Max k**-coverage**

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

[Introduction](#page-1-0)

Input: A universe U of n elements, and a collection of m sets $S = \{S_1, \ldots, S_m\}$ of U, where each $S_i \subset U$, and an integer parameter $k > 0$.

Problem: Find k sets from S such that their union has the largest possible cardinality.

Example: Let *n* be even and $k = 2$. Let S_1 has $\frac{n}{2} + 2$ elements. Sets S_2 and S₃ each have $n/2$ elements, such that $S_2 \cap S_3 = \emptyset$, $|S_1 \cap S_2| = n/4 + 1$, and $|S_1 \cap S_3| = n/4 + 1.$

Greedy algorithm chooses the sets S_1 and one of S_2 or S_3 .

Optimal algorithm will choose S_2 and S_3 .

Competitive ratio: $\frac{3n/4+1}{n} \to \frac{3}{4}$, as $n \to \infty$.

Examples for $k = 2, 3$

Competitive Ratio of Greedy

Approximation ratio of the greedy algorithm for the max k -coverage problem is $1-\left(1-\frac{1}{k}\right)^k\approx 1-\frac{1}{e}$ for large values of $k.$

Proof Sketch:

- Assume $i < k$. Suppose greedy algorithm has selected $i - 1$ sets, and in this step it selects the i -th set.

- WLOG, let the selected $i - 1$ sets be S_1, \ldots, S_{i-1} , and S_i will be the set selected in the i -th step.

- Let $L_{i-1} = |\bigcup_{j=1}^{i-1} S_j| =$ Total number of elements of U that are covered by the sets S_1, \ldots, S_{i-1} .

- Let L^* be the maximum number of elements in the union of an optimal choice of k sets from S .

- We claim that S_i covers at least $\frac{1}{k}(L^*-L_{i-1})$ new elements, i.e., $L_i - L_{i-1} \geq \frac{1}{k}(L^* - L_{i-1}).$

Competitive Ratio of Greedy Algorithm (contd.)

Claim 1

 $L_i - L_{i-1} \geq \frac{1}{k}(L^* - L_{i-1})$

Proof:

- Suppose greedy algorithm can pick k sets in this step. Then it will cover $L^* - L_{i-1}$ new elements, as it can pick all the sets of an optimal solution.

- Thus, there is a set among these k sets that has at least $\frac{1}{k}(L^*-L_{i-1})$ new elements.

- The set chosen by greedy algorithm covers $\geq \frac{1}{k}(L^*-L_{i-1})$ new elements.
- Hence, $L_i L_{i-1} \geq \frac{1}{k}(L^* L_{i-1})$ □

Competitive Ratio of Greedy Algorithm (contd.)

Claim 2

$$
L_k \geq \left(1 - \left(1 - \frac{1}{k}\right)^k\right) L^*.
$$

Proof:

$$
L_k = (L_k - L_{k-1}) + L_{k-1}
$$

\n
$$
\geq \frac{1}{k}(L^* - L_{k-1}) + L_{k-1}
$$

\n
$$
= \frac{L^*}{k} + \left(1 - \frac{1}{k}\right)L_{k-1}
$$

\n
$$
\geq \frac{L^*}{k} + \left(1 - \frac{1}{k}\right)\frac{L^*}{k} + \left(1 - \frac{1}{k}\right)^2 L_{k-2}
$$

\n
$$
\geq \frac{L^*}{k} \left[1 + \left(1 - \frac{1}{k}\right) + \left(1 - \frac{1}{k}\right)^2 + \dots + \left(1 - \frac{1}{k}\right)^{k-1}\right]
$$

\n
$$
= \frac{L^*}{k} \left[\frac{1 - \left(1 - \frac{1}{k}\right)^k}{1 - \left(1 - \frac{1}{k}\right)}\right] = \left(1 - \left(1 - \frac{1}{k}\right)^k\right)L^*
$$

Competitive Ratio of Greedy Algorithm (contd.)

Theorem

Competitive ratio of the greedy algorithm is $1-\frac{1}{e}$.

- From previous claim, we have $L_k \geq \left(1-\left(1-\frac{1}{k}\right)^k\right)L^*.$
- Thus $\frac{L_k}{L^*} \geq 1 \left(1 \frac{1}{k}\right)^k$
- Observe $\lim_{k\to\infty} 1-\left(1-\frac{1}{k}\right)^k=1-\frac{1}{e}$

```
Greedy Algorithm for max k-coverage problem
Step 1: Set \mathcal{S}' := \emptyset.
Step 2: For i := 1 to k do
         - Pick the set from S that covers the maximum number of
         uncovered elements of U.
         - Without loss of generality, let that set be X.
          \cdot S' := S' \cup X.
Step 3: Output S'
```