Singular-Value Decomposition with Applications

Anil Maheshwari

anil@scs.carleton.ca

School of Computer Science
Carleton University

Canada



Matrices - Eigenvalues & Eigenvectors
Singular Value Decomposition

Low Rank Approximations

An Application

Correctness



Matrices - Eigenvalues &
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Eigenvalues and Eigenvectors

Given an n x n matrix A.
A non-zero vector v is an eigenvector of A, if Av = \v for some scalar \. X is
the eigenvalue corresponding to vector v.

2 1
3 4

Observe that

2 1] 1 —5 1 and 2 1 1 1 1
3 4] (3 3 3 4| |-1 —1
Thus, A1 = 5 and A2 = 1 are the eigenvalues of A.

Corresponding eigenvectors are v = [1,3] and vo = [1, —1], as Avi = A1
and Avg = \avs.

Example

Let A =




Symmetric Matrices

Example

Consider symmetric matrix S = [$ 1].

Its eigenvalues are A1 = 4 and A\, = 2 and the corresponding eigenvectors
are q1 = (1/v2,1/v/2) and ¢2 = (1/v/2, —1//2), respectively.

Note that eigenvalues are real and the eigenvectors are orthonormal.

s |3 1| = 1/v/2 1/V/2 | |4 0] [1/v/2 1/V2
o3 |/v2 o —1Vv2Zl |0 2| [1/v2 —1/V2

Eigenvalues of Symmetric Matrices
All the eigenvalues of a real symmetric matrix S are real. Moreover, all
components of the eigenvectors of a real symmetric matrix S are real.



Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two
different eigenvalues are orthogonal.
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I—Symmetric Matrices (contd.)

Proof: Let q; and g2 be two eigenvectors corresponding to A1 # A2, respectively. Thus,
Sq1 = Mq1 and Sq2 = Aa2ge. Since S is symmetric, g’ S = A1gf. Multiply by g2 on
the right and we obtain A1¢¥ g2 = ¢ Sgz = qF Aaga. Since A1 # Az and Aiq¥ g2 =
q}”quz, this implies that q}rqg = 0 and thus the eigenvectors ¢; and g2 are orthogonal.




Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues

Let S be a n x n symmetric matrix with n distinct eigenvalues and let
qi,---,qn be the corresponding orthonormal eigenvectors. Let @ be the

n X n matrix consiting of ¢1, . . ., ¢, as its columns. Then

S =QAQ* = QAQT. Furthermore, S = A\iqiqf + X2q2¢2 + - + Angngt

s=[1 3 =[alwvE vae [ R v va



Positive Definite Matrices

Symmetric matrix S is positive definite if all its eigenvalues > 0.
It is positive semi-definite if all the eigenvalues are > 0.

An Alternate Characterization
Let S be a n x n real symmetric matrix. For all non-zero vectors x € R", if
xSz > 0 holds, then all the eigenvalues of S are > 0.
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l—Positive Definite Matrices

Let \; be an eigenvalue of S and its corresponding unit eigenvector is ¢;. Note that
qiTqi = 1. Since S is symmetric, we know that \; is real. Now we have, \; = )\iqiTqi =
qiT)\iqi = qz-TSqi. But qiTSqi > 0, hence \; > 0.




Diagonalization Summary

Square Matrices:
A be an n x n matrix with distinct eigenvalues.
X, xn = Matrix of eigenvectors of A

AX = XA A=XAX"1, A=X"TAX

Symmetric Matrices:
S be an n x n symmetric matrix with distinct eigenvalues.
Qnxn= Matrix of n-orthonormal eigenvectors of S

S = QAQT

What if A is a rectangular matrix of dimensions m x n?



Singular Value Decomposition



SVD of Rectangular Matrices

Let A be a m x n matrix of rank r with real entries.

We can find orthonormal vectors in R™ such that their product with A results
in a scaled copy of orthonormal vectors in R™.

Formally, we can find

. Orthonormal vectors vy, ...,v, € R"

. Orthonormal vectors u1, ..., u, € R™

1
2
3. Real numbers o1,...,0, € R
4. Fori=1,...,r: Av, = o;u;
5

AV =U%, e,

Alor v =lm o w] )

Or



An Example: AV =UX

1 5 58 .39
31 .
03 .60 —.8 s 50 78 0
1 4 = .48 .28
.8 .6 0 5.7
4 0 30 —.56
5 1 48 —.59

Alternatively, A = USVT

1 5 58 .39

0 3 31 .30

1 4| = |.48 .28 {7(')8 507} {'62 2]
4 0 30 —.56 '

5 1 48 —.59

Play around with the SVD command in Wolfram Alpha for some matrices.



Matrix AT A

Symmetric and Positive semi-definite

Let A be m x n matrix, where m > n. The matrix A” A is symmetric and
positive semi-definite

Proof:
Symmetric: (ATA)T = AT(AT)T = AT A

Positive semi-definite: Take any non-zero vector x € R™
2T (AT A)x = (2T AT (Azx) = (Az)T (Az) = ||Az|]* > 0



Matrix A7 A (contd.)

AT A'is a symmetric matrix of dimension n x n. Eigenvalues of AT A are
non-negative and the corresponding eigenvectors are orthonormal.

Let \; > ... > \, be eigenvalues of AT A and let vy, ..., v, be the
corresponding eigenvectors.

ATAUi = \iv; & U?ATA’UZ‘ =X

Define o; = ||A’U1|| - 01'2 = HA’UZH2 = ’U,L-TATA’U»L' =0\
Hence, o; = ||Avi|| = vV Ai

Consider two cases:

Full Rank: Rank of AT A is n.

Low Rank: Rank of AT A is r < n.



Matrix AT A is Full Rank

Assume, o1 > ... >0, >0
(= Aand AT A has rank n)

Define vectors u1,...,un, € R™ as u; = Av;/o;
Orthonormal
The set of vectors u; = Av; /oy, fori =1,...,n, are orthonormal.

Proof: HLLIH = ||AU1||/O'Z = 0'7;/0'2' =1
Consider the dot product of any two vectors u; and w;:

T, _ N (Avs fos) — L o T AT Ay — 1 Ty o N T
u; u; = (Avifoi)" (Av; /o) = o7 Vi A" Av; = 5ro7 Vi Ajv; = o7 Vi Vj = 0
O

’ = Av, =ocwufori=1,...;r=n
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L Matrix AT 4 is Full Rank

Why is rank(A) = rank(AT A)?

We will show that Null — Space(A) C Null — Space(AT A) and Null — Space(AT A) C
Null — Space(A). This implies that Null — Space(A) = Null — Space(AT A) and
rank(A) = rank(AT A) = n — rank(Null — Space(A)).

Consider a vector z € Null — Space(A).

Then Az = 0 and AT Az = AT (Az) = AT( = 0.

= x € Null — Space(AT A).

Consider a vector y such that AT Ay = 0.

Then yT AT Ay = 0 or (Ay)T (Ay) = 0.

= Ay =0and y € Null — space(A)

O



Matrix AT A is Low Rank

Suppose m > n, but rank(A) =r < n.

Eigenvalues of A" A
The n — r eigenvalues of A” A are equal to 0.

Proof: Consider a basis of the null space of A.
Letzi,...,z,_, be a basis of the null space of A.

This implies that Az; =0forj=1,...,n—r.

Now, AT Az; = 0 = Oz;.

Thus, 0 is an eigenvalue of A” A corresponding to each z;’s.
Thus n — r eigenvalues of A” A are equal to 0



Handling low rank (contd.)

Consider eigenvalues and eigenvectors of A7 A
Let\i>...> X . >0and N\, p1=...= X, =0

Let v1,..., v, be the orthonormal vectors corresponding to A1, ..., Ar

Fori=1,...,r, define o; = ||Avi|| = VN
Note thatoy > ...0. >0

Fori=1,...,r, define u; = L A,
s

R
SVD for A
Vectors u, ..., u, are orthonormal and Av; = o;u;.



SVD of A

Singular Value Decomposition
For a matrix A of dimension m x n, where m > n, we have

1. AT A is a symmetric positive semidefinite square matrix of dimension
n X n.

2. Rank of Aisn: A\ > ... > X, > 0 are eigenvalues of AT A and

v1, ..., Uy, the corresponding orthonormal eigenvectors. The vectors
u; = Av; /oy, fori =1,...,n, are orthonormal, where o; = V/\;.

3. Rankof Aisr < n: X\ >...> )\, > 0 are non-zero eigenvalues of AT A
and v, ..., v, the corresponding orthonormal eigenvectors. The vectors
u; = Av; /oy, fori =1,...,r, are orthonormal, where o; = V/A;.

4. AV =UX, where V is n x r matrix consisting of orthonormal
eigenvectors of AT A corresponding to non-zero eigenvalues of AT A, U
is m x r matrix of orthonormal vectors given by u; = Av;/o; for non-zero
oi, and X is r x r diagonal matrix.

5. AVVT = A =UxVT « Singular-Value Decomposition of A.



Matrices AT A and AAT

We have A = UZV7T.
ATA = UzvDHT(UzvT) = (veuT)(uxvT) = vesuTo)xvT = ve2vT

Matrix A7 A
AT A is square symmetric matrix and it is expressed in the diagonalized
form ATA = V22V7T. Thus, o?’s are its eigenvalues and V is its

eigenvectors matrix.

Similarly, consider AA” and we obtain that
AAT = (UsvT)(UuxvhT = uxvTveuT = ux?uT.

Matrix AAT
AAT is square symmetric matrix and it is expressed in the diagonalized
form AAT = UX2UT. Thus U is the eigenvector matrix for the symmetric

matrix AAT with the same eigenvalues as AT A.



Singular Value Decomposition - Summary

- Let A be a m x n matrix of real numbers of rank r
- Amxn = Umxv*zv*xr r7;<na Where
U is a orthonormal m x r matrix

V' is a orthonormal n. x r matrix
> is an r x r diagonal matrix and its (¢,4)-th entry is o; fori = 1,...,r

- Note that oy > 02 > ...0, > 0 and o; = /\; Where \; are the eigenvalues
of AT A

- The set of orthonormal vectors v1, ..., v, and ui, ..., u, are eigenvectors of
AT A and AAT, respectively. The vectors v’s and u’s satisfy the equation
A'U¢ :aiui,fori: 1,...,T

- Alternatively, we can express A as the sum of the product of rank 1 matrices

r m 7y T
A=3%_j0uv; =0o1uivy + ...+ orurv,



Low Rank Approximations




An Application

Let A, «n be the Utility Matrix, where m = 108 users and n = 10° items.
SVDof A =UxVT

Let r of ojs are > 0
Letoy >...>0,>0

s
A can be expressed as A = Y ouv] = orurv! + ...+ orupvt

i=1

Total space required to store A is rm + rn + 2. If rank of A is small, it is
better to store ua,...,u,,v1,...,v:,01,...,0., rather than whole of A.



Energy of A

Energy of A = USV7 is given by £ = Z ol

=il
(Later on we will see the connection between Energy and Frobenius Norm of

a matrix.)

J
Define & = 0.99&, and let j < r be the maximum index such that > o7 < &’
1=1

j
Approximate A by > oiuvf

=1

How many cells we need to store in this representation?

1. First j columns of U,
2. j diagonal entries of X, and
3. jrowsof V7T,

Total Space = j2 + j(m + n) cells, or j + j(m + n) depending on how we
want to store the diagonal entries of 3.

20



Low Rank Approximation (contd.)

For our example, dimension of A, are m = 10% users and n = 10° items.

If 7 = 20, then we need to store
3% 4 j(m +n) = 20% 4+ 20 x (10® + 10°) ~ 5,005, 000 cells

This number is only .02% of 10**

21



Low Rank Approximations

Let SVD of A be

2/v/30 —1//5 - -
a=[39] = [ R | e [ ]
21 5/v/30 0 0 ol L-1/v52/V5

In terms of Rank 1 Components:
2/+/30

A=+6|1/v30
5/+/30

,1/\/3
[2/v51/v5]+ 1| 2/y5 | [-1/v52/v5]
0

Energy of A: £(A) =6 +12=7
Possible 2-Energy approximation of A is given by

2/v/30 T
A=~ +6|1/v30 [f/g]
5/+/30 /

22



An Application




Interpreting U, >, and V'

Utility Matrix M as SVD M = UXV7T

1 1 1 0] 07
3 3 3 0 0
4 4 4 0 o0
M=[5 5 5 0 0
0 2 o0 4 4
0 0 0 5 5
o 1 o 2 2
=usvT
13 —.02  .017
41 —.07 .03
55 —.1 04 | 125 o0 0 .56 .59 56 .09 .09
= |68 —.11 .05 0 9.5 0 —.12 .02 —.12 .69 .69
15 .59  —.65 0 0o 1.35| | .40 —.8 .40 .09 .09
.07 .73 .67
07 .29 —.32]

1. 3 concepts (= rank)

2. U maps users to concepts

3. V maps items to concepts

4. 3 gives strength of each concept

23



Rank-2 Approximation

13 —.02]
41 —.07
b5 =11
125 0 b6 b9 .56 .09 .09
08 =11 |: 0 9.5:| |:.12 02 —12 .69 .69:|
A5 .59
.07 .73
.07 .29 |
% Loss in Energy = 12524:93% <1%

24



Mapping Users to Concept Space

Consider the utility matrix M and its SVD.

11 1 0 o0 13 —.02
3 3 3 0 0 41 —.07
444000 o5 = {12 5 0 ] { .56 59 .56 .09 .09
M=|5 5 5 0 o0|~]|.68 —.11
0 2 o 4 a e o 9.5/ |—.12 .02 —.12 .69 .69
o 0 0 5 5 .07 73
0 1 0 2 2 .07 29

MYV gives mapping of each user in concept space:

111 0 0 [1.71  —.22]
3 3 3 0 0| [56 —.12 513 —.66
4 4 4 0 0| |59 .02 6.84 —.88
5 5 5 0 0f[.56 —.12| = (855 —1.1
0 2 0 4 4| .09 .69 1.9 5.56
0 0 0 5 5|09 .69 9 6.9
0 1 0 2 2 | .96 2.78 |

25



Mapping Users to Iltems

Suppose we want to recommend items to a new user g with the following row
in the utility matrix [3 0 0 O O]

1. Map ¢ to concept space:

56 —.12
59 .02

qV:[S 00 0 0] 56 —.12 :[1.68 —.36]
09 .69
09 .69

2. Map the vector ¢V to the Iltems space by multiplying by V7 as vector V/
captures the connection between items and concepts.

b6 .59 .56 .09 .09
1. —. =
{ 08 36] {—.12 .02 —.12 .69 .69]

{.98 98 98 —.1 7.1}

26



Mapping Users to ltems (Contd.)

Suppose we want to recommend items to user ¢’ with the following row in the
utility matrix [0 0 0 4 0]

56 —.12
59 .02

1.q’V:[0 00 4 o] 56 —.12 :[.36 2.76]
09 .69
09 .69

2. Map ¢'V to the Items space by multiplying by V7

56 59 56 .09 .09
[.36 2.76] =
12 02 —12 69 .69

[—.12 26 —.12 193 1.93}

27



Mapping Users to ltems (Contd.)

Suppose we want to recommend items to user ¢” with the following row in the
utility matrix [0 0 4 4 0]

56 —.12
59 .02

1.q”V:[0 0 4 4 0} 56 —.12 :[2.6 2.28]
09 .69
09 .69

2. Map ¢"V to the ltems space by multiplying by V7
56 .59 .56 .09 09|
—12 .02 —.12 .69 .69|

[1.18 157 1.18 1.8 1.8}

{2.6 2.28]

28



Correctness




Low Rank Approximation

Frobenius Norm
Let A be a matrix of real numbers. lts Frobenius Norm ||A||» is defined as

Al = /> Alé, 512
o)

Frobenius Norm via SVD of A

For a rank r matrix A with its singular-value decomposition 4 = UXV7” | its
Frobenius norm is ||A||3 = 3 + - + 22,..

29
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- Low Rank Approximation

Why is ||A[|% = 2%, +--- + 22,7
LetSVDof A = PQR (Note: P=U,Q =%, R=VT)
Now A;; = Zk: %:Pik%ﬂ“u-

lalE = Y>> A%
J

7

= > 300> pikanmy)?
i j k1
= ZZZZZzpikqmrljpim‘}mnrnj
i j k I m n
Now use the fact that ¢, = 0 for a # b and the dot-product of any two columns of p is 0
due to orthonormality of P = U. Similarly, the dot-product of any two rows of R = VT

is 0. This allows us to show

IAlIE =D dir = 5% +---+ =2,
k



Low Rank Approximation (contd.)

Let A and A’ be two matrices of real numbers of same dimensions.

Error in approximating A by A’
The error in approximating A by A’ is defined as the Frobenius Norm of
A - A'l|lF = Z( [, 5] = A'[i, 5])°

Let A = USVT be a m x n matrix of real numbers of rank . Let 1 < ' < r.
Define a r x r diagonal matrix X’ as follows:
Fori=1to+, X}, = % and all other entries of ¥’ are 0. Let A’ = UX'VT.

Claim: A’ is the best rank ' < r approximation of A4, i.e., for any rank 7’ m xn
matrix B, ||A — A'||r < ||A— B||r.

30



Low Rank Approximation (contd.)

Given A=UxV7Tand A’ =US VT, A-A =UX - 2")V7.

Thus, [|[A — A'l|F = 41 v+ + S

Note that the elements X,/ 1 ;1 1,..., X, Were set to 0 in X to obtain A’.
These are the lowest energy terms in A.

Best low rank approximation of A

For a rank r matrix A with its SVD A = UXV7, its best rank »’ < r
approximation is obtained by the matrix A’ where A’ = UX'VT and &' is
obtained from X by setting its » — r’ smallest diagonal entries to 0.

31



References

1. Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge
Press.

2. G. H. Golub abd W. Kahan, Calculating the singular values and
pseudo-inverse of a matriix, SIAM Journal Series B2:2:205-224, 1965.

3. P. Drineas, R. Kanan and M.W. Mahoney, Fast Monte-Carlo algorithms
for matrics Ill: Computing a compressed approximate matrix
decomposition, SIAM JI. Computing 36:1: 184-206, 2006.

4. J. Sun, Y. Xie, H. Zhang, and C. Faloutsos, Less is more: compact matrix
decomposition for large sparse graphs, SIAM International Conference
on Data Mining, 2007.

32



	Matrices - Eigenvalues & Eigenvectors
	Singular Value Decomposition
	Low Rank Approximations
	An Application
	Correctness

