Singular-Value Decomposition with Applications

Anil Maheshwari
anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

Outline

Matrices - Eigenvalues \& Eigenvectors

Singular Value Decomposition

Low Rank Approximations

An Application

Correctness

Matrices - Eigenvalues \&

Eigenvectors

Eigenvalues and Eigenvectors

Given an $n \times n$ matrix A.
A non-zero vector v is an eigenvector of A, if $A v=\lambda v$ for some scalar λ. λ is the eigenvalue corresponding to vector v.

Example

Let $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$
Observe that

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=5\left[\begin{array}{l}
1 \\
3
\end{array}\right] \text { and }\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=1\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Thus, $\lambda_{1}=5$ and $\lambda_{2}=1$ are the eigenvalues of A. Corresponding eigenvectors are $v_{1}=[1,3]$ and $v_{2}=[1,-1]$, as $A v_{1}=\lambda_{1} v_{1}$ and $A v_{2}=\lambda_{2} v_{2}$.

Symmetric Matrices

Example

Consider symmetric matrix $S=\left[\begin{array}{lll}3 & 1 \\ 1 & 3\end{array}\right]$.
Its eigenvalues are $\lambda_{1}=4$ and $\lambda_{2}=2$ and the corresponding eigenvectors are $q_{1}=(1 / \sqrt{2}, 1 / \sqrt{2})$ and $q_{2}=(1 / \sqrt{2},-1 / \sqrt{2})$, respectively.
Note that eigenvalues are real and the eigenvectors are orthonormal.

$$
S=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Eigenvalues of Symmetric Matrices

All the eigenvalues of a real symmetric matrix S are real. Moreover, all components of the eigenvectors of a real symmetric matrix S are real.

Symmetric Matrices (contd.)

Property
 Any pair of eigenvectors of a real symmetric matrix S corresponding to two different eigenvalues are orthogonal.

SVD with Applications
LMatrices - Eigenvalues \& Eigenvectors
LSymmetric Matrices (contd.)

Proof: Let q_{1} and q_{2} be two eigenvectors corresponding to $\lambda_{1} \neq \lambda_{2}$, respectively. Thus, $S q_{1}=\lambda_{1} q_{1}$ and $S q_{2}=\lambda_{2} q_{2}$. Since S is symmetric, $q_{1}^{T} S=\lambda_{1} q_{1}^{T}$. Multiply by q_{2} on the right and we obtain $\lambda_{1} q_{1}^{T} q_{2}=q_{1}^{T} S q_{2}=q_{1}^{T} \lambda_{2} q_{2}$. Since $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{1} q_{1}^{T} q_{2}=$ $q_{1}^{T} \lambda_{2} q_{2}$, this implies that $q_{1}^{T} q_{2}=0$ and thus the eigenvectors q_{1} and q_{2} are orthogonal.

Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues

Let S be a $n \times n$ symmetric matrix with n distinct eigenvalues and let q_{1}, \ldots, q_{n} be the corresponding orthonormal eigenvectors. Let Q be the $n \times n$ matrix consiting of q_{1}, \ldots, q_{n} as its columns. Then
$S=Q \Lambda Q^{-1}=Q \Lambda Q^{T}$. Furthermore, $S=\lambda_{1} q_{1} q_{1}^{T}+\lambda_{2} q_{2} q_{2}^{T}+\cdots+\lambda_{n} q_{n} q_{n}^{T}$

$$
S=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]=4\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]+2\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Positive Definite Matrices

Symmetric matrix S is positive definite if all its eigenvalues >0.
It is positive semi-definite if all the eigenvalues are ≥ 0.

An Alternate Characterization

Let S be a $n \times n$ real symmetric matrix. For all non-zero vectors $x \in R^{n}$, if $x^{T} S x>0$ holds, then all the eigenvalues of S are >0.

SVD with Applications
Matrices - Eigenvalues \& Eigenvectors

Positive Definite Matrices

Let λ_{i} be an eigenvalue of S and its corresponding unit eigenvector is q_{i}. Note that $q_{i}^{T} q_{i}=1$. Since S is symmetric, we know that λ_{i} is real. Now we have, $\lambda_{i}=\lambda_{i} q_{i}^{T} q_{i}=$ $q_{i}^{T} \lambda_{i} q_{i}=q_{i}^{T} S q_{i}$. But $q_{i}^{T} S q_{i}>0$, hence $\lambda_{i}>0$.

Diagonalization Summary

Square Matrices:

A be an $n \times n$ matrix with distinct eigenvalues.
$X_{n \times n}=$ Matrix of eigenvectors of A
$A X=X \Lambda, A=X \Lambda X^{-1}, \Lambda=X^{-1} \Lambda X$

Symmetric Matrices:

S be an $n \times n$ symmetric matrix with distinct eigenvalues.
$Q_{n \times n}=$ Matrix of n-orthonormal eigenvectors of S
$S=Q \Lambda Q^{T}$

What if A is a rectangular matrix of dimensions $m \times n$?

Singular Value Decomposition

SVD of Rectangular Matrices

Let A be a $m \times n$ matrix of rank r with real entries.
We can find orthonormal vectors in \mathbb{R}^{n} such that their product with A results in a scaled copy of orthonormal vectors in \mathbb{R}^{m}.

Formally, we can find

1. Orthonormal vectors $v_{1}, \ldots, v_{r} \in \mathbb{R}^{n}$
2. Orthonormal vectors $u_{1}, \ldots, u_{r} \in \mathbb{R}^{m}$
3. Real numbers $\sigma_{1}, \ldots, \sigma_{r} \in \mathbb{R}$
4. For $i=1, \ldots, r: A v_{i}=\sigma_{i} u_{i}$
5. $A V=U \Sigma$, i.e.,

$$
A\left[\begin{array}{lll}
v_{1} & \ldots & v_{r}
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & \ldots & u_{r}
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \cdot & & \\
& & \cdot & \\
& & & \sigma_{r}
\end{array}\right]
$$

6. $A=U \Sigma V^{T}$

Example

An Example: $A V=U \Sigma$

$$
\left[\begin{array}{ll}
1 & 5 \\
0 & 3 \\
1 & 4 \\
4 & 0 \\
5 & 1
\end{array}\right]\left[\begin{array}{cc}
.60 & -.8 \\
.8 & .6
\end{array}\right]=\left[\begin{array}{cc}
.58 & .39 \\
.31 & .30 \\
.48 & .28 \\
.30 & -.56 \\
.48 & -.59
\end{array}\right]\left[\begin{array}{cc}
7.8 & 0 \\
0 & 5.7
\end{array}\right]
$$

Alternatively, $A=U \Sigma V^{T}$

$$
\left[\begin{array}{ll}
1 & 5 \\
0 & 3 \\
1 & 4 \\
4 & 0 \\
5 & 1
\end{array}\right]=\left[\begin{array}{cc}
.58 & .39 \\
.31 & .30 \\
.48 & .28 \\
.30 & -.56 \\
.48 & -.59
\end{array}\right]\left[\begin{array}{cc}
7.8 & 0 \\
0 & 5.7
\end{array}\right]\left[\begin{array}{cc}
.60 & .8 \\
-.8 & .6
\end{array}\right]
$$

Play around with the SVD command in Wolfram Alpha for some matrices.

Matrix $A^{T} A$

Symmetric and Positive semi-definite

Let A be $m \times n$ matrix, where $m \geq n$. The matrix $A^{T} A$ is symmetric and positive semi-definite

Proof:

Symmetric: $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$
Positive semi-definite: Take any non-zero vector $x \in \mathbb{R}^{n}$

$$
x^{T}\left(A^{T} A\right) x=\left(x^{T} A^{T}\right)(A x)=(A x)^{T}(A x)=\|A x\|^{2} \geq 0
$$

Matrix $A^{T} A$ (contd.)

$A^{T} A$ is a symmetric matrix of dimension $n \times n$. Eigenvalues of $A^{T} A$ are non-negative and the corresponding eigenvectors are orthonormal.

Let $\lambda_{1} \geq \ldots \geq \lambda_{n}$ be eigenvalues of $A^{T} A$ and let v_{1}, \ldots, v_{n} be the corresponding eigenvectors.
$A^{T} A v_{i}=\lambda_{i} v_{i} \Leftrightarrow v_{i}^{T} A^{T} A v_{i}=\lambda_{i}$
Define $\sigma_{i}=\left\|A v_{i}\right\| \Longrightarrow \sigma_{i}^{2}=\left\|A v_{i}\right\|^{2}=v_{i}^{T} A^{T} A v_{i}=\lambda_{i}$
Hence, $\sigma_{i}=\left\|A v_{i}\right\|=\sqrt{\lambda_{i}}$
Consider two cases:
Full Rank: Rank of $A^{T} A$ is n.
Low Rank: Rank of $A^{T} A$ is $r<n$.

Matrix $A^{T} A$ is Full Rank

Assume, $\sigma_{1} \geq \ldots \geq \sigma_{n}>0$
$\left(\Longrightarrow A\right.$ and $A^{T} A$ has rank $\left.n\right)$
Define vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{m}$ as $u_{i}=A v_{i} / \sigma_{i}$

Orthonormal

The set of vectors $u_{i}=A v_{i} / \sigma_{i}$, for $i=1, \ldots, n$, are orthonormal.

Proof: $\left\|u_{i}\right\|=\left\|A v_{i}\right\| / \sigma_{i}=\sigma_{i} / \sigma_{i}=1$
Consider the dot product of any two vectors u_{i} and u_{j} :

$$
u_{i}^{T} u_{j}=\left(A v_{i} / \sigma_{i}\right)^{T}\left(A v_{j} / \sigma_{j}\right)=\frac{1}{\sigma_{i} \sigma_{j}} v_{i}^{T} A^{T} A v_{j}=\frac{1}{\sigma_{i} \sigma_{j}} v_{i}^{T} \lambda_{j} v_{j}=\frac{\lambda_{j}}{\sigma_{i} \sigma_{j}} v_{i}^{T} v_{j}=0
$$

$$
\Rightarrow A v_{i}=\sigma_{i} u_{i} \text { for } i=1, \ldots, r=n
$$

SVD with Applications
2023-11-19

Singular Value Decomposition

$L_{\text {Matrix }} A^{T} A$ is Full Rank

Why is $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$?
We will show that $N u l l-\operatorname{Space}(A) \subseteq \operatorname{Null}-\operatorname{Space}\left(A^{T} A\right)$ and $N u l l-\operatorname{Space}\left(A^{T} A\right) \subseteq$ Null $-\operatorname{Space}(A)$. This implies that Null $-\operatorname{Space}(A)=\operatorname{Null}-\operatorname{Space}\left(A^{T} A\right)$ and $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)=n-\operatorname{rank}($ Null $-\operatorname{Space}(A))$.

Consider a vector $x \in$ Null - Space (A).
Then $A x=\overrightarrow{0}$ and $A^{T} A x=A^{T}(A x)=A^{T} \overrightarrow{0}=\overrightarrow{0}$.
$\Rightarrow x \in N u l l-\operatorname{Space}\left(A^{T} A\right)$.
Consider a vector y such that $A^{T} A y=\overrightarrow{0}$.
Then $y^{T} A^{T} A y=\overrightarrow{0}$ or $(A y)^{T}(A y)=\overrightarrow{0}$.
$\Rightarrow A y=\overrightarrow{0}$ and $y \in N u l l-\operatorname{space}(A)$

Matrix $A^{T} A$ is Low Rank

Suppose $m \geq n$, but $\operatorname{rank}(A)=r<n$.

Eigenvalues of $A^{T} A$

The $n-r$ eigenvalues of $A^{T} A$ are equal to 0 .
Proof: Consider a basis of the null space of A. Let x_{1}, \ldots, x_{n-r} be a basis of the null space of A.
This implies that $A x_{j}=0$ for $j=1, \ldots, n-r$.
Now, $A^{T} A x_{j}=0=0 x_{j}$.
Thus, 0 is an eigenvalue of $A^{T} A$ corresponding to each x_{i} 's.
Thus $n-r$ eigenvalues of $A^{T} A$ are equal to 0

Handling low rank (contd.)

Consider eigenvalues and eigenvectors of $A^{T} A$
Let $\lambda_{1} \geq \ldots \geq \lambda_{r}>0$ and $\lambda_{r+1}=\ldots=\lambda_{n}=0$
Let v_{1}, \ldots, v_{r} be the orthonormal vectors corresponding to $\lambda_{1}, \ldots, \lambda_{r}$
For $i=1, \ldots, r$, define $\sigma_{i}=\left\|A v_{i}\right\|=\sqrt{\lambda_{i}}$
Note that $\sigma_{1} \geq \ldots \sigma_{r}>0$
For $i=1, \ldots, r$, define $u_{i}=\frac{1}{\sigma_{i}} A v_{i}$

SVD for A

Vectors u_{1}, \ldots, u_{r} are orthonormal and $A v_{i}=\sigma_{i} u_{i}$.

SVD of A

Singular Value Decomposition

For a matrix A of dimension $m \times n$, where $m \geq n$, we have

1. $A^{T} A$ is a symmetric positive semidefinite square matrix of dimension $n \times n$.
2. Rank of A is $n: \lambda_{1} \geq \ldots \geq \lambda_{n}>0$ are eigenvalues of $A^{T} A$ and v_{1}, \ldots, v_{n} the corresponding orthonormal eigenvectors. The vectors $u_{i}=A v_{i} / \sigma_{i}$, for $i=1, \ldots, n$, are orthonormal, where $\sigma_{i}=\sqrt{\lambda_{i}}$.
3. Rank of A is $r<n: \lambda_{1} \geq \ldots \geq \lambda_{r}>0$ are non-zero eigenvalues of $A^{T} A$ and v_{1}, \ldots, v_{r} the corresponding orthonormal eigenvectors. The vectors $u_{i}=A v_{i} / \sigma_{i}$, for $i=1, \ldots, r$, are orthonormal, where $\sigma_{i}=\sqrt{\lambda_{i}}$.
4. $A V=U \Sigma$, where V is $n \times r$ matrix consisting of orthonormal eigenvectors of $A^{T} A$ corresponding to non-zero eigenvalues of $A^{T} A, U$ is $m \times r$ matrix of orthonormal vectors given by $u_{i}=A v_{i} / \sigma_{i}$ for non-zero σ_{i}, and Σ is $r \times r$ diagonal matrix.
5. $A V V^{T}=A=U \Sigma V^{T} \leftarrow$ Singular-Value Decomposition of A.

Matrices $A^{T} A$ and $A A^{T}$

We have $A=U \Sigma V^{T}$.
$A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=\left(V \Sigma U^{T}\right)\left(U \Sigma V^{T}\right)=V \Sigma\left(U^{T} U\right) \Sigma V^{T}=V \Sigma^{2} V^{T}$

Matrix $A^{T} A$
$A^{T} A$ is square symmetric matrix and it is expressed in the diagonalized form $A^{T} A=V \Sigma^{2} V^{T}$. Thus, σ_{i}^{2} 's are its eigenvalues and V is its eigenvectors matrix.

Similarly, consider $A A^{T}$ and we obtain that $A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T}$.

Matrix $A A^{T}$

$A A^{T}$ is square symmetric matrix and it is expressed in the diagonalized form $A A^{T}=U \Sigma^{2} U^{T}$. Thus U is the eigenvector matrix for the symmetric matrix $A A^{T}$ with the same eigenvalues as $A^{T} A$.

Singular Value Decomposition - Summary

- Let A be a $m \times n$ matrix of real numbers of rank r
- $A_{m \times n}=U_{m \times r} \Sigma_{r \times r} V_{r \times n}^{T}$, where
U is a orthonormal $m \times r$ matrix
V is a orthonormal $n \times r$ matrix
Σ is an $r \times r$ diagonal matrix and its (i, i)-th entry is σ_{i} for $i=1, \ldots, r$
- Note that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{r}>0$ and $\sigma_{i}=\sqrt{\lambda_{i}}$ where λ_{i} are the eigenvalues of $A^{T} A$
- The set of orthonormal vectors v_{1}, \ldots, v_{r} and u_{1}, \ldots, u_{r} are eigenvectors of $A^{T} A$ and $A A^{T}$, respectively. The vectors v 's and u 's satisfy the equation $A v_{i}=\sigma_{i} u_{i}$, for $i=1, \ldots, r$
- Alternatively, we can express A as the sum of the product of rank 1 matrices

$$
A=\Sigma_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}=\sigma_{1} u_{1} v_{1}^{T}+\ldots+\sigma_{r} u_{r} v_{r}^{T}
$$

Low Rank Approximations

An Application

Let $A_{m \times n}$ be the Utility Matrix, where $m=10^{8}$ users and $n=10^{5}$ items.
SVD of $A=U \Sigma V^{T}$
Let r of $\sigma_{i}^{\prime} s$ are >0
Let $\sigma_{1} \geq \ldots \geq \sigma_{r}>0$
A can be expressed as $A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}=\sigma_{1} u_{1} v_{1}^{T}+\ldots+\sigma_{r} u_{r} v_{r}^{T}$
Total space required to store A is $r m+r n+r^{2}$. If rank of A is small, it is better to store $u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{r}, \sigma_{1}, \ldots, \sigma_{r}$, rather than whole of A.

Energy of A

Energy of $A=U \Sigma V^{T}$ is given by $\mathcal{E}=\sum_{i=1}^{r} \sigma_{i}^{2}$
(Later on we will see the connection between Energy and Frobenius Norm of a matrix.)

Define $\mathcal{E}^{\prime}=0.99 \mathcal{E}$, and let $j \leq r$ be the maximum index such that $\sum_{1=1}^{j} \sigma_{i}^{2} \leq \mathcal{E}^{\prime}$
Approximate A by $\sum_{i=1}^{j} \sigma_{i} u_{i} v_{i}^{T}$
How many cells we need to store in this representation?

1. First j columns of U,
2. j diagonal entries of Σ, and
3. j rows of V^{T}.

Total Space $=j^{2}+j(m+n)$ cells, or $j+j(m+n)$ depending on how we want to store the diagonal entries of Σ.

Low Rank Approximation (contd.)

For our example, dimension of $A_{m \times n}$ are $m=10^{8}$ users and $n=10^{5}$ items.

If $j=20$, then we need to store
$j^{2}+j(m+n)=20^{2}+20 \times\left(10^{8}+10^{5}\right) \approx 5,005,000$ cells

This number is only $.02 \%$ of 10^{13}

Low Rank Approximations

Let SVD of A be
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}2 / \sqrt{30} & -1 / \sqrt{5} \\ 1 / \sqrt{30} & 2 / \sqrt{5} \\ 5 / \sqrt{30} & 0\end{array}\right]\left[\begin{array}{cc}\sqrt{6} & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}2 / \sqrt{5} & 1 / \sqrt{5} \\ -1 / \sqrt{5} & 2 / \sqrt{5}\end{array}\right]$
In terms of Rank 1 Components:
$A=\sqrt{6}\left[\begin{array}{l}2 / \sqrt{30} \\ 1 / \sqrt{30} \\ 5 / \sqrt{30}\end{array}\right][2 / \sqrt{5} 1 / \sqrt{5}]+1\left[\begin{array}{c}-1 / \sqrt{5} \\ 2 / \sqrt{5} \\ 0\end{array}\right][-1 / \sqrt{5} 2 / \sqrt{5}]$
Energy of A : $\mathcal{E}(A)=\sqrt{6}^{2}+1^{2}=7$
Possible $\frac{6}{7}$-Energy approximation of A is given by
$A \approx \sqrt{6}\left[\begin{array}{l}2 / \sqrt{30} \\ 1 / \sqrt{30} \\ 5 / \sqrt{30}\end{array}\right]\left[\begin{array}{l}2 / \sqrt{5} \\ 1 / \sqrt{5}\end{array}\right]^{T}$

An Application

Interpreting U, Σ, and V

Utility Matrix M as SVD $M=U \Sigma V^{T}$
$\mathbf{M}=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2\end{array}\right]$
$=U \Sigma V^{T}$
$=\left[\begin{array}{ccc}.13 & -.02 & .01 \\ .41 & -.07 & .03 \\ .55 & -.1 & .04 \\ .68 & -.11 & .05 \\ .15 & .59 & -.65 \\ .07 & .73 & .67 \\ .07 & .29 & -.32\end{array}\right]\left[\begin{array}{ccc}12.5 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.35\end{array}\right]\left[\begin{array}{ccccc}.56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \\ .40 & -.8 & .40 & .09 & .09\end{array}\right]$

1. 3 concepts (=rank)
2. U maps users to concepts
3. V maps items to concepts
4. Σ gives strength of each concept

Rank-2 Approximation

$$
\left[\begin{array}{cc}
.13 & -.02 \\
.41 & -.07 \\
.55 & -.1 \\
.68 & -.11 \\
.15 & .59 \\
.07 & .73 \\
.07 & .29
\end{array}\right]\left[\begin{array}{cc}
12.5 & 0 \\
0 & 9.5
\end{array}\right]\left[\begin{array}{ccccc}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -.12 & .69 & .69
\end{array}\right]
$$

$\%$ Loss in Energy $=\frac{1.35^{2}}{12.5^{2}+9.5^{2}+1.35^{2}}<1 \%$

Mapping Users to Concept Space

Consider the utility matrix M and its SVD.
$M=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2\end{array}\right] \approx\left[\begin{array}{cc}.13 & -.02 \\ .41 & -.07 \\ .55 & -.1 \\ .68 & -.11 \\ .15 & .59 \\ .07 & .73 \\ .07 & .29\end{array}\right]\left[\begin{array}{cc}12.5 & 0 \\ 0 & 9.5\end{array}\right]\left[\begin{array}{cccccc}.56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69\end{array}\right]$
$M V$ gives mapping of each user in concept space:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{array}\right]\left[\begin{array}{cc}
.56 & -.12 \\
.59 & .02 \\
.56 & -.12 \\
.09 & .69 \\
.09 & .69
\end{array}\right]=\left[\begin{array}{cc}
1.71 & -.22 \\
5.13 & -.66 \\
6.84 & -.88 \\
8.55 & -1.1 \\
1.9 & 5.56 \\
.9 & 6.9 \\
.96 & 2.78
\end{array}\right]
$$

Mapping Users to Items

Suppose we want to recommend items to a new user q with the following row in the utility matrix $\left[\begin{array}{ccccc}3 & 0 & 0 & 0 & 0\end{array}\right]$

1. Map q to concept space:

$$
q V=\left[\begin{array}{lllll}
3 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cc}
.56 & -.12 \\
.59 & .02 \\
.56 & -.12 \\
.09 & .69 \\
.09 & .69
\end{array}\right]=\left[\begin{array}{ll}
1.68 & -.36
\end{array}\right]
$$

2. Map the vector $q V$ to the Items space by multiplying by V^{T} as vector V captures the connection between items and concepts.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1.68 & -.36
\end{array}\right]\left[\begin{array}{ccccc}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -.12 & .69 & .69
\end{array}\right]=} \\
& {\left[\begin{array}{lllll}
.98 & .98 & .98 & -.1 & -.1
\end{array}\right]}
\end{aligned}
$$

Mapping Users to Items (Contd.)

Suppose we want to recommend items to user q^{\prime} with the following row in the utility matrix $\left[\begin{array}{lllll}0 & 0 & 0 & 4 & 0\end{array}\right]$

$$
\text { 1. } q^{\prime} V=\left[\begin{array}{lllll}
0 & 0 & 0 & 4 & 0
\end{array}\right]\left[\begin{array}{cc}
.56 & -.12 \\
.59 & .02 \\
.56 & -.12 \\
.09 & .69 \\
.09 & .69
\end{array}\right]=\left[\begin{array}{ll}
.36 & 2.76
\end{array}\right]
$$

2. Map $q^{\prime} V$ to the Items space by multiplying by V^{T}

$$
\begin{aligned}
& {\left[\begin{array}{ll}
.36 & 2.76
\end{array}\right]\left[\begin{array}{ccccc}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -.12 & .69 & .69
\end{array}\right]=} \\
& {\left[\begin{array}{llll}
-.12 & .26 & -.12 & 1.93 \\
1.93
\end{array}\right]}
\end{aligned}
$$

Mapping Users to Items (Contd.)

Suppose we want to recommend items to user $q^{\prime \prime}$ with the following row in the utility matrix $\left[\begin{array}{lllll}0 & 0 & 4 & 4 & 0\end{array}\right]$

$$
\text { 1. } q^{\prime \prime} V=\left[\begin{array}{lllll}
0 & 0 & 4 & 4 & 0
\end{array}\right]\left[\begin{array}{cc}
.56 & -.12 \\
.59 & .02 \\
.56 & -.12 \\
.09 & .69 \\
.09 & .69
\end{array}\right]=\left[\begin{array}{ll}
2.6 & 2.28
\end{array}\right]
$$

2. Map $q^{\prime \prime} V$ to the Items space by multiplying by V^{T}

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2.6 & 2.28
\end{array}\right]\left[\begin{array}{ccccc}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -.12 & .69 & .69
\end{array}\right]=} \\
& {\left[\begin{array}{lllll}
1.18 & 1.57 & 1.18 & 1.8 & 1.8
\end{array}\right]}
\end{aligned}
$$

Correctness

Low Rank Approximation

Frobenius Norm

Let A be a matrix of real numbers. Its Frobenius Norm $\|A\|_{F}$ is defined as $\|A\|_{F}=\sqrt{\sum_{i, j} A[i, j]^{2}}$

Frobenius Norm via SVD of A

For a rank r matrix A with its singular-value decomposition $A=U \Sigma V^{T}$, its Frobenius norm is $\|A\|_{F}^{2}=\Sigma_{11}^{2}+\cdots+\Sigma_{r r}^{2}$.

SVD with Applications

Low Rank Approximation

Why is $\|A\|_{F}^{2}=\Sigma_{11}^{2}+\cdots+\Sigma_{r r}^{2}$?
Let SVD of $A=P Q R$ (Note: $P=U, Q=\Sigma, R=V^{T}$.)
Now $A_{i j}=\sum_{k} \sum_{l} p_{i k} q_{k l} r_{l j}$.

$$
\begin{aligned}
\|A\|_{F}^{2} & =\sum_{i} \sum_{j} A_{i j}^{2} \\
& =\sum_{i} \sum_{j}\left(\sum_{k} \sum_{l} p_{i k} q_{k l} r_{l j}\right)^{2} \\
& =\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} \sum_{n} p_{i k} q_{k l} r_{l j} p_{i m} q_{m n} r_{n j}
\end{aligned}
$$

Now use the fact that $q_{a b}=0$ for $a \neq b$ and the dot-product of any two columns of p is 0 due to orthonormality of $P=U$. Similarly, the dot-product of any two rows of $R=V^{T}$ is 0 . This allows us to show

$$
\|A\|_{F}^{2}=\sum_{k} q_{k k}^{2}=\Sigma_{11}^{2}+\cdots+\Sigma_{r r}^{2}
$$

Low Rank Approximation (contd.)

Let A and A^{\prime} be two matrices of real numbers of same dimensions.

Error in approximating A by A^{\prime}

The error in approximating A by A^{\prime} is defined as the Frobenius Norm of $\left\|A-A^{\prime}\right\|_{F}=\sqrt{\sum_{i, j}\left(A[i, j]-A^{\prime}[i, j]\right)^{2}}$

Let $A=U \Sigma V^{T}$ be a $m \times n$ matrix of real numbers of rank r. Let $1 \leq r^{\prime}<r$.
Define a $r \times r$ diagonal matrix Σ^{\prime} as follows:
For $i=1$ to $r^{\prime}, \Sigma_{i i}^{\prime}=\Sigma_{i i}$ and all other entries of Σ^{\prime} are 0 . Let $A^{\prime}=U \Sigma^{\prime} V^{T}$.
Claim: A^{\prime} is the best rank $r^{\prime}<r$ approximation of A, i.e., for any rank $r^{\prime} m \times n$ matrix $B,\left\|A-A^{\prime}\right\|_{F} \leq\|A-B\|_{F}$.

Low Rank Approximation (contd.)

Given $A=U \Sigma V^{T}$ and $A^{\prime}=U \Sigma^{\prime} V^{T}, A-A^{\prime}=U\left(\Sigma-\Sigma^{\prime}\right) V^{T}$.
Thus, $\left\|A-A^{\prime}\right\|_{F}^{2}=\Sigma_{r^{\prime}+1, r^{\prime}+1}^{2}+\cdots+\Sigma_{r r}^{2}$.
Note that the elements $\Sigma_{r^{\prime}+1, r^{\prime}+1}, \ldots, \Sigma_{r r}$ were set to 0 in Σ to obtain A^{\prime}.
These are the lowest energy terms in A.

Best low rank approximation of A

For a rank r matrix A with its SVD $A=U \Sigma V^{T}$, its best rank $r^{\prime}<r$ approximation is obtained by the matrix A^{\prime} where $A^{\prime}=U \Sigma^{\prime} V^{T}$ and Σ^{\prime} is obtained from Σ by setting its $r-r^{\prime}$ smallest diagonal entries to 0 .

References

1. Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press.
2. G. H. Golub abd W. Kahan, Calculating the singular values and pseudo-inverse of a matriix, SIAM Journal Series B2:2:205-224, 1965.
3. P. Drineas, R. Kanan and M.W. Mahoney, Fast Monte-Carlo algorithms for matrics III: Computing a compressed approximate matrix decomposition, SIAM JI. Computing 36:1: 184-206, 2006.
4. J. Sun, Y. Xie, H. Zhang, and C. Faloutsos, Less is more: compact matrix decomposition for large sparse graphs, SIAM International Conference on Data Mining, 2007.
