n, where

U is a orthonormal m× r matrix
V is a orthonormal n× r matrix
Σ is an r × r diagonal matrix and its (i, i)-th entry is σi for i = 1, . . . , r

- Note that σ1 ≥ σ2 ≥ . . . σr > 0 and σi =
√
λi where λi are the eigenvalues

of ATA

- The set of orthonormal vectors v1, . . . , vr and u1, . . . , ur are eigenvectors of
ATA and AAT , respectively. The vectors v’s and u’s satisfy the equation
Avi = σiui, for i = 1, . . . , r

- Alternatively, we can express A as the sum of the product of rank 1 matrices

A = Σri=1σiuiv
T
i = σ1u1v

T
1 + . . .+ σrurv

T
r
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An Application

Let Am×n be the Utility Matrix, where m = 108 users and n = 105 items.

SVD of A = UΣV T

Let r of σ′is are > 0

Let σ1 ≥ . . . ≥ σr > 0

A can be expressed as A =
r∑
i=1

σiuiv
T
i = σ1u1v

T
1 + . . .+ σrurv

T
r

Total space required to store A is rm+ rn+ r2. If rank of A is small, it is
better to store u1, . . . , ur, v1, . . . , vr, σ1, . . . , σr, rather than whole of A.
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Energy of A

Energy of A = UΣV T is given by E =
r∑
i=1

σ2
i

(Later on we will see the connection between Energy and Frobenius Norm of
a matrix.)

Define E ′ = 0.99E , and let j ≤ r be the maximum index such that
j∑

1=1

σ2
i ≤ E ′

Approximate A by
j∑
i=1

σiuiv
T
i

How many cells we need to store in this representation?

1. First j columns of U ,

2. j diagonal entries of Σ, and

3. j rows of V T .

Total Space = j2 + j(m+ n) cells, or j + j(m+ n) depending on how we
want to store the diagonal entries of Σ.
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Low Rank Approximation (contd.)

For our example, dimension of Am×n are m = 108 users and n = 105 items.

If j = 20, then we need to store
j2 + j(m+ n) = 202 + 20× (108 + 105) ≈ 5, 005, 000 cells

This number is only .02% of 1013
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Low Rank Approximations

Let SVD of A be

A =
[
1 0
0 1
2 1

]
=

[
2/
√
30 −1/

√
5

1/
√
30 2/

√
5

5/
√
30 0

] [√
6 0

0 1
0 0

] [
2/
√
5 1/

√
5

−1/
√
5 2/
√
5

]
In terms of Rank 1 Components:

A =
√

6

[
2/
√
30

1/
√
30

5/
√
30

]
[ 2/
√
5 1/
√

5 ] + 1

[
−1/
√
5

2/
√
5

0

]
[−1/

√
5 2/
√
5 ]

Energy of A: E(A) =
√

6
2

+ 12 = 7

Possible 6
7
-Energy approximation of A is given by

A ≈
√

6

[
2/
√
30

1/
√
30

5/
√
30

] [
2/
√
5

1/
√
5

]T
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An Application



Interpreting U,Σ, and V

Utility Matrix M as SVD M = UΣV T

M=



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


= UΣV T

=



.13 −.02 .01

.41 −.07 .03

.55 −.1 .04

.68 −.11 .05

.15 .59 −.65

.07 .73 .67

.07 .29 −.32



12.5 0 0

0 9.5 0

0 0 1.35


 .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

.40 −.8 .40 .09 .09



1. 3 concepts (= rank)

2. U maps users to concepts

3. V maps items to concepts

4. Σ gives strength of each concept
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Rank-2 Approximation



.13 −.02

.41 −.07

.55 −.1

.68 −.11

.15 .59

.07 .73

.07 .29


[

12.5 0

0 9.5

][
.56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]

% Loss in Energy = 1.352

12.52+9.52+1.352 < 1%
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Mapping Users to Concept Space

Consider the utility matrix M and its SVD.

M =



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


≈



.13 −.02

.41 −.07

.55 −.1

.68 −.11

.15 .59

.07 .73

.07 .29


[
12.5 0

0 9.5

] [
.56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]

MV gives mapping of each user in concept space:

1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2




.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =



1.71 −.22

5.13 −.66

6.84 −.88

8.55 −1.1

1.9 5.56

.9 6.9

.96 2.78
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Mapping Users to Items

Suppose we want to recommend items to a new user q with the following row
in the utility matrix

[
3 0 0 0 0

]
1. Map q to concept space:

qV =
[
3 0 0 0 0

]

.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =
[
1.68 −.36

]

2. Map the vector qV to the Items space by multiplying by V T as vector V
captures the connection between items and concepts.[
1.68 −.36

] [ .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]
=[

.98 .98 .98 −.1 −.1
]

26



Mapping Users to Items (Contd.)

Suppose we want to recommend items to user q′ with the following row in the
utility matrix

[
0 0 0 4 0

]

1. q′V =
[
0 0 0 4 0

]

.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =
[
.36 2.76

]

2. Map q′V to the Items space by multiplying by V T[
.36 2.76

] [ .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]
=[

−.12 .26 −.12 1.93 1.93
]

27



Mapping Users to Items (Contd.)

Suppose we want to recommend items to user q′′ with the following row in the
utility matrix

[
0 0 4 4 0

]

1. q′′V =
[
0 0 4 4 0

]

.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =
[
2.6 2.28

]

2. Map q′′V to the Items space by multiplying by V T[
2.6 2.28

] [ .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]
=[

1.18 1.57 1.18 1.8 1.8
]
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Low Rank Approximation

Frobenius Norm
Let A be a matrix of real numbers. Its Frobenius Norm ||A||F is defined as
||A||F =

√∑
i,j

A[i, j]2

Frobenius Norm via SVD of A

For a rank r matrix A with its singular-value decomposition A = UΣV T , its
Frobenius norm is ||A||2F = Σ2

11 + · · ·+ Σ2
rr.
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Low Rank Approximation

Why is ||A||2F = Σ2
11 + · · ·+ Σ2

rr?
Let SVD of A = PQR (Note: P = U,Q = Σ, R = V T .)
Now Aij =

∑
k

∑
l
pikqklrlj .

||A||2F =
∑
i

∑
j

A2
ij

=
∑
i

∑
j

(
∑
k

∑
l

pikqklrlj)
2

=
∑
i

∑
j

∑
k

∑
l

∑
m

∑
n

pikqklrljpimqmnrnj

Now use the fact that qab = 0 for a 6= b and the dot-product of any two columns of p is 0

due to orthonormality of P = U . Similarly, the dot-product of any two rows of R = V T

is 0. This allows us to show

||A||2F =
∑
k

q2kk = Σ2
11 + · · ·+ Σ2

rr



Low Rank Approximation (contd.)

Let A and A′ be two matrices of real numbers of same dimensions.

Error in approximating A by A′

The error in approximating A by A′ is defined as the Frobenius Norm of
||A−A′||F =

√∑
i,j

(A[i, j]−A′[i, j])2

Let A = UΣV T be a m× n matrix of real numbers of rank r. Let 1 ≤ r′ < r.
Define a r × r diagonal matrix Σ′ as follows:
For i = 1 to r′, Σ′ii = Σii and all other entries of Σ′ are 0. Let A′ = UΣ′V T .

Claim: A′ is the best rank r′ < r approximation of A, i.e., for any rank r′ m×n
matrix B, ||A−A′||F ≤ ||A−B||F .
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Low Rank Approximation (contd.)

Given A = UΣV T and A′ = UΣ′V T , A−A′ = U(Σ− Σ′)V T .
Thus, ||A−A′||2F = Σ2

r′+1,r′+1 + · · ·+ Σ2
rr.

Note that the elements Σr′+1,r′+1, . . . ,Σrr were set to 0 in Σ to obtain A′.
These are the lowest energy terms in A.

Best low rank approximation of A

For a rank r matrix A with its SVD A = UΣV T , its best rank r′ < r

approximation is obtained by the matrix A′ where A′ = UΣ′V T and Σ′ is
obtained from Σ by setting its r − r′ smallest diagonal entries to 0.
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