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Balls & Bins

Model
We have m Balls and n Bins. We throw each ball in a bin uniformly at
random.

What is the probability of following events:

1. Balls i and j are in the same bin.

2. Expected number of balls in a bin.

3. Expected number of empty bins.

4. Bin #i receives (a) 0 balls, (b) k balls, and (c) ≥ k balls.

5. All bins have ≤ c lnn
ln lnn

balls.

Applications: Birthday Paradox, Load Balancing, Perfect Hashing
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Collisions



Probability of ball j is in the bin containing ball i

Number of Balls = m

Number of Bins = n.

Pr[Balls i and j in same bin] = 1
n

.

Define r.v. Xij (1 ≤ i ≤ m− 1, i+ 1 ≤ j ≤ m) as follows:

Xij =

1 if ball j is Bin of ball i

0 Otherwise

Pr(Xij = 1) = 1
n

and E[Xij ] =
1
n
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Expected number of balls in a bin

Number of Balls = m

Number of Bins = n.

E[# Balls in Bin i] = E[

n∑
j=1

Xij ]

=

m∑
j=1

E[Xij ]

=

m∑
j=1

P (Ball j is in Bin i)

=
m∑

j=1

1/n

= m/n
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Expected number of collisions

Number of Balls = m

Number of Bins = n.

Define X =
∑
i,j

Xij = Total # of collisions

E[X] = E[
∑
i,j

Xij ]

By Linearity of Expectation: E[
∑
i,j

Xij ] =
∑
i,j

E[Xij ]

Thus E[X] = 1
n

(
m
2

)
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Birthday Paradox

Number of Balls = m = Number of Students
Number of Bins = n = Number of days in a Year.

For two students to have same Birthday:
What value of m will result in E[X] = 1

n

(
m
2

)
≥ 1

For m ≥ 28, E[X] = 1
365

m(m−1)
2

≥ 1
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Birthday Paradox Contd.

What is minimum value of m so that the probability that two students share
the same birthday is ≥ 1

2
?

Probability that all m students have distinct birthday’s is given by:
(1− 1

n
)(1− 2

n
)(1− 3

n
) . . . (1− m−1

n
)

Let us use the inequality 1− x ≤ e−x.

We want:

e−
1
n e−

2
n e−

3
n . . . e−

m−1
n ≤ 1

2

e−
m(m−1)

2n ≤ 1

2

Now using n = 365, we have e−
m(m−1)
2∗365 ≤ 1

2
or m ≥ 23.

Intuition: There are m2 ≈ n pairs where a collision can occur.
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Size of Bins



Number of Balls in Bin i

Number of Balls = m; Number of Bins = n.

Problem I
What is the probability that Bin i receives no balls?

(
1− 1

n

)m

≤ e−
m
n

If n = m, (1− 1
n
)n ≤ e−1 = 0.37.

Problem II
What is the probability that Bin i receives exactly k balls?

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
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Number of Balls in Bin i contd.

Number of Balls = m; Number of Bins = n.

Problem III
What is the probability that Bin i receives ≥ k balls?

≤

(
m

k

)(
1

n

)k

Fix a set S of k balls.

Pr(Bin i receives all balls in S)= ( 1
n
)k.

The remaining balls can go anywhere.

Take the union bound over all possible subset of k balls.

Useful Bounds: (n
k
)k <

(
n
k

)
< nk

k!
< ( en

k
)k.

If n = m, we have
(
n
k

) (
1
n

)k ≤
(
e
k

)k
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Expected Number of Balls in a Bin

Number of Balls = m; Number of Bins = n.

Problem IV
What is Expected # of Balls in a Bin?

=
m

n

You can use random variable Bij to compute this probability.
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Expected Number Empty Bins

Number of Balls = m; Number of Bins = n.

Problem V
What is Expected # of Empty Bins?

Define a r.v. Xi such that

Xi =

1 if Bin i is empty

0 Otherwise

From Problem I, Pr(Xi = 1) ≤ e−
m
n and E[Xi] ≤ e−

m
n

Thus, E[# of Empty Bins] =
n∑

i=1

E[Xi] ≤ ne−
m
n

When n = m, E[# of Empty Bins] ≤ n
e

12



Max # Balls in Bins

Number of Balls = Number of Bins = n.

Max # of Balls in Bins

With probability ≥ 1− 1
n

all bins receive fewer than 3 lnn
ln lnn

balls.

Pr(Bin i has more that k balls) ≤
(
m
k

) (
1
n

)k
=
(
n
k

) (
1
n

)k ≤
(
e
k

)k
Substitute k = 3 lnn

ln lnn
and show that

Pr(Bin i has more that k balls) ≤ 1
n2

Thus by Union Bound,

Pr(Any bin has more that k balls) ≤ 1
n
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Max # Balls in Bins Contd.

Claim

For k = 3 lnn
ln lnn

,
(
e
k

)k ≤ 1
n2

Proof.

( e
k

)k
=

[
e
ln lnn

3 lnn

] 3 lnn
ln lnn

=
[
e1eln

ln lnn
3 lnn

] 3 lnn
ln lnn

= e
3 lnn
ln lnn

[1+ln ln lnn−ln(3 lnn)]

= e
3 lnn
ln lnn

[1+ln ln lnn−ln 3−ln lnn]

≤ e
3 lnn
ln lnn

[ln ln lnn−ln lnn]

= e[−3 lnn+ 3 lnn ln ln lnn
ln lnn ]

For large values of n, −3 lnn+ 3 lnn ln ln lnn
ln lnn

≤ −2 lnn.
Thus,

(
e
k

)k ≤ e−2 lnn = 1
n2
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