Singular-Value Decomposition with Applications

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada
Matrices - Eigenvalues & Eigenvectors

Singular Value Decomposition

Low Rank Approximations

An Application

Correctness
Matrices - Eigenvalues & Eigenvectors
Given an $n \times n$ matrix A.
A non-zero vector v is an eigenvector of A, if $Av = \lambda v$ for some scalar λ. λ is the eigenvalue corresponding to vector v.

Example

Let $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$

Observe that

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Thus, $\lambda_1 = 5$ and $\lambda_2 = 1$ are the eigenvalues of A.
Corresponding eigenvectors are $v_1 = [1, 3]$ and $v_2 = [1, -1]$, as $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$.
Symmetric Matrices

Example

Consider symmetric matrix \(S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \).

Its eigenvalues are \(\lambda_1 = 4 \) and \(\lambda_2 = 2 \) and the corresponding eigenvectors are \(q_1 = (1/\sqrt{2}, 1/\sqrt{2}) \) and \(q_2 = (1/\sqrt{2}, -1/\sqrt{2}) \), respectively.

Note that eigenvalues are real and the eigenvectors are orthonormal.

\[
S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}
\]

Eigenvalues of Symmetric Matrices

All the eigenvalues of a real symmetric matrix \(S \) are real. Moreover, all components of the eigenvectors of a real symmetric matrix \(S \) are real.
Property

Any pair of eigenvectors of a real symmetric matrix S corresponding to two different eigenvalues are orthogonal.
Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two different eigenvalues are orthogonal.

Proof: Let q_1 and q_2 be two eigenvectors corresponding to $\lambda_1 \neq \lambda_2$, respectively. Thus, $S q_1 = \lambda_1 q_1$ and $S q_2 = \lambda_2 q_2$. Since S is symmetric, $q_1^T S = \lambda_1 q_1^T$. Multiply by q_2 on the right and we obtain $\lambda_1 q_1^T q_2 = q_1^T S q_2 = q_1^T \lambda_2 q_2$. Since $\lambda_1 \neq \lambda_2$ and $\lambda_1 q_1^T q_2 = q_1^T \lambda_2 q_2$, this implies that $q_1^T q_2 = 0$ and thus the eigenvectors q_1 and q_2 are orthogonal.
Symmetric matrices with distinct eigenvalues

Let S be a $n \times n$ symmetric matrix with n distinct eigenvalues and let q_1, \ldots, q_n be the corresponding orthonormal eigenvectors. Let Q be the $n \times n$ matrix consisting of q_1, \ldots, q_n as its columns. Then

$$S = Q\Lambda Q^{-1} = Q\Lambda Q^T.$$ Furthermore, $S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \cdots + \lambda_n q_n q_n^T$

$$S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 4 \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} + 2 \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -1/\sqrt{2} \\ -1/\sqrt{2} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
Positive Definite Matrices

Symmetric matrix S is *positive definite* if all its eigenvalues > 0. It is *positive semi-definite* if all the eigenvalues are ≥ 0.

An Alternate Characterization

Let S be a $n \times n$ real symmetric matrix. For all non-zero vectors $x \in \mathbb{R}^n$, if $x^T S x > 0$ holds, then all the eigenvalues of S are > 0.

Let λ_i be an eigenvalue of S and its corresponding unit eigenvector is q_i. Note that $q_i^T q_i = 1$. Since S is symmetric, we know that λ_i is real. Now we have, $\lambda_i = \lambda_i q_i^T q_i = q_i^T \lambda_i q_i = q_i^T S q_i$. But $q_i^T S q_i > 0$, hence $\lambda_i > 0$.
Diagonalization Summary

Square Matrices:
A be an $n \times n$ matrix with distinct eigenvalues.
$X_{n \times n} =$ Matrix of eigenvectors of A

$AX = X\Lambda, A = X\Lambda X^{-1}, \Lambda = X^{-1}\Lambda X$

Symmetric Matrices:
S be an $n \times n$ symmetric matrix with distinct eigenvalues.
$Q_{n \times n} =$ Matrix of n-orthonormal eigenvectors of S

$S = Q\Lambda Q^T$

What if A is a rectangular matrix of dimensions $m \times n$?
Singular Value Decomposition
SVD of Rectangular Matrices

Let A be a $m \times n$ matrix of rank r with real entries.

We can find orthonormal vectors in \mathbb{R}^n such that their product with A results in a scaled copy of orthonormal vectors in \mathbb{R}^m.

Formally, we can find

1. Orthonormal vectors $v_1, \ldots, v_r \in \mathbb{R}^n$
2. Orthonormal vectors $u_1, \ldots, u_r \in \mathbb{R}^m$
3. Real numbers $\sigma_1, \ldots, \sigma_r \in \mathbb{R}$
4. For $i = 1, \ldots, r$: $Av_i = \sigma_i u_i$
5. $AV = U\Sigma$, i.e.,

$$A \begin{bmatrix} v_1 & \ldots & v_r \end{bmatrix} = \begin{bmatrix} u_1 & \ldots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}$$

6. $A = U\Sigma V^T$
An Example: \(AV = U\Sigma \)

\[
\begin{bmatrix}
1 & 5 \\
0 & 3 \\
1 & 4 \\
4 & 0 \\
5 & 1
\end{bmatrix}
\begin{bmatrix}
.60 & -.8 \\
.8 & .6
\end{bmatrix}
=
\begin{bmatrix}
.58 & .39 \\
.31 & .30 \\
.48 & .28 \\
.30 & -.56 \\
.48 & -.59
\end{bmatrix}
\begin{bmatrix}
7.8 & 0 \\
0 & 5.7
\end{bmatrix}
\]

Alternatively, \(A = U\Sigma V^T \)

\[
\begin{bmatrix}
1 & 5 \\
0 & 3 \\
1 & 4 \\
4 & 0 \\
5 & 1
\end{bmatrix}
=
\begin{bmatrix}
.58 & .39 \\
.31 & .30 \\
.48 & .28 \\
.30 & -.56 \\
.48 & -.59
\end{bmatrix}
\begin{bmatrix}
7.8 & 0 \\
0 & 5.7
\end{bmatrix}
\begin{bmatrix}
.60 & .8 \\
-.8 & .6
\end{bmatrix}
\]

Play around with the SVD command in Wolfram Alpha for some matrices.
Matrix $A^T A$

Symmetric and Positive semi-definite

Let A be $m \times n$ matrix, where $m \geq n$. The matrix $A^T A$ is symmetric and positive semi-definite.

Proof:

Symmetric: $(A^T A)^T = A^T (A^T)^T = A^T A$

Positive semi-definite: Take any non-zero vector $x \in \mathbb{R}^n$

$x^T (A^T A)x = (x^T A^T)(Ax) = (Ax)^T (Ax) = \|Ax\|^2 \geq 0$

□
$A^T A$ is a symmetric matrix of dimension $n \times n$. Eigenvalues of $A^T A$ are non-negative and the corresponding eigenvectors are orthonormal.

Let $\lambda_1 \geq \ldots \geq \lambda_n$ be eigenvalues of $A^T A$ and let v_1, \ldots, v_n be the corresponding eigenvectors.

$$A^T A v_i = \lambda_i v_i \iff v_i^T A^T A v_i = \lambda_i$$

Define $\sigma_i = ||Av_i|| \Rightarrow \sigma_i^2 = ||Av_i||^2 = v_i^T A^T A v_i = \lambda_i$

Hence, $\sigma_i = ||Av_i|| = \sqrt{\lambda_i}$

Consider two cases:

Full Rank: Rank of $A^T A$ is n.

Low Rank: Rank of $A^T A$ is $r < n$.

Matrix $A^T A$ is Full Rank

Assume, $\sigma_1 \geq \ldots \geq \sigma_n > 0$
($\implies A$ and $A^T A$ has rank n)

Define vectors $u_1, \ldots, u_n \in \mathbb{R}^m$ as $u_i = A v_i / \sigma_i$

Orthonormal
The set of vectors $u_i = A v_i / \sigma_i$, for $i = 1, \ldots, n$, are orthonormal.

Proof: $||u_i|| = ||Av_i|| / \sigma_i = \sigma_i / \sigma_i = 1$

Consider the dot product of any two vectors u_i and u_j:
$$u_i^T u_j = (A v_i / \sigma_i)^T (A v_j / \sigma_j) = \frac{1}{\sigma_i \sigma_j} v_i^T A^T A v_j = \frac{1}{\sigma_i \sigma_j} v_i^T \lambda_j v_j = \frac{\lambda_j}{\sigma_i \sigma_j} v_i^T v_j = 0$$

$\implies A v_i = \sigma_i u_i$ for $i = 1, \ldots, r = n$
Matrix $A^T A$ is Full Rank

Assume, $\sigma_1 \geq \ldots \geq \sigma_n > 0$ ($\Rightarrow A$ and $A^T A$ has rank n)

Define vectors $u_1, \ldots, u_n \in \mathbb{R}^m$ as $u_i = A v_i / \sigma_i$

Orthonormal
The set of vectors $u_i = A v_i / \sigma_i$, for $i = 1, \ldots, n$, are orthonormal.

Proof:

Consider the dot product of any two vectors u_i and u_j:

$$u_i^T u_j = (A v_i) \cdot (A v_j) = \frac{v_i^T A^T A v_j}{\sigma_i \sigma_j} = v_i^T \lambda_j v_j = \lambda_j$$

$$\Rightarrow A v_i = \sigma_i u_i$$

Why is $\text{rank}(A) = \text{rank}(A^T A)$?

We will show that $\text{Null-Space}(A) \subseteq \text{Null-Space}(A^T A)$ and $\text{Null-Space}(A^T A) \subseteq \text{Null-Space}(A)$. This implies that $\text{Null-Space}(A) = \text{Null-Space}(A^T A)$ and $\text{rank}(A) = \text{rank}(A^T A) = n - \text{rank}(\text{Null-Space}(A))$.

Consider a vector $x \in \text{Null-Space}(A)$.
Then $Ax = \vec{0}$ and $A^T Ax = A^T (Ax) = A^T \vec{0} = \vec{0}$.
$\Rightarrow x \in \text{Null-Space}(A^T A)$.

Consider a vector y such that $A^T Ay = \vec{0}$.
Then $y^T A^T Ay = \vec{0}$ or $(Ay)^T (Ay) = \vec{0}$.
$\Rightarrow Ay = \vec{0}$ and $y \in \text{Null-space}(A)$.
Matrix $A^T A$ is Low Rank

Suppose $m \geq n$, but $\text{rank}(A) = r < n$.

Eigenvalues of $A^T A$

The $n - r$ eigenvalues of $A^T A$ are equal to 0.

Proof: Consider a basis of the null space of A.
Let x_1, \ldots, x_{n-r} be a basis of the null space of A.
This implies that $Ax_j = 0$ for $j = 1, \ldots, n - r$.
Now, $A^T Ax_j = 0 = 0x_j$.
Thus, 0 is an eigenvalue of $A^T A$ corresponding to each x_i's.
Thus $n - r$ eigenvalues of $A^T A$ are equal to 0.

\square
Handling low rank (contd.)

Consider eigenvalues and eigenvectors of $A^T A$

Let $\lambda_1 \geq \ldots \geq \lambda_r > 0$ and $\lambda_{r+1} = \ldots = \lambda_n = 0$

Let v_1, \ldots, v_r be the orthonormal vectors corresponding to $\lambda_1, \ldots, \lambda_r$

For $i = 1, \ldots, r$, define $\sigma_i = \|Av_i\| = \sqrt{\lambda_i}$

Note that $\sigma_1 \geq \ldots \sigma_r > 0$

For $i = 1, \ldots, r$, define $u_i = \frac{1}{\sigma_i} Av_i$

SVD for A

Vectors u_1, \ldots, u_r are orthonormal and $Av_i = \sigma_i u_i$.
Singular Value Decomposition

For a matrix A of dimension $m \times n$, where $m \geq n$, we have

1. $A^T A$ is a symmetric positive semidefinite square matrix of dimension $n \times n$.

2. Rank of A is n: $\lambda_1 \geq \ldots \geq \lambda_n > 0$ are eigenvalues of $A^T A$ and v_1, \ldots, v_n the corresponding orthonormal eigenvectors. The vectors $u_i = Av_i / \sigma_i$, for $i = 1, \ldots, n$, are orthonormal, where $\sigma_i = \sqrt{\lambda_i}$.

3. Rank of A is $r < n$: $\lambda_1 \geq \ldots \geq \lambda_r > 0$ are non-zero eigenvalues of $A^T A$ and v_1, \ldots, v_r the corresponding orthonormal eigenvectors. The vectors $u_i = Av_i / \sigma_i$, for $i = 1, \ldots, r$, are orthonormal, where $\sigma_i = \sqrt{\lambda_i}$.

4. $AV = U \Sigma$, where V is $n \times r$ matrix consisting of orthonormal eigenvectors of $A^T A$ corresponding to non-zero eigenvalues of $A^T A$, U is $m \times r$ matrix of orthonormal vectors given by $u_i = Av_i / \sigma_i$ for non-zero σ_i, and Σ is $r \times r$ diagonal matrix.

5. $AVV^T = A = U \Sigma V^T \leftarrow$ Singular-Value Decomposition of A.
Matrices A^TA and AA^T

We have $A = U\Sigma V^T$.

$$A^TA = (U\Sigma V^T)^T(U\Sigma V^T) = (V\Sigma U^T)(U\Sigma V^T) = V\Sigma(U^TU)\Sigma V^T = V\Sigma^2V^T$$

Matrix A^TA

A^TA is square symmetric matrix and it is expressed in the diagonalized form $A^TA = V\Sigma^2V^T$. Thus, σ_i^2's are its eigenvalues and V is its eigenvectors matrix.

Similarly, consider AA^T and we obtain that

$$AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma V^TV\Sigma U^T = U\Sigma^2U^T.$$

Matrix AA^T

AA^T is square symmetric matrix and it is expressed in the diagonalized form $AA^T = U\Sigma^2U^T$. Thus U is the eigenvector matrix for the symmetric matrix AA^T with the same eigenvalues as A^TA.
- Let A be a $m \times n$ matrix of real numbers of rank r

- $A_{m \times n} = U_{m \times r} \Sigma_{r \times r} V_{r \times n}^T$, where

U is a orthonormal $m \times r$ matrix
V is a orthonormal $n \times r$ matrix
Σ is an $r \times r$ diagonal matrix and its (i, i)-th entry is σ_i for $i = 1, \ldots, r$

- Note that $\sigma_1 \geq \sigma_2 \geq \ldots \sigma_r > 0$ and $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues of $A^T A$

- The set of orthonormal vectors v_1, \ldots, v_r and u_1, \ldots, u_r are eigenvectors of $A^T A$ and AA^T, respectively. The vectors v’s and u’s satisfy the equation $Av_i = \sigma_i u_i$, for $i = 1, \ldots, r$

- Alternatively, we can express A as the sum of the product of rank 1 matrices

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T = \sigma_1 u_1 v_1^T + \ldots + \sigma_r u_r v_r^T$$
Low Rank Approximations
Let $A_{m \times n}$ be the **Utility Matrix**, where $m = 10^8$ users and $n = 10^5$ items.

SVD of $A = U \Sigma V^T$

Let r of σ_i's are > 0

Let $\sigma_1 \geq \ldots \geq \sigma_r > 0$

A can be expressed as $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T = \sigma_1 u_1 v_1^T + \ldots + \sigma_r u_r v_r^T$

Total space required to store A is $rm + rn + r^2$. If rank of A is small, it is better to store $u_1, \ldots, u_r, v_1, \ldots, v_r, \sigma_1, \ldots, \sigma_r$, rather than whole of A.

Energy of $A = U\Sigma V^T$ is given by $\mathcal{E} = \sum_{i=1}^{r} \sigma_i^2$

(Later on we will see the connection between Energy and Frobenius Norm of a matrix.)

Define $\mathcal{E}' = 0.99\mathcal{E}$, and let $j \leq r$ be the maximum index such that $\sum_{1=1}^{j} \sigma_i^2 \leq \mathcal{E}'$

Approximate A by $\sum_{i=1}^{j} \sigma_i u_i v_i^T$

How many cells we need to store in this representation?

1. First j columns of U,
2. j diagonal entries of Σ, and
3. j rows of V^T.

Total Space = $j^2 + j(m + n)$ cells, or $j + j(m + n)$ depending on how we want to store the diagonal entries of Σ.
For our example, dimension of $A_{m \times n}$ are $m = 10^8$ users and $n = 10^5$ items.

If $j = 20$, then we need to store

$$j^2 + j(m + n) = 20^2 + 20 \times (10^8 + 10^5) \approx 5,005,000 \text{ cells}$$

This number is only .02% of 10^{13}
Low Rank Approximations

Let SVD of A be

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{30} & -1/\sqrt{5} \\ 1/\sqrt{30} & 2/\sqrt{5} \\ 5/\sqrt{30} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

In terms of Rank 1 Components:

$$A = \sqrt{6} \begin{bmatrix} 2/\sqrt{30} \\ 1/\sqrt{30} \\ 5/\sqrt{30} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} + 1 \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Energy of A: $\mathcal{E}(A) = \sqrt{6}^2 + 1^2 = 7$

Possible $\frac{6}{7}$-Energy approximation of A is given by

$$A \approx \sqrt{6} \begin{bmatrix} 2/\sqrt{30} \\ 1/\sqrt{30} \\ 5/\sqrt{30} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}^T$$
An Application
Interpreting U, Σ, and V

Utility Matrix M as SVD $M = U\Sigma V^T$

$$M = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix} = U\Sigma V^T$$

$$= \begin{bmatrix}
.13 & -.02 & .01 \\
.41 & -.07 & .03 \\
.55 & -.1 & .04 \\
.68 & -.11 & .05 \\
.15 & .59 & -.65 \\
.07 & .73 & .67 \\
.07 & .29 & -.32
\end{bmatrix} \begin{bmatrix}
12.5 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.35
\end{bmatrix} \begin{bmatrix}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -.12 & .69 & .69 \\
.40 & -.8 & .40 & .09 & .09
\end{bmatrix}$$

1. 3 concepts ($= rank$)
2. U maps users to concepts
3. V maps items to concepts
4. Σ gives strength of each concept
Rank-2 Approximation

\[
\begin{bmatrix}
.13 & -.02 \\
.41 & -.07 \\
.55 & -.1 \\
.68 & -.11 \\
.15 & .59 \\
.07 & .73 \\
.07 & .29 \\
\end{bmatrix}
\begin{bmatrix}
12.5 & 0 \\
0 & 9.5 \\
\end{bmatrix}
\begin{bmatrix}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -.12 & .69 & .69 \\
\end{bmatrix}
\]

% Loss in Energy = \(\frac{1.35^2}{12.5^2 + 9.5^2 + 1.35^2} \) < 1\%
Mapping Users to Concept Space

Consider the utility matrix M and its SVD.

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} .13 & -.02 \\ .41 & -.07 \\ .55 & -.11 \\ .68 & -.10 \\ .15 & .59 \\ .07 & .73 \\ .07 & .29 \end{bmatrix} \begin{bmatrix} 12.5 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix}$$

MV gives mapping of each user in concept space:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .56 & -.12 \\ .09 & .69 \\ .09 & .69 \\ .07 & .29 \end{bmatrix} = \begin{bmatrix} 1.71 & -.22 \\ 5.13 & -.66 \\ 6.84 & -.88 \\ 8.55 & -1.1 \\ 1.9 & 5.56 \\ .9 & 6.9 \\ .96 & 2.78 \end{bmatrix}$$
Mapping Users to Items

Suppose we want to recommend items to a new user q with the following row in the utility matrix $\begin{bmatrix} 3 & 0 & 0 & 0 & 0 \end{bmatrix}$

1. Map q to concept space:

 $$qV = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .56 & -.12 \\ .59 & .02 \\ .09 & .69 \\ .09 & .69 \end{bmatrix} = \begin{bmatrix} 1.68 & -.36 \end{bmatrix}$$

2. Map the vector qV to the Items space by multiplying by V^T as vector V captures the connection between items and concepts.

 $$\begin{bmatrix} 1.68 & -.36 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \end{bmatrix} = \begin{bmatrix} .98 & .98 & .98 & -.1 & -.1 \end{bmatrix}$$
Suppose we want to recommend items to user q' with the following row in the utility matrix \[
\begin{bmatrix}
0 & 0 & 0 & 4 & 0
\end{bmatrix}
\]

1. $q' V = \begin{bmatrix}
0 & 0 & 0 & 4 & 0
\end{bmatrix} \begin{bmatrix}
.56 & -1.2 \\
.59 & .02 \\
.09 & .69 \\
.09 & .69
\end{bmatrix} = \begin{bmatrix}
.36 & 2.76
\end{bmatrix}$

2. Map $q' V$ to the Items space by multiplying by V^T

\[
\begin{bmatrix}
.36 & 2.76
\end{bmatrix} \begin{bmatrix}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -1.2 & .69 & .69
\end{bmatrix} =
\begin{bmatrix}
-.12 & .26 & -.12 & 1.93 & 1.93
\end{bmatrix}
\]
Mapping Users to Items (Contd.)

Suppose we want to recommend items to user q'' with the following row in the utility matrix

$$
\begin{bmatrix}
0 & 0 & 4 & 4 & 0
\end{bmatrix}
$$

1. $q''V = \begin{bmatrix} 0 & 0 & 4 & 4 & 0 \end{bmatrix} \begin{bmatrix}
.56 & -.12 \\
.59 & .02 \\
.09 & .69 \\
.09 & .69
\end{bmatrix} = \begin{bmatrix} 2.6 & 2.28 \end{bmatrix}$

2. Map $q''V$ to the Items space by multiplying by V^T

$$
\begin{bmatrix}
2.6 & 2.28
\end{bmatrix} \begin{bmatrix}
.56 & .59 & .56 & .09 & .09 \\
-.12 & .02 & -.12 & .69 & .69
\end{bmatrix} = \begin{bmatrix}
1.18 & 1.57 & 1.18 & 1.8 & 1.8
\end{bmatrix}
$$
Correctness
Frobenius Norm

Let \(A \) be a matrix of real numbers. Its Frobenius Norm \(\| A \|_F \) is defined as

\[
\| A \|_F = \sqrt{\sum_{i,j} A[i,j]^2}
\]

Frobenius Norm via SVD of A

For a rank \(r \) matrix \(A \) with its singular-value decomposition \(A = U \Sigma V^T \), its Frobenius norm is

\[
\| A \|_F^2 = \Sigma_{11}^2 + \cdots + \Sigma_{rr}^2.
\]
Why is $\|A\|_F^2 = \Sigma_{11}^2 + \cdots + \Sigma_{rr}^2$?

Let SVD of $A = PQR$ (Note: $P = U$, $Q = \Sigma$, $R = V^T$.)

Now $A_{ij} = \sum_k \sum_l p_{ik} q_{kl} r_{lj}$.

\[
\|A\|_F^2 = \sum_i \sum_j A_{ij}^2 = \sum_i \sum_j \left(\sum_k \sum_l p_{ik} q_{kl} r_{lj}\right)^2 = \sum_i \sum_j \sum_k \sum_l \sum_m \sum_n p_{ik} q_{kl} r_{lj} p_{im} q_{mn} r_{nj}
\]

Now use the fact that $q_{ab} = 0$ for $a \neq b$ and the dot-product of any two columns of p is 0 due to orthonormality of $P = U$. Similarly, the dot-product of any two rows of $R = V^T$ is 0. This allows us to show

\[
\|A\|_F^2 = \sum_k q_{kk}^2 = \Sigma_{11}^2 + \cdots + \Sigma_{rr}^2.
\]
Let A and A' be two matrices of real numbers of same dimensions.

Error in approximating A by A'

The error in approximating A by A' is defined as the Frobenius Norm of $||A - A'||_F = \sqrt{\sum_{i,j} (A[i, j] - A'[i, j])^2}$

Let $A = U\Sigma V^T$ be a $m \times n$ matrix of real numbers of rank r. Let $1 \leq r' < r$. Define a $r \times r$ diagonal matrix Σ' as follows:

For $i = 1$ to r', $\Sigma'_{ii} = \Sigma_{ii}$ and all other entries of Σ' are 0. Let $A' = U\Sigma' V^T$.

Claim: A' is the best rank $r' < r$ approximation of A, i.e., for any rank $r' m \times n$ matrix B, $||A - A'||_F \leq ||A - B||_F$.
Given $A = U\Sigma V^T$ and $A' = U\Sigma' V^T$, $A - A' = U(\Sigma - \Sigma') V^T$.

Thus, $||A - A'||_F^2 = \Sigma_{r'+1,r'+1}^2 + \cdots + \Sigma_{rr}^2$.

Note that the elements $\Sigma_{r'+1,r'+1}, \ldots, \Sigma_{rr}$ were set to 0 in Σ to obtain A'. These are the lowest energy terms in A.

Best low rank approximation of A

For a rank r matrix A with its SVD $A = U\Sigma V^T$, its best rank $r' < r$ approximation is obtained by the matrix A' where $A' = U\Sigma' V^T$ and Σ' is obtained from Σ by setting its $r - r'$ smallest diagonal entries to 0.
References

