
Recommendation Systems

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

1

Introduction

Recommendation Systems

Objective: Predict user responses to options

Examples:

1. Tailoring news depending on interest in an online newspaper

2. What to buy based on past history

3. Which book/show to recommend

Approach:

1. Content-based: If a user likes ‘Action’ Movies, recommend movies
classified as of type ‘Action’

2. Collaborative Filtering: Recommend items based on similarity measures
between users and/or items. Recommend items based on similar users.

2

Utility Matrix

Matrix consisting of m-users as rows and n-items as columns. The entries in
the matrix are numerical values specifying the user-item preference.

Example: 4-users and 5-items. Ranking on the scale of 1− 5. Blanks refers
to no ranking.

Utility Matrix:

I1 I2 I3 I4 I5

U1 5 1 4
U2 1 2 3 4
U3 1 4 1
U4 5 1 3

Problem: Predict the blank entries in Utility Matrix

3

Content-based RS

Problem: For each item construct a profile. Profile represents important
characteristics of the item.

Examples:
Movies: Language, Country, Director, Genre, Year
Books: Author, Language, Year, Category

Techniques are adhoc
- look at item descriptor
- word counts for documents - usage of different words
- Jaccard distance between two documents based on the words they use
. . .

4

Collaborative Filtering

Collaborative Filtering RS

Key Principle: Two users (or items) are similar if their row (resp. column)
vectors are similar in the utility matrix.

Collaborative Filtering: The process of identifying similar users/items and
recommending what similar users like.

Problem: Find similar row/column vectors in the utility matrix.

5

Similarity Measures

Utility Matrix:

I1 I2 I3 I4 I5
U1 5 1 4
U2 1 2 3 4
U3 1 4 1
U4 5 1 3

1. Jaccard Distance: Treat any non-zero entry to mean ‘membership’ in the
set: JD(U1, U2) = 1− JS(U1, U2) = 1− 2

5
= 3

5

JD(U1, U4) = 1− 2
4

= 1
2

Does this makes sense?

2. Cosine Distance: Treat blank values as zeros and compute the Cosine
Distance: Cos(U1, U2) = U1·U2

||U1||||U2||
= 5·0+1·1+0·2+4·3+0·4√

52+12+42
√

12+22+32+42
=

17√
42
√

46
= 0.386 = 67◦

Cos(U1, U4) = U1·U4
||U1||||U4||

= 9√
42
√
35

= 0.23 = 76◦

(U1, U2) are similar as compared to (U1, U4)

6

Similarity Measures (contd.)

Fluctuations in Ratings: A user may rate everything higher compared to
other users.

Normalization: Subtract the average rating of the user from all of its ratings:

I1 I2 I3 I4 I5 Average
U1 5/3 -7/3 2/3 10/3
U2 -2 -1 1 2 3
U3 -1 2 -1 2
U4 2 -2 0 3

Cos(U1, U2) = 0.57 = 55◦

Cos(U1, U4) = −.72 = 136◦

(U1, U2) are more similar as compared to (U1, U4)

7

UV Decomposition

UV-Decomposition

Approximate Utility Matrix M by the product of two low rank matrices U and
V , i.e. [M]m×n ≈ [U]m×d[V]d×n, where d is small.

Intuition: d represents the set of features for which the users respond. Matrix
U corresponds to users preferences for those features and V corresponds to
connection between items and features.

Examples: Movies: d ∼ 8− 10

M =


2 1 4 3

7 1 0 6

1 2 1 4

2 1 6 6

 ≈


1 0

0 1

1 1

1 0


[

1 2 1 0

0 1 1 2

]

How good is the approximation?

8

RMSE

Evaluate Root-Mean-Square-Error (RMSE)
1 0

0 1

1 1

1 0


[

1 2 1 0

0 1 1 2

]
=


1 2 1 0

0 1 1 2

1 3 2 2

1 2 1 0



RMSE =

√
1

nm

∑
i,j

(Mij −
∑
k=1d

UikVkj)2

=

√
1

16
((2− 1)2 + (1− 2)2 + (4− 1)2 + . . . + (6− 0)2)

9

Guessing missing entries in M

Steps:

1. Find U and V such that RMSE error between known entries in M and
UV is small.

2. For a missing entry Mij in M , let the guess be
d∑

k=1

UikVkj

10

Guessing missing entries in M (contd.)

Let M ≈ UV be

M =

1 1

2 1 3

1 1

 ≈
1

2

1

[
1 1 1

]

P = UV =

1 1 1

2 2 2

1 1 1


RMSE =

√
(M22 − P22)2 + (M23P24)2 =

√
2

Guess for Missing Entries in M :

M13 = U11V13 = 1 ∗ 1 = 1

M31 = U31V11 = 1 ∗ 1 = 1

11

Computation of U and V

Main Steps:

1. Normalize Utility Matrix M

2. Initialize U and V

3. Compute each element of U and V by optimizing RMSE

4. Repeat the last step till convergence

We need to define convergence - for example the matrix entries don’t change
significantly, execute only for a fixed number of iterations, . . .

12

Computation of U and V (contd.)

Let M =

1 1

2 1 3

1 1


Assume that we want to approximate M by rank 1 matrices U and V , so that
M ≈ UV

Initialize: U =

1

1

1

 and V =

1

1

1


Let us optimize entry U11

Problem: Find the best value of x so that the RMSE error between (the

known entries) of M and P =

x1
1

[
1 1 1

]
is minimum.

13

Computation of U and V (contd.)

P =

x1
1

[
1 1 1

]
=

x x x

1 1 1

1 1 1


RMSE(M,P) =

√
(1− x)2 + (1− x)2 + 5

To minimize RMSE, we need to choose x = 1

Now consider the best value for U21:

P =

1

x

1

[
1 1 1

]
=

1 1 1

x x x

1 1 1


RMSE(M,P) =

√
(2− x)2 + (1− x)2 + (3− x)2

To minimize RMSE, we need to choose x = 2

14

Computation of U and V (contd.)

Now consider the best value for V13:

P =

1

2

1

[
1 1 x

]
=

1 1 x

2 2 2x

1 1 x


RMSE(M,P) =

√
(1− 2)2 + (3− 2x)2 + (1− x)2

To minimize RMSE, we need to choose x = 7/5

So far we have M ≈ UV as

M =

1 1

2 1 3

1 1

 ≈
1

2

1

[
1 1 7/5

]

RMSE(M,UV) ≈ 1.09

We may continue the improvement till RMSE converges.

15

Conclusions

1. Utility Matrix M : Users × Items ranking matrix

2. How to guess missing entries?

3. Content-based Filtering - Categorize items

4. Collaborative Filtering - Finding similar users/items

5. M as product of low rank matrices M = UV

6. Soon: We will express M = UΣV T via Singular Value Decomposition.
This has several interesting properties, including a low-rank
approximation

7. Extra Reading: Netflix Challenge

16

	Introduction
	Collaborative Filtering
	UV Decomposition

